Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "inode-map.h"
22#include "qgroup.h"
23#include "print-tree.h"
24#include "delalloc-space.h"
25#include "block-group.h"
26#include "backref.h"
27
28/*
29 * Relocation overview
30 *
31 * [What does relocation do]
32 *
33 * The objective of relocation is to relocate all extents of the target block
34 * group to other block groups.
35 * This is utilized by resize (shrink only), profile converting, compacting
36 * space, or balance routine to spread chunks over devices.
37 *
38 * Before | After
39 * ------------------------------------------------------------------
40 * BG A: 10 data extents | BG A: deleted
41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
43 *
44 * [How does relocation work]
45 *
46 * 1. Mark the target block group read-only
47 * New extents won't be allocated from the target block group.
48 *
49 * 2.1 Record each extent in the target block group
50 * To build a proper map of extents to be relocated.
51 *
52 * 2.2 Build data reloc tree and reloc trees
53 * Data reloc tree will contain an inode, recording all newly relocated
54 * data extents.
55 * There will be only one data reloc tree for one data block group.
56 *
57 * Reloc tree will be a special snapshot of its source tree, containing
58 * relocated tree blocks.
59 * Each tree referring to a tree block in target block group will get its
60 * reloc tree built.
61 *
62 * 2.3 Swap source tree with its corresponding reloc tree
63 * Each involved tree only refers to new extents after swap.
64 *
65 * 3. Cleanup reloc trees and data reloc tree.
66 * As old extents in the target block group are still referenced by reloc
67 * trees, we need to clean them up before really freeing the target block
68 * group.
69 *
70 * The main complexity is in steps 2.2 and 2.3.
71 *
72 * The entry point of relocation is relocate_block_group() function.
73 */
74
75/*
76 * backref_node, mapping_node and tree_block start with this
77 */
78struct tree_entry {
79 struct rb_node rb_node;
80 u64 bytenr;
81};
82
83/*
84 * present a tree block in the backref cache
85 */
86struct backref_node {
87 struct rb_node rb_node;
88 u64 bytenr;
89
90 u64 new_bytenr;
91 /* objectid of tree block owner, can be not uptodate */
92 u64 owner;
93 /* link to pending, changed or detached list */
94 struct list_head list;
95 /* list of upper level blocks reference this block */
96 struct list_head upper;
97 /* list of child blocks in the cache */
98 struct list_head lower;
99 /* NULL if this node is not tree root */
100 struct btrfs_root *root;
101 /* extent buffer got by COW the block */
102 struct extent_buffer *eb;
103 /* level of tree block */
104 unsigned int level:8;
105 /* is the block in non-reference counted tree */
106 unsigned int cowonly:1;
107 /* 1 if no child node in the cache */
108 unsigned int lowest:1;
109 /* is the extent buffer locked */
110 unsigned int locked:1;
111 /* has the block been processed */
112 unsigned int processed:1;
113 /* have backrefs of this block been checked */
114 unsigned int checked:1;
115 /*
116 * 1 if corresponding block has been cowed but some upper
117 * level block pointers may not point to the new location
118 */
119 unsigned int pending:1;
120 /*
121 * 1 if the backref node isn't connected to any other
122 * backref node.
123 */
124 unsigned int detached:1;
125};
126
127/*
128 * present a block pointer in the backref cache
129 */
130struct backref_edge {
131 struct list_head list[2];
132 struct backref_node *node[2];
133};
134
135#define LOWER 0
136#define UPPER 1
137#define RELOCATION_RESERVED_NODES 256
138
139struct backref_cache {
140 /* red black tree of all backref nodes in the cache */
141 struct rb_root rb_root;
142 /* for passing backref nodes to btrfs_reloc_cow_block */
143 struct backref_node *path[BTRFS_MAX_LEVEL];
144 /*
145 * list of blocks that have been cowed but some block
146 * pointers in upper level blocks may not reflect the
147 * new location
148 */
149 struct list_head pending[BTRFS_MAX_LEVEL];
150 /* list of backref nodes with no child node */
151 struct list_head leaves;
152 /* list of blocks that have been cowed in current transaction */
153 struct list_head changed;
154 /* list of detached backref node. */
155 struct list_head detached;
156
157 u64 last_trans;
158
159 int nr_nodes;
160 int nr_edges;
161};
162
163/*
164 * map address of tree root to tree
165 */
166struct mapping_node {
167 struct rb_node rb_node;
168 u64 bytenr;
169 void *data;
170};
171
172struct mapping_tree {
173 struct rb_root rb_root;
174 spinlock_t lock;
175};
176
177/*
178 * present a tree block to process
179 */
180struct tree_block {
181 struct rb_node rb_node;
182 u64 bytenr;
183 struct btrfs_key key;
184 unsigned int level:8;
185 unsigned int key_ready:1;
186};
187
188#define MAX_EXTENTS 128
189
190struct file_extent_cluster {
191 u64 start;
192 u64 end;
193 u64 boundary[MAX_EXTENTS];
194 unsigned int nr;
195};
196
197struct reloc_control {
198 /* block group to relocate */
199 struct btrfs_block_group *block_group;
200 /* extent tree */
201 struct btrfs_root *extent_root;
202 /* inode for moving data */
203 struct inode *data_inode;
204
205 struct btrfs_block_rsv *block_rsv;
206
207 struct backref_cache backref_cache;
208
209 struct file_extent_cluster cluster;
210 /* tree blocks have been processed */
211 struct extent_io_tree processed_blocks;
212 /* map start of tree root to corresponding reloc tree */
213 struct mapping_tree reloc_root_tree;
214 /* list of reloc trees */
215 struct list_head reloc_roots;
216 /* list of subvolume trees that get relocated */
217 struct list_head dirty_subvol_roots;
218 /* size of metadata reservation for merging reloc trees */
219 u64 merging_rsv_size;
220 /* size of relocated tree nodes */
221 u64 nodes_relocated;
222 /* reserved size for block group relocation*/
223 u64 reserved_bytes;
224
225 u64 search_start;
226 u64 extents_found;
227
228 unsigned int stage:8;
229 unsigned int create_reloc_tree:1;
230 unsigned int merge_reloc_tree:1;
231 unsigned int found_file_extent:1;
232};
233
234/* stages of data relocation */
235#define MOVE_DATA_EXTENTS 0
236#define UPDATE_DATA_PTRS 1
237
238static void remove_backref_node(struct backref_cache *cache,
239 struct backref_node *node);
240static void __mark_block_processed(struct reloc_control *rc,
241 struct backref_node *node);
242
243static void mapping_tree_init(struct mapping_tree *tree)
244{
245 tree->rb_root = RB_ROOT;
246 spin_lock_init(&tree->lock);
247}
248
249static void backref_cache_init(struct backref_cache *cache)
250{
251 int i;
252 cache->rb_root = RB_ROOT;
253 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
254 INIT_LIST_HEAD(&cache->pending[i]);
255 INIT_LIST_HEAD(&cache->changed);
256 INIT_LIST_HEAD(&cache->detached);
257 INIT_LIST_HEAD(&cache->leaves);
258}
259
260static void backref_cache_cleanup(struct backref_cache *cache)
261{
262 struct backref_node *node;
263 int i;
264
265 while (!list_empty(&cache->detached)) {
266 node = list_entry(cache->detached.next,
267 struct backref_node, list);
268 remove_backref_node(cache, node);
269 }
270
271 while (!list_empty(&cache->leaves)) {
272 node = list_entry(cache->leaves.next,
273 struct backref_node, lower);
274 remove_backref_node(cache, node);
275 }
276
277 cache->last_trans = 0;
278
279 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
280 ASSERT(list_empty(&cache->pending[i]));
281 ASSERT(list_empty(&cache->changed));
282 ASSERT(list_empty(&cache->detached));
283 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
284 ASSERT(!cache->nr_nodes);
285 ASSERT(!cache->nr_edges);
286}
287
288static struct backref_node *alloc_backref_node(struct backref_cache *cache)
289{
290 struct backref_node *node;
291
292 node = kzalloc(sizeof(*node), GFP_NOFS);
293 if (node) {
294 INIT_LIST_HEAD(&node->list);
295 INIT_LIST_HEAD(&node->upper);
296 INIT_LIST_HEAD(&node->lower);
297 RB_CLEAR_NODE(&node->rb_node);
298 cache->nr_nodes++;
299 }
300 return node;
301}
302
303static void free_backref_node(struct backref_cache *cache,
304 struct backref_node *node)
305{
306 if (node) {
307 cache->nr_nodes--;
308 btrfs_put_root(node->root);
309 kfree(node);
310 }
311}
312
313static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
314{
315 struct backref_edge *edge;
316
317 edge = kzalloc(sizeof(*edge), GFP_NOFS);
318 if (edge)
319 cache->nr_edges++;
320 return edge;
321}
322
323static void free_backref_edge(struct backref_cache *cache,
324 struct backref_edge *edge)
325{
326 if (edge) {
327 cache->nr_edges--;
328 kfree(edge);
329 }
330}
331
332static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
333 struct rb_node *node)
334{
335 struct rb_node **p = &root->rb_node;
336 struct rb_node *parent = NULL;
337 struct tree_entry *entry;
338
339 while (*p) {
340 parent = *p;
341 entry = rb_entry(parent, struct tree_entry, rb_node);
342
343 if (bytenr < entry->bytenr)
344 p = &(*p)->rb_left;
345 else if (bytenr > entry->bytenr)
346 p = &(*p)->rb_right;
347 else
348 return parent;
349 }
350
351 rb_link_node(node, parent, p);
352 rb_insert_color(node, root);
353 return NULL;
354}
355
356static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
357{
358 struct rb_node *n = root->rb_node;
359 struct tree_entry *entry;
360
361 while (n) {
362 entry = rb_entry(n, struct tree_entry, rb_node);
363
364 if (bytenr < entry->bytenr)
365 n = n->rb_left;
366 else if (bytenr > entry->bytenr)
367 n = n->rb_right;
368 else
369 return n;
370 }
371 return NULL;
372}
373
374static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
375{
376
377 struct btrfs_fs_info *fs_info = NULL;
378 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
379 rb_node);
380 if (bnode->root)
381 fs_info = bnode->root->fs_info;
382 btrfs_panic(fs_info, errno,
383 "Inconsistency in backref cache found at offset %llu",
384 bytenr);
385}
386
387/*
388 * walk up backref nodes until reach node presents tree root
389 */
390static struct backref_node *walk_up_backref(struct backref_node *node,
391 struct backref_edge *edges[],
392 int *index)
393{
394 struct backref_edge *edge;
395 int idx = *index;
396
397 while (!list_empty(&node->upper)) {
398 edge = list_entry(node->upper.next,
399 struct backref_edge, list[LOWER]);
400 edges[idx++] = edge;
401 node = edge->node[UPPER];
402 }
403 BUG_ON(node->detached);
404 *index = idx;
405 return node;
406}
407
408/*
409 * walk down backref nodes to find start of next reference path
410 */
411static struct backref_node *walk_down_backref(struct backref_edge *edges[],
412 int *index)
413{
414 struct backref_edge *edge;
415 struct backref_node *lower;
416 int idx = *index;
417
418 while (idx > 0) {
419 edge = edges[idx - 1];
420 lower = edge->node[LOWER];
421 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
422 idx--;
423 continue;
424 }
425 edge = list_entry(edge->list[LOWER].next,
426 struct backref_edge, list[LOWER]);
427 edges[idx - 1] = edge;
428 *index = idx;
429 return edge->node[UPPER];
430 }
431 *index = 0;
432 return NULL;
433}
434
435static void unlock_node_buffer(struct backref_node *node)
436{
437 if (node->locked) {
438 btrfs_tree_unlock(node->eb);
439 node->locked = 0;
440 }
441}
442
443static void drop_node_buffer(struct backref_node *node)
444{
445 if (node->eb) {
446 unlock_node_buffer(node);
447 free_extent_buffer(node->eb);
448 node->eb = NULL;
449 }
450}
451
452static void drop_backref_node(struct backref_cache *tree,
453 struct backref_node *node)
454{
455 BUG_ON(!list_empty(&node->upper));
456
457 drop_node_buffer(node);
458 list_del(&node->list);
459 list_del(&node->lower);
460 if (!RB_EMPTY_NODE(&node->rb_node))
461 rb_erase(&node->rb_node, &tree->rb_root);
462 free_backref_node(tree, node);
463}
464
465/*
466 * remove a backref node from the backref cache
467 */
468static void remove_backref_node(struct backref_cache *cache,
469 struct backref_node *node)
470{
471 struct backref_node *upper;
472 struct backref_edge *edge;
473
474 if (!node)
475 return;
476
477 BUG_ON(!node->lowest && !node->detached);
478 while (!list_empty(&node->upper)) {
479 edge = list_entry(node->upper.next, struct backref_edge,
480 list[LOWER]);
481 upper = edge->node[UPPER];
482 list_del(&edge->list[LOWER]);
483 list_del(&edge->list[UPPER]);
484 free_backref_edge(cache, edge);
485
486 if (RB_EMPTY_NODE(&upper->rb_node)) {
487 BUG_ON(!list_empty(&node->upper));
488 drop_backref_node(cache, node);
489 node = upper;
490 node->lowest = 1;
491 continue;
492 }
493 /*
494 * add the node to leaf node list if no other
495 * child block cached.
496 */
497 if (list_empty(&upper->lower)) {
498 list_add_tail(&upper->lower, &cache->leaves);
499 upper->lowest = 1;
500 }
501 }
502
503 drop_backref_node(cache, node);
504}
505
506static void update_backref_node(struct backref_cache *cache,
507 struct backref_node *node, u64 bytenr)
508{
509 struct rb_node *rb_node;
510 rb_erase(&node->rb_node, &cache->rb_root);
511 node->bytenr = bytenr;
512 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
513 if (rb_node)
514 backref_tree_panic(rb_node, -EEXIST, bytenr);
515}
516
517/*
518 * update backref cache after a transaction commit
519 */
520static int update_backref_cache(struct btrfs_trans_handle *trans,
521 struct backref_cache *cache)
522{
523 struct backref_node *node;
524 int level = 0;
525
526 if (cache->last_trans == 0) {
527 cache->last_trans = trans->transid;
528 return 0;
529 }
530
531 if (cache->last_trans == trans->transid)
532 return 0;
533
534 /*
535 * detached nodes are used to avoid unnecessary backref
536 * lookup. transaction commit changes the extent tree.
537 * so the detached nodes are no longer useful.
538 */
539 while (!list_empty(&cache->detached)) {
540 node = list_entry(cache->detached.next,
541 struct backref_node, list);
542 remove_backref_node(cache, node);
543 }
544
545 while (!list_empty(&cache->changed)) {
546 node = list_entry(cache->changed.next,
547 struct backref_node, list);
548 list_del_init(&node->list);
549 BUG_ON(node->pending);
550 update_backref_node(cache, node, node->new_bytenr);
551 }
552
553 /*
554 * some nodes can be left in the pending list if there were
555 * errors during processing the pending nodes.
556 */
557 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
558 list_for_each_entry(node, &cache->pending[level], list) {
559 BUG_ON(!node->pending);
560 if (node->bytenr == node->new_bytenr)
561 continue;
562 update_backref_node(cache, node, node->new_bytenr);
563 }
564 }
565
566 cache->last_trans = 0;
567 return 1;
568}
569
570static bool reloc_root_is_dead(struct btrfs_root *root)
571{
572 /*
573 * Pair with set_bit/clear_bit in clean_dirty_subvols and
574 * btrfs_update_reloc_root. We need to see the updated bit before
575 * trying to access reloc_root
576 */
577 smp_rmb();
578 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
579 return true;
580 return false;
581}
582
583/*
584 * Check if this subvolume tree has valid reloc tree.
585 *
586 * Reloc tree after swap is considered dead, thus not considered as valid.
587 * This is enough for most callers, as they don't distinguish dead reloc root
588 * from no reloc root. But should_ignore_root() below is a special case.
589 */
590static bool have_reloc_root(struct btrfs_root *root)
591{
592 if (reloc_root_is_dead(root))
593 return false;
594 if (!root->reloc_root)
595 return false;
596 return true;
597}
598
599static int should_ignore_root(struct btrfs_root *root)
600{
601 struct btrfs_root *reloc_root;
602
603 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
604 return 0;
605
606 /* This root has been merged with its reloc tree, we can ignore it */
607 if (reloc_root_is_dead(root))
608 return 1;
609
610 reloc_root = root->reloc_root;
611 if (!reloc_root)
612 return 0;
613
614 if (btrfs_header_generation(reloc_root->commit_root) ==
615 root->fs_info->running_transaction->transid)
616 return 0;
617 /*
618 * if there is reloc tree and it was created in previous
619 * transaction backref lookup can find the reloc tree,
620 * so backref node for the fs tree root is useless for
621 * relocation.
622 */
623 return 1;
624}
625/*
626 * find reloc tree by address of tree root
627 */
628static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
629 u64 bytenr)
630{
631 struct rb_node *rb_node;
632 struct mapping_node *node;
633 struct btrfs_root *root = NULL;
634
635 spin_lock(&rc->reloc_root_tree.lock);
636 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
637 if (rb_node) {
638 node = rb_entry(rb_node, struct mapping_node, rb_node);
639 root = (struct btrfs_root *)node->data;
640 }
641 spin_unlock(&rc->reloc_root_tree.lock);
642 return btrfs_grab_root(root);
643}
644
645static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
646 u64 root_objectid)
647{
648 struct btrfs_key key;
649
650 key.objectid = root_objectid;
651 key.type = BTRFS_ROOT_ITEM_KEY;
652 key.offset = (u64)-1;
653
654 return btrfs_get_fs_root(fs_info, &key, false);
655}
656
657static noinline_for_stack
658int find_inline_backref(struct extent_buffer *leaf, int slot,
659 unsigned long *ptr, unsigned long *end)
660{
661 struct btrfs_key key;
662 struct btrfs_extent_item *ei;
663 struct btrfs_tree_block_info *bi;
664 u32 item_size;
665
666 btrfs_item_key_to_cpu(leaf, &key, slot);
667
668 item_size = btrfs_item_size_nr(leaf, slot);
669 if (item_size < sizeof(*ei)) {
670 btrfs_print_v0_err(leaf->fs_info);
671 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
672 return 1;
673 }
674 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
675 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
676 BTRFS_EXTENT_FLAG_TREE_BLOCK));
677
678 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
679 item_size <= sizeof(*ei) + sizeof(*bi)) {
680 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
681 return 1;
682 }
683 if (key.type == BTRFS_METADATA_ITEM_KEY &&
684 item_size <= sizeof(*ei)) {
685 WARN_ON(item_size < sizeof(*ei));
686 return 1;
687 }
688
689 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
690 bi = (struct btrfs_tree_block_info *)(ei + 1);
691 *ptr = (unsigned long)(bi + 1);
692 } else {
693 *ptr = (unsigned long)(ei + 1);
694 }
695 *end = (unsigned long)ei + item_size;
696 return 0;
697}
698
699/*
700 * build backref tree for a given tree block. root of the backref tree
701 * corresponds the tree block, leaves of the backref tree correspond
702 * roots of b-trees that reference the tree block.
703 *
704 * the basic idea of this function is check backrefs of a given block
705 * to find upper level blocks that reference the block, and then check
706 * backrefs of these upper level blocks recursively. the recursion stop
707 * when tree root is reached or backrefs for the block is cached.
708 *
709 * NOTE: if we find backrefs for a block are cached, we know backrefs
710 * for all upper level blocks that directly/indirectly reference the
711 * block are also cached.
712 */
713static noinline_for_stack
714struct backref_node *build_backref_tree(struct reloc_control *rc,
715 struct btrfs_key *node_key,
716 int level, u64 bytenr)
717{
718 struct backref_cache *cache = &rc->backref_cache;
719 struct btrfs_path *path1; /* For searching extent root */
720 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
721 struct extent_buffer *eb;
722 struct btrfs_root *root;
723 struct backref_node *cur;
724 struct backref_node *upper;
725 struct backref_node *lower;
726 struct backref_node *node = NULL;
727 struct backref_node *exist = NULL;
728 struct backref_edge *edge;
729 struct rb_node *rb_node;
730 struct btrfs_key key;
731 unsigned long end;
732 unsigned long ptr;
733 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
734 LIST_HEAD(useless);
735 int cowonly;
736 int ret;
737 int err = 0;
738 bool need_check = true;
739
740 path1 = btrfs_alloc_path();
741 path2 = btrfs_alloc_path();
742 if (!path1 || !path2) {
743 err = -ENOMEM;
744 goto out;
745 }
746
747 node = alloc_backref_node(cache);
748 if (!node) {
749 err = -ENOMEM;
750 goto out;
751 }
752
753 node->bytenr = bytenr;
754 node->level = level;
755 node->lowest = 1;
756 cur = node;
757again:
758 end = 0;
759 ptr = 0;
760 key.objectid = cur->bytenr;
761 key.type = BTRFS_METADATA_ITEM_KEY;
762 key.offset = (u64)-1;
763
764 path1->search_commit_root = 1;
765 path1->skip_locking = 1;
766 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
767 0, 0);
768 if (ret < 0) {
769 err = ret;
770 goto out;
771 }
772 ASSERT(ret);
773 ASSERT(path1->slots[0]);
774
775 path1->slots[0]--;
776
777 WARN_ON(cur->checked);
778 if (!list_empty(&cur->upper)) {
779 /*
780 * the backref was added previously when processing
781 * backref of type BTRFS_TREE_BLOCK_REF_KEY
782 */
783 ASSERT(list_is_singular(&cur->upper));
784 edge = list_entry(cur->upper.next, struct backref_edge,
785 list[LOWER]);
786 ASSERT(list_empty(&edge->list[UPPER]));
787 exist = edge->node[UPPER];
788 /*
789 * add the upper level block to pending list if we need
790 * check its backrefs
791 */
792 if (!exist->checked)
793 list_add_tail(&edge->list[UPPER], &list);
794 } else {
795 exist = NULL;
796 }
797
798 while (1) {
799 cond_resched();
800 eb = path1->nodes[0];
801
802 if (ptr >= end) {
803 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
804 ret = btrfs_next_leaf(rc->extent_root, path1);
805 if (ret < 0) {
806 err = ret;
807 goto out;
808 }
809 if (ret > 0)
810 break;
811 eb = path1->nodes[0];
812 }
813
814 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
815 if (key.objectid != cur->bytenr) {
816 WARN_ON(exist);
817 break;
818 }
819
820 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
821 key.type == BTRFS_METADATA_ITEM_KEY) {
822 ret = find_inline_backref(eb, path1->slots[0],
823 &ptr, &end);
824 if (ret)
825 goto next;
826 }
827 }
828
829 if (ptr < end) {
830 /* update key for inline back ref */
831 struct btrfs_extent_inline_ref *iref;
832 int type;
833 iref = (struct btrfs_extent_inline_ref *)ptr;
834 type = btrfs_get_extent_inline_ref_type(eb, iref,
835 BTRFS_REF_TYPE_BLOCK);
836 if (type == BTRFS_REF_TYPE_INVALID) {
837 err = -EUCLEAN;
838 goto out;
839 }
840 key.type = type;
841 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
842
843 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
844 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
845 }
846
847 /*
848 * Parent node found and matches current inline ref, no need to
849 * rebuild this node for this inline ref.
850 */
851 if (exist &&
852 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
853 exist->owner == key.offset) ||
854 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
855 exist->bytenr == key.offset))) {
856 exist = NULL;
857 goto next;
858 }
859
860 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
861 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
862 if (key.objectid == key.offset) {
863 /*
864 * Only root blocks of reloc trees use backref
865 * pointing to itself.
866 */
867 root = find_reloc_root(rc, cur->bytenr);
868 ASSERT(root);
869 cur->root = root;
870 break;
871 }
872
873 edge = alloc_backref_edge(cache);
874 if (!edge) {
875 err = -ENOMEM;
876 goto out;
877 }
878 rb_node = tree_search(&cache->rb_root, key.offset);
879 if (!rb_node) {
880 upper = alloc_backref_node(cache);
881 if (!upper) {
882 free_backref_edge(cache, edge);
883 err = -ENOMEM;
884 goto out;
885 }
886 upper->bytenr = key.offset;
887 upper->level = cur->level + 1;
888 /*
889 * backrefs for the upper level block isn't
890 * cached, add the block to pending list
891 */
892 list_add_tail(&edge->list[UPPER], &list);
893 } else {
894 upper = rb_entry(rb_node, struct backref_node,
895 rb_node);
896 ASSERT(upper->checked);
897 INIT_LIST_HEAD(&edge->list[UPPER]);
898 }
899 list_add_tail(&edge->list[LOWER], &cur->upper);
900 edge->node[LOWER] = cur;
901 edge->node[UPPER] = upper;
902
903 goto next;
904 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
905 err = -EINVAL;
906 btrfs_print_v0_err(rc->extent_root->fs_info);
907 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
908 NULL);
909 goto out;
910 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
911 goto next;
912 }
913
914 /*
915 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
916 * means the root objectid. We need to search the tree to get
917 * its parent bytenr.
918 */
919 root = read_fs_root(rc->extent_root->fs_info, key.offset);
920 if (IS_ERR(root)) {
921 err = PTR_ERR(root);
922 goto out;
923 }
924
925 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
926 cur->cowonly = 1;
927
928 if (btrfs_root_level(&root->root_item) == cur->level) {
929 /* tree root */
930 ASSERT(btrfs_root_bytenr(&root->root_item) ==
931 cur->bytenr);
932 if (should_ignore_root(root)) {
933 btrfs_put_root(root);
934 list_add(&cur->list, &useless);
935 } else {
936 cur->root = root;
937 }
938 break;
939 }
940
941 level = cur->level + 1;
942
943 /* Search the tree to find parent blocks referring the block. */
944 path2->search_commit_root = 1;
945 path2->skip_locking = 1;
946 path2->lowest_level = level;
947 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
948 path2->lowest_level = 0;
949 if (ret < 0) {
950 btrfs_put_root(root);
951 err = ret;
952 goto out;
953 }
954 if (ret > 0 && path2->slots[level] > 0)
955 path2->slots[level]--;
956
957 eb = path2->nodes[level];
958 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
959 cur->bytenr) {
960 btrfs_err(root->fs_info,
961 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
962 cur->bytenr, level - 1,
963 root->root_key.objectid,
964 node_key->objectid, node_key->type,
965 node_key->offset);
966 btrfs_put_root(root);
967 err = -ENOENT;
968 goto out;
969 }
970 lower = cur;
971 need_check = true;
972
973 /* Add all nodes and edges in the path */
974 for (; level < BTRFS_MAX_LEVEL; level++) {
975 if (!path2->nodes[level]) {
976 ASSERT(btrfs_root_bytenr(&root->root_item) ==
977 lower->bytenr);
978 if (should_ignore_root(root)) {
979 btrfs_put_root(root);
980 list_add(&lower->list, &useless);
981 } else {
982 lower->root = root;
983 }
984 break;
985 }
986
987 edge = alloc_backref_edge(cache);
988 if (!edge) {
989 btrfs_put_root(root);
990 err = -ENOMEM;
991 goto out;
992 }
993
994 eb = path2->nodes[level];
995 rb_node = tree_search(&cache->rb_root, eb->start);
996 if (!rb_node) {
997 upper = alloc_backref_node(cache);
998 if (!upper) {
999 btrfs_put_root(root);
1000 free_backref_edge(cache, edge);
1001 err = -ENOMEM;
1002 goto out;
1003 }
1004 upper->bytenr = eb->start;
1005 upper->owner = btrfs_header_owner(eb);
1006 upper->level = lower->level + 1;
1007 if (!test_bit(BTRFS_ROOT_REF_COWS,
1008 &root->state))
1009 upper->cowonly = 1;
1010
1011 /*
1012 * if we know the block isn't shared
1013 * we can void checking its backrefs.
1014 */
1015 if (btrfs_block_can_be_shared(root, eb))
1016 upper->checked = 0;
1017 else
1018 upper->checked = 1;
1019
1020 /*
1021 * add the block to pending list if we
1022 * need check its backrefs, we only do this once
1023 * while walking up a tree as we will catch
1024 * anything else later on.
1025 */
1026 if (!upper->checked && need_check) {
1027 need_check = false;
1028 list_add_tail(&edge->list[UPPER],
1029 &list);
1030 } else {
1031 if (upper->checked)
1032 need_check = true;
1033 INIT_LIST_HEAD(&edge->list[UPPER]);
1034 }
1035 } else {
1036 upper = rb_entry(rb_node, struct backref_node,
1037 rb_node);
1038 ASSERT(upper->checked);
1039 INIT_LIST_HEAD(&edge->list[UPPER]);
1040 if (!upper->owner)
1041 upper->owner = btrfs_header_owner(eb);
1042 }
1043 list_add_tail(&edge->list[LOWER], &lower->upper);
1044 edge->node[LOWER] = lower;
1045 edge->node[UPPER] = upper;
1046
1047 if (rb_node) {
1048 btrfs_put_root(root);
1049 break;
1050 }
1051 lower = upper;
1052 upper = NULL;
1053 }
1054 btrfs_release_path(path2);
1055next:
1056 if (ptr < end) {
1057 ptr += btrfs_extent_inline_ref_size(key.type);
1058 if (ptr >= end) {
1059 WARN_ON(ptr > end);
1060 ptr = 0;
1061 end = 0;
1062 }
1063 }
1064 if (ptr >= end)
1065 path1->slots[0]++;
1066 }
1067 btrfs_release_path(path1);
1068
1069 cur->checked = 1;
1070 WARN_ON(exist);
1071
1072 /* the pending list isn't empty, take the first block to process */
1073 if (!list_empty(&list)) {
1074 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1075 list_del_init(&edge->list[UPPER]);
1076 cur = edge->node[UPPER];
1077 goto again;
1078 }
1079
1080 /*
1081 * everything goes well, connect backref nodes and insert backref nodes
1082 * into the cache.
1083 */
1084 ASSERT(node->checked);
1085 cowonly = node->cowonly;
1086 if (!cowonly) {
1087 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1088 &node->rb_node);
1089 if (rb_node)
1090 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1091 list_add_tail(&node->lower, &cache->leaves);
1092 }
1093
1094 list_for_each_entry(edge, &node->upper, list[LOWER])
1095 list_add_tail(&edge->list[UPPER], &list);
1096
1097 while (!list_empty(&list)) {
1098 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1099 list_del_init(&edge->list[UPPER]);
1100 upper = edge->node[UPPER];
1101 if (upper->detached) {
1102 list_del(&edge->list[LOWER]);
1103 lower = edge->node[LOWER];
1104 free_backref_edge(cache, edge);
1105 if (list_empty(&lower->upper))
1106 list_add(&lower->list, &useless);
1107 continue;
1108 }
1109
1110 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1111 if (upper->lowest) {
1112 list_del_init(&upper->lower);
1113 upper->lowest = 0;
1114 }
1115
1116 list_add_tail(&edge->list[UPPER], &upper->lower);
1117 continue;
1118 }
1119
1120 if (!upper->checked) {
1121 /*
1122 * Still want to blow up for developers since this is a
1123 * logic bug.
1124 */
1125 ASSERT(0);
1126 err = -EINVAL;
1127 goto out;
1128 }
1129 if (cowonly != upper->cowonly) {
1130 ASSERT(0);
1131 err = -EINVAL;
1132 goto out;
1133 }
1134
1135 if (!cowonly) {
1136 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1137 &upper->rb_node);
1138 if (rb_node)
1139 backref_tree_panic(rb_node, -EEXIST,
1140 upper->bytenr);
1141 }
1142
1143 list_add_tail(&edge->list[UPPER], &upper->lower);
1144
1145 list_for_each_entry(edge, &upper->upper, list[LOWER])
1146 list_add_tail(&edge->list[UPPER], &list);
1147 }
1148 /*
1149 * process useless backref nodes. backref nodes for tree leaves
1150 * are deleted from the cache. backref nodes for upper level
1151 * tree blocks are left in the cache to avoid unnecessary backref
1152 * lookup.
1153 */
1154 while (!list_empty(&useless)) {
1155 upper = list_entry(useless.next, struct backref_node, list);
1156 list_del_init(&upper->list);
1157 ASSERT(list_empty(&upper->upper));
1158 if (upper == node)
1159 node = NULL;
1160 if (upper->lowest) {
1161 list_del_init(&upper->lower);
1162 upper->lowest = 0;
1163 }
1164 while (!list_empty(&upper->lower)) {
1165 edge = list_entry(upper->lower.next,
1166 struct backref_edge, list[UPPER]);
1167 list_del(&edge->list[UPPER]);
1168 list_del(&edge->list[LOWER]);
1169 lower = edge->node[LOWER];
1170 free_backref_edge(cache, edge);
1171
1172 if (list_empty(&lower->upper))
1173 list_add(&lower->list, &useless);
1174 }
1175 __mark_block_processed(rc, upper);
1176 if (upper->level > 0) {
1177 list_add(&upper->list, &cache->detached);
1178 upper->detached = 1;
1179 } else {
1180 rb_erase(&upper->rb_node, &cache->rb_root);
1181 free_backref_node(cache, upper);
1182 }
1183 }
1184out:
1185 btrfs_free_path(path1);
1186 btrfs_free_path(path2);
1187 if (err) {
1188 while (!list_empty(&useless)) {
1189 lower = list_entry(useless.next,
1190 struct backref_node, list);
1191 list_del_init(&lower->list);
1192 }
1193 while (!list_empty(&list)) {
1194 edge = list_first_entry(&list, struct backref_edge,
1195 list[UPPER]);
1196 list_del(&edge->list[UPPER]);
1197 list_del(&edge->list[LOWER]);
1198 lower = edge->node[LOWER];
1199 upper = edge->node[UPPER];
1200 free_backref_edge(cache, edge);
1201
1202 /*
1203 * Lower is no longer linked to any upper backref nodes
1204 * and isn't in the cache, we can free it ourselves.
1205 */
1206 if (list_empty(&lower->upper) &&
1207 RB_EMPTY_NODE(&lower->rb_node))
1208 list_add(&lower->list, &useless);
1209
1210 if (!RB_EMPTY_NODE(&upper->rb_node))
1211 continue;
1212
1213 /* Add this guy's upper edges to the list to process */
1214 list_for_each_entry(edge, &upper->upper, list[LOWER])
1215 list_add_tail(&edge->list[UPPER], &list);
1216 if (list_empty(&upper->upper))
1217 list_add(&upper->list, &useless);
1218 }
1219
1220 while (!list_empty(&useless)) {
1221 lower = list_entry(useless.next,
1222 struct backref_node, list);
1223 list_del_init(&lower->list);
1224 if (lower == node)
1225 node = NULL;
1226 free_backref_node(cache, lower);
1227 }
1228
1229 remove_backref_node(cache, node);
1230 return ERR_PTR(err);
1231 }
1232 ASSERT(!node || !node->detached);
1233 return node;
1234}
1235
1236/*
1237 * helper to add backref node for the newly created snapshot.
1238 * the backref node is created by cloning backref node that
1239 * corresponds to root of source tree
1240 */
1241static int clone_backref_node(struct btrfs_trans_handle *trans,
1242 struct reloc_control *rc,
1243 struct btrfs_root *src,
1244 struct btrfs_root *dest)
1245{
1246 struct btrfs_root *reloc_root = src->reloc_root;
1247 struct backref_cache *cache = &rc->backref_cache;
1248 struct backref_node *node = NULL;
1249 struct backref_node *new_node;
1250 struct backref_edge *edge;
1251 struct backref_edge *new_edge;
1252 struct rb_node *rb_node;
1253
1254 if (cache->last_trans > 0)
1255 update_backref_cache(trans, cache);
1256
1257 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1258 if (rb_node) {
1259 node = rb_entry(rb_node, struct backref_node, rb_node);
1260 if (node->detached)
1261 node = NULL;
1262 else
1263 BUG_ON(node->new_bytenr != reloc_root->node->start);
1264 }
1265
1266 if (!node) {
1267 rb_node = tree_search(&cache->rb_root,
1268 reloc_root->commit_root->start);
1269 if (rb_node) {
1270 node = rb_entry(rb_node, struct backref_node,
1271 rb_node);
1272 BUG_ON(node->detached);
1273 }
1274 }
1275
1276 if (!node)
1277 return 0;
1278
1279 new_node = alloc_backref_node(cache);
1280 if (!new_node)
1281 return -ENOMEM;
1282
1283 new_node->bytenr = dest->node->start;
1284 new_node->level = node->level;
1285 new_node->lowest = node->lowest;
1286 new_node->checked = 1;
1287 new_node->root = btrfs_grab_root(dest);
1288 ASSERT(new_node->root);
1289
1290 if (!node->lowest) {
1291 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1292 new_edge = alloc_backref_edge(cache);
1293 if (!new_edge)
1294 goto fail;
1295
1296 new_edge->node[UPPER] = new_node;
1297 new_edge->node[LOWER] = edge->node[LOWER];
1298 list_add_tail(&new_edge->list[UPPER],
1299 &new_node->lower);
1300 }
1301 } else {
1302 list_add_tail(&new_node->lower, &cache->leaves);
1303 }
1304
1305 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1306 &new_node->rb_node);
1307 if (rb_node)
1308 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1309
1310 if (!new_node->lowest) {
1311 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1312 list_add_tail(&new_edge->list[LOWER],
1313 &new_edge->node[LOWER]->upper);
1314 }
1315 }
1316 return 0;
1317fail:
1318 while (!list_empty(&new_node->lower)) {
1319 new_edge = list_entry(new_node->lower.next,
1320 struct backref_edge, list[UPPER]);
1321 list_del(&new_edge->list[UPPER]);
1322 free_backref_edge(cache, new_edge);
1323 }
1324 free_backref_node(cache, new_node);
1325 return -ENOMEM;
1326}
1327
1328/*
1329 * helper to add 'address of tree root -> reloc tree' mapping
1330 */
1331static int __must_check __add_reloc_root(struct btrfs_root *root)
1332{
1333 struct btrfs_fs_info *fs_info = root->fs_info;
1334 struct rb_node *rb_node;
1335 struct mapping_node *node;
1336 struct reloc_control *rc = fs_info->reloc_ctl;
1337
1338 node = kmalloc(sizeof(*node), GFP_NOFS);
1339 if (!node)
1340 return -ENOMEM;
1341
1342 node->bytenr = root->commit_root->start;
1343 node->data = root;
1344
1345 spin_lock(&rc->reloc_root_tree.lock);
1346 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1347 node->bytenr, &node->rb_node);
1348 spin_unlock(&rc->reloc_root_tree.lock);
1349 if (rb_node) {
1350 btrfs_panic(fs_info, -EEXIST,
1351 "Duplicate root found for start=%llu while inserting into relocation tree",
1352 node->bytenr);
1353 }
1354
1355 list_add_tail(&root->root_list, &rc->reloc_roots);
1356 return 0;
1357}
1358
1359/*
1360 * helper to delete the 'address of tree root -> reloc tree'
1361 * mapping
1362 */
1363static void __del_reloc_root(struct btrfs_root *root)
1364{
1365 struct btrfs_fs_info *fs_info = root->fs_info;
1366 struct rb_node *rb_node;
1367 struct mapping_node *node = NULL;
1368 struct reloc_control *rc = fs_info->reloc_ctl;
1369 bool put_ref = false;
1370
1371 if (rc && root->node) {
1372 spin_lock(&rc->reloc_root_tree.lock);
1373 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1374 root->commit_root->start);
1375 if (rb_node) {
1376 node = rb_entry(rb_node, struct mapping_node, rb_node);
1377 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1378 RB_CLEAR_NODE(&node->rb_node);
1379 }
1380 spin_unlock(&rc->reloc_root_tree.lock);
1381 if (!node)
1382 return;
1383 BUG_ON((struct btrfs_root *)node->data != root);
1384 }
1385
1386 /*
1387 * We only put the reloc root here if it's on the list. There's a lot
1388 * of places where the pattern is to splice the rc->reloc_roots, process
1389 * the reloc roots, and then add the reloc root back onto
1390 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
1391 * list we don't want the reference being dropped, because the guy
1392 * messing with the list is in charge of the reference.
1393 */
1394 spin_lock(&fs_info->trans_lock);
1395 if (!list_empty(&root->root_list)) {
1396 put_ref = true;
1397 list_del_init(&root->root_list);
1398 }
1399 spin_unlock(&fs_info->trans_lock);
1400 if (put_ref)
1401 btrfs_put_root(root);
1402 kfree(node);
1403}
1404
1405/*
1406 * helper to update the 'address of tree root -> reloc tree'
1407 * mapping
1408 */
1409static int __update_reloc_root(struct btrfs_root *root)
1410{
1411 struct btrfs_fs_info *fs_info = root->fs_info;
1412 struct rb_node *rb_node;
1413 struct mapping_node *node = NULL;
1414 struct reloc_control *rc = fs_info->reloc_ctl;
1415
1416 spin_lock(&rc->reloc_root_tree.lock);
1417 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1418 root->commit_root->start);
1419 if (rb_node) {
1420 node = rb_entry(rb_node, struct mapping_node, rb_node);
1421 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1422 }
1423 spin_unlock(&rc->reloc_root_tree.lock);
1424
1425 if (!node)
1426 return 0;
1427 BUG_ON((struct btrfs_root *)node->data != root);
1428
1429 spin_lock(&rc->reloc_root_tree.lock);
1430 node->bytenr = root->node->start;
1431 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1432 node->bytenr, &node->rb_node);
1433 spin_unlock(&rc->reloc_root_tree.lock);
1434 if (rb_node)
1435 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1436 return 0;
1437}
1438
1439static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root, u64 objectid)
1441{
1442 struct btrfs_fs_info *fs_info = root->fs_info;
1443 struct btrfs_root *reloc_root;
1444 struct extent_buffer *eb;
1445 struct btrfs_root_item *root_item;
1446 struct btrfs_key root_key;
1447 int ret;
1448
1449 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1450 BUG_ON(!root_item);
1451
1452 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1453 root_key.type = BTRFS_ROOT_ITEM_KEY;
1454 root_key.offset = objectid;
1455
1456 if (root->root_key.objectid == objectid) {
1457 u64 commit_root_gen;
1458
1459 /* called by btrfs_init_reloc_root */
1460 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1461 BTRFS_TREE_RELOC_OBJECTID);
1462 BUG_ON(ret);
1463 /*
1464 * Set the last_snapshot field to the generation of the commit
1465 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1466 * correctly (returns true) when the relocation root is created
1467 * either inside the critical section of a transaction commit
1468 * (through transaction.c:qgroup_account_snapshot()) and when
1469 * it's created before the transaction commit is started.
1470 */
1471 commit_root_gen = btrfs_header_generation(root->commit_root);
1472 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1473 } else {
1474 /*
1475 * called by btrfs_reloc_post_snapshot_hook.
1476 * the source tree is a reloc tree, all tree blocks
1477 * modified after it was created have RELOC flag
1478 * set in their headers. so it's OK to not update
1479 * the 'last_snapshot'.
1480 */
1481 ret = btrfs_copy_root(trans, root, root->node, &eb,
1482 BTRFS_TREE_RELOC_OBJECTID);
1483 BUG_ON(ret);
1484 }
1485
1486 memcpy(root_item, &root->root_item, sizeof(*root_item));
1487 btrfs_set_root_bytenr(root_item, eb->start);
1488 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1489 btrfs_set_root_generation(root_item, trans->transid);
1490
1491 if (root->root_key.objectid == objectid) {
1492 btrfs_set_root_refs(root_item, 0);
1493 memset(&root_item->drop_progress, 0,
1494 sizeof(struct btrfs_disk_key));
1495 root_item->drop_level = 0;
1496 }
1497
1498 btrfs_tree_unlock(eb);
1499 free_extent_buffer(eb);
1500
1501 ret = btrfs_insert_root(trans, fs_info->tree_root,
1502 &root_key, root_item);
1503 BUG_ON(ret);
1504 kfree(root_item);
1505
1506 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
1507 BUG_ON(IS_ERR(reloc_root));
1508 set_bit(BTRFS_ROOT_REF_COWS, &reloc_root->state);
1509 reloc_root->last_trans = trans->transid;
1510 return reloc_root;
1511}
1512
1513/*
1514 * create reloc tree for a given fs tree. reloc tree is just a
1515 * snapshot of the fs tree with special root objectid.
1516 *
1517 * The reloc_root comes out of here with two references, one for
1518 * root->reloc_root, and another for being on the rc->reloc_roots list.
1519 */
1520int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1521 struct btrfs_root *root)
1522{
1523 struct btrfs_fs_info *fs_info = root->fs_info;
1524 struct btrfs_root *reloc_root;
1525 struct reloc_control *rc = fs_info->reloc_ctl;
1526 struct btrfs_block_rsv *rsv;
1527 int clear_rsv = 0;
1528 int ret;
1529
1530 if (!rc)
1531 return 0;
1532
1533 /*
1534 * The subvolume has reloc tree but the swap is finished, no need to
1535 * create/update the dead reloc tree
1536 */
1537 if (reloc_root_is_dead(root))
1538 return 0;
1539
1540 /*
1541 * This is subtle but important. We do not do
1542 * record_root_in_transaction for reloc roots, instead we record their
1543 * corresponding fs root, and then here we update the last trans for the
1544 * reloc root. This means that we have to do this for the entire life
1545 * of the reloc root, regardless of which stage of the relocation we are
1546 * in.
1547 */
1548 if (root->reloc_root) {
1549 reloc_root = root->reloc_root;
1550 reloc_root->last_trans = trans->transid;
1551 return 0;
1552 }
1553
1554 /*
1555 * We are merging reloc roots, we do not need new reloc trees. Also
1556 * reloc trees never need their own reloc tree.
1557 */
1558 if (!rc->create_reloc_tree ||
1559 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1560 return 0;
1561
1562 if (!trans->reloc_reserved) {
1563 rsv = trans->block_rsv;
1564 trans->block_rsv = rc->block_rsv;
1565 clear_rsv = 1;
1566 }
1567 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1568 if (clear_rsv)
1569 trans->block_rsv = rsv;
1570
1571 ret = __add_reloc_root(reloc_root);
1572 BUG_ON(ret < 0);
1573 root->reloc_root = btrfs_grab_root(reloc_root);
1574 return 0;
1575}
1576
1577/*
1578 * update root item of reloc tree
1579 */
1580int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1581 struct btrfs_root *root)
1582{
1583 struct btrfs_fs_info *fs_info = root->fs_info;
1584 struct btrfs_root *reloc_root;
1585 struct btrfs_root_item *root_item;
1586 int ret;
1587
1588 if (!have_reloc_root(root))
1589 goto out;
1590
1591 reloc_root = root->reloc_root;
1592 root_item = &reloc_root->root_item;
1593
1594 /*
1595 * We are probably ok here, but __del_reloc_root() will drop its ref of
1596 * the root. We have the ref for root->reloc_root, but just in case
1597 * hold it while we update the reloc root.
1598 */
1599 btrfs_grab_root(reloc_root);
1600
1601 /* root->reloc_root will stay until current relocation finished */
1602 if (fs_info->reloc_ctl->merge_reloc_tree &&
1603 btrfs_root_refs(root_item) == 0) {
1604 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1605 /*
1606 * Mark the tree as dead before we change reloc_root so
1607 * have_reloc_root will not touch it from now on.
1608 */
1609 smp_wmb();
1610 __del_reloc_root(reloc_root);
1611 }
1612
1613 if (reloc_root->commit_root != reloc_root->node) {
1614 __update_reloc_root(reloc_root);
1615 btrfs_set_root_node(root_item, reloc_root->node);
1616 free_extent_buffer(reloc_root->commit_root);
1617 reloc_root->commit_root = btrfs_root_node(reloc_root);
1618 }
1619
1620 ret = btrfs_update_root(trans, fs_info->tree_root,
1621 &reloc_root->root_key, root_item);
1622 BUG_ON(ret);
1623 btrfs_put_root(reloc_root);
1624out:
1625 return 0;
1626}
1627
1628/*
1629 * helper to find first cached inode with inode number >= objectid
1630 * in a subvolume
1631 */
1632static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1633{
1634 struct rb_node *node;
1635 struct rb_node *prev;
1636 struct btrfs_inode *entry;
1637 struct inode *inode;
1638
1639 spin_lock(&root->inode_lock);
1640again:
1641 node = root->inode_tree.rb_node;
1642 prev = NULL;
1643 while (node) {
1644 prev = node;
1645 entry = rb_entry(node, struct btrfs_inode, rb_node);
1646
1647 if (objectid < btrfs_ino(entry))
1648 node = node->rb_left;
1649 else if (objectid > btrfs_ino(entry))
1650 node = node->rb_right;
1651 else
1652 break;
1653 }
1654 if (!node) {
1655 while (prev) {
1656 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1657 if (objectid <= btrfs_ino(entry)) {
1658 node = prev;
1659 break;
1660 }
1661 prev = rb_next(prev);
1662 }
1663 }
1664 while (node) {
1665 entry = rb_entry(node, struct btrfs_inode, rb_node);
1666 inode = igrab(&entry->vfs_inode);
1667 if (inode) {
1668 spin_unlock(&root->inode_lock);
1669 return inode;
1670 }
1671
1672 objectid = btrfs_ino(entry) + 1;
1673 if (cond_resched_lock(&root->inode_lock))
1674 goto again;
1675
1676 node = rb_next(node);
1677 }
1678 spin_unlock(&root->inode_lock);
1679 return NULL;
1680}
1681
1682static int in_block_group(u64 bytenr, struct btrfs_block_group *block_group)
1683{
1684 if (bytenr >= block_group->start &&
1685 bytenr < block_group->start + block_group->length)
1686 return 1;
1687 return 0;
1688}
1689
1690/*
1691 * get new location of data
1692 */
1693static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1694 u64 bytenr, u64 num_bytes)
1695{
1696 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1697 struct btrfs_path *path;
1698 struct btrfs_file_extent_item *fi;
1699 struct extent_buffer *leaf;
1700 int ret;
1701
1702 path = btrfs_alloc_path();
1703 if (!path)
1704 return -ENOMEM;
1705
1706 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1707 ret = btrfs_lookup_file_extent(NULL, root, path,
1708 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1709 if (ret < 0)
1710 goto out;
1711 if (ret > 0) {
1712 ret = -ENOENT;
1713 goto out;
1714 }
1715
1716 leaf = path->nodes[0];
1717 fi = btrfs_item_ptr(leaf, path->slots[0],
1718 struct btrfs_file_extent_item);
1719
1720 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1721 btrfs_file_extent_compression(leaf, fi) ||
1722 btrfs_file_extent_encryption(leaf, fi) ||
1723 btrfs_file_extent_other_encoding(leaf, fi));
1724
1725 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1726 ret = -EINVAL;
1727 goto out;
1728 }
1729
1730 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1731 ret = 0;
1732out:
1733 btrfs_free_path(path);
1734 return ret;
1735}
1736
1737/*
1738 * update file extent items in the tree leaf to point to
1739 * the new locations.
1740 */
1741static noinline_for_stack
1742int replace_file_extents(struct btrfs_trans_handle *trans,
1743 struct reloc_control *rc,
1744 struct btrfs_root *root,
1745 struct extent_buffer *leaf)
1746{
1747 struct btrfs_fs_info *fs_info = root->fs_info;
1748 struct btrfs_key key;
1749 struct btrfs_file_extent_item *fi;
1750 struct inode *inode = NULL;
1751 u64 parent;
1752 u64 bytenr;
1753 u64 new_bytenr = 0;
1754 u64 num_bytes;
1755 u64 end;
1756 u32 nritems;
1757 u32 i;
1758 int ret = 0;
1759 int first = 1;
1760 int dirty = 0;
1761
1762 if (rc->stage != UPDATE_DATA_PTRS)
1763 return 0;
1764
1765 /* reloc trees always use full backref */
1766 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1767 parent = leaf->start;
1768 else
1769 parent = 0;
1770
1771 nritems = btrfs_header_nritems(leaf);
1772 for (i = 0; i < nritems; i++) {
1773 struct btrfs_ref ref = { 0 };
1774
1775 cond_resched();
1776 btrfs_item_key_to_cpu(leaf, &key, i);
1777 if (key.type != BTRFS_EXTENT_DATA_KEY)
1778 continue;
1779 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1780 if (btrfs_file_extent_type(leaf, fi) ==
1781 BTRFS_FILE_EXTENT_INLINE)
1782 continue;
1783 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1784 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1785 if (bytenr == 0)
1786 continue;
1787 if (!in_block_group(bytenr, rc->block_group))
1788 continue;
1789
1790 /*
1791 * if we are modifying block in fs tree, wait for readpage
1792 * to complete and drop the extent cache
1793 */
1794 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1795 if (first) {
1796 inode = find_next_inode(root, key.objectid);
1797 first = 0;
1798 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1799 btrfs_add_delayed_iput(inode);
1800 inode = find_next_inode(root, key.objectid);
1801 }
1802 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1803 end = key.offset +
1804 btrfs_file_extent_num_bytes(leaf, fi);
1805 WARN_ON(!IS_ALIGNED(key.offset,
1806 fs_info->sectorsize));
1807 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1808 end--;
1809 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1810 key.offset, end);
1811 if (!ret)
1812 continue;
1813
1814 btrfs_drop_extent_cache(BTRFS_I(inode),
1815 key.offset, end, 1);
1816 unlock_extent(&BTRFS_I(inode)->io_tree,
1817 key.offset, end);
1818 }
1819 }
1820
1821 ret = get_new_location(rc->data_inode, &new_bytenr,
1822 bytenr, num_bytes);
1823 if (ret) {
1824 /*
1825 * Don't have to abort since we've not changed anything
1826 * in the file extent yet.
1827 */
1828 break;
1829 }
1830
1831 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1832 dirty = 1;
1833
1834 key.offset -= btrfs_file_extent_offset(leaf, fi);
1835 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1836 num_bytes, parent);
1837 ref.real_root = root->root_key.objectid;
1838 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1839 key.objectid, key.offset);
1840 ret = btrfs_inc_extent_ref(trans, &ref);
1841 if (ret) {
1842 btrfs_abort_transaction(trans, ret);
1843 break;
1844 }
1845
1846 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1847 num_bytes, parent);
1848 ref.real_root = root->root_key.objectid;
1849 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1850 key.objectid, key.offset);
1851 ret = btrfs_free_extent(trans, &ref);
1852 if (ret) {
1853 btrfs_abort_transaction(trans, ret);
1854 break;
1855 }
1856 }
1857 if (dirty)
1858 btrfs_mark_buffer_dirty(leaf);
1859 if (inode)
1860 btrfs_add_delayed_iput(inode);
1861 return ret;
1862}
1863
1864static noinline_for_stack
1865int memcmp_node_keys(struct extent_buffer *eb, int slot,
1866 struct btrfs_path *path, int level)
1867{
1868 struct btrfs_disk_key key1;
1869 struct btrfs_disk_key key2;
1870 btrfs_node_key(eb, &key1, slot);
1871 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1872 return memcmp(&key1, &key2, sizeof(key1));
1873}
1874
1875/*
1876 * try to replace tree blocks in fs tree with the new blocks
1877 * in reloc tree. tree blocks haven't been modified since the
1878 * reloc tree was create can be replaced.
1879 *
1880 * if a block was replaced, level of the block + 1 is returned.
1881 * if no block got replaced, 0 is returned. if there are other
1882 * errors, a negative error number is returned.
1883 */
1884static noinline_for_stack
1885int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1886 struct btrfs_root *dest, struct btrfs_root *src,
1887 struct btrfs_path *path, struct btrfs_key *next_key,
1888 int lowest_level, int max_level)
1889{
1890 struct btrfs_fs_info *fs_info = dest->fs_info;
1891 struct extent_buffer *eb;
1892 struct extent_buffer *parent;
1893 struct btrfs_ref ref = { 0 };
1894 struct btrfs_key key;
1895 u64 old_bytenr;
1896 u64 new_bytenr;
1897 u64 old_ptr_gen;
1898 u64 new_ptr_gen;
1899 u64 last_snapshot;
1900 u32 blocksize;
1901 int cow = 0;
1902 int level;
1903 int ret;
1904 int slot;
1905
1906 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1907 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1908
1909 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1910again:
1911 slot = path->slots[lowest_level];
1912 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1913
1914 eb = btrfs_lock_root_node(dest);
1915 btrfs_set_lock_blocking_write(eb);
1916 level = btrfs_header_level(eb);
1917
1918 if (level < lowest_level) {
1919 btrfs_tree_unlock(eb);
1920 free_extent_buffer(eb);
1921 return 0;
1922 }
1923
1924 if (cow) {
1925 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1926 BUG_ON(ret);
1927 }
1928 btrfs_set_lock_blocking_write(eb);
1929
1930 if (next_key) {
1931 next_key->objectid = (u64)-1;
1932 next_key->type = (u8)-1;
1933 next_key->offset = (u64)-1;
1934 }
1935
1936 parent = eb;
1937 while (1) {
1938 struct btrfs_key first_key;
1939
1940 level = btrfs_header_level(parent);
1941 BUG_ON(level < lowest_level);
1942
1943 ret = btrfs_bin_search(parent, &key, level, &slot);
1944 if (ret < 0)
1945 break;
1946 if (ret && slot > 0)
1947 slot--;
1948
1949 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1950 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1951
1952 old_bytenr = btrfs_node_blockptr(parent, slot);
1953 blocksize = fs_info->nodesize;
1954 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1955 btrfs_node_key_to_cpu(parent, &first_key, slot);
1956
1957 if (level <= max_level) {
1958 eb = path->nodes[level];
1959 new_bytenr = btrfs_node_blockptr(eb,
1960 path->slots[level]);
1961 new_ptr_gen = btrfs_node_ptr_generation(eb,
1962 path->slots[level]);
1963 } else {
1964 new_bytenr = 0;
1965 new_ptr_gen = 0;
1966 }
1967
1968 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1969 ret = level;
1970 break;
1971 }
1972
1973 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1974 memcmp_node_keys(parent, slot, path, level)) {
1975 if (level <= lowest_level) {
1976 ret = 0;
1977 break;
1978 }
1979
1980 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1981 level - 1, &first_key);
1982 if (IS_ERR(eb)) {
1983 ret = PTR_ERR(eb);
1984 break;
1985 } else if (!extent_buffer_uptodate(eb)) {
1986 ret = -EIO;
1987 free_extent_buffer(eb);
1988 break;
1989 }
1990 btrfs_tree_lock(eb);
1991 if (cow) {
1992 ret = btrfs_cow_block(trans, dest, eb, parent,
1993 slot, &eb);
1994 BUG_ON(ret);
1995 }
1996 btrfs_set_lock_blocking_write(eb);
1997
1998 btrfs_tree_unlock(parent);
1999 free_extent_buffer(parent);
2000
2001 parent = eb;
2002 continue;
2003 }
2004
2005 if (!cow) {
2006 btrfs_tree_unlock(parent);
2007 free_extent_buffer(parent);
2008 cow = 1;
2009 goto again;
2010 }
2011
2012 btrfs_node_key_to_cpu(path->nodes[level], &key,
2013 path->slots[level]);
2014 btrfs_release_path(path);
2015
2016 path->lowest_level = level;
2017 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
2018 path->lowest_level = 0;
2019 BUG_ON(ret);
2020
2021 /*
2022 * Info qgroup to trace both subtrees.
2023 *
2024 * We must trace both trees.
2025 * 1) Tree reloc subtree
2026 * If not traced, we will leak data numbers
2027 * 2) Fs subtree
2028 * If not traced, we will double count old data
2029 *
2030 * We don't scan the subtree right now, but only record
2031 * the swapped tree blocks.
2032 * The real subtree rescan is delayed until we have new
2033 * CoW on the subtree root node before transaction commit.
2034 */
2035 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
2036 rc->block_group, parent, slot,
2037 path->nodes[level], path->slots[level],
2038 last_snapshot);
2039 if (ret < 0)
2040 break;
2041 /*
2042 * swap blocks in fs tree and reloc tree.
2043 */
2044 btrfs_set_node_blockptr(parent, slot, new_bytenr);
2045 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
2046 btrfs_mark_buffer_dirty(parent);
2047
2048 btrfs_set_node_blockptr(path->nodes[level],
2049 path->slots[level], old_bytenr);
2050 btrfs_set_node_ptr_generation(path->nodes[level],
2051 path->slots[level], old_ptr_gen);
2052 btrfs_mark_buffer_dirty(path->nodes[level]);
2053
2054 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
2055 blocksize, path->nodes[level]->start);
2056 ref.skip_qgroup = true;
2057 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
2058 ret = btrfs_inc_extent_ref(trans, &ref);
2059 BUG_ON(ret);
2060 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
2061 blocksize, 0);
2062 ref.skip_qgroup = true;
2063 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
2064 ret = btrfs_inc_extent_ref(trans, &ref);
2065 BUG_ON(ret);
2066
2067 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
2068 blocksize, path->nodes[level]->start);
2069 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
2070 ref.skip_qgroup = true;
2071 ret = btrfs_free_extent(trans, &ref);
2072 BUG_ON(ret);
2073
2074 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
2075 blocksize, 0);
2076 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
2077 ref.skip_qgroup = true;
2078 ret = btrfs_free_extent(trans, &ref);
2079 BUG_ON(ret);
2080
2081 btrfs_unlock_up_safe(path, 0);
2082
2083 ret = level;
2084 break;
2085 }
2086 btrfs_tree_unlock(parent);
2087 free_extent_buffer(parent);
2088 return ret;
2089}
2090
2091/*
2092 * helper to find next relocated block in reloc tree
2093 */
2094static noinline_for_stack
2095int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2096 int *level)
2097{
2098 struct extent_buffer *eb;
2099 int i;
2100 u64 last_snapshot;
2101 u32 nritems;
2102
2103 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2104
2105 for (i = 0; i < *level; i++) {
2106 free_extent_buffer(path->nodes[i]);
2107 path->nodes[i] = NULL;
2108 }
2109
2110 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2111 eb = path->nodes[i];
2112 nritems = btrfs_header_nritems(eb);
2113 while (path->slots[i] + 1 < nritems) {
2114 path->slots[i]++;
2115 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2116 last_snapshot)
2117 continue;
2118
2119 *level = i;
2120 return 0;
2121 }
2122 free_extent_buffer(path->nodes[i]);
2123 path->nodes[i] = NULL;
2124 }
2125 return 1;
2126}
2127
2128/*
2129 * walk down reloc tree to find relocated block of lowest level
2130 */
2131static noinline_for_stack
2132int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2133 int *level)
2134{
2135 struct btrfs_fs_info *fs_info = root->fs_info;
2136 struct extent_buffer *eb = NULL;
2137 int i;
2138 u64 bytenr;
2139 u64 ptr_gen = 0;
2140 u64 last_snapshot;
2141 u32 nritems;
2142
2143 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2144
2145 for (i = *level; i > 0; i--) {
2146 struct btrfs_key first_key;
2147
2148 eb = path->nodes[i];
2149 nritems = btrfs_header_nritems(eb);
2150 while (path->slots[i] < nritems) {
2151 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2152 if (ptr_gen > last_snapshot)
2153 break;
2154 path->slots[i]++;
2155 }
2156 if (path->slots[i] >= nritems) {
2157 if (i == *level)
2158 break;
2159 *level = i + 1;
2160 return 0;
2161 }
2162 if (i == 1) {
2163 *level = i;
2164 return 0;
2165 }
2166
2167 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2168 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2169 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2170 &first_key);
2171 if (IS_ERR(eb)) {
2172 return PTR_ERR(eb);
2173 } else if (!extent_buffer_uptodate(eb)) {
2174 free_extent_buffer(eb);
2175 return -EIO;
2176 }
2177 BUG_ON(btrfs_header_level(eb) != i - 1);
2178 path->nodes[i - 1] = eb;
2179 path->slots[i - 1] = 0;
2180 }
2181 return 1;
2182}
2183
2184/*
2185 * invalidate extent cache for file extents whose key in range of
2186 * [min_key, max_key)
2187 */
2188static int invalidate_extent_cache(struct btrfs_root *root,
2189 struct btrfs_key *min_key,
2190 struct btrfs_key *max_key)
2191{
2192 struct btrfs_fs_info *fs_info = root->fs_info;
2193 struct inode *inode = NULL;
2194 u64 objectid;
2195 u64 start, end;
2196 u64 ino;
2197
2198 objectid = min_key->objectid;
2199 while (1) {
2200 cond_resched();
2201 iput(inode);
2202
2203 if (objectid > max_key->objectid)
2204 break;
2205
2206 inode = find_next_inode(root, objectid);
2207 if (!inode)
2208 break;
2209 ino = btrfs_ino(BTRFS_I(inode));
2210
2211 if (ino > max_key->objectid) {
2212 iput(inode);
2213 break;
2214 }
2215
2216 objectid = ino + 1;
2217 if (!S_ISREG(inode->i_mode))
2218 continue;
2219
2220 if (unlikely(min_key->objectid == ino)) {
2221 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2222 continue;
2223 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2224 start = 0;
2225 else {
2226 start = min_key->offset;
2227 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2228 }
2229 } else {
2230 start = 0;
2231 }
2232
2233 if (unlikely(max_key->objectid == ino)) {
2234 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2235 continue;
2236 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2237 end = (u64)-1;
2238 } else {
2239 if (max_key->offset == 0)
2240 continue;
2241 end = max_key->offset;
2242 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2243 end--;
2244 }
2245 } else {
2246 end = (u64)-1;
2247 }
2248
2249 /* the lock_extent waits for readpage to complete */
2250 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2251 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2252 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2253 }
2254 return 0;
2255}
2256
2257static int find_next_key(struct btrfs_path *path, int level,
2258 struct btrfs_key *key)
2259
2260{
2261 while (level < BTRFS_MAX_LEVEL) {
2262 if (!path->nodes[level])
2263 break;
2264 if (path->slots[level] + 1 <
2265 btrfs_header_nritems(path->nodes[level])) {
2266 btrfs_node_key_to_cpu(path->nodes[level], key,
2267 path->slots[level] + 1);
2268 return 0;
2269 }
2270 level++;
2271 }
2272 return 1;
2273}
2274
2275/*
2276 * Insert current subvolume into reloc_control::dirty_subvol_roots
2277 */
2278static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2279 struct reloc_control *rc,
2280 struct btrfs_root *root)
2281{
2282 struct btrfs_root *reloc_root = root->reloc_root;
2283 struct btrfs_root_item *reloc_root_item;
2284
2285 /* @root must be a subvolume tree root with a valid reloc tree */
2286 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2287 ASSERT(reloc_root);
2288
2289 reloc_root_item = &reloc_root->root_item;
2290 memset(&reloc_root_item->drop_progress, 0,
2291 sizeof(reloc_root_item->drop_progress));
2292 reloc_root_item->drop_level = 0;
2293 btrfs_set_root_refs(reloc_root_item, 0);
2294 btrfs_update_reloc_root(trans, root);
2295
2296 if (list_empty(&root->reloc_dirty_list)) {
2297 btrfs_grab_root(root);
2298 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2299 }
2300}
2301
2302static int clean_dirty_subvols(struct reloc_control *rc)
2303{
2304 struct btrfs_root *root;
2305 struct btrfs_root *next;
2306 int ret = 0;
2307 int ret2;
2308
2309 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2310 reloc_dirty_list) {
2311 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2312 /* Merged subvolume, cleanup its reloc root */
2313 struct btrfs_root *reloc_root = root->reloc_root;
2314
2315 list_del_init(&root->reloc_dirty_list);
2316 root->reloc_root = NULL;
2317 /*
2318 * Need barrier to ensure clear_bit() only happens after
2319 * root->reloc_root = NULL. Pairs with have_reloc_root.
2320 */
2321 smp_wmb();
2322 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2323 if (reloc_root) {
2324 /*
2325 * btrfs_drop_snapshot drops our ref we hold for
2326 * ->reloc_root. If it fails however we must
2327 * drop the ref ourselves.
2328 */
2329 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
2330 if (ret2 < 0) {
2331 btrfs_put_root(reloc_root);
2332 if (!ret)
2333 ret = ret2;
2334 }
2335 }
2336 btrfs_put_root(root);
2337 } else {
2338 /* Orphan reloc tree, just clean it up */
2339 ret2 = btrfs_drop_snapshot(root, 0, 1);
2340 if (ret2 < 0) {
2341 btrfs_put_root(root);
2342 if (!ret)
2343 ret = ret2;
2344 }
2345 }
2346 }
2347 return ret;
2348}
2349
2350/*
2351 * merge the relocated tree blocks in reloc tree with corresponding
2352 * fs tree.
2353 */
2354static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2355 struct btrfs_root *root)
2356{
2357 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2358 struct btrfs_key key;
2359 struct btrfs_key next_key;
2360 struct btrfs_trans_handle *trans = NULL;
2361 struct btrfs_root *reloc_root;
2362 struct btrfs_root_item *root_item;
2363 struct btrfs_path *path;
2364 struct extent_buffer *leaf;
2365 int level;
2366 int max_level;
2367 int replaced = 0;
2368 int ret;
2369 int err = 0;
2370 u32 min_reserved;
2371
2372 path = btrfs_alloc_path();
2373 if (!path)
2374 return -ENOMEM;
2375 path->reada = READA_FORWARD;
2376
2377 reloc_root = root->reloc_root;
2378 root_item = &reloc_root->root_item;
2379
2380 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2381 level = btrfs_root_level(root_item);
2382 atomic_inc(&reloc_root->node->refs);
2383 path->nodes[level] = reloc_root->node;
2384 path->slots[level] = 0;
2385 } else {
2386 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2387
2388 level = root_item->drop_level;
2389 BUG_ON(level == 0);
2390 path->lowest_level = level;
2391 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2392 path->lowest_level = 0;
2393 if (ret < 0) {
2394 btrfs_free_path(path);
2395 return ret;
2396 }
2397
2398 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2399 path->slots[level]);
2400 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2401
2402 btrfs_unlock_up_safe(path, 0);
2403 }
2404
2405 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2406 memset(&next_key, 0, sizeof(next_key));
2407
2408 while (1) {
2409 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2410 BTRFS_RESERVE_FLUSH_ALL);
2411 if (ret) {
2412 err = ret;
2413 goto out;
2414 }
2415 trans = btrfs_start_transaction(root, 0);
2416 if (IS_ERR(trans)) {
2417 err = PTR_ERR(trans);
2418 trans = NULL;
2419 goto out;
2420 }
2421
2422 /*
2423 * At this point we no longer have a reloc_control, so we can't
2424 * depend on btrfs_init_reloc_root to update our last_trans.
2425 *
2426 * But that's ok, we started the trans handle on our
2427 * corresponding fs_root, which means it's been added to the
2428 * dirty list. At commit time we'll still call
2429 * btrfs_update_reloc_root() and update our root item
2430 * appropriately.
2431 */
2432 reloc_root->last_trans = trans->transid;
2433 trans->block_rsv = rc->block_rsv;
2434
2435 replaced = 0;
2436 max_level = level;
2437
2438 ret = walk_down_reloc_tree(reloc_root, path, &level);
2439 if (ret < 0) {
2440 err = ret;
2441 goto out;
2442 }
2443 if (ret > 0)
2444 break;
2445
2446 if (!find_next_key(path, level, &key) &&
2447 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2448 ret = 0;
2449 } else {
2450 ret = replace_path(trans, rc, root, reloc_root, path,
2451 &next_key, level, max_level);
2452 }
2453 if (ret < 0) {
2454 err = ret;
2455 goto out;
2456 }
2457
2458 if (ret > 0) {
2459 level = ret;
2460 btrfs_node_key_to_cpu(path->nodes[level], &key,
2461 path->slots[level]);
2462 replaced = 1;
2463 }
2464
2465 ret = walk_up_reloc_tree(reloc_root, path, &level);
2466 if (ret > 0)
2467 break;
2468
2469 BUG_ON(level == 0);
2470 /*
2471 * save the merging progress in the drop_progress.
2472 * this is OK since root refs == 1 in this case.
2473 */
2474 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2475 path->slots[level]);
2476 root_item->drop_level = level;
2477
2478 btrfs_end_transaction_throttle(trans);
2479 trans = NULL;
2480
2481 btrfs_btree_balance_dirty(fs_info);
2482
2483 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2484 invalidate_extent_cache(root, &key, &next_key);
2485 }
2486
2487 /*
2488 * handle the case only one block in the fs tree need to be
2489 * relocated and the block is tree root.
2490 */
2491 leaf = btrfs_lock_root_node(root);
2492 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2493 btrfs_tree_unlock(leaf);
2494 free_extent_buffer(leaf);
2495 if (ret < 0)
2496 err = ret;
2497out:
2498 btrfs_free_path(path);
2499
2500 if (err == 0)
2501 insert_dirty_subvol(trans, rc, root);
2502
2503 if (trans)
2504 btrfs_end_transaction_throttle(trans);
2505
2506 btrfs_btree_balance_dirty(fs_info);
2507
2508 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2509 invalidate_extent_cache(root, &key, &next_key);
2510
2511 return err;
2512}
2513
2514static noinline_for_stack
2515int prepare_to_merge(struct reloc_control *rc, int err)
2516{
2517 struct btrfs_root *root = rc->extent_root;
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 struct btrfs_root *reloc_root;
2520 struct btrfs_trans_handle *trans;
2521 LIST_HEAD(reloc_roots);
2522 u64 num_bytes = 0;
2523 int ret;
2524
2525 mutex_lock(&fs_info->reloc_mutex);
2526 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2527 rc->merging_rsv_size += rc->nodes_relocated * 2;
2528 mutex_unlock(&fs_info->reloc_mutex);
2529
2530again:
2531 if (!err) {
2532 num_bytes = rc->merging_rsv_size;
2533 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2534 BTRFS_RESERVE_FLUSH_ALL);
2535 if (ret)
2536 err = ret;
2537 }
2538
2539 trans = btrfs_join_transaction(rc->extent_root);
2540 if (IS_ERR(trans)) {
2541 if (!err)
2542 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2543 num_bytes, NULL);
2544 return PTR_ERR(trans);
2545 }
2546
2547 if (!err) {
2548 if (num_bytes != rc->merging_rsv_size) {
2549 btrfs_end_transaction(trans);
2550 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2551 num_bytes, NULL);
2552 goto again;
2553 }
2554 }
2555
2556 rc->merge_reloc_tree = 1;
2557
2558 while (!list_empty(&rc->reloc_roots)) {
2559 reloc_root = list_entry(rc->reloc_roots.next,
2560 struct btrfs_root, root_list);
2561 list_del_init(&reloc_root->root_list);
2562
2563 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2564 BUG_ON(IS_ERR(root));
2565 BUG_ON(root->reloc_root != reloc_root);
2566
2567 /*
2568 * set reference count to 1, so btrfs_recover_relocation
2569 * knows it should resumes merging
2570 */
2571 if (!err)
2572 btrfs_set_root_refs(&reloc_root->root_item, 1);
2573 btrfs_update_reloc_root(trans, root);
2574
2575 list_add(&reloc_root->root_list, &reloc_roots);
2576 btrfs_put_root(root);
2577 }
2578
2579 list_splice(&reloc_roots, &rc->reloc_roots);
2580
2581 if (!err)
2582 btrfs_commit_transaction(trans);
2583 else
2584 btrfs_end_transaction(trans);
2585 return err;
2586}
2587
2588static noinline_for_stack
2589void free_reloc_roots(struct list_head *list)
2590{
2591 struct btrfs_root *reloc_root;
2592
2593 while (!list_empty(list)) {
2594 reloc_root = list_entry(list->next, struct btrfs_root,
2595 root_list);
2596 __del_reloc_root(reloc_root);
2597 }
2598}
2599
2600static noinline_for_stack
2601void merge_reloc_roots(struct reloc_control *rc)
2602{
2603 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2604 struct btrfs_root *root;
2605 struct btrfs_root *reloc_root;
2606 LIST_HEAD(reloc_roots);
2607 int found = 0;
2608 int ret = 0;
2609again:
2610 root = rc->extent_root;
2611
2612 /*
2613 * this serializes us with btrfs_record_root_in_transaction,
2614 * we have to make sure nobody is in the middle of
2615 * adding their roots to the list while we are
2616 * doing this splice
2617 */
2618 mutex_lock(&fs_info->reloc_mutex);
2619 list_splice_init(&rc->reloc_roots, &reloc_roots);
2620 mutex_unlock(&fs_info->reloc_mutex);
2621
2622 while (!list_empty(&reloc_roots)) {
2623 found = 1;
2624 reloc_root = list_entry(reloc_roots.next,
2625 struct btrfs_root, root_list);
2626
2627 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2628 root = read_fs_root(fs_info,
2629 reloc_root->root_key.offset);
2630 BUG_ON(IS_ERR(root));
2631 BUG_ON(root->reloc_root != reloc_root);
2632
2633 ret = merge_reloc_root(rc, root);
2634 btrfs_put_root(root);
2635 if (ret) {
2636 if (list_empty(&reloc_root->root_list))
2637 list_add_tail(&reloc_root->root_list,
2638 &reloc_roots);
2639 goto out;
2640 }
2641 } else {
2642 list_del_init(&reloc_root->root_list);
2643 /* Don't forget to queue this reloc root for cleanup */
2644 list_add_tail(&reloc_root->reloc_dirty_list,
2645 &rc->dirty_subvol_roots);
2646 }
2647 }
2648
2649 if (found) {
2650 found = 0;
2651 goto again;
2652 }
2653out:
2654 if (ret) {
2655 btrfs_handle_fs_error(fs_info, ret, NULL);
2656 if (!list_empty(&reloc_roots))
2657 free_reloc_roots(&reloc_roots);
2658
2659 /* new reloc root may be added */
2660 mutex_lock(&fs_info->reloc_mutex);
2661 list_splice_init(&rc->reloc_roots, &reloc_roots);
2662 mutex_unlock(&fs_info->reloc_mutex);
2663 if (!list_empty(&reloc_roots))
2664 free_reloc_roots(&reloc_roots);
2665 }
2666
2667 /*
2668 * We used to have
2669 *
2670 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2671 *
2672 * here, but it's wrong. If we fail to start the transaction in
2673 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2674 * have actually been removed from the reloc_root_tree rb tree. This is
2675 * fine because we're bailing here, and we hold a reference on the root
2676 * for the list that holds it, so these roots will be cleaned up when we
2677 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2678 * will be cleaned up on unmount.
2679 *
2680 * The remaining nodes will be cleaned up by free_reloc_control.
2681 */
2682}
2683
2684static void free_block_list(struct rb_root *blocks)
2685{
2686 struct tree_block *block;
2687 struct rb_node *rb_node;
2688 while ((rb_node = rb_first(blocks))) {
2689 block = rb_entry(rb_node, struct tree_block, rb_node);
2690 rb_erase(rb_node, blocks);
2691 kfree(block);
2692 }
2693}
2694
2695static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2696 struct btrfs_root *reloc_root)
2697{
2698 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2699 struct btrfs_root *root;
2700 int ret;
2701
2702 if (reloc_root->last_trans == trans->transid)
2703 return 0;
2704
2705 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2706 BUG_ON(IS_ERR(root));
2707 BUG_ON(root->reloc_root != reloc_root);
2708 ret = btrfs_record_root_in_trans(trans, root);
2709 btrfs_put_root(root);
2710
2711 return ret;
2712}
2713
2714static noinline_for_stack
2715struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2716 struct reloc_control *rc,
2717 struct backref_node *node,
2718 struct backref_edge *edges[])
2719{
2720 struct backref_node *next;
2721 struct btrfs_root *root;
2722 int index = 0;
2723
2724 next = node;
2725 while (1) {
2726 cond_resched();
2727 next = walk_up_backref(next, edges, &index);
2728 root = next->root;
2729 BUG_ON(!root);
2730 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2731
2732 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2733 record_reloc_root_in_trans(trans, root);
2734 break;
2735 }
2736
2737 btrfs_record_root_in_trans(trans, root);
2738 root = root->reloc_root;
2739
2740 if (next->new_bytenr != root->node->start) {
2741 BUG_ON(next->new_bytenr);
2742 BUG_ON(!list_empty(&next->list));
2743 next->new_bytenr = root->node->start;
2744 btrfs_put_root(next->root);
2745 next->root = btrfs_grab_root(root);
2746 ASSERT(next->root);
2747 list_add_tail(&next->list,
2748 &rc->backref_cache.changed);
2749 __mark_block_processed(rc, next);
2750 break;
2751 }
2752
2753 WARN_ON(1);
2754 root = NULL;
2755 next = walk_down_backref(edges, &index);
2756 if (!next || next->level <= node->level)
2757 break;
2758 }
2759 if (!root)
2760 return NULL;
2761
2762 next = node;
2763 /* setup backref node path for btrfs_reloc_cow_block */
2764 while (1) {
2765 rc->backref_cache.path[next->level] = next;
2766 if (--index < 0)
2767 break;
2768 next = edges[index]->node[UPPER];
2769 }
2770 return root;
2771}
2772
2773/*
2774 * select a tree root for relocation. return NULL if the block
2775 * is reference counted. we should use do_relocation() in this
2776 * case. return a tree root pointer if the block isn't reference
2777 * counted. return -ENOENT if the block is root of reloc tree.
2778 */
2779static noinline_for_stack
2780struct btrfs_root *select_one_root(struct backref_node *node)
2781{
2782 struct backref_node *next;
2783 struct btrfs_root *root;
2784 struct btrfs_root *fs_root = NULL;
2785 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2786 int index = 0;
2787
2788 next = node;
2789 while (1) {
2790 cond_resched();
2791 next = walk_up_backref(next, edges, &index);
2792 root = next->root;
2793 BUG_ON(!root);
2794
2795 /* no other choice for non-references counted tree */
2796 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2797 return root;
2798
2799 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2800 fs_root = root;
2801
2802 if (next != node)
2803 return NULL;
2804
2805 next = walk_down_backref(edges, &index);
2806 if (!next || next->level <= node->level)
2807 break;
2808 }
2809
2810 if (!fs_root)
2811 return ERR_PTR(-ENOENT);
2812 return fs_root;
2813}
2814
2815static noinline_for_stack
2816u64 calcu_metadata_size(struct reloc_control *rc,
2817 struct backref_node *node, int reserve)
2818{
2819 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2820 struct backref_node *next = node;
2821 struct backref_edge *edge;
2822 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2823 u64 num_bytes = 0;
2824 int index = 0;
2825
2826 BUG_ON(reserve && node->processed);
2827
2828 while (next) {
2829 cond_resched();
2830 while (1) {
2831 if (next->processed && (reserve || next != node))
2832 break;
2833
2834 num_bytes += fs_info->nodesize;
2835
2836 if (list_empty(&next->upper))
2837 break;
2838
2839 edge = list_entry(next->upper.next,
2840 struct backref_edge, list[LOWER]);
2841 edges[index++] = edge;
2842 next = edge->node[UPPER];
2843 }
2844 next = walk_down_backref(edges, &index);
2845 }
2846 return num_bytes;
2847}
2848
2849static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2850 struct reloc_control *rc,
2851 struct backref_node *node)
2852{
2853 struct btrfs_root *root = rc->extent_root;
2854 struct btrfs_fs_info *fs_info = root->fs_info;
2855 u64 num_bytes;
2856 int ret;
2857 u64 tmp;
2858
2859 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2860
2861 trans->block_rsv = rc->block_rsv;
2862 rc->reserved_bytes += num_bytes;
2863
2864 /*
2865 * We are under a transaction here so we can only do limited flushing.
2866 * If we get an enospc just kick back -EAGAIN so we know to drop the
2867 * transaction and try to refill when we can flush all the things.
2868 */
2869 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2870 BTRFS_RESERVE_FLUSH_LIMIT);
2871 if (ret) {
2872 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2873 while (tmp <= rc->reserved_bytes)
2874 tmp <<= 1;
2875 /*
2876 * only one thread can access block_rsv at this point,
2877 * so we don't need hold lock to protect block_rsv.
2878 * we expand more reservation size here to allow enough
2879 * space for relocation and we will return earlier in
2880 * enospc case.
2881 */
2882 rc->block_rsv->size = tmp + fs_info->nodesize *
2883 RELOCATION_RESERVED_NODES;
2884 return -EAGAIN;
2885 }
2886
2887 return 0;
2888}
2889
2890/*
2891 * relocate a block tree, and then update pointers in upper level
2892 * blocks that reference the block to point to the new location.
2893 *
2894 * if called by link_to_upper, the block has already been relocated.
2895 * in that case this function just updates pointers.
2896 */
2897static int do_relocation(struct btrfs_trans_handle *trans,
2898 struct reloc_control *rc,
2899 struct backref_node *node,
2900 struct btrfs_key *key,
2901 struct btrfs_path *path, int lowest)
2902{
2903 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904 struct backref_node *upper;
2905 struct backref_edge *edge;
2906 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2907 struct btrfs_root *root;
2908 struct extent_buffer *eb;
2909 u32 blocksize;
2910 u64 bytenr;
2911 u64 generation;
2912 int slot;
2913 int ret;
2914 int err = 0;
2915
2916 BUG_ON(lowest && node->eb);
2917
2918 path->lowest_level = node->level + 1;
2919 rc->backref_cache.path[node->level] = node;
2920 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2921 struct btrfs_key first_key;
2922 struct btrfs_ref ref = { 0 };
2923
2924 cond_resched();
2925
2926 upper = edge->node[UPPER];
2927 root = select_reloc_root(trans, rc, upper, edges);
2928 BUG_ON(!root);
2929
2930 if (upper->eb && !upper->locked) {
2931 if (!lowest) {
2932 ret = btrfs_bin_search(upper->eb, key,
2933 upper->level, &slot);
2934 if (ret < 0) {
2935 err = ret;
2936 goto next;
2937 }
2938 BUG_ON(ret);
2939 bytenr = btrfs_node_blockptr(upper->eb, slot);
2940 if (node->eb->start == bytenr)
2941 goto next;
2942 }
2943 drop_node_buffer(upper);
2944 }
2945
2946 if (!upper->eb) {
2947 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2948 if (ret) {
2949 if (ret < 0)
2950 err = ret;
2951 else
2952 err = -ENOENT;
2953
2954 btrfs_release_path(path);
2955 break;
2956 }
2957
2958 if (!upper->eb) {
2959 upper->eb = path->nodes[upper->level];
2960 path->nodes[upper->level] = NULL;
2961 } else {
2962 BUG_ON(upper->eb != path->nodes[upper->level]);
2963 }
2964
2965 upper->locked = 1;
2966 path->locks[upper->level] = 0;
2967
2968 slot = path->slots[upper->level];
2969 btrfs_release_path(path);
2970 } else {
2971 ret = btrfs_bin_search(upper->eb, key, upper->level,
2972 &slot);
2973 if (ret < 0) {
2974 err = ret;
2975 goto next;
2976 }
2977 BUG_ON(ret);
2978 }
2979
2980 bytenr = btrfs_node_blockptr(upper->eb, slot);
2981 if (lowest) {
2982 if (bytenr != node->bytenr) {
2983 btrfs_err(root->fs_info,
2984 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2985 bytenr, node->bytenr, slot,
2986 upper->eb->start);
2987 err = -EIO;
2988 goto next;
2989 }
2990 } else {
2991 if (node->eb->start == bytenr)
2992 goto next;
2993 }
2994
2995 blocksize = root->fs_info->nodesize;
2996 generation = btrfs_node_ptr_generation(upper->eb, slot);
2997 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2998 eb = read_tree_block(fs_info, bytenr, generation,
2999 upper->level - 1, &first_key);
3000 if (IS_ERR(eb)) {
3001 err = PTR_ERR(eb);
3002 goto next;
3003 } else if (!extent_buffer_uptodate(eb)) {
3004 free_extent_buffer(eb);
3005 err = -EIO;
3006 goto next;
3007 }
3008 btrfs_tree_lock(eb);
3009 btrfs_set_lock_blocking_write(eb);
3010
3011 if (!node->eb) {
3012 ret = btrfs_cow_block(trans, root, eb, upper->eb,
3013 slot, &eb);
3014 btrfs_tree_unlock(eb);
3015 free_extent_buffer(eb);
3016 if (ret < 0) {
3017 err = ret;
3018 goto next;
3019 }
3020 BUG_ON(node->eb != eb);
3021 } else {
3022 btrfs_set_node_blockptr(upper->eb, slot,
3023 node->eb->start);
3024 btrfs_set_node_ptr_generation(upper->eb, slot,
3025 trans->transid);
3026 btrfs_mark_buffer_dirty(upper->eb);
3027
3028 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
3029 node->eb->start, blocksize,
3030 upper->eb->start);
3031 ref.real_root = root->root_key.objectid;
3032 btrfs_init_tree_ref(&ref, node->level,
3033 btrfs_header_owner(upper->eb));
3034 ret = btrfs_inc_extent_ref(trans, &ref);
3035 BUG_ON(ret);
3036
3037 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
3038 BUG_ON(ret);
3039 }
3040next:
3041 if (!upper->pending)
3042 drop_node_buffer(upper);
3043 else
3044 unlock_node_buffer(upper);
3045 if (err)
3046 break;
3047 }
3048
3049 if (!err && node->pending) {
3050 drop_node_buffer(node);
3051 list_move_tail(&node->list, &rc->backref_cache.changed);
3052 node->pending = 0;
3053 }
3054
3055 path->lowest_level = 0;
3056 BUG_ON(err == -ENOSPC);
3057 return err;
3058}
3059
3060static int link_to_upper(struct btrfs_trans_handle *trans,
3061 struct reloc_control *rc,
3062 struct backref_node *node,
3063 struct btrfs_path *path)
3064{
3065 struct btrfs_key key;
3066
3067 btrfs_node_key_to_cpu(node->eb, &key, 0);
3068 return do_relocation(trans, rc, node, &key, path, 0);
3069}
3070
3071static int finish_pending_nodes(struct btrfs_trans_handle *trans,
3072 struct reloc_control *rc,
3073 struct btrfs_path *path, int err)
3074{
3075 LIST_HEAD(list);
3076 struct backref_cache *cache = &rc->backref_cache;
3077 struct backref_node *node;
3078 int level;
3079 int ret;
3080
3081 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3082 while (!list_empty(&cache->pending[level])) {
3083 node = list_entry(cache->pending[level].next,
3084 struct backref_node, list);
3085 list_move_tail(&node->list, &list);
3086 BUG_ON(!node->pending);
3087
3088 if (!err) {
3089 ret = link_to_upper(trans, rc, node, path);
3090 if (ret < 0)
3091 err = ret;
3092 }
3093 }
3094 list_splice_init(&list, &cache->pending[level]);
3095 }
3096 return err;
3097}
3098
3099static void mark_block_processed(struct reloc_control *rc,
3100 u64 bytenr, u32 blocksize)
3101{
3102 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
3103 EXTENT_DIRTY);
3104}
3105
3106static void __mark_block_processed(struct reloc_control *rc,
3107 struct backref_node *node)
3108{
3109 u32 blocksize;
3110 if (node->level == 0 ||
3111 in_block_group(node->bytenr, rc->block_group)) {
3112 blocksize = rc->extent_root->fs_info->nodesize;
3113 mark_block_processed(rc, node->bytenr, blocksize);
3114 }
3115 node->processed = 1;
3116}
3117
3118/*
3119 * mark a block and all blocks directly/indirectly reference the block
3120 * as processed.
3121 */
3122static void update_processed_blocks(struct reloc_control *rc,
3123 struct backref_node *node)
3124{
3125 struct backref_node *next = node;
3126 struct backref_edge *edge;
3127 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
3128 int index = 0;
3129
3130 while (next) {
3131 cond_resched();
3132 while (1) {
3133 if (next->processed)
3134 break;
3135
3136 __mark_block_processed(rc, next);
3137
3138 if (list_empty(&next->upper))
3139 break;
3140
3141 edge = list_entry(next->upper.next,
3142 struct backref_edge, list[LOWER]);
3143 edges[index++] = edge;
3144 next = edge->node[UPPER];
3145 }
3146 next = walk_down_backref(edges, &index);
3147 }
3148}
3149
3150static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
3151{
3152 u32 blocksize = rc->extent_root->fs_info->nodesize;
3153
3154 if (test_range_bit(&rc->processed_blocks, bytenr,
3155 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
3156 return 1;
3157 return 0;
3158}
3159
3160static int get_tree_block_key(struct btrfs_fs_info *fs_info,
3161 struct tree_block *block)
3162{
3163 struct extent_buffer *eb;
3164
3165 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3166 block->level, NULL);
3167 if (IS_ERR(eb)) {
3168 return PTR_ERR(eb);
3169 } else if (!extent_buffer_uptodate(eb)) {
3170 free_extent_buffer(eb);
3171 return -EIO;
3172 }
3173 if (block->level == 0)
3174 btrfs_item_key_to_cpu(eb, &block->key, 0);
3175 else
3176 btrfs_node_key_to_cpu(eb, &block->key, 0);
3177 free_extent_buffer(eb);
3178 block->key_ready = 1;
3179 return 0;
3180}
3181
3182/*
3183 * helper function to relocate a tree block
3184 */
3185static int relocate_tree_block(struct btrfs_trans_handle *trans,
3186 struct reloc_control *rc,
3187 struct backref_node *node,
3188 struct btrfs_key *key,
3189 struct btrfs_path *path)
3190{
3191 struct btrfs_root *root;
3192 int ret = 0;
3193
3194 if (!node)
3195 return 0;
3196
3197 /*
3198 * If we fail here we want to drop our backref_node because we are going
3199 * to start over and regenerate the tree for it.
3200 */
3201 ret = reserve_metadata_space(trans, rc, node);
3202 if (ret)
3203 goto out;
3204
3205 BUG_ON(node->processed);
3206 root = select_one_root(node);
3207 if (root == ERR_PTR(-ENOENT)) {
3208 update_processed_blocks(rc, node);
3209 goto out;
3210 }
3211
3212 if (root) {
3213 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3214 BUG_ON(node->new_bytenr);
3215 BUG_ON(!list_empty(&node->list));
3216 btrfs_record_root_in_trans(trans, root);
3217 root = root->reloc_root;
3218 node->new_bytenr = root->node->start;
3219 btrfs_put_root(node->root);
3220 node->root = btrfs_grab_root(root);
3221 ASSERT(node->root);
3222 list_add_tail(&node->list, &rc->backref_cache.changed);
3223 } else {
3224 path->lowest_level = node->level;
3225 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3226 btrfs_release_path(path);
3227 if (ret > 0)
3228 ret = 0;
3229 }
3230 if (!ret)
3231 update_processed_blocks(rc, node);
3232 } else {
3233 ret = do_relocation(trans, rc, node, key, path, 1);
3234 }
3235out:
3236 if (ret || node->level == 0 || node->cowonly)
3237 remove_backref_node(&rc->backref_cache, node);
3238 return ret;
3239}
3240
3241/*
3242 * relocate a list of blocks
3243 */
3244static noinline_for_stack
3245int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3246 struct reloc_control *rc, struct rb_root *blocks)
3247{
3248 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3249 struct backref_node *node;
3250 struct btrfs_path *path;
3251 struct tree_block *block;
3252 struct tree_block *next;
3253 int ret;
3254 int err = 0;
3255
3256 path = btrfs_alloc_path();
3257 if (!path) {
3258 err = -ENOMEM;
3259 goto out_free_blocks;
3260 }
3261
3262 /* Kick in readahead for tree blocks with missing keys */
3263 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3264 if (!block->key_ready)
3265 readahead_tree_block(fs_info, block->bytenr);
3266 }
3267
3268 /* Get first keys */
3269 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3270 if (!block->key_ready) {
3271 err = get_tree_block_key(fs_info, block);
3272 if (err)
3273 goto out_free_path;
3274 }
3275 }
3276
3277 /* Do tree relocation */
3278 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3279 node = build_backref_tree(rc, &block->key,
3280 block->level, block->bytenr);
3281 if (IS_ERR(node)) {
3282 err = PTR_ERR(node);
3283 goto out;
3284 }
3285
3286 ret = relocate_tree_block(trans, rc, node, &block->key,
3287 path);
3288 if (ret < 0) {
3289 err = ret;
3290 break;
3291 }
3292 }
3293out:
3294 err = finish_pending_nodes(trans, rc, path, err);
3295
3296out_free_path:
3297 btrfs_free_path(path);
3298out_free_blocks:
3299 free_block_list(blocks);
3300 return err;
3301}
3302
3303static noinline_for_stack
3304int prealloc_file_extent_cluster(struct inode *inode,
3305 struct file_extent_cluster *cluster)
3306{
3307 u64 alloc_hint = 0;
3308 u64 start;
3309 u64 end;
3310 u64 offset = BTRFS_I(inode)->index_cnt;
3311 u64 num_bytes;
3312 int nr = 0;
3313 int ret = 0;
3314 u64 prealloc_start = cluster->start - offset;
3315 u64 prealloc_end = cluster->end - offset;
3316 u64 cur_offset;
3317 struct extent_changeset *data_reserved = NULL;
3318
3319 BUG_ON(cluster->start != cluster->boundary[0]);
3320 inode_lock(inode);
3321
3322 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3323 prealloc_end + 1 - prealloc_start);
3324 if (ret)
3325 goto out;
3326
3327 cur_offset = prealloc_start;
3328 while (nr < cluster->nr) {
3329 start = cluster->boundary[nr] - offset;
3330 if (nr + 1 < cluster->nr)
3331 end = cluster->boundary[nr + 1] - 1 - offset;
3332 else
3333 end = cluster->end - offset;
3334
3335 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3336 num_bytes = end + 1 - start;
3337 if (cur_offset < start)
3338 btrfs_free_reserved_data_space(inode, data_reserved,
3339 cur_offset, start - cur_offset);
3340 ret = btrfs_prealloc_file_range(inode, 0, start,
3341 num_bytes, num_bytes,
3342 end + 1, &alloc_hint);
3343 cur_offset = end + 1;
3344 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3345 if (ret)
3346 break;
3347 nr++;
3348 }
3349 if (cur_offset < prealloc_end)
3350 btrfs_free_reserved_data_space(inode, data_reserved,
3351 cur_offset, prealloc_end + 1 - cur_offset);
3352out:
3353 inode_unlock(inode);
3354 extent_changeset_free(data_reserved);
3355 return ret;
3356}
3357
3358static noinline_for_stack
3359int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3360 u64 block_start)
3361{
3362 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3363 struct extent_map *em;
3364 int ret = 0;
3365
3366 em = alloc_extent_map();
3367 if (!em)
3368 return -ENOMEM;
3369
3370 em->start = start;
3371 em->len = end + 1 - start;
3372 em->block_len = em->len;
3373 em->block_start = block_start;
3374 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3375
3376 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3377 while (1) {
3378 write_lock(&em_tree->lock);
3379 ret = add_extent_mapping(em_tree, em, 0);
3380 write_unlock(&em_tree->lock);
3381 if (ret != -EEXIST) {
3382 free_extent_map(em);
3383 break;
3384 }
3385 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3386 }
3387 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3388 return ret;
3389}
3390
3391/*
3392 * Allow error injection to test balance cancellation
3393 */
3394int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
3395{
3396 return atomic_read(&fs_info->balance_cancel_req);
3397}
3398ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
3399
3400static int relocate_file_extent_cluster(struct inode *inode,
3401 struct file_extent_cluster *cluster)
3402{
3403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3404 u64 page_start;
3405 u64 page_end;
3406 u64 offset = BTRFS_I(inode)->index_cnt;
3407 unsigned long index;
3408 unsigned long last_index;
3409 struct page *page;
3410 struct file_ra_state *ra;
3411 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3412 int nr = 0;
3413 int ret = 0;
3414
3415 if (!cluster->nr)
3416 return 0;
3417
3418 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3419 if (!ra)
3420 return -ENOMEM;
3421
3422 ret = prealloc_file_extent_cluster(inode, cluster);
3423 if (ret)
3424 goto out;
3425
3426 file_ra_state_init(ra, inode->i_mapping);
3427
3428 ret = setup_extent_mapping(inode, cluster->start - offset,
3429 cluster->end - offset, cluster->start);
3430 if (ret)
3431 goto out;
3432
3433 index = (cluster->start - offset) >> PAGE_SHIFT;
3434 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3435 while (index <= last_index) {
3436 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3437 PAGE_SIZE);
3438 if (ret)
3439 goto out;
3440
3441 page = find_lock_page(inode->i_mapping, index);
3442 if (!page) {
3443 page_cache_sync_readahead(inode->i_mapping,
3444 ra, NULL, index,
3445 last_index + 1 - index);
3446 page = find_or_create_page(inode->i_mapping, index,
3447 mask);
3448 if (!page) {
3449 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3450 PAGE_SIZE, true);
3451 btrfs_delalloc_release_extents(BTRFS_I(inode),
3452 PAGE_SIZE);
3453 ret = -ENOMEM;
3454 goto out;
3455 }
3456 }
3457
3458 if (PageReadahead(page)) {
3459 page_cache_async_readahead(inode->i_mapping,
3460 ra, NULL, page, index,
3461 last_index + 1 - index);
3462 }
3463
3464 if (!PageUptodate(page)) {
3465 btrfs_readpage(NULL, page);
3466 lock_page(page);
3467 if (!PageUptodate(page)) {
3468 unlock_page(page);
3469 put_page(page);
3470 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3471 PAGE_SIZE, true);
3472 btrfs_delalloc_release_extents(BTRFS_I(inode),
3473 PAGE_SIZE);
3474 ret = -EIO;
3475 goto out;
3476 }
3477 }
3478
3479 page_start = page_offset(page);
3480 page_end = page_start + PAGE_SIZE - 1;
3481
3482 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3483
3484 set_page_extent_mapped(page);
3485
3486 if (nr < cluster->nr &&
3487 page_start + offset == cluster->boundary[nr]) {
3488 set_extent_bits(&BTRFS_I(inode)->io_tree,
3489 page_start, page_end,
3490 EXTENT_BOUNDARY);
3491 nr++;
3492 }
3493
3494 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3495 NULL);
3496 if (ret) {
3497 unlock_page(page);
3498 put_page(page);
3499 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3500 PAGE_SIZE, true);
3501 btrfs_delalloc_release_extents(BTRFS_I(inode),
3502 PAGE_SIZE);
3503
3504 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3505 page_start, page_end,
3506 EXTENT_LOCKED | EXTENT_BOUNDARY);
3507 goto out;
3508
3509 }
3510 set_page_dirty(page);
3511
3512 unlock_extent(&BTRFS_I(inode)->io_tree,
3513 page_start, page_end);
3514 unlock_page(page);
3515 put_page(page);
3516
3517 index++;
3518 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3519 balance_dirty_pages_ratelimited(inode->i_mapping);
3520 btrfs_throttle(fs_info);
3521 if (btrfs_should_cancel_balance(fs_info)) {
3522 ret = -ECANCELED;
3523 goto out;
3524 }
3525 }
3526 WARN_ON(nr != cluster->nr);
3527out:
3528 kfree(ra);
3529 return ret;
3530}
3531
3532static noinline_for_stack
3533int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3534 struct file_extent_cluster *cluster)
3535{
3536 int ret;
3537
3538 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3539 ret = relocate_file_extent_cluster(inode, cluster);
3540 if (ret)
3541 return ret;
3542 cluster->nr = 0;
3543 }
3544
3545 if (!cluster->nr)
3546 cluster->start = extent_key->objectid;
3547 else
3548 BUG_ON(cluster->nr >= MAX_EXTENTS);
3549 cluster->end = extent_key->objectid + extent_key->offset - 1;
3550 cluster->boundary[cluster->nr] = extent_key->objectid;
3551 cluster->nr++;
3552
3553 if (cluster->nr >= MAX_EXTENTS) {
3554 ret = relocate_file_extent_cluster(inode, cluster);
3555 if (ret)
3556 return ret;
3557 cluster->nr = 0;
3558 }
3559 return 0;
3560}
3561
3562/*
3563 * helper to add a tree block to the list.
3564 * the major work is getting the generation and level of the block
3565 */
3566static int add_tree_block(struct reloc_control *rc,
3567 struct btrfs_key *extent_key,
3568 struct btrfs_path *path,
3569 struct rb_root *blocks)
3570{
3571 struct extent_buffer *eb;
3572 struct btrfs_extent_item *ei;
3573 struct btrfs_tree_block_info *bi;
3574 struct tree_block *block;
3575 struct rb_node *rb_node;
3576 u32 item_size;
3577 int level = -1;
3578 u64 generation;
3579
3580 eb = path->nodes[0];
3581 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3582
3583 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3584 item_size >= sizeof(*ei) + sizeof(*bi)) {
3585 ei = btrfs_item_ptr(eb, path->slots[0],
3586 struct btrfs_extent_item);
3587 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3588 bi = (struct btrfs_tree_block_info *)(ei + 1);
3589 level = btrfs_tree_block_level(eb, bi);
3590 } else {
3591 level = (int)extent_key->offset;
3592 }
3593 generation = btrfs_extent_generation(eb, ei);
3594 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3595 btrfs_print_v0_err(eb->fs_info);
3596 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3597 return -EINVAL;
3598 } else {
3599 BUG();
3600 }
3601
3602 btrfs_release_path(path);
3603
3604 BUG_ON(level == -1);
3605
3606 block = kmalloc(sizeof(*block), GFP_NOFS);
3607 if (!block)
3608 return -ENOMEM;
3609
3610 block->bytenr = extent_key->objectid;
3611 block->key.objectid = rc->extent_root->fs_info->nodesize;
3612 block->key.offset = generation;
3613 block->level = level;
3614 block->key_ready = 0;
3615
3616 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3617 if (rb_node)
3618 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3619
3620 return 0;
3621}
3622
3623/*
3624 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3625 */
3626static int __add_tree_block(struct reloc_control *rc,
3627 u64 bytenr, u32 blocksize,
3628 struct rb_root *blocks)
3629{
3630 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3631 struct btrfs_path *path;
3632 struct btrfs_key key;
3633 int ret;
3634 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3635
3636 if (tree_block_processed(bytenr, rc))
3637 return 0;
3638
3639 if (tree_search(blocks, bytenr))
3640 return 0;
3641
3642 path = btrfs_alloc_path();
3643 if (!path)
3644 return -ENOMEM;
3645again:
3646 key.objectid = bytenr;
3647 if (skinny) {
3648 key.type = BTRFS_METADATA_ITEM_KEY;
3649 key.offset = (u64)-1;
3650 } else {
3651 key.type = BTRFS_EXTENT_ITEM_KEY;
3652 key.offset = blocksize;
3653 }
3654
3655 path->search_commit_root = 1;
3656 path->skip_locking = 1;
3657 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3658 if (ret < 0)
3659 goto out;
3660
3661 if (ret > 0 && skinny) {
3662 if (path->slots[0]) {
3663 path->slots[0]--;
3664 btrfs_item_key_to_cpu(path->nodes[0], &key,
3665 path->slots[0]);
3666 if (key.objectid == bytenr &&
3667 (key.type == BTRFS_METADATA_ITEM_KEY ||
3668 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3669 key.offset == blocksize)))
3670 ret = 0;
3671 }
3672
3673 if (ret) {
3674 skinny = false;
3675 btrfs_release_path(path);
3676 goto again;
3677 }
3678 }
3679 if (ret) {
3680 ASSERT(ret == 1);
3681 btrfs_print_leaf(path->nodes[0]);
3682 btrfs_err(fs_info,
3683 "tree block extent item (%llu) is not found in extent tree",
3684 bytenr);
3685 WARN_ON(1);
3686 ret = -EINVAL;
3687 goto out;
3688 }
3689
3690 ret = add_tree_block(rc, &key, path, blocks);
3691out:
3692 btrfs_free_path(path);
3693 return ret;
3694}
3695
3696static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3697 struct btrfs_block_group *block_group,
3698 struct inode *inode,
3699 u64 ino)
3700{
3701 struct btrfs_key key;
3702 struct btrfs_root *root = fs_info->tree_root;
3703 struct btrfs_trans_handle *trans;
3704 int ret = 0;
3705
3706 if (inode)
3707 goto truncate;
3708
3709 key.objectid = ino;
3710 key.type = BTRFS_INODE_ITEM_KEY;
3711 key.offset = 0;
3712
3713 inode = btrfs_iget(fs_info->sb, &key, root);
3714 if (IS_ERR(inode))
3715 return -ENOENT;
3716
3717truncate:
3718 ret = btrfs_check_trunc_cache_free_space(fs_info,
3719 &fs_info->global_block_rsv);
3720 if (ret)
3721 goto out;
3722
3723 trans = btrfs_join_transaction(root);
3724 if (IS_ERR(trans)) {
3725 ret = PTR_ERR(trans);
3726 goto out;
3727 }
3728
3729 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3730
3731 btrfs_end_transaction(trans);
3732 btrfs_btree_balance_dirty(fs_info);
3733out:
3734 iput(inode);
3735 return ret;
3736}
3737
3738/*
3739 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3740 * cache inode, to avoid free space cache data extent blocking data relocation.
3741 */
3742static int delete_v1_space_cache(struct extent_buffer *leaf,
3743 struct btrfs_block_group *block_group,
3744 u64 data_bytenr)
3745{
3746 u64 space_cache_ino;
3747 struct btrfs_file_extent_item *ei;
3748 struct btrfs_key key;
3749 bool found = false;
3750 int i;
3751 int ret;
3752
3753 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3754 return 0;
3755
3756 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3757 btrfs_item_key_to_cpu(leaf, &key, i);
3758 if (key.type != BTRFS_EXTENT_DATA_KEY)
3759 continue;
3760 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3761 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3762 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3763 found = true;
3764 space_cache_ino = key.objectid;
3765 break;
3766 }
3767 }
3768 if (!found)
3769 return -ENOENT;
3770 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3771 space_cache_ino);
3772 return ret;
3773}
3774
3775/*
3776 * helper to find all tree blocks that reference a given data extent
3777 */
3778static noinline_for_stack
3779int add_data_references(struct reloc_control *rc,
3780 struct btrfs_key *extent_key,
3781 struct btrfs_path *path,
3782 struct rb_root *blocks)
3783{
3784 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3785 struct ulist *leaves = NULL;
3786 struct ulist_iterator leaf_uiter;
3787 struct ulist_node *ref_node = NULL;
3788 const u32 blocksize = fs_info->nodesize;
3789 int ret = 0;
3790
3791 btrfs_release_path(path);
3792 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3793 0, &leaves, NULL, true);
3794 if (ret < 0)
3795 return ret;
3796
3797 ULIST_ITER_INIT(&leaf_uiter);
3798 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3799 struct extent_buffer *eb;
3800
3801 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3802 if (IS_ERR(eb)) {
3803 ret = PTR_ERR(eb);
3804 break;
3805 }
3806 ret = delete_v1_space_cache(eb, rc->block_group,
3807 extent_key->objectid);
3808 free_extent_buffer(eb);
3809 if (ret < 0)
3810 break;
3811 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3812 if (ret < 0)
3813 break;
3814 }
3815 if (ret < 0)
3816 free_block_list(blocks);
3817 ulist_free(leaves);
3818 return ret;
3819}
3820
3821/*
3822 * helper to find next unprocessed extent
3823 */
3824static noinline_for_stack
3825int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3826 struct btrfs_key *extent_key)
3827{
3828 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3829 struct btrfs_key key;
3830 struct extent_buffer *leaf;
3831 u64 start, end, last;
3832 int ret;
3833
3834 last = rc->block_group->start + rc->block_group->length;
3835 while (1) {
3836 cond_resched();
3837 if (rc->search_start >= last) {
3838 ret = 1;
3839 break;
3840 }
3841
3842 key.objectid = rc->search_start;
3843 key.type = BTRFS_EXTENT_ITEM_KEY;
3844 key.offset = 0;
3845
3846 path->search_commit_root = 1;
3847 path->skip_locking = 1;
3848 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3849 0, 0);
3850 if (ret < 0)
3851 break;
3852next:
3853 leaf = path->nodes[0];
3854 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3855 ret = btrfs_next_leaf(rc->extent_root, path);
3856 if (ret != 0)
3857 break;
3858 leaf = path->nodes[0];
3859 }
3860
3861 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3862 if (key.objectid >= last) {
3863 ret = 1;
3864 break;
3865 }
3866
3867 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3868 key.type != BTRFS_METADATA_ITEM_KEY) {
3869 path->slots[0]++;
3870 goto next;
3871 }
3872
3873 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3874 key.objectid + key.offset <= rc->search_start) {
3875 path->slots[0]++;
3876 goto next;
3877 }
3878
3879 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3880 key.objectid + fs_info->nodesize <=
3881 rc->search_start) {
3882 path->slots[0]++;
3883 goto next;
3884 }
3885
3886 ret = find_first_extent_bit(&rc->processed_blocks,
3887 key.objectid, &start, &end,
3888 EXTENT_DIRTY, NULL);
3889
3890 if (ret == 0 && start <= key.objectid) {
3891 btrfs_release_path(path);
3892 rc->search_start = end + 1;
3893 } else {
3894 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3895 rc->search_start = key.objectid + key.offset;
3896 else
3897 rc->search_start = key.objectid +
3898 fs_info->nodesize;
3899 memcpy(extent_key, &key, sizeof(key));
3900 return 0;
3901 }
3902 }
3903 btrfs_release_path(path);
3904 return ret;
3905}
3906
3907static void set_reloc_control(struct reloc_control *rc)
3908{
3909 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3910
3911 mutex_lock(&fs_info->reloc_mutex);
3912 fs_info->reloc_ctl = rc;
3913 mutex_unlock(&fs_info->reloc_mutex);
3914}
3915
3916static void unset_reloc_control(struct reloc_control *rc)
3917{
3918 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3919
3920 mutex_lock(&fs_info->reloc_mutex);
3921 fs_info->reloc_ctl = NULL;
3922 mutex_unlock(&fs_info->reloc_mutex);
3923}
3924
3925static int check_extent_flags(u64 flags)
3926{
3927 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3928 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3929 return 1;
3930 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3931 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3932 return 1;
3933 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3934 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3935 return 1;
3936 return 0;
3937}
3938
3939static noinline_for_stack
3940int prepare_to_relocate(struct reloc_control *rc)
3941{
3942 struct btrfs_trans_handle *trans;
3943 int ret;
3944
3945 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3946 BTRFS_BLOCK_RSV_TEMP);
3947 if (!rc->block_rsv)
3948 return -ENOMEM;
3949
3950 memset(&rc->cluster, 0, sizeof(rc->cluster));
3951 rc->search_start = rc->block_group->start;
3952 rc->extents_found = 0;
3953 rc->nodes_relocated = 0;
3954 rc->merging_rsv_size = 0;
3955 rc->reserved_bytes = 0;
3956 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3957 RELOCATION_RESERVED_NODES;
3958 ret = btrfs_block_rsv_refill(rc->extent_root,
3959 rc->block_rsv, rc->block_rsv->size,
3960 BTRFS_RESERVE_FLUSH_ALL);
3961 if (ret)
3962 return ret;
3963
3964 rc->create_reloc_tree = 1;
3965 set_reloc_control(rc);
3966
3967 trans = btrfs_join_transaction(rc->extent_root);
3968 if (IS_ERR(trans)) {
3969 unset_reloc_control(rc);
3970 /*
3971 * extent tree is not a ref_cow tree and has no reloc_root to
3972 * cleanup. And callers are responsible to free the above
3973 * block rsv.
3974 */
3975 return PTR_ERR(trans);
3976 }
3977 btrfs_commit_transaction(trans);
3978 return 0;
3979}
3980
3981static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3982{
3983 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3984 struct rb_root blocks = RB_ROOT;
3985 struct btrfs_key key;
3986 struct btrfs_trans_handle *trans = NULL;
3987 struct btrfs_path *path;
3988 struct btrfs_extent_item *ei;
3989 u64 flags;
3990 u32 item_size;
3991 int ret;
3992 int err = 0;
3993 int progress = 0;
3994
3995 path = btrfs_alloc_path();
3996 if (!path)
3997 return -ENOMEM;
3998 path->reada = READA_FORWARD;
3999
4000 ret = prepare_to_relocate(rc);
4001 if (ret) {
4002 err = ret;
4003 goto out_free;
4004 }
4005
4006 while (1) {
4007 rc->reserved_bytes = 0;
4008 ret = btrfs_block_rsv_refill(rc->extent_root,
4009 rc->block_rsv, rc->block_rsv->size,
4010 BTRFS_RESERVE_FLUSH_ALL);
4011 if (ret) {
4012 err = ret;
4013 break;
4014 }
4015 progress++;
4016 trans = btrfs_start_transaction(rc->extent_root, 0);
4017 if (IS_ERR(trans)) {
4018 err = PTR_ERR(trans);
4019 trans = NULL;
4020 break;
4021 }
4022restart:
4023 if (update_backref_cache(trans, &rc->backref_cache)) {
4024 btrfs_end_transaction(trans);
4025 trans = NULL;
4026 continue;
4027 }
4028
4029 ret = find_next_extent(rc, path, &key);
4030 if (ret < 0)
4031 err = ret;
4032 if (ret != 0)
4033 break;
4034
4035 rc->extents_found++;
4036
4037 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4038 struct btrfs_extent_item);
4039 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4040 if (item_size >= sizeof(*ei)) {
4041 flags = btrfs_extent_flags(path->nodes[0], ei);
4042 ret = check_extent_flags(flags);
4043 BUG_ON(ret);
4044 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4045 err = -EINVAL;
4046 btrfs_print_v0_err(trans->fs_info);
4047 btrfs_abort_transaction(trans, err);
4048 break;
4049 } else {
4050 BUG();
4051 }
4052
4053 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4054 ret = add_tree_block(rc, &key, path, &blocks);
4055 } else if (rc->stage == UPDATE_DATA_PTRS &&
4056 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4057 ret = add_data_references(rc, &key, path, &blocks);
4058 } else {
4059 btrfs_release_path(path);
4060 ret = 0;
4061 }
4062 if (ret < 0) {
4063 err = ret;
4064 break;
4065 }
4066
4067 if (!RB_EMPTY_ROOT(&blocks)) {
4068 ret = relocate_tree_blocks(trans, rc, &blocks);
4069 if (ret < 0) {
4070 if (ret != -EAGAIN) {
4071 err = ret;
4072 break;
4073 }
4074 rc->extents_found--;
4075 rc->search_start = key.objectid;
4076 }
4077 }
4078
4079 btrfs_end_transaction_throttle(trans);
4080 btrfs_btree_balance_dirty(fs_info);
4081 trans = NULL;
4082
4083 if (rc->stage == MOVE_DATA_EXTENTS &&
4084 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4085 rc->found_file_extent = 1;
4086 ret = relocate_data_extent(rc->data_inode,
4087 &key, &rc->cluster);
4088 if (ret < 0) {
4089 err = ret;
4090 break;
4091 }
4092 }
4093 if (btrfs_should_cancel_balance(fs_info)) {
4094 err = -ECANCELED;
4095 break;
4096 }
4097 }
4098 if (trans && progress && err == -ENOSPC) {
4099 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4100 if (ret == 1) {
4101 err = 0;
4102 progress = 0;
4103 goto restart;
4104 }
4105 }
4106
4107 btrfs_release_path(path);
4108 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4109
4110 if (trans) {
4111 btrfs_end_transaction_throttle(trans);
4112 btrfs_btree_balance_dirty(fs_info);
4113 }
4114
4115 if (!err) {
4116 ret = relocate_file_extent_cluster(rc->data_inode,
4117 &rc->cluster);
4118 if (ret < 0)
4119 err = ret;
4120 }
4121
4122 rc->create_reloc_tree = 0;
4123 set_reloc_control(rc);
4124
4125 backref_cache_cleanup(&rc->backref_cache);
4126 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
4127
4128 /*
4129 * Even in the case when the relocation is cancelled, we should all go
4130 * through prepare_to_merge() and merge_reloc_roots().
4131 *
4132 * For error (including cancelled balance), prepare_to_merge() will
4133 * mark all reloc trees orphan, then queue them for cleanup in
4134 * merge_reloc_roots()
4135 */
4136 err = prepare_to_merge(rc, err);
4137
4138 merge_reloc_roots(rc);
4139
4140 rc->merge_reloc_tree = 0;
4141 unset_reloc_control(rc);
4142 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
4143
4144 /* get rid of pinned extents */
4145 trans = btrfs_join_transaction(rc->extent_root);
4146 if (IS_ERR(trans)) {
4147 err = PTR_ERR(trans);
4148 goto out_free;
4149 }
4150 btrfs_commit_transaction(trans);
4151out_free:
4152 ret = clean_dirty_subvols(rc);
4153 if (ret < 0 && !err)
4154 err = ret;
4155 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4156 btrfs_free_path(path);
4157 return err;
4158}
4159
4160static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4161 struct btrfs_root *root, u64 objectid)
4162{
4163 struct btrfs_path *path;
4164 struct btrfs_inode_item *item;
4165 struct extent_buffer *leaf;
4166 int ret;
4167
4168 path = btrfs_alloc_path();
4169 if (!path)
4170 return -ENOMEM;
4171
4172 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4173 if (ret)
4174 goto out;
4175
4176 leaf = path->nodes[0];
4177 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4178 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4179 btrfs_set_inode_generation(leaf, item, 1);
4180 btrfs_set_inode_size(leaf, item, 0);
4181 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4182 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4183 BTRFS_INODE_PREALLOC);
4184 btrfs_mark_buffer_dirty(leaf);
4185out:
4186 btrfs_free_path(path);
4187 return ret;
4188}
4189
4190/*
4191 * helper to create inode for data relocation.
4192 * the inode is in data relocation tree and its link count is 0
4193 */
4194static noinline_for_stack
4195struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4196 struct btrfs_block_group *group)
4197{
4198 struct inode *inode = NULL;
4199 struct btrfs_trans_handle *trans;
4200 struct btrfs_root *root;
4201 struct btrfs_key key;
4202 u64 objectid;
4203 int err = 0;
4204
4205 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4206 if (IS_ERR(root))
4207 return ERR_CAST(root);
4208
4209 trans = btrfs_start_transaction(root, 6);
4210 if (IS_ERR(trans)) {
4211 btrfs_put_root(root);
4212 return ERR_CAST(trans);
4213 }
4214
4215 err = btrfs_find_free_objectid(root, &objectid);
4216 if (err)
4217 goto out;
4218
4219 err = __insert_orphan_inode(trans, root, objectid);
4220 BUG_ON(err);
4221
4222 key.objectid = objectid;
4223 key.type = BTRFS_INODE_ITEM_KEY;
4224 key.offset = 0;
4225 inode = btrfs_iget(fs_info->sb, &key, root);
4226 BUG_ON(IS_ERR(inode));
4227 BTRFS_I(inode)->index_cnt = group->start;
4228
4229 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4230out:
4231 btrfs_put_root(root);
4232 btrfs_end_transaction(trans);
4233 btrfs_btree_balance_dirty(fs_info);
4234 if (err) {
4235 if (inode)
4236 iput(inode);
4237 inode = ERR_PTR(err);
4238 }
4239 return inode;
4240}
4241
4242static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4243{
4244 struct reloc_control *rc;
4245
4246 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4247 if (!rc)
4248 return NULL;
4249
4250 INIT_LIST_HEAD(&rc->reloc_roots);
4251 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4252 backref_cache_init(&rc->backref_cache);
4253 mapping_tree_init(&rc->reloc_root_tree);
4254 extent_io_tree_init(fs_info, &rc->processed_blocks,
4255 IO_TREE_RELOC_BLOCKS, NULL);
4256 return rc;
4257}
4258
4259static void free_reloc_control(struct reloc_control *rc)
4260{
4261 struct mapping_node *node, *tmp;
4262
4263 free_reloc_roots(&rc->reloc_roots);
4264 rbtree_postorder_for_each_entry_safe(node, tmp,
4265 &rc->reloc_root_tree.rb_root, rb_node)
4266 kfree(node);
4267
4268 kfree(rc);
4269}
4270
4271/*
4272 * Print the block group being relocated
4273 */
4274static void describe_relocation(struct btrfs_fs_info *fs_info,
4275 struct btrfs_block_group *block_group)
4276{
4277 char buf[128] = {'\0'};
4278
4279 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4280
4281 btrfs_info(fs_info,
4282 "relocating block group %llu flags %s",
4283 block_group->start, buf);
4284}
4285
4286static const char *stage_to_string(int stage)
4287{
4288 if (stage == MOVE_DATA_EXTENTS)
4289 return "move data extents";
4290 if (stage == UPDATE_DATA_PTRS)
4291 return "update data pointers";
4292 return "unknown";
4293}
4294
4295/*
4296 * function to relocate all extents in a block group.
4297 */
4298int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4299{
4300 struct btrfs_block_group *bg;
4301 struct btrfs_root *extent_root = fs_info->extent_root;
4302 struct reloc_control *rc;
4303 struct inode *inode;
4304 struct btrfs_path *path;
4305 int ret;
4306 int rw = 0;
4307 int err = 0;
4308
4309 bg = btrfs_lookup_block_group(fs_info, group_start);
4310 if (!bg)
4311 return -ENOENT;
4312
4313 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4314 btrfs_put_block_group(bg);
4315 return -ETXTBSY;
4316 }
4317
4318 rc = alloc_reloc_control(fs_info);
4319 if (!rc) {
4320 btrfs_put_block_group(bg);
4321 return -ENOMEM;
4322 }
4323
4324 rc->extent_root = extent_root;
4325 rc->block_group = bg;
4326
4327 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4328 if (ret) {
4329 err = ret;
4330 goto out;
4331 }
4332 rw = 1;
4333
4334 path = btrfs_alloc_path();
4335 if (!path) {
4336 err = -ENOMEM;
4337 goto out;
4338 }
4339
4340 inode = lookup_free_space_inode(rc->block_group, path);
4341 btrfs_free_path(path);
4342
4343 if (!IS_ERR(inode))
4344 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4345 else
4346 ret = PTR_ERR(inode);
4347
4348 if (ret && ret != -ENOENT) {
4349 err = ret;
4350 goto out;
4351 }
4352
4353 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4354 if (IS_ERR(rc->data_inode)) {
4355 err = PTR_ERR(rc->data_inode);
4356 rc->data_inode = NULL;
4357 goto out;
4358 }
4359
4360 describe_relocation(fs_info, rc->block_group);
4361
4362 btrfs_wait_block_group_reservations(rc->block_group);
4363 btrfs_wait_nocow_writers(rc->block_group);
4364 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4365 rc->block_group->start,
4366 rc->block_group->length);
4367
4368 while (1) {
4369 int finishes_stage;
4370
4371 mutex_lock(&fs_info->cleaner_mutex);
4372 ret = relocate_block_group(rc);
4373 mutex_unlock(&fs_info->cleaner_mutex);
4374 if (ret < 0)
4375 err = ret;
4376
4377 finishes_stage = rc->stage;
4378 /*
4379 * We may have gotten ENOSPC after we already dirtied some
4380 * extents. If writeout happens while we're relocating a
4381 * different block group we could end up hitting the
4382 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4383 * btrfs_reloc_cow_block. Make sure we write everything out
4384 * properly so we don't trip over this problem, and then break
4385 * out of the loop if we hit an error.
4386 */
4387 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4388 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4389 (u64)-1);
4390 if (ret)
4391 err = ret;
4392 invalidate_mapping_pages(rc->data_inode->i_mapping,
4393 0, -1);
4394 rc->stage = UPDATE_DATA_PTRS;
4395 }
4396
4397 if (err < 0)
4398 goto out;
4399
4400 if (rc->extents_found == 0)
4401 break;
4402
4403 btrfs_info(fs_info, "found %llu extents, stage: %s",
4404 rc->extents_found, stage_to_string(finishes_stage));
4405 }
4406
4407 WARN_ON(rc->block_group->pinned > 0);
4408 WARN_ON(rc->block_group->reserved > 0);
4409 WARN_ON(rc->block_group->used > 0);
4410out:
4411 if (err && rw)
4412 btrfs_dec_block_group_ro(rc->block_group);
4413 iput(rc->data_inode);
4414 btrfs_put_block_group(rc->block_group);
4415 free_reloc_control(rc);
4416 return err;
4417}
4418
4419static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4420{
4421 struct btrfs_fs_info *fs_info = root->fs_info;
4422 struct btrfs_trans_handle *trans;
4423 int ret, err;
4424
4425 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4426 if (IS_ERR(trans))
4427 return PTR_ERR(trans);
4428
4429 memset(&root->root_item.drop_progress, 0,
4430 sizeof(root->root_item.drop_progress));
4431 root->root_item.drop_level = 0;
4432 btrfs_set_root_refs(&root->root_item, 0);
4433 ret = btrfs_update_root(trans, fs_info->tree_root,
4434 &root->root_key, &root->root_item);
4435
4436 err = btrfs_end_transaction(trans);
4437 if (err)
4438 return err;
4439 return ret;
4440}
4441
4442/*
4443 * recover relocation interrupted by system crash.
4444 *
4445 * this function resumes merging reloc trees with corresponding fs trees.
4446 * this is important for keeping the sharing of tree blocks
4447 */
4448int btrfs_recover_relocation(struct btrfs_root *root)
4449{
4450 struct btrfs_fs_info *fs_info = root->fs_info;
4451 LIST_HEAD(reloc_roots);
4452 struct btrfs_key key;
4453 struct btrfs_root *fs_root;
4454 struct btrfs_root *reloc_root;
4455 struct btrfs_path *path;
4456 struct extent_buffer *leaf;
4457 struct reloc_control *rc = NULL;
4458 struct btrfs_trans_handle *trans;
4459 int ret;
4460 int err = 0;
4461
4462 path = btrfs_alloc_path();
4463 if (!path)
4464 return -ENOMEM;
4465 path->reada = READA_BACK;
4466
4467 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4468 key.type = BTRFS_ROOT_ITEM_KEY;
4469 key.offset = (u64)-1;
4470
4471 while (1) {
4472 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4473 path, 0, 0);
4474 if (ret < 0) {
4475 err = ret;
4476 goto out;
4477 }
4478 if (ret > 0) {
4479 if (path->slots[0] == 0)
4480 break;
4481 path->slots[0]--;
4482 }
4483 leaf = path->nodes[0];
4484 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4485 btrfs_release_path(path);
4486
4487 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4488 key.type != BTRFS_ROOT_ITEM_KEY)
4489 break;
4490
4491 reloc_root = btrfs_read_tree_root(root, &key);
4492 if (IS_ERR(reloc_root)) {
4493 err = PTR_ERR(reloc_root);
4494 goto out;
4495 }
4496
4497 set_bit(BTRFS_ROOT_REF_COWS, &reloc_root->state);
4498 list_add(&reloc_root->root_list, &reloc_roots);
4499
4500 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4501 fs_root = read_fs_root(fs_info,
4502 reloc_root->root_key.offset);
4503 if (IS_ERR(fs_root)) {
4504 ret = PTR_ERR(fs_root);
4505 if (ret != -ENOENT) {
4506 err = ret;
4507 goto out;
4508 }
4509 ret = mark_garbage_root(reloc_root);
4510 if (ret < 0) {
4511 err = ret;
4512 goto out;
4513 }
4514 } else {
4515 btrfs_put_root(fs_root);
4516 }
4517 }
4518
4519 if (key.offset == 0)
4520 break;
4521
4522 key.offset--;
4523 }
4524 btrfs_release_path(path);
4525
4526 if (list_empty(&reloc_roots))
4527 goto out;
4528
4529 rc = alloc_reloc_control(fs_info);
4530 if (!rc) {
4531 err = -ENOMEM;
4532 goto out;
4533 }
4534
4535 rc->extent_root = fs_info->extent_root;
4536
4537 set_reloc_control(rc);
4538
4539 trans = btrfs_join_transaction(rc->extent_root);
4540 if (IS_ERR(trans)) {
4541 err = PTR_ERR(trans);
4542 goto out_unset;
4543 }
4544
4545 rc->merge_reloc_tree = 1;
4546
4547 while (!list_empty(&reloc_roots)) {
4548 reloc_root = list_entry(reloc_roots.next,
4549 struct btrfs_root, root_list);
4550 list_del(&reloc_root->root_list);
4551
4552 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4553 list_add_tail(&reloc_root->root_list,
4554 &rc->reloc_roots);
4555 continue;
4556 }
4557
4558 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4559 if (IS_ERR(fs_root)) {
4560 err = PTR_ERR(fs_root);
4561 list_add_tail(&reloc_root->root_list, &reloc_roots);
4562 btrfs_end_transaction(trans);
4563 goto out_unset;
4564 }
4565
4566 err = __add_reloc_root(reloc_root);
4567 BUG_ON(err < 0); /* -ENOMEM or logic error */
4568 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4569 btrfs_put_root(fs_root);
4570 }
4571
4572 err = btrfs_commit_transaction(trans);
4573 if (err)
4574 goto out_unset;
4575
4576 merge_reloc_roots(rc);
4577
4578 unset_reloc_control(rc);
4579
4580 trans = btrfs_join_transaction(rc->extent_root);
4581 if (IS_ERR(trans)) {
4582 err = PTR_ERR(trans);
4583 goto out_clean;
4584 }
4585 err = btrfs_commit_transaction(trans);
4586out_clean:
4587 ret = clean_dirty_subvols(rc);
4588 if (ret < 0 && !err)
4589 err = ret;
4590out_unset:
4591 unset_reloc_control(rc);
4592 free_reloc_control(rc);
4593out:
4594 if (!list_empty(&reloc_roots))
4595 free_reloc_roots(&reloc_roots);
4596
4597 btrfs_free_path(path);
4598
4599 if (err == 0) {
4600 /* cleanup orphan inode in data relocation tree */
4601 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4602 if (IS_ERR(fs_root)) {
4603 err = PTR_ERR(fs_root);
4604 } else {
4605 err = btrfs_orphan_cleanup(fs_root);
4606 btrfs_put_root(fs_root);
4607 }
4608 }
4609 return err;
4610}
4611
4612/*
4613 * helper to add ordered checksum for data relocation.
4614 *
4615 * cloning checksum properly handles the nodatasum extents.
4616 * it also saves CPU time to re-calculate the checksum.
4617 */
4618int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4619{
4620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4621 struct btrfs_ordered_sum *sums;
4622 struct btrfs_ordered_extent *ordered;
4623 int ret;
4624 u64 disk_bytenr;
4625 u64 new_bytenr;
4626 LIST_HEAD(list);
4627
4628 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4629 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4630
4631 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4632 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4633 disk_bytenr + len - 1, &list, 0);
4634 if (ret)
4635 goto out;
4636
4637 while (!list_empty(&list)) {
4638 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4639 list_del_init(&sums->list);
4640
4641 /*
4642 * We need to offset the new_bytenr based on where the csum is.
4643 * We need to do this because we will read in entire prealloc
4644 * extents but we may have written to say the middle of the
4645 * prealloc extent, so we need to make sure the csum goes with
4646 * the right disk offset.
4647 *
4648 * We can do this because the data reloc inode refers strictly
4649 * to the on disk bytes, so we don't have to worry about
4650 * disk_len vs real len like with real inodes since it's all
4651 * disk length.
4652 */
4653 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4654 sums->bytenr = new_bytenr;
4655
4656 btrfs_add_ordered_sum(ordered, sums);
4657 }
4658out:
4659 btrfs_put_ordered_extent(ordered);
4660 return ret;
4661}
4662
4663int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4664 struct btrfs_root *root, struct extent_buffer *buf,
4665 struct extent_buffer *cow)
4666{
4667 struct btrfs_fs_info *fs_info = root->fs_info;
4668 struct reloc_control *rc;
4669 struct backref_node *node;
4670 int first_cow = 0;
4671 int level;
4672 int ret = 0;
4673
4674 rc = fs_info->reloc_ctl;
4675 if (!rc)
4676 return 0;
4677
4678 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4679 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4680
4681 level = btrfs_header_level(buf);
4682 if (btrfs_header_generation(buf) <=
4683 btrfs_root_last_snapshot(&root->root_item))
4684 first_cow = 1;
4685
4686 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4687 rc->create_reloc_tree) {
4688 WARN_ON(!first_cow && level == 0);
4689
4690 node = rc->backref_cache.path[level];
4691 BUG_ON(node->bytenr != buf->start &&
4692 node->new_bytenr != buf->start);
4693
4694 drop_node_buffer(node);
4695 atomic_inc(&cow->refs);
4696 node->eb = cow;
4697 node->new_bytenr = cow->start;
4698
4699 if (!node->pending) {
4700 list_move_tail(&node->list,
4701 &rc->backref_cache.pending[level]);
4702 node->pending = 1;
4703 }
4704
4705 if (first_cow)
4706 __mark_block_processed(rc, node);
4707
4708 if (first_cow && level > 0)
4709 rc->nodes_relocated += buf->len;
4710 }
4711
4712 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4713 ret = replace_file_extents(trans, rc, root, cow);
4714 return ret;
4715}
4716
4717/*
4718 * called before creating snapshot. it calculates metadata reservation
4719 * required for relocating tree blocks in the snapshot
4720 */
4721void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4722 u64 *bytes_to_reserve)
4723{
4724 struct btrfs_root *root = pending->root;
4725 struct reloc_control *rc = root->fs_info->reloc_ctl;
4726
4727 if (!rc || !have_reloc_root(root))
4728 return;
4729
4730 if (!rc->merge_reloc_tree)
4731 return;
4732
4733 root = root->reloc_root;
4734 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4735 /*
4736 * relocation is in the stage of merging trees. the space
4737 * used by merging a reloc tree is twice the size of
4738 * relocated tree nodes in the worst case. half for cowing
4739 * the reloc tree, half for cowing the fs tree. the space
4740 * used by cowing the reloc tree will be freed after the
4741 * tree is dropped. if we create snapshot, cowing the fs
4742 * tree may use more space than it frees. so we need
4743 * reserve extra space.
4744 */
4745 *bytes_to_reserve += rc->nodes_relocated;
4746}
4747
4748/*
4749 * called after snapshot is created. migrate block reservation
4750 * and create reloc root for the newly created snapshot
4751 *
4752 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4753 * references held on the reloc_root, one for root->reloc_root and one for
4754 * rc->reloc_roots.
4755 */
4756int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4757 struct btrfs_pending_snapshot *pending)
4758{
4759 struct btrfs_root *root = pending->root;
4760 struct btrfs_root *reloc_root;
4761 struct btrfs_root *new_root;
4762 struct reloc_control *rc = root->fs_info->reloc_ctl;
4763 int ret;
4764
4765 if (!rc || !have_reloc_root(root))
4766 return 0;
4767
4768 rc = root->fs_info->reloc_ctl;
4769 rc->merging_rsv_size += rc->nodes_relocated;
4770
4771 if (rc->merge_reloc_tree) {
4772 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4773 rc->block_rsv,
4774 rc->nodes_relocated, true);
4775 if (ret)
4776 return ret;
4777 }
4778
4779 new_root = pending->snap;
4780 reloc_root = create_reloc_root(trans, root->reloc_root,
4781 new_root->root_key.objectid);
4782 if (IS_ERR(reloc_root))
4783 return PTR_ERR(reloc_root);
4784
4785 ret = __add_reloc_root(reloc_root);
4786 BUG_ON(ret < 0);
4787 new_root->reloc_root = btrfs_grab_root(reloc_root);
4788
4789 if (rc->create_reloc_tree)
4790 ret = clone_backref_node(trans, rc, root, reloc_root);
4791 return ret;
4792}