Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22#include <asm/uv.h>
23
24extern pgd_t swapper_pg_dir[];
25extern void paging_init(void);
26
27enum {
28 PG_DIRECT_MAP_4K = 0,
29 PG_DIRECT_MAP_1M,
30 PG_DIRECT_MAP_2G,
31 PG_DIRECT_MAP_MAX
32};
33
34extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35
36static inline void update_page_count(int level, long count)
37{
38 if (IS_ENABLED(CONFIG_PROC_FS))
39 atomic_long_add(count, &direct_pages_count[level]);
40}
41
42struct seq_file;
43void arch_report_meminfo(struct seq_file *m);
44
45/*
46 * The S390 doesn't have any external MMU info: the kernel page
47 * tables contain all the necessary information.
48 */
49#define update_mmu_cache(vma, address, ptep) do { } while (0)
50#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
51
52/*
53 * ZERO_PAGE is a global shared page that is always zero; used
54 * for zero-mapped memory areas etc..
55 */
56
57extern unsigned long empty_zero_page;
58extern unsigned long zero_page_mask;
59
60#define ZERO_PAGE(vaddr) \
61 (virt_to_page((void *)(empty_zero_page + \
62 (((unsigned long)(vaddr)) &zero_page_mask))))
63#define __HAVE_COLOR_ZERO_PAGE
64
65/* TODO: s390 cannot support io_remap_pfn_range... */
66
67#define FIRST_USER_ADDRESS 0UL
68
69#define pte_ERROR(e) \
70 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
71#define pmd_ERROR(e) \
72 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
73#define pud_ERROR(e) \
74 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
75#define p4d_ERROR(e) \
76 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
77#define pgd_ERROR(e) \
78 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
84 * modules will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a 2GB frame
86 * is branch prediction unit friendly.
87 */
88extern unsigned long VMALLOC_START;
89extern unsigned long VMALLOC_END;
90#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
91extern struct page *vmemmap;
92
93#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
94
95extern unsigned long MODULES_VADDR;
96extern unsigned long MODULES_END;
97#define MODULES_VADDR MODULES_VADDR
98#define MODULES_END MODULES_END
99#define MODULES_LEN (1UL << 31)
100
101static inline int is_module_addr(void *addr)
102{
103 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
104 if (addr < (void *)MODULES_VADDR)
105 return 0;
106 if (addr > (void *)MODULES_END)
107 return 0;
108 return 1;
109}
110
111/*
112 * A 64 bit pagetable entry of S390 has following format:
113 * | PFRA |0IPC| OS |
114 * 0000000000111111111122222222223333333333444444444455555555556666
115 * 0123456789012345678901234567890123456789012345678901234567890123
116 *
117 * I Page-Invalid Bit: Page is not available for address-translation
118 * P Page-Protection Bit: Store access not possible for page
119 * C Change-bit override: HW is not required to set change bit
120 *
121 * A 64 bit segmenttable entry of S390 has following format:
122 * | P-table origin | TT
123 * 0000000000111111111122222222223333333333444444444455555555556666
124 * 0123456789012345678901234567890123456789012345678901234567890123
125 *
126 * I Segment-Invalid Bit: Segment is not available for address-translation
127 * C Common-Segment Bit: Segment is not private (PoP 3-30)
128 * P Page-Protection Bit: Store access not possible for page
129 * TT Type 00
130 *
131 * A 64 bit region table entry of S390 has following format:
132 * | S-table origin | TF TTTL
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Segment-Invalid Bit: Segment is not available for address-translation
137 * TT Type 01
138 * TF
139 * TL Table length
140 *
141 * The 64 bit regiontable origin of S390 has following format:
142 * | region table origon | DTTL
143 * 0000000000111111111122222222223333333333444444444455555555556666
144 * 0123456789012345678901234567890123456789012345678901234567890123
145 *
146 * X Space-Switch event:
147 * G Segment-Invalid Bit:
148 * P Private-Space Bit:
149 * S Storage-Alteration:
150 * R Real space
151 * TL Table-Length:
152 *
153 * A storage key has the following format:
154 * | ACC |F|R|C|0|
155 * 0 3 4 5 6 7
156 * ACC: access key
157 * F : fetch protection bit
158 * R : referenced bit
159 * C : changed bit
160 */
161
162/* Hardware bits in the page table entry */
163#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
164#define _PAGE_PROTECT 0x200 /* HW read-only bit */
165#define _PAGE_INVALID 0x400 /* HW invalid bit */
166#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
167
168/* Software bits in the page table entry */
169#define _PAGE_PRESENT 0x001 /* SW pte present bit */
170#define _PAGE_YOUNG 0x004 /* SW pte young bit */
171#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
172#define _PAGE_READ 0x010 /* SW pte read bit */
173#define _PAGE_WRITE 0x020 /* SW pte write bit */
174#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
175#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
176
177#ifdef CONFIG_MEM_SOFT_DIRTY
178#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
179#else
180#define _PAGE_SOFT_DIRTY 0x000
181#endif
182
183/* Set of bits not changed in pte_modify */
184#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
185 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
186
187/*
188 * handle_pte_fault uses pte_present and pte_none to find out the pte type
189 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
190 * distinguish present from not-present ptes. It is changed only with the page
191 * table lock held.
192 *
193 * The following table gives the different possible bit combinations for
194 * the pte hardware and software bits in the last 12 bits of a pte
195 * (. unassigned bit, x don't care, t swap type):
196 *
197 * 842100000000
198 * 000084210000
199 * 000000008421
200 * .IR.uswrdy.p
201 * empty .10.00000000
202 * swap .11..ttttt.0
203 * prot-none, clean, old .11.xx0000.1
204 * prot-none, clean, young .11.xx0001.1
205 * prot-none, dirty, old .11.xx0010.1
206 * prot-none, dirty, young .11.xx0011.1
207 * read-only, clean, old .11.xx0100.1
208 * read-only, clean, young .01.xx0101.1
209 * read-only, dirty, old .11.xx0110.1
210 * read-only, dirty, young .01.xx0111.1
211 * read-write, clean, old .11.xx1100.1
212 * read-write, clean, young .01.xx1101.1
213 * read-write, dirty, old .10.xx1110.1
214 * read-write, dirty, young .00.xx1111.1
215 * HW-bits: R read-only, I invalid
216 * SW-bits: p present, y young, d dirty, r read, w write, s special,
217 * u unused, l large
218 *
219 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
220 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
221 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
222 */
223
224/* Bits in the segment/region table address-space-control-element */
225#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
226#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
227#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
228#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
229#define _ASCE_REAL_SPACE 0x20 /* real space control */
230#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
231#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
232#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
233#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
234#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
235#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
236
237/* Bits in the region table entry */
238#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
239#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
240#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
241#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
242#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
243#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
244#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
245#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
246#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
247#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
248
249#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
250#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
251#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
252#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
253#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
254#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
255
256#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
257#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
258#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
259#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
260#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
261#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
262
263#ifdef CONFIG_MEM_SOFT_DIRTY
264#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
265#else
266#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
267#endif
268
269#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
270
271/* Bits in the segment table entry */
272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
274#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
275#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
276#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
277#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
278#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
279#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
280#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
281
282#define _SEGMENT_ENTRY (0)
283#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
284
285#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
286#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
287#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
288#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
289#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
290
291#ifdef CONFIG_MEM_SOFT_DIRTY
292#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
293#else
294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
295#endif
296
297#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
298#define _PAGE_ENTRIES 256 /* number of page table entries */
299
300#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
301#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
302
303#define _REGION1_SHIFT 53
304#define _REGION2_SHIFT 42
305#define _REGION3_SHIFT 31
306#define _SEGMENT_SHIFT 20
307
308#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
309#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
310#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
311#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
312#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
313
314#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
315#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
316#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
317#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
318
319#define _REGION1_MASK (~(_REGION1_SIZE - 1))
320#define _REGION2_MASK (~(_REGION2_SIZE - 1))
321#define _REGION3_MASK (~(_REGION3_SIZE - 1))
322#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
323
324#define PMD_SHIFT _SEGMENT_SHIFT
325#define PUD_SHIFT _REGION3_SHIFT
326#define P4D_SHIFT _REGION2_SHIFT
327#define PGDIR_SHIFT _REGION1_SHIFT
328
329#define PMD_SIZE _SEGMENT_SIZE
330#define PUD_SIZE _REGION3_SIZE
331#define P4D_SIZE _REGION2_SIZE
332#define PGDIR_SIZE _REGION1_SIZE
333
334#define PMD_MASK _SEGMENT_MASK
335#define PUD_MASK _REGION3_MASK
336#define P4D_MASK _REGION2_MASK
337#define PGDIR_MASK _REGION1_MASK
338
339#define PTRS_PER_PTE _PAGE_ENTRIES
340#define PTRS_PER_PMD _CRST_ENTRIES
341#define PTRS_PER_PUD _CRST_ENTRIES
342#define PTRS_PER_P4D _CRST_ENTRIES
343#define PTRS_PER_PGD _CRST_ENTRIES
344
345#define MAX_PTRS_PER_P4D PTRS_PER_P4D
346
347/*
348 * Segment table and region3 table entry encoding
349 * (R = read-only, I = invalid, y = young bit):
350 * dy..R...I...wr
351 * prot-none, clean, old 00..1...1...00
352 * prot-none, clean, young 01..1...1...00
353 * prot-none, dirty, old 10..1...1...00
354 * prot-none, dirty, young 11..1...1...00
355 * read-only, clean, old 00..1...1...01
356 * read-only, clean, young 01..1...0...01
357 * read-only, dirty, old 10..1...1...01
358 * read-only, dirty, young 11..1...0...01
359 * read-write, clean, old 00..1...1...11
360 * read-write, clean, young 01..1...0...11
361 * read-write, dirty, old 10..0...1...11
362 * read-write, dirty, young 11..0...0...11
363 * The segment table origin is used to distinguish empty (origin==0) from
364 * read-write, old segment table entries (origin!=0)
365 * HW-bits: R read-only, I invalid
366 * SW-bits: y young, d dirty, r read, w write
367 */
368
369/* Page status table bits for virtualization */
370#define PGSTE_ACC_BITS 0xf000000000000000UL
371#define PGSTE_FP_BIT 0x0800000000000000UL
372#define PGSTE_PCL_BIT 0x0080000000000000UL
373#define PGSTE_HR_BIT 0x0040000000000000UL
374#define PGSTE_HC_BIT 0x0020000000000000UL
375#define PGSTE_GR_BIT 0x0004000000000000UL
376#define PGSTE_GC_BIT 0x0002000000000000UL
377#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
378#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
379#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
380
381/* Guest Page State used for virtualization */
382#define _PGSTE_GPS_ZERO 0x0000000080000000UL
383#define _PGSTE_GPS_NODAT 0x0000000040000000UL
384#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
385#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
386#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
387#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
388#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
389
390/*
391 * A user page table pointer has the space-switch-event bit, the
392 * private-space-control bit and the storage-alteration-event-control
393 * bit set. A kernel page table pointer doesn't need them.
394 */
395#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
396 _ASCE_ALT_EVENT)
397
398/*
399 * Page protection definitions.
400 */
401#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
402#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
404#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 _PAGE_INVALID | _PAGE_PROTECT)
406#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
408#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_INVALID | _PAGE_PROTECT)
410
411#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
412 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
413#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
416 _PAGE_PROTECT | _PAGE_NOEXEC)
417#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
418 _PAGE_YOUNG | _PAGE_DIRTY)
419
420/*
421 * On s390 the page table entry has an invalid bit and a read-only bit.
422 * Read permission implies execute permission and write permission
423 * implies read permission.
424 */
425 /*xwr*/
426#define __P000 PAGE_NONE
427#define __P001 PAGE_RO
428#define __P010 PAGE_RO
429#define __P011 PAGE_RO
430#define __P100 PAGE_RX
431#define __P101 PAGE_RX
432#define __P110 PAGE_RX
433#define __P111 PAGE_RX
434
435#define __S000 PAGE_NONE
436#define __S001 PAGE_RO
437#define __S010 PAGE_RW
438#define __S011 PAGE_RW
439#define __S100 PAGE_RX
440#define __S101 PAGE_RX
441#define __S110 PAGE_RWX
442#define __S111 PAGE_RWX
443
444/*
445 * Segment entry (large page) protection definitions.
446 */
447#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
448 _SEGMENT_ENTRY_PROTECT)
449#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
450 _SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_NOEXEC)
452#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
453 _SEGMENT_ENTRY_READ)
454#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
455 _SEGMENT_ENTRY_WRITE | \
456 _SEGMENT_ENTRY_NOEXEC)
457#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_WRITE)
459#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
460 _SEGMENT_ENTRY_LARGE | \
461 _SEGMENT_ENTRY_READ | \
462 _SEGMENT_ENTRY_WRITE | \
463 _SEGMENT_ENTRY_YOUNG | \
464 _SEGMENT_ENTRY_DIRTY | \
465 _SEGMENT_ENTRY_NOEXEC)
466#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
467 _SEGMENT_ENTRY_LARGE | \
468 _SEGMENT_ENTRY_READ | \
469 _SEGMENT_ENTRY_YOUNG | \
470 _SEGMENT_ENTRY_PROTECT | \
471 _SEGMENT_ENTRY_NOEXEC)
472#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
473 _SEGMENT_ENTRY_LARGE | \
474 _SEGMENT_ENTRY_READ | \
475 _SEGMENT_ENTRY_WRITE | \
476 _SEGMENT_ENTRY_YOUNG | \
477 _SEGMENT_ENTRY_DIRTY)
478
479/*
480 * Region3 entry (large page) protection definitions.
481 */
482
483#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
484 _REGION3_ENTRY_LARGE | \
485 _REGION3_ENTRY_READ | \
486 _REGION3_ENTRY_WRITE | \
487 _REGION3_ENTRY_YOUNG | \
488 _REGION3_ENTRY_DIRTY | \
489 _REGION_ENTRY_NOEXEC)
490#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
491 _REGION3_ENTRY_LARGE | \
492 _REGION3_ENTRY_READ | \
493 _REGION3_ENTRY_YOUNG | \
494 _REGION_ENTRY_PROTECT | \
495 _REGION_ENTRY_NOEXEC)
496
497static inline bool mm_p4d_folded(struct mm_struct *mm)
498{
499 return mm->context.asce_limit <= _REGION1_SIZE;
500}
501#define mm_p4d_folded(mm) mm_p4d_folded(mm)
502
503static inline bool mm_pud_folded(struct mm_struct *mm)
504{
505 return mm->context.asce_limit <= _REGION2_SIZE;
506}
507#define mm_pud_folded(mm) mm_pud_folded(mm)
508
509static inline bool mm_pmd_folded(struct mm_struct *mm)
510{
511 return mm->context.asce_limit <= _REGION3_SIZE;
512}
513#define mm_pmd_folded(mm) mm_pmd_folded(mm)
514
515static inline int mm_has_pgste(struct mm_struct *mm)
516{
517#ifdef CONFIG_PGSTE
518 if (unlikely(mm->context.has_pgste))
519 return 1;
520#endif
521 return 0;
522}
523
524static inline int mm_is_protected(struct mm_struct *mm)
525{
526#ifdef CONFIG_PGSTE
527 if (unlikely(atomic_read(&mm->context.is_protected)))
528 return 1;
529#endif
530 return 0;
531}
532
533static inline int mm_alloc_pgste(struct mm_struct *mm)
534{
535#ifdef CONFIG_PGSTE
536 if (unlikely(mm->context.alloc_pgste))
537 return 1;
538#endif
539 return 0;
540}
541
542/*
543 * In the case that a guest uses storage keys
544 * faults should no longer be backed by zero pages
545 */
546#define mm_forbids_zeropage mm_has_pgste
547static inline int mm_uses_skeys(struct mm_struct *mm)
548{
549#ifdef CONFIG_PGSTE
550 if (mm->context.uses_skeys)
551 return 1;
552#endif
553 return 0;
554}
555
556static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
557{
558 register unsigned long reg2 asm("2") = old;
559 register unsigned long reg3 asm("3") = new;
560 unsigned long address = (unsigned long)ptr | 1;
561
562 asm volatile(
563 " csp %0,%3"
564 : "+d" (reg2), "+m" (*ptr)
565 : "d" (reg3), "d" (address)
566 : "cc");
567}
568
569static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
570{
571 register unsigned long reg2 asm("2") = old;
572 register unsigned long reg3 asm("3") = new;
573 unsigned long address = (unsigned long)ptr | 1;
574
575 asm volatile(
576 " .insn rre,0xb98a0000,%0,%3"
577 : "+d" (reg2), "+m" (*ptr)
578 : "d" (reg3), "d" (address)
579 : "cc");
580}
581
582#define CRDTE_DTT_PAGE 0x00UL
583#define CRDTE_DTT_SEGMENT 0x10UL
584#define CRDTE_DTT_REGION3 0x14UL
585#define CRDTE_DTT_REGION2 0x18UL
586#define CRDTE_DTT_REGION1 0x1cUL
587
588static inline void crdte(unsigned long old, unsigned long new,
589 unsigned long table, unsigned long dtt,
590 unsigned long address, unsigned long asce)
591{
592 register unsigned long reg2 asm("2") = old;
593 register unsigned long reg3 asm("3") = new;
594 register unsigned long reg4 asm("4") = table | dtt;
595 register unsigned long reg5 asm("5") = address;
596
597 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
598 : "+d" (reg2)
599 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
600 : "memory", "cc");
601}
602
603/*
604 * pgd/p4d/pud/pmd/pte query functions
605 */
606static inline int pgd_folded(pgd_t pgd)
607{
608 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
609}
610
611static inline int pgd_present(pgd_t pgd)
612{
613 if (pgd_folded(pgd))
614 return 1;
615 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
616}
617
618static inline int pgd_none(pgd_t pgd)
619{
620 if (pgd_folded(pgd))
621 return 0;
622 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
623}
624
625static inline int pgd_bad(pgd_t pgd)
626{
627 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
628 return 0;
629 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
630}
631
632static inline unsigned long pgd_pfn(pgd_t pgd)
633{
634 unsigned long origin_mask;
635
636 origin_mask = _REGION_ENTRY_ORIGIN;
637 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
638}
639
640static inline int p4d_folded(p4d_t p4d)
641{
642 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
643}
644
645static inline int p4d_present(p4d_t p4d)
646{
647 if (p4d_folded(p4d))
648 return 1;
649 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
650}
651
652static inline int p4d_none(p4d_t p4d)
653{
654 if (p4d_folded(p4d))
655 return 0;
656 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
657}
658
659static inline unsigned long p4d_pfn(p4d_t p4d)
660{
661 unsigned long origin_mask;
662
663 origin_mask = _REGION_ENTRY_ORIGIN;
664 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
665}
666
667static inline int pud_folded(pud_t pud)
668{
669 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
670}
671
672static inline int pud_present(pud_t pud)
673{
674 if (pud_folded(pud))
675 return 1;
676 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
677}
678
679static inline int pud_none(pud_t pud)
680{
681 if (pud_folded(pud))
682 return 0;
683 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
684}
685
686#define pud_leaf pud_large
687static inline int pud_large(pud_t pud)
688{
689 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
690 return 0;
691 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
692}
693
694static inline unsigned long pud_pfn(pud_t pud)
695{
696 unsigned long origin_mask;
697
698 origin_mask = _REGION_ENTRY_ORIGIN;
699 if (pud_large(pud))
700 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
701 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
702}
703
704#define pmd_leaf pmd_large
705static inline int pmd_large(pmd_t pmd)
706{
707 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708}
709
710static inline int pmd_bad(pmd_t pmd)
711{
712 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 return 1;
714 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715}
716
717static inline int pud_bad(pud_t pud)
718{
719 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720
721 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 return 1;
723 if (type < _REGION_ENTRY_TYPE_R3)
724 return 0;
725 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726}
727
728static inline int p4d_bad(p4d_t p4d)
729{
730 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731
732 if (type > _REGION_ENTRY_TYPE_R2)
733 return 1;
734 if (type < _REGION_ENTRY_TYPE_R2)
735 return 0;
736 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737}
738
739static inline int pmd_present(pmd_t pmd)
740{
741 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742}
743
744static inline int pmd_none(pmd_t pmd)
745{
746 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747}
748
749static inline unsigned long pmd_pfn(pmd_t pmd)
750{
751 unsigned long origin_mask;
752
753 origin_mask = _SEGMENT_ENTRY_ORIGIN;
754 if (pmd_large(pmd))
755 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
756 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
757}
758
759#define pmd_write pmd_write
760static inline int pmd_write(pmd_t pmd)
761{
762 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
763}
764
765#define pud_write pud_write
766static inline int pud_write(pud_t pud)
767{
768 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
769}
770
771static inline int pmd_dirty(pmd_t pmd)
772{
773 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
774}
775
776static inline int pmd_young(pmd_t pmd)
777{
778 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
779}
780
781static inline int pte_present(pte_t pte)
782{
783 /* Bit pattern: (pte & 0x001) == 0x001 */
784 return (pte_val(pte) & _PAGE_PRESENT) != 0;
785}
786
787static inline int pte_none(pte_t pte)
788{
789 /* Bit pattern: pte == 0x400 */
790 return pte_val(pte) == _PAGE_INVALID;
791}
792
793static inline int pte_swap(pte_t pte)
794{
795 /* Bit pattern: (pte & 0x201) == 0x200 */
796 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
797 == _PAGE_PROTECT;
798}
799
800static inline int pte_special(pte_t pte)
801{
802 return (pte_val(pte) & _PAGE_SPECIAL);
803}
804
805#define __HAVE_ARCH_PTE_SAME
806static inline int pte_same(pte_t a, pte_t b)
807{
808 return pte_val(a) == pte_val(b);
809}
810
811#ifdef CONFIG_NUMA_BALANCING
812static inline int pte_protnone(pte_t pte)
813{
814 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
815}
816
817static inline int pmd_protnone(pmd_t pmd)
818{
819 /* pmd_large(pmd) implies pmd_present(pmd) */
820 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
821}
822#endif
823
824static inline int pte_soft_dirty(pte_t pte)
825{
826 return pte_val(pte) & _PAGE_SOFT_DIRTY;
827}
828#define pte_swp_soft_dirty pte_soft_dirty
829
830static inline pte_t pte_mksoft_dirty(pte_t pte)
831{
832 pte_val(pte) |= _PAGE_SOFT_DIRTY;
833 return pte;
834}
835#define pte_swp_mksoft_dirty pte_mksoft_dirty
836
837static inline pte_t pte_clear_soft_dirty(pte_t pte)
838{
839 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
840 return pte;
841}
842#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
843
844static inline int pmd_soft_dirty(pmd_t pmd)
845{
846 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
847}
848
849static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
850{
851 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
852 return pmd;
853}
854
855static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
856{
857 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
858 return pmd;
859}
860
861/*
862 * query functions pte_write/pte_dirty/pte_young only work if
863 * pte_present() is true. Undefined behaviour if not..
864 */
865static inline int pte_write(pte_t pte)
866{
867 return (pte_val(pte) & _PAGE_WRITE) != 0;
868}
869
870static inline int pte_dirty(pte_t pte)
871{
872 return (pte_val(pte) & _PAGE_DIRTY) != 0;
873}
874
875static inline int pte_young(pte_t pte)
876{
877 return (pte_val(pte) & _PAGE_YOUNG) != 0;
878}
879
880#define __HAVE_ARCH_PTE_UNUSED
881static inline int pte_unused(pte_t pte)
882{
883 return pte_val(pte) & _PAGE_UNUSED;
884}
885
886/*
887 * pgd/pmd/pte modification functions
888 */
889
890static inline void pgd_clear(pgd_t *pgd)
891{
892 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
893 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
894}
895
896static inline void p4d_clear(p4d_t *p4d)
897{
898 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
899 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
900}
901
902static inline void pud_clear(pud_t *pud)
903{
904 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
905 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
906}
907
908static inline void pmd_clear(pmd_t *pmdp)
909{
910 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
911}
912
913static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
914{
915 pte_val(*ptep) = _PAGE_INVALID;
916}
917
918/*
919 * The following pte modification functions only work if
920 * pte_present() is true. Undefined behaviour if not..
921 */
922static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
923{
924 pte_val(pte) &= _PAGE_CHG_MASK;
925 pte_val(pte) |= pgprot_val(newprot);
926 /*
927 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
928 * has the invalid bit set, clear it again for readable, young pages
929 */
930 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
931 pte_val(pte) &= ~_PAGE_INVALID;
932 /*
933 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
934 * protection bit set, clear it again for writable, dirty pages
935 */
936 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
937 pte_val(pte) &= ~_PAGE_PROTECT;
938 return pte;
939}
940
941static inline pte_t pte_wrprotect(pte_t pte)
942{
943 pte_val(pte) &= ~_PAGE_WRITE;
944 pte_val(pte) |= _PAGE_PROTECT;
945 return pte;
946}
947
948static inline pte_t pte_mkwrite(pte_t pte)
949{
950 pte_val(pte) |= _PAGE_WRITE;
951 if (pte_val(pte) & _PAGE_DIRTY)
952 pte_val(pte) &= ~_PAGE_PROTECT;
953 return pte;
954}
955
956static inline pte_t pte_mkclean(pte_t pte)
957{
958 pte_val(pte) &= ~_PAGE_DIRTY;
959 pte_val(pte) |= _PAGE_PROTECT;
960 return pte;
961}
962
963static inline pte_t pte_mkdirty(pte_t pte)
964{
965 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
966 if (pte_val(pte) & _PAGE_WRITE)
967 pte_val(pte) &= ~_PAGE_PROTECT;
968 return pte;
969}
970
971static inline pte_t pte_mkold(pte_t pte)
972{
973 pte_val(pte) &= ~_PAGE_YOUNG;
974 pte_val(pte) |= _PAGE_INVALID;
975 return pte;
976}
977
978static inline pte_t pte_mkyoung(pte_t pte)
979{
980 pte_val(pte) |= _PAGE_YOUNG;
981 if (pte_val(pte) & _PAGE_READ)
982 pte_val(pte) &= ~_PAGE_INVALID;
983 return pte;
984}
985
986static inline pte_t pte_mkspecial(pte_t pte)
987{
988 pte_val(pte) |= _PAGE_SPECIAL;
989 return pte;
990}
991
992#ifdef CONFIG_HUGETLB_PAGE
993static inline pte_t pte_mkhuge(pte_t pte)
994{
995 pte_val(pte) |= _PAGE_LARGE;
996 return pte;
997}
998#endif
999
1000#define IPTE_GLOBAL 0
1001#define IPTE_LOCAL 1
1002
1003#define IPTE_NODAT 0x400
1004#define IPTE_GUEST_ASCE 0x800
1005
1006static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007 unsigned long opt, unsigned long asce,
1008 int local)
1009{
1010 unsigned long pto = (unsigned long) ptep;
1011
1012 if (__builtin_constant_p(opt) && opt == 0) {
1013 /* Invalidation + TLB flush for the pte */
1014 asm volatile(
1015 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017 [m4] "i" (local));
1018 return;
1019 }
1020
1021 /* Invalidate ptes with options + TLB flush of the ptes */
1022 opt = opt | (asce & _ASCE_ORIGIN);
1023 asm volatile(
1024 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025 : [r2] "+a" (address), [r3] "+a" (opt)
1026 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1027}
1028
1029static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030 pte_t *ptep, int local)
1031{
1032 unsigned long pto = (unsigned long) ptep;
1033
1034 /* Invalidate a range of ptes + TLB flush of the ptes */
1035 do {
1036 asm volatile(
1037 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038 : [r2] "+a" (address), [r3] "+a" (nr)
1039 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1040 } while (nr != 255);
1041}
1042
1043/*
1044 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045 * both clear the TLB for the unmapped pte. The reason is that
1046 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047 * to modify an active pte. The sequence is
1048 * 1) ptep_get_and_clear
1049 * 2) set_pte_at
1050 * 3) flush_tlb_range
1051 * On s390 the tlb needs to get flushed with the modification of the pte
1052 * if the pte is active. The only way how this can be implemented is to
1053 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054 * is a nop.
1055 */
1056pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058
1059#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1060static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061 unsigned long addr, pte_t *ptep)
1062{
1063 pte_t pte = *ptep;
1064
1065 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066 return pte_young(pte);
1067}
1068
1069#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1070static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071 unsigned long address, pte_t *ptep)
1072{
1073 return ptep_test_and_clear_young(vma, address, ptep);
1074}
1075
1076#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1077static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078 unsigned long addr, pte_t *ptep)
1079{
1080 pte_t res;
1081
1082 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1083 if (mm_is_protected(mm) && pte_present(res))
1084 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1085 return res;
1086}
1087
1088#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1090void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1091 pte_t *, pte_t, pte_t);
1092
1093#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1094static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1095 unsigned long addr, pte_t *ptep)
1096{
1097 pte_t res;
1098
1099 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1100 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1101 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1102 return res;
1103}
1104
1105/*
1106 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1107 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1108 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1109 * cannot be accessed while the batched unmap is running. In this case
1110 * full==1 and a simple pte_clear is enough. See tlb.h.
1111 */
1112#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1113static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1114 unsigned long addr,
1115 pte_t *ptep, int full)
1116{
1117 pte_t res;
1118
1119 if (full) {
1120 res = *ptep;
1121 *ptep = __pte(_PAGE_INVALID);
1122 } else {
1123 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1124 }
1125 if (mm_is_protected(mm) && pte_present(res))
1126 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1127 return res;
1128}
1129
1130#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1131static inline void ptep_set_wrprotect(struct mm_struct *mm,
1132 unsigned long addr, pte_t *ptep)
1133{
1134 pte_t pte = *ptep;
1135
1136 if (pte_write(pte))
1137 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1138}
1139
1140#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1141static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1142 unsigned long addr, pte_t *ptep,
1143 pte_t entry, int dirty)
1144{
1145 if (pte_same(*ptep, entry))
1146 return 0;
1147 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1148 return 1;
1149}
1150
1151/*
1152 * Additional functions to handle KVM guest page tables
1153 */
1154void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1155 pte_t *ptep, pte_t entry);
1156void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1157void ptep_notify(struct mm_struct *mm, unsigned long addr,
1158 pte_t *ptep, unsigned long bits);
1159int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1160 pte_t *ptep, int prot, unsigned long bit);
1161void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1162 pte_t *ptep , int reset);
1163void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1164int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1165 pte_t *sptep, pte_t *tptep, pte_t pte);
1166void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1167
1168bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1169 pte_t *ptep);
1170int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 unsigned char key, bool nq);
1172int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1173 unsigned char key, unsigned char *oldkey,
1174 bool nq, bool mr, bool mc);
1175int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1176int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1177 unsigned char *key);
1178
1179int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1180 unsigned long bits, unsigned long value);
1181int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1182int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1183 unsigned long *oldpte, unsigned long *oldpgste);
1184void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1185void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1186void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1187void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1188
1189/*
1190 * Certain architectures need to do special things when PTEs
1191 * within a page table are directly modified. Thus, the following
1192 * hook is made available.
1193 */
1194static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1195 pte_t *ptep, pte_t entry)
1196{
1197 if (pte_present(entry))
1198 pte_val(entry) &= ~_PAGE_UNUSED;
1199 if (mm_has_pgste(mm))
1200 ptep_set_pte_at(mm, addr, ptep, entry);
1201 else
1202 *ptep = entry;
1203}
1204
1205/*
1206 * Conversion functions: convert a page and protection to a page entry,
1207 * and a page entry and page directory to the page they refer to.
1208 */
1209static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1210{
1211 pte_t __pte;
1212 pte_val(__pte) = physpage + pgprot_val(pgprot);
1213 if (!MACHINE_HAS_NX)
1214 pte_val(__pte) &= ~_PAGE_NOEXEC;
1215 return pte_mkyoung(__pte);
1216}
1217
1218static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1219{
1220 unsigned long physpage = page_to_phys(page);
1221 pte_t __pte = mk_pte_phys(physpage, pgprot);
1222
1223 if (pte_write(__pte) && PageDirty(page))
1224 __pte = pte_mkdirty(__pte);
1225 return __pte;
1226}
1227
1228#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1229#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1230#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1231#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1232#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1233
1234#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1235#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1236#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1237#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1238
1239/*
1240 * The pgd_offset function *always* adds the index for the top-level
1241 * region/segment table. This is done to get a sequence like the
1242 * following to work:
1243 * pgdp = pgd_offset(current->mm, addr);
1244 * pgd = READ_ONCE(*pgdp);
1245 * p4dp = p4d_offset(&pgd, addr);
1246 * ...
1247 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1248 * only add an index if they dereferenced the pointer.
1249 */
1250static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1251{
1252 unsigned long rste;
1253 unsigned int shift;
1254
1255 /* Get the first entry of the top level table */
1256 rste = pgd_val(*pgd);
1257 /* Pick up the shift from the table type of the first entry */
1258 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1259 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1260}
1261
1262#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1263#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1264
1265static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1266{
1267 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1268 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1269 return (p4d_t *) pgd;
1270}
1271
1272static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1273{
1274 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1275 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1276 return (pud_t *) p4d;
1277}
1278
1279static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1280{
1281 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1282 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1283 return (pmd_t *) pud;
1284}
1285
1286static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1287{
1288 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1289}
1290
1291#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1292#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1293
1294static inline void pte_unmap(pte_t *pte) { }
1295
1296static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1297{
1298 return end <= current->mm->context.asce_limit;
1299}
1300#define gup_fast_permitted gup_fast_permitted
1301
1302#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1303#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1304#define pte_page(x) pfn_to_page(pte_pfn(x))
1305
1306#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1307#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1308#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1309#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1310
1311static inline pmd_t pmd_wrprotect(pmd_t pmd)
1312{
1313 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1314 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1315 return pmd;
1316}
1317
1318static inline pmd_t pmd_mkwrite(pmd_t pmd)
1319{
1320 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1321 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1322 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1323 return pmd;
1324}
1325
1326static inline pmd_t pmd_mkclean(pmd_t pmd)
1327{
1328 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1329 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1330 return pmd;
1331}
1332
1333static inline pmd_t pmd_mkdirty(pmd_t pmd)
1334{
1335 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1336 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1337 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1338 return pmd;
1339}
1340
1341static inline pud_t pud_wrprotect(pud_t pud)
1342{
1343 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1344 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1345 return pud;
1346}
1347
1348static inline pud_t pud_mkwrite(pud_t pud)
1349{
1350 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1351 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1352 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1353 return pud;
1354}
1355
1356static inline pud_t pud_mkclean(pud_t pud)
1357{
1358 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1359 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1360 return pud;
1361}
1362
1363static inline pud_t pud_mkdirty(pud_t pud)
1364{
1365 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1366 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1367 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1368 return pud;
1369}
1370
1371#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1372static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1373{
1374 /*
1375 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1376 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1377 */
1378 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1379 return pgprot_val(SEGMENT_NONE);
1380 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1381 return pgprot_val(SEGMENT_RO);
1382 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1383 return pgprot_val(SEGMENT_RX);
1384 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1385 return pgprot_val(SEGMENT_RW);
1386 return pgprot_val(SEGMENT_RWX);
1387}
1388
1389static inline pmd_t pmd_mkyoung(pmd_t pmd)
1390{
1391 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1392 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1394 return pmd;
1395}
1396
1397static inline pmd_t pmd_mkold(pmd_t pmd)
1398{
1399 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1400 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1401 return pmd;
1402}
1403
1404static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1405{
1406 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1407 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1408 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1409 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1410 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1411 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1412 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1413 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1414 return pmd;
1415}
1416
1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418{
1419 pmd_t __pmd;
1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421 return __pmd;
1422}
1423
1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425
1426static inline void __pmdp_csp(pmd_t *pmdp)
1427{
1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430}
1431
1432#define IDTE_GLOBAL 0
1433#define IDTE_LOCAL 1
1434
1435#define IDTE_PTOA 0x0800
1436#define IDTE_NODAT 0x1000
1437#define IDTE_GUEST_ASCE 0x2000
1438
1439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440 unsigned long opt, unsigned long asce,
1441 int local)
1442{
1443 unsigned long sto;
1444
1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446 if (__builtin_constant_p(opt) && opt == 0) {
1447 /* flush without guest asce */
1448 asm volatile(
1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450 : "+m" (*pmdp)
1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452 [m4] "i" (local)
1453 : "cc" );
1454 } else {
1455 /* flush with guest asce */
1456 asm volatile(
1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458 : "+m" (*pmdp)
1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460 [r3] "a" (asce), [m4] "i" (local)
1461 : "cc" );
1462 }
1463}
1464
1465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466 unsigned long opt, unsigned long asce,
1467 int local)
1468{
1469 unsigned long r3o;
1470
1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472 r3o |= _ASCE_TYPE_REGION3;
1473 if (__builtin_constant_p(opt) && opt == 0) {
1474 /* flush without guest asce */
1475 asm volatile(
1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477 : "+m" (*pudp)
1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479 [m4] "i" (local)
1480 : "cc");
1481 } else {
1482 /* flush with guest asce */
1483 asm volatile(
1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485 : "+m" (*pudp)
1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487 [r3] "a" (asce), [m4] "i" (local)
1488 : "cc" );
1489 }
1490}
1491
1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495
1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497
1498#define __HAVE_ARCH_PGTABLE_DEPOSIT
1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500 pgtable_t pgtable);
1501
1502#define __HAVE_ARCH_PGTABLE_WITHDRAW
1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504
1505#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507 unsigned long addr, pmd_t *pmdp,
1508 pmd_t entry, int dirty)
1509{
1510 VM_BUG_ON(addr & ~HPAGE_MASK);
1511
1512 entry = pmd_mkyoung(entry);
1513 if (dirty)
1514 entry = pmd_mkdirty(entry);
1515 if (pmd_val(*pmdp) == pmd_val(entry))
1516 return 0;
1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518 return 1;
1519}
1520
1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 unsigned long addr, pmd_t *pmdp)
1524{
1525 pmd_t pmd = *pmdp;
1526
1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528 return pmd_young(pmd);
1529}
1530
1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533 unsigned long addr, pmd_t *pmdp)
1534{
1535 VM_BUG_ON(addr & ~HPAGE_MASK);
1536 return pmdp_test_and_clear_young(vma, addr, pmdp);
1537}
1538
1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540 pmd_t *pmdp, pmd_t entry)
1541{
1542 if (!MACHINE_HAS_NX)
1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544 *pmdp = entry;
1545}
1546
1547static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548{
1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552 return pmd;
1553}
1554
1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557 unsigned long addr, pmd_t *pmdp)
1558{
1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560}
1561
1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564 unsigned long addr,
1565 pmd_t *pmdp, int full)
1566{
1567 if (full) {
1568 pmd_t pmd = *pmdp;
1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570 return pmd;
1571 }
1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573}
1574
1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577 unsigned long addr, pmd_t *pmdp)
1578{
1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580}
1581
1582#define __HAVE_ARCH_PMDP_INVALIDATE
1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584 unsigned long addr, pmd_t *pmdp)
1585{
1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587
1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589}
1590
1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1592static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593 unsigned long addr, pmd_t *pmdp)
1594{
1595 pmd_t pmd = *pmdp;
1596
1597 if (pmd_write(pmd))
1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599}
1600
1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602 unsigned long address,
1603 pmd_t *pmdp)
1604{
1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606}
1607#define pmdp_collapse_flush pmdp_collapse_flush
1608
1609#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1611
1612static inline int pmd_trans_huge(pmd_t pmd)
1613{
1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615}
1616
1617#define has_transparent_hugepage has_transparent_hugepage
1618static inline int has_transparent_hugepage(void)
1619{
1620 return MACHINE_HAS_EDAT1 ? 1 : 0;
1621}
1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623
1624/*
1625 * 64 bit swap entry format:
1626 * A page-table entry has some bits we have to treat in a special way.
1627 * Bits 52 and bit 55 have to be zero, otherwise a specification
1628 * exception will occur instead of a page translation exception. The
1629 * specification exception has the bad habit not to store necessary
1630 * information in the lowcore.
1631 * Bits 54 and 63 are used to indicate the page type.
1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635 * for the offset.
1636 * | offset |01100|type |00|
1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639 */
1640
1641#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1642#define __SWP_OFFSET_SHIFT 12
1643#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1644#define __SWP_TYPE_SHIFT 2
1645
1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647{
1648 pte_t pte;
1649
1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653 return pte;
1654}
1655
1656static inline unsigned long __swp_type(swp_entry_t entry)
1657{
1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659}
1660
1661static inline unsigned long __swp_offset(swp_entry_t entry)
1662{
1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664}
1665
1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667{
1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669}
1670
1671#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1672#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1673
1674#define kern_addr_valid(addr) (1)
1675
1676extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1678extern int s390_enable_sie(void);
1679extern int s390_enable_skey(void);
1680extern void s390_reset_cmma(struct mm_struct *mm);
1681
1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683#define HAVE_ARCH_UNMAPPED_AREA
1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685
1686#include <asm-generic/pgtable.h>
1687
1688#endif /* _S390_PAGE_H */