at v5.7 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/page.h> 20#include <asm/pgtable_types.h> 21#include <asm/percpu.h> 22#include <asm/msr.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28#include <asm/vmxfeatures.h> 29#include <asm/vdso/processor.h> 30 31#include <linux/personality.h> 32#include <linux/cache.h> 33#include <linux/threads.h> 34#include <linux/math64.h> 35#include <linux/err.h> 36#include <linux/irqflags.h> 37#include <linux/mem_encrypt.h> 38 39/* 40 * We handle most unaligned accesses in hardware. On the other hand 41 * unaligned DMA can be quite expensive on some Nehalem processors. 42 * 43 * Based on this we disable the IP header alignment in network drivers. 44 */ 45#define NET_IP_ALIGN 0 46 47#define HBP_NUM 4 48 49/* 50 * These alignment constraints are for performance in the vSMP case, 51 * but in the task_struct case we must also meet hardware imposed 52 * alignment requirements of the FPU state: 53 */ 54#ifdef CONFIG_X86_VSMP 55# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 56# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 57#else 58# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 59# define ARCH_MIN_MMSTRUCT_ALIGN 0 60#endif 61 62enum tlb_infos { 63 ENTRIES, 64 NR_INFO 65}; 66 67extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 68extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 69extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 70extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 71extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 72extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 73extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 74 75/* 76 * CPU type and hardware bug flags. Kept separately for each CPU. 77 * Members of this structure are referenced in head_32.S, so think twice 78 * before touching them. [mj] 79 */ 80 81struct cpuinfo_x86 { 82 __u8 x86; /* CPU family */ 83 __u8 x86_vendor; /* CPU vendor */ 84 __u8 x86_model; 85 __u8 x86_stepping; 86#ifdef CONFIG_X86_64 87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 88 int x86_tlbsize; 89#endif 90#ifdef CONFIG_X86_VMX_FEATURE_NAMES 91 __u32 vmx_capability[NVMXINTS]; 92#endif 93 __u8 x86_virt_bits; 94 __u8 x86_phys_bits; 95 /* CPUID returned core id bits: */ 96 __u8 x86_coreid_bits; 97 __u8 cu_id; 98 /* Max extended CPUID function supported: */ 99 __u32 extended_cpuid_level; 100 /* Maximum supported CPUID level, -1=no CPUID: */ 101 int cpuid_level; 102 /* 103 * Align to size of unsigned long because the x86_capability array 104 * is passed to bitops which require the alignment. Use unnamed 105 * union to enforce the array is aligned to size of unsigned long. 106 */ 107 union { 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 unsigned long x86_capability_alignment; 110 }; 111 char x86_vendor_id[16]; 112 char x86_model_id[64]; 113 /* in KB - valid for CPUS which support this call: */ 114 unsigned int x86_cache_size; 115 int x86_cache_alignment; /* In bytes */ 116 /* Cache QoS architectural values: */ 117 int x86_cache_max_rmid; /* max index */ 118 int x86_cache_occ_scale; /* scale to bytes */ 119 int x86_power; 120 unsigned long loops_per_jiffy; 121 /* cpuid returned max cores value: */ 122 u16 x86_max_cores; 123 u16 apicid; 124 u16 initial_apicid; 125 u16 x86_clflush_size; 126 /* number of cores as seen by the OS: */ 127 u16 booted_cores; 128 /* Physical processor id: */ 129 u16 phys_proc_id; 130 /* Logical processor id: */ 131 u16 logical_proc_id; 132 /* Core id: */ 133 u16 cpu_core_id; 134 u16 cpu_die_id; 135 u16 logical_die_id; 136 /* Index into per_cpu list: */ 137 u16 cpu_index; 138 u32 microcode; 139 /* Address space bits used by the cache internally */ 140 u8 x86_cache_bits; 141 unsigned initialized : 1; 142} __randomize_layout; 143 144struct cpuid_regs { 145 u32 eax, ebx, ecx, edx; 146}; 147 148enum cpuid_regs_idx { 149 CPUID_EAX = 0, 150 CPUID_EBX, 151 CPUID_ECX, 152 CPUID_EDX, 153}; 154 155#define X86_VENDOR_INTEL 0 156#define X86_VENDOR_CYRIX 1 157#define X86_VENDOR_AMD 2 158#define X86_VENDOR_UMC 3 159#define X86_VENDOR_CENTAUR 5 160#define X86_VENDOR_TRANSMETA 7 161#define X86_VENDOR_NSC 8 162#define X86_VENDOR_HYGON 9 163#define X86_VENDOR_ZHAOXIN 10 164#define X86_VENDOR_NUM 11 165 166#define X86_VENDOR_UNKNOWN 0xff 167 168/* 169 * capabilities of CPUs 170 */ 171extern struct cpuinfo_x86 boot_cpu_data; 172extern struct cpuinfo_x86 new_cpu_data; 173 174extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 175extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 176 177#ifdef CONFIG_SMP 178DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 179#define cpu_data(cpu) per_cpu(cpu_info, cpu) 180#else 181#define cpu_info boot_cpu_data 182#define cpu_data(cpu) boot_cpu_data 183#endif 184 185extern const struct seq_operations cpuinfo_op; 186 187#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 188 189extern void cpu_detect(struct cpuinfo_x86 *c); 190 191static inline unsigned long long l1tf_pfn_limit(void) 192{ 193 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 194} 195 196extern void early_cpu_init(void); 197extern void identify_boot_cpu(void); 198extern void identify_secondary_cpu(struct cpuinfo_x86 *); 199extern void print_cpu_info(struct cpuinfo_x86 *); 200void print_cpu_msr(struct cpuinfo_x86 *); 201 202#ifdef CONFIG_X86_32 203extern int have_cpuid_p(void); 204#else 205static inline int have_cpuid_p(void) 206{ 207 return 1; 208} 209#endif 210static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 211 unsigned int *ecx, unsigned int *edx) 212{ 213 /* ecx is often an input as well as an output. */ 214 asm volatile("cpuid" 215 : "=a" (*eax), 216 "=b" (*ebx), 217 "=c" (*ecx), 218 "=d" (*edx) 219 : "0" (*eax), "2" (*ecx) 220 : "memory"); 221} 222 223#define native_cpuid_reg(reg) \ 224static inline unsigned int native_cpuid_##reg(unsigned int op) \ 225{ \ 226 unsigned int eax = op, ebx, ecx = 0, edx; \ 227 \ 228 native_cpuid(&eax, &ebx, &ecx, &edx); \ 229 \ 230 return reg; \ 231} 232 233/* 234 * Native CPUID functions returning a single datum. 235 */ 236native_cpuid_reg(eax) 237native_cpuid_reg(ebx) 238native_cpuid_reg(ecx) 239native_cpuid_reg(edx) 240 241/* 242 * Friendlier CR3 helpers. 243 */ 244static inline unsigned long read_cr3_pa(void) 245{ 246 return __read_cr3() & CR3_ADDR_MASK; 247} 248 249static inline unsigned long native_read_cr3_pa(void) 250{ 251 return __native_read_cr3() & CR3_ADDR_MASK; 252} 253 254static inline void load_cr3(pgd_t *pgdir) 255{ 256 write_cr3(__sme_pa(pgdir)); 257} 258 259/* 260 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 261 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 262 * unrelated to the task-switch mechanism: 263 */ 264#ifdef CONFIG_X86_32 265/* This is the TSS defined by the hardware. */ 266struct x86_hw_tss { 267 unsigned short back_link, __blh; 268 unsigned long sp0; 269 unsigned short ss0, __ss0h; 270 unsigned long sp1; 271 272 /* 273 * We don't use ring 1, so ss1 is a convenient scratch space in 274 * the same cacheline as sp0. We use ss1 to cache the value in 275 * MSR_IA32_SYSENTER_CS. When we context switch 276 * MSR_IA32_SYSENTER_CS, we first check if the new value being 277 * written matches ss1, and, if it's not, then we wrmsr the new 278 * value and update ss1. 279 * 280 * The only reason we context switch MSR_IA32_SYSENTER_CS is 281 * that we set it to zero in vm86 tasks to avoid corrupting the 282 * stack if we were to go through the sysenter path from vm86 283 * mode. 284 */ 285 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 286 287 unsigned short __ss1h; 288 unsigned long sp2; 289 unsigned short ss2, __ss2h; 290 unsigned long __cr3; 291 unsigned long ip; 292 unsigned long flags; 293 unsigned long ax; 294 unsigned long cx; 295 unsigned long dx; 296 unsigned long bx; 297 unsigned long sp; 298 unsigned long bp; 299 unsigned long si; 300 unsigned long di; 301 unsigned short es, __esh; 302 unsigned short cs, __csh; 303 unsigned short ss, __ssh; 304 unsigned short ds, __dsh; 305 unsigned short fs, __fsh; 306 unsigned short gs, __gsh; 307 unsigned short ldt, __ldth; 308 unsigned short trace; 309 unsigned short io_bitmap_base; 310 311} __attribute__((packed)); 312#else 313struct x86_hw_tss { 314 u32 reserved1; 315 u64 sp0; 316 317 /* 318 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 319 * Linux does not use ring 1, so sp1 is not otherwise needed. 320 */ 321 u64 sp1; 322 323 /* 324 * Since Linux does not use ring 2, the 'sp2' slot is unused by 325 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 326 * the user RSP value. 327 */ 328 u64 sp2; 329 330 u64 reserved2; 331 u64 ist[7]; 332 u32 reserved3; 333 u32 reserved4; 334 u16 reserved5; 335 u16 io_bitmap_base; 336 337} __attribute__((packed)); 338#endif 339 340/* 341 * IO-bitmap sizes: 342 */ 343#define IO_BITMAP_BITS 65536 344#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 345#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 346 347#define IO_BITMAP_OFFSET_VALID_MAP \ 348 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 349 offsetof(struct tss_struct, x86_tss)) 350 351#define IO_BITMAP_OFFSET_VALID_ALL \ 352 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 353 offsetof(struct tss_struct, x86_tss)) 354 355#ifdef CONFIG_X86_IOPL_IOPERM 356/* 357 * sizeof(unsigned long) coming from an extra "long" at the end of the 358 * iobitmap. The limit is inclusive, i.e. the last valid byte. 359 */ 360# define __KERNEL_TSS_LIMIT \ 361 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 362 sizeof(unsigned long) - 1) 363#else 364# define __KERNEL_TSS_LIMIT \ 365 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 366#endif 367 368/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 369#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 370 371struct entry_stack { 372 unsigned long words[64]; 373}; 374 375struct entry_stack_page { 376 struct entry_stack stack; 377} __aligned(PAGE_SIZE); 378 379/* 380 * All IO bitmap related data stored in the TSS: 381 */ 382struct x86_io_bitmap { 383 /* The sequence number of the last active bitmap. */ 384 u64 prev_sequence; 385 386 /* 387 * Store the dirty size of the last io bitmap offender. The next 388 * one will have to do the cleanup as the switch out to a non io 389 * bitmap user will just set x86_tss.io_bitmap_base to a value 390 * outside of the TSS limit. So for sane tasks there is no need to 391 * actually touch the io_bitmap at all. 392 */ 393 unsigned int prev_max; 394 395 /* 396 * The extra 1 is there because the CPU will access an 397 * additional byte beyond the end of the IO permission 398 * bitmap. The extra byte must be all 1 bits, and must 399 * be within the limit. 400 */ 401 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 402 403 /* 404 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 405 * except the additional byte at the end. 406 */ 407 unsigned long mapall[IO_BITMAP_LONGS + 1]; 408}; 409 410struct tss_struct { 411 /* 412 * The fixed hardware portion. This must not cross a page boundary 413 * at risk of violating the SDM's advice and potentially triggering 414 * errata. 415 */ 416 struct x86_hw_tss x86_tss; 417 418 struct x86_io_bitmap io_bitmap; 419} __aligned(PAGE_SIZE); 420 421DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 422 423/* Per CPU interrupt stacks */ 424struct irq_stack { 425 char stack[IRQ_STACK_SIZE]; 426} __aligned(IRQ_STACK_SIZE); 427 428DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 429 430#ifdef CONFIG_X86_32 431DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 432#else 433/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 434#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 435#endif 436 437#ifdef CONFIG_X86_64 438struct fixed_percpu_data { 439 /* 440 * GCC hardcodes the stack canary as %gs:40. Since the 441 * irq_stack is the object at %gs:0, we reserve the bottom 442 * 48 bytes of the irq stack for the canary. 443 */ 444 char gs_base[40]; 445 unsigned long stack_canary; 446}; 447 448DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 449DECLARE_INIT_PER_CPU(fixed_percpu_data); 450 451static inline unsigned long cpu_kernelmode_gs_base(int cpu) 452{ 453 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 454} 455 456DECLARE_PER_CPU(unsigned int, irq_count); 457extern asmlinkage void ignore_sysret(void); 458 459#if IS_ENABLED(CONFIG_KVM) 460/* Save actual FS/GS selectors and bases to current->thread */ 461void save_fsgs_for_kvm(void); 462#endif 463#else /* X86_64 */ 464#ifdef CONFIG_STACKPROTECTOR 465/* 466 * Make sure stack canary segment base is cached-aligned: 467 * "For Intel Atom processors, avoid non zero segment base address 468 * that is not aligned to cache line boundary at all cost." 469 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 470 */ 471struct stack_canary { 472 char __pad[20]; /* canary at %gs:20 */ 473 unsigned long canary; 474}; 475DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 476#endif 477/* Per CPU softirq stack pointer */ 478DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 479#endif /* X86_64 */ 480 481extern unsigned int fpu_kernel_xstate_size; 482extern unsigned int fpu_user_xstate_size; 483 484struct perf_event; 485 486typedef struct { 487 unsigned long seg; 488} mm_segment_t; 489 490struct thread_struct { 491 /* Cached TLS descriptors: */ 492 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 493#ifdef CONFIG_X86_32 494 unsigned long sp0; 495#endif 496 unsigned long sp; 497#ifdef CONFIG_X86_32 498 unsigned long sysenter_cs; 499#else 500 unsigned short es; 501 unsigned short ds; 502 unsigned short fsindex; 503 unsigned short gsindex; 504#endif 505 506#ifdef CONFIG_X86_64 507 unsigned long fsbase; 508 unsigned long gsbase; 509#else 510 /* 511 * XXX: this could presumably be unsigned short. Alternatively, 512 * 32-bit kernels could be taught to use fsindex instead. 513 */ 514 unsigned long fs; 515 unsigned long gs; 516#endif 517 518 /* Save middle states of ptrace breakpoints */ 519 struct perf_event *ptrace_bps[HBP_NUM]; 520 /* Debug status used for traps, single steps, etc... */ 521 unsigned long debugreg6; 522 /* Keep track of the exact dr7 value set by the user */ 523 unsigned long ptrace_dr7; 524 /* Fault info: */ 525 unsigned long cr2; 526 unsigned long trap_nr; 527 unsigned long error_code; 528#ifdef CONFIG_VM86 529 /* Virtual 86 mode info */ 530 struct vm86 *vm86; 531#endif 532 /* IO permissions: */ 533 struct io_bitmap *io_bitmap; 534 535 /* 536 * IOPL. Priviledge level dependent I/O permission which is 537 * emulated via the I/O bitmap to prevent user space from disabling 538 * interrupts. 539 */ 540 unsigned long iopl_emul; 541 542 mm_segment_t addr_limit; 543 544 unsigned int sig_on_uaccess_err:1; 545 546 /* Floating point and extended processor state */ 547 struct fpu fpu; 548 /* 549 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 550 * the end. 551 */ 552}; 553 554/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 555static inline void arch_thread_struct_whitelist(unsigned long *offset, 556 unsigned long *size) 557{ 558 *offset = offsetof(struct thread_struct, fpu.state); 559 *size = fpu_kernel_xstate_size; 560} 561 562/* 563 * Thread-synchronous status. 564 * 565 * This is different from the flags in that nobody else 566 * ever touches our thread-synchronous status, so we don't 567 * have to worry about atomic accesses. 568 */ 569#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 570 571static inline void 572native_load_sp0(unsigned long sp0) 573{ 574 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 575} 576 577static inline void native_swapgs(void) 578{ 579#ifdef CONFIG_X86_64 580 asm volatile("swapgs" ::: "memory"); 581#endif 582} 583 584static inline unsigned long current_top_of_stack(void) 585{ 586 /* 587 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 588 * and around vm86 mode and sp0 on x86_64 is special because of the 589 * entry trampoline. 590 */ 591 return this_cpu_read_stable(cpu_current_top_of_stack); 592} 593 594static inline bool on_thread_stack(void) 595{ 596 return (unsigned long)(current_top_of_stack() - 597 current_stack_pointer) < THREAD_SIZE; 598} 599 600#ifdef CONFIG_PARAVIRT_XXL 601#include <asm/paravirt.h> 602#else 603#define __cpuid native_cpuid 604 605static inline void load_sp0(unsigned long sp0) 606{ 607 native_load_sp0(sp0); 608} 609 610#endif /* CONFIG_PARAVIRT_XXL */ 611 612/* Free all resources held by a thread. */ 613extern void release_thread(struct task_struct *); 614 615unsigned long get_wchan(struct task_struct *p); 616 617/* 618 * Generic CPUID function 619 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 620 * resulting in stale register contents being returned. 621 */ 622static inline void cpuid(unsigned int op, 623 unsigned int *eax, unsigned int *ebx, 624 unsigned int *ecx, unsigned int *edx) 625{ 626 *eax = op; 627 *ecx = 0; 628 __cpuid(eax, ebx, ecx, edx); 629} 630 631/* Some CPUID calls want 'count' to be placed in ecx */ 632static inline void cpuid_count(unsigned int op, int count, 633 unsigned int *eax, unsigned int *ebx, 634 unsigned int *ecx, unsigned int *edx) 635{ 636 *eax = op; 637 *ecx = count; 638 __cpuid(eax, ebx, ecx, edx); 639} 640 641/* 642 * CPUID functions returning a single datum 643 */ 644static inline unsigned int cpuid_eax(unsigned int op) 645{ 646 unsigned int eax, ebx, ecx, edx; 647 648 cpuid(op, &eax, &ebx, &ecx, &edx); 649 650 return eax; 651} 652 653static inline unsigned int cpuid_ebx(unsigned int op) 654{ 655 unsigned int eax, ebx, ecx, edx; 656 657 cpuid(op, &eax, &ebx, &ecx, &edx); 658 659 return ebx; 660} 661 662static inline unsigned int cpuid_ecx(unsigned int op) 663{ 664 unsigned int eax, ebx, ecx, edx; 665 666 cpuid(op, &eax, &ebx, &ecx, &edx); 667 668 return ecx; 669} 670 671static inline unsigned int cpuid_edx(unsigned int op) 672{ 673 unsigned int eax, ebx, ecx, edx; 674 675 cpuid(op, &eax, &ebx, &ecx, &edx); 676 677 return edx; 678} 679 680/* 681 * This function forces the icache and prefetched instruction stream to 682 * catch up with reality in two very specific cases: 683 * 684 * a) Text was modified using one virtual address and is about to be executed 685 * from the same physical page at a different virtual address. 686 * 687 * b) Text was modified on a different CPU, may subsequently be 688 * executed on this CPU, and you want to make sure the new version 689 * gets executed. This generally means you're calling this in a IPI. 690 * 691 * If you're calling this for a different reason, you're probably doing 692 * it wrong. 693 */ 694static inline void sync_core(void) 695{ 696 /* 697 * There are quite a few ways to do this. IRET-to-self is nice 698 * because it works on every CPU, at any CPL (so it's compatible 699 * with paravirtualization), and it never exits to a hypervisor. 700 * The only down sides are that it's a bit slow (it seems to be 701 * a bit more than 2x slower than the fastest options) and that 702 * it unmasks NMIs. The "push %cs" is needed because, in 703 * paravirtual environments, __KERNEL_CS may not be a valid CS 704 * value when we do IRET directly. 705 * 706 * In case NMI unmasking or performance ever becomes a problem, 707 * the next best option appears to be MOV-to-CR2 and an 708 * unconditional jump. That sequence also works on all CPUs, 709 * but it will fault at CPL3 (i.e. Xen PV). 710 * 711 * CPUID is the conventional way, but it's nasty: it doesn't 712 * exist on some 486-like CPUs, and it usually exits to a 713 * hypervisor. 714 * 715 * Like all of Linux's memory ordering operations, this is a 716 * compiler barrier as well. 717 */ 718#ifdef CONFIG_X86_32 719 asm volatile ( 720 "pushfl\n\t" 721 "pushl %%cs\n\t" 722 "pushl $1f\n\t" 723 "iret\n\t" 724 "1:" 725 : ASM_CALL_CONSTRAINT : : "memory"); 726#else 727 unsigned int tmp; 728 729 asm volatile ( 730 UNWIND_HINT_SAVE 731 "mov %%ss, %0\n\t" 732 "pushq %q0\n\t" 733 "pushq %%rsp\n\t" 734 "addq $8, (%%rsp)\n\t" 735 "pushfq\n\t" 736 "mov %%cs, %0\n\t" 737 "pushq %q0\n\t" 738 "pushq $1f\n\t" 739 "iretq\n\t" 740 UNWIND_HINT_RESTORE 741 "1:" 742 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 743#endif 744} 745 746extern void select_idle_routine(const struct cpuinfo_x86 *c); 747extern void amd_e400_c1e_apic_setup(void); 748 749extern unsigned long boot_option_idle_override; 750 751enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 752 IDLE_POLL}; 753 754extern void enable_sep_cpu(void); 755extern int sysenter_setup(void); 756 757 758/* Defined in head.S */ 759extern struct desc_ptr early_gdt_descr; 760 761extern void switch_to_new_gdt(int); 762extern void load_direct_gdt(int); 763extern void load_fixmap_gdt(int); 764extern void load_percpu_segment(int); 765extern void cpu_init(void); 766extern void cr4_init(void); 767 768static inline unsigned long get_debugctlmsr(void) 769{ 770 unsigned long debugctlmsr = 0; 771 772#ifndef CONFIG_X86_DEBUGCTLMSR 773 if (boot_cpu_data.x86 < 6) 774 return 0; 775#endif 776 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 777 778 return debugctlmsr; 779} 780 781static inline void update_debugctlmsr(unsigned long debugctlmsr) 782{ 783#ifndef CONFIG_X86_DEBUGCTLMSR 784 if (boot_cpu_data.x86 < 6) 785 return; 786#endif 787 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 788} 789 790extern void set_task_blockstep(struct task_struct *task, bool on); 791 792/* Boot loader type from the setup header: */ 793extern int bootloader_type; 794extern int bootloader_version; 795 796extern char ignore_fpu_irq; 797 798#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 799#define ARCH_HAS_PREFETCHW 800#define ARCH_HAS_SPINLOCK_PREFETCH 801 802#ifdef CONFIG_X86_32 803# define BASE_PREFETCH "" 804# define ARCH_HAS_PREFETCH 805#else 806# define BASE_PREFETCH "prefetcht0 %P1" 807#endif 808 809/* 810 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 811 * 812 * It's not worth to care about 3dnow prefetches for the K6 813 * because they are microcoded there and very slow. 814 */ 815static inline void prefetch(const void *x) 816{ 817 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 818 X86_FEATURE_XMM, 819 "m" (*(const char *)x)); 820} 821 822/* 823 * 3dnow prefetch to get an exclusive cache line. 824 * Useful for spinlocks to avoid one state transition in the 825 * cache coherency protocol: 826 */ 827static inline void prefetchw(const void *x) 828{ 829 alternative_input(BASE_PREFETCH, "prefetchw %P1", 830 X86_FEATURE_3DNOWPREFETCH, 831 "m" (*(const char *)x)); 832} 833 834static inline void spin_lock_prefetch(const void *x) 835{ 836 prefetchw(x); 837} 838 839#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 840 TOP_OF_KERNEL_STACK_PADDING) 841 842#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 843 844#define task_pt_regs(task) \ 845({ \ 846 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 847 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 848 ((struct pt_regs *)__ptr) - 1; \ 849}) 850 851#ifdef CONFIG_X86_32 852/* 853 * User space process size: 3GB (default). 854 */ 855#define IA32_PAGE_OFFSET PAGE_OFFSET 856#define TASK_SIZE PAGE_OFFSET 857#define TASK_SIZE_LOW TASK_SIZE 858#define TASK_SIZE_MAX TASK_SIZE 859#define DEFAULT_MAP_WINDOW TASK_SIZE 860#define STACK_TOP TASK_SIZE 861#define STACK_TOP_MAX STACK_TOP 862 863#define INIT_THREAD { \ 864 .sp0 = TOP_OF_INIT_STACK, \ 865 .sysenter_cs = __KERNEL_CS, \ 866 .addr_limit = KERNEL_DS, \ 867} 868 869#define KSTK_ESP(task) (task_pt_regs(task)->sp) 870 871#else 872/* 873 * User space process size. This is the first address outside the user range. 874 * There are a few constraints that determine this: 875 * 876 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 877 * address, then that syscall will enter the kernel with a 878 * non-canonical return address, and SYSRET will explode dangerously. 879 * We avoid this particular problem by preventing anything executable 880 * from being mapped at the maximum canonical address. 881 * 882 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 883 * CPUs malfunction if they execute code from the highest canonical page. 884 * They'll speculate right off the end of the canonical space, and 885 * bad things happen. This is worked around in the same way as the 886 * Intel problem. 887 * 888 * With page table isolation enabled, we map the LDT in ... [stay tuned] 889 */ 890#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 891 892#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 893 894/* This decides where the kernel will search for a free chunk of vm 895 * space during mmap's. 896 */ 897#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 898 0xc0000000 : 0xFFFFe000) 899 900#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 901 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 902#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 903 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 904#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 905 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 906 907#define STACK_TOP TASK_SIZE_LOW 908#define STACK_TOP_MAX TASK_SIZE_MAX 909 910#define INIT_THREAD { \ 911 .addr_limit = KERNEL_DS, \ 912} 913 914extern unsigned long KSTK_ESP(struct task_struct *task); 915 916#endif /* CONFIG_X86_64 */ 917 918extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 919 unsigned long new_sp); 920 921/* 922 * This decides where the kernel will search for a free chunk of vm 923 * space during mmap's. 924 */ 925#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 926#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 927 928#define KSTK_EIP(task) (task_pt_regs(task)->ip) 929 930/* Get/set a process' ability to use the timestamp counter instruction */ 931#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 932#define SET_TSC_CTL(val) set_tsc_mode((val)) 933 934extern int get_tsc_mode(unsigned long adr); 935extern int set_tsc_mode(unsigned int val); 936 937DECLARE_PER_CPU(u64, msr_misc_features_shadow); 938 939#ifdef CONFIG_CPU_SUP_AMD 940extern u16 amd_get_nb_id(int cpu); 941extern u32 amd_get_nodes_per_socket(void); 942#else 943static inline u16 amd_get_nb_id(int cpu) { return 0; } 944static inline u32 amd_get_nodes_per_socket(void) { return 0; } 945#endif 946 947static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 948{ 949 uint32_t base, eax, signature[3]; 950 951 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 952 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 953 954 if (!memcmp(sig, signature, 12) && 955 (leaves == 0 || ((eax - base) >= leaves))) 956 return base; 957 } 958 959 return 0; 960} 961 962extern unsigned long arch_align_stack(unsigned long sp); 963void free_init_pages(const char *what, unsigned long begin, unsigned long end); 964extern void free_kernel_image_pages(const char *what, void *begin, void *end); 965 966void default_idle(void); 967#ifdef CONFIG_XEN 968bool xen_set_default_idle(void); 969#else 970#define xen_set_default_idle 0 971#endif 972 973void stop_this_cpu(void *dummy); 974void microcode_check(void); 975 976enum l1tf_mitigations { 977 L1TF_MITIGATION_OFF, 978 L1TF_MITIGATION_FLUSH_NOWARN, 979 L1TF_MITIGATION_FLUSH, 980 L1TF_MITIGATION_FLUSH_NOSMT, 981 L1TF_MITIGATION_FULL, 982 L1TF_MITIGATION_FULL_FORCE 983}; 984 985extern enum l1tf_mitigations l1tf_mitigation; 986 987enum mds_mitigations { 988 MDS_MITIGATION_OFF, 989 MDS_MITIGATION_FULL, 990 MDS_MITIGATION_VMWERV, 991}; 992 993#endif /* _ASM_X86_PROCESSOR_H */