at v5.7 1688 lines 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/bug.h> 21#include <asm/page.h> 22#include <asm/uv.h> 23 24extern pgd_t swapper_pg_dir[]; 25extern void paging_init(void); 26 27enum { 28 PG_DIRECT_MAP_4K = 0, 29 PG_DIRECT_MAP_1M, 30 PG_DIRECT_MAP_2G, 31 PG_DIRECT_MAP_MAX 32}; 33 34extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 35 36static inline void update_page_count(int level, long count) 37{ 38 if (IS_ENABLED(CONFIG_PROC_FS)) 39 atomic_long_add(count, &direct_pages_count[level]); 40} 41 42struct seq_file; 43void arch_report_meminfo(struct seq_file *m); 44 45/* 46 * The S390 doesn't have any external MMU info: the kernel page 47 * tables contain all the necessary information. 48 */ 49#define update_mmu_cache(vma, address, ptep) do { } while (0) 50#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 51 52/* 53 * ZERO_PAGE is a global shared page that is always zero; used 54 * for zero-mapped memory areas etc.. 55 */ 56 57extern unsigned long empty_zero_page; 58extern unsigned long zero_page_mask; 59 60#define ZERO_PAGE(vaddr) \ 61 (virt_to_page((void *)(empty_zero_page + \ 62 (((unsigned long)(vaddr)) &zero_page_mask)))) 63#define __HAVE_COLOR_ZERO_PAGE 64 65/* TODO: s390 cannot support io_remap_pfn_range... */ 66 67#define FIRST_USER_ADDRESS 0UL 68 69#define pte_ERROR(e) \ 70 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 71#define pmd_ERROR(e) \ 72 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 73#define pud_ERROR(e) \ 74 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 75#define p4d_ERROR(e) \ 76 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 77#define pgd_ERROR(e) \ 78 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 79 80/* 81 * The vmalloc and module area will always be on the topmost area of the 82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 84 * modules will reside. That makes sure that inter module branches always 85 * happen without trampolines and in addition the placement within a 2GB frame 86 * is branch prediction unit friendly. 87 */ 88extern unsigned long VMALLOC_START; 89extern unsigned long VMALLOC_END; 90#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN) 91extern struct page *vmemmap; 92 93#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 94 95extern unsigned long MODULES_VADDR; 96extern unsigned long MODULES_END; 97#define MODULES_VADDR MODULES_VADDR 98#define MODULES_END MODULES_END 99#define MODULES_LEN (1UL << 31) 100 101static inline int is_module_addr(void *addr) 102{ 103 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 104 if (addr < (void *)MODULES_VADDR) 105 return 0; 106 if (addr > (void *)MODULES_END) 107 return 0; 108 return 1; 109} 110 111/* 112 * A 64 bit pagetable entry of S390 has following format: 113 * | PFRA |0IPC| OS | 114 * 0000000000111111111122222222223333333333444444444455555555556666 115 * 0123456789012345678901234567890123456789012345678901234567890123 116 * 117 * I Page-Invalid Bit: Page is not available for address-translation 118 * P Page-Protection Bit: Store access not possible for page 119 * C Change-bit override: HW is not required to set change bit 120 * 121 * A 64 bit segmenttable entry of S390 has following format: 122 * | P-table origin | TT 123 * 0000000000111111111122222222223333333333444444444455555555556666 124 * 0123456789012345678901234567890123456789012345678901234567890123 125 * 126 * I Segment-Invalid Bit: Segment is not available for address-translation 127 * C Common-Segment Bit: Segment is not private (PoP 3-30) 128 * P Page-Protection Bit: Store access not possible for page 129 * TT Type 00 130 * 131 * A 64 bit region table entry of S390 has following format: 132 * | S-table origin | TF TTTL 133 * 0000000000111111111122222222223333333333444444444455555555556666 134 * 0123456789012345678901234567890123456789012345678901234567890123 135 * 136 * I Segment-Invalid Bit: Segment is not available for address-translation 137 * TT Type 01 138 * TF 139 * TL Table length 140 * 141 * The 64 bit regiontable origin of S390 has following format: 142 * | region table origon | DTTL 143 * 0000000000111111111122222222223333333333444444444455555555556666 144 * 0123456789012345678901234567890123456789012345678901234567890123 145 * 146 * X Space-Switch event: 147 * G Segment-Invalid Bit: 148 * P Private-Space Bit: 149 * S Storage-Alteration: 150 * R Real space 151 * TL Table-Length: 152 * 153 * A storage key has the following format: 154 * | ACC |F|R|C|0| 155 * 0 3 4 5 6 7 156 * ACC: access key 157 * F : fetch protection bit 158 * R : referenced bit 159 * C : changed bit 160 */ 161 162/* Hardware bits in the page table entry */ 163#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 164#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 165#define _PAGE_INVALID 0x400 /* HW invalid bit */ 166#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 167 168/* Software bits in the page table entry */ 169#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 170#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 171#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 172#define _PAGE_READ 0x010 /* SW pte read bit */ 173#define _PAGE_WRITE 0x020 /* SW pte write bit */ 174#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 175#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 176 177#ifdef CONFIG_MEM_SOFT_DIRTY 178#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 179#else 180#define _PAGE_SOFT_DIRTY 0x000 181#endif 182 183/* Set of bits not changed in pte_modify */ 184#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 185 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 186 187/* 188 * handle_pte_fault uses pte_present and pte_none to find out the pte type 189 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 190 * distinguish present from not-present ptes. It is changed only with the page 191 * table lock held. 192 * 193 * The following table gives the different possible bit combinations for 194 * the pte hardware and software bits in the last 12 bits of a pte 195 * (. unassigned bit, x don't care, t swap type): 196 * 197 * 842100000000 198 * 000084210000 199 * 000000008421 200 * .IR.uswrdy.p 201 * empty .10.00000000 202 * swap .11..ttttt.0 203 * prot-none, clean, old .11.xx0000.1 204 * prot-none, clean, young .11.xx0001.1 205 * prot-none, dirty, old .11.xx0010.1 206 * prot-none, dirty, young .11.xx0011.1 207 * read-only, clean, old .11.xx0100.1 208 * read-only, clean, young .01.xx0101.1 209 * read-only, dirty, old .11.xx0110.1 210 * read-only, dirty, young .01.xx0111.1 211 * read-write, clean, old .11.xx1100.1 212 * read-write, clean, young .01.xx1101.1 213 * read-write, dirty, old .10.xx1110.1 214 * read-write, dirty, young .00.xx1111.1 215 * HW-bits: R read-only, I invalid 216 * SW-bits: p present, y young, d dirty, r read, w write, s special, 217 * u unused, l large 218 * 219 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 220 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 221 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 222 */ 223 224/* Bits in the segment/region table address-space-control-element */ 225#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 226#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 227#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 228#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 229#define _ASCE_REAL_SPACE 0x20 /* real space control */ 230#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 231#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 232#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 233#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 234#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 235#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 236 237/* Bits in the region table entry */ 238#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 239#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 240#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 241#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 242#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 243#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 244#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 245#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 246#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 247#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 248 249#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 250#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 251#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 252#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 253#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 254#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 255 256#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 257#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 258#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 259#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 260#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 261#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 262 263#ifdef CONFIG_MEM_SOFT_DIRTY 264#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 265#else 266#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 267#endif 268 269#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 270 271/* Bits in the segment table entry */ 272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 273#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 274#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 275#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 276#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 277#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 278#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 279#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 280#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 281 282#define _SEGMENT_ENTRY (0) 283#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 284 285#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 286#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 287#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 288#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 289#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 290 291#ifdef CONFIG_MEM_SOFT_DIRTY 292#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 293#else 294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 295#endif 296 297#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 298#define _PAGE_ENTRIES 256 /* number of page table entries */ 299 300#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 301#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 302 303#define _REGION1_SHIFT 53 304#define _REGION2_SHIFT 42 305#define _REGION3_SHIFT 31 306#define _SEGMENT_SHIFT 20 307 308#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 309#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 310#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 311#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 312#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 313 314#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 315#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 316#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 317#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 318 319#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 320#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 321#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 322#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 323 324#define PMD_SHIFT _SEGMENT_SHIFT 325#define PUD_SHIFT _REGION3_SHIFT 326#define P4D_SHIFT _REGION2_SHIFT 327#define PGDIR_SHIFT _REGION1_SHIFT 328 329#define PMD_SIZE _SEGMENT_SIZE 330#define PUD_SIZE _REGION3_SIZE 331#define P4D_SIZE _REGION2_SIZE 332#define PGDIR_SIZE _REGION1_SIZE 333 334#define PMD_MASK _SEGMENT_MASK 335#define PUD_MASK _REGION3_MASK 336#define P4D_MASK _REGION2_MASK 337#define PGDIR_MASK _REGION1_MASK 338 339#define PTRS_PER_PTE _PAGE_ENTRIES 340#define PTRS_PER_PMD _CRST_ENTRIES 341#define PTRS_PER_PUD _CRST_ENTRIES 342#define PTRS_PER_P4D _CRST_ENTRIES 343#define PTRS_PER_PGD _CRST_ENTRIES 344 345#define MAX_PTRS_PER_P4D PTRS_PER_P4D 346 347/* 348 * Segment table and region3 table entry encoding 349 * (R = read-only, I = invalid, y = young bit): 350 * dy..R...I...wr 351 * prot-none, clean, old 00..1...1...00 352 * prot-none, clean, young 01..1...1...00 353 * prot-none, dirty, old 10..1...1...00 354 * prot-none, dirty, young 11..1...1...00 355 * read-only, clean, old 00..1...1...01 356 * read-only, clean, young 01..1...0...01 357 * read-only, dirty, old 10..1...1...01 358 * read-only, dirty, young 11..1...0...01 359 * read-write, clean, old 00..1...1...11 360 * read-write, clean, young 01..1...0...11 361 * read-write, dirty, old 10..0...1...11 362 * read-write, dirty, young 11..0...0...11 363 * The segment table origin is used to distinguish empty (origin==0) from 364 * read-write, old segment table entries (origin!=0) 365 * HW-bits: R read-only, I invalid 366 * SW-bits: y young, d dirty, r read, w write 367 */ 368 369/* Page status table bits for virtualization */ 370#define PGSTE_ACC_BITS 0xf000000000000000UL 371#define PGSTE_FP_BIT 0x0800000000000000UL 372#define PGSTE_PCL_BIT 0x0080000000000000UL 373#define PGSTE_HR_BIT 0x0040000000000000UL 374#define PGSTE_HC_BIT 0x0020000000000000UL 375#define PGSTE_GR_BIT 0x0004000000000000UL 376#define PGSTE_GC_BIT 0x0002000000000000UL 377#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 378#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 379#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 380 381/* Guest Page State used for virtualization */ 382#define _PGSTE_GPS_ZERO 0x0000000080000000UL 383#define _PGSTE_GPS_NODAT 0x0000000040000000UL 384#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 385#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 386#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 387#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 388#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 389 390/* 391 * A user page table pointer has the space-switch-event bit, the 392 * private-space-control bit and the storage-alteration-event-control 393 * bit set. A kernel page table pointer doesn't need them. 394 */ 395#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 396 _ASCE_ALT_EVENT) 397 398/* 399 * Page protection definitions. 400 */ 401#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 402#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 404#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 405 _PAGE_INVALID | _PAGE_PROTECT) 406#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 407 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 408#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 409 _PAGE_INVALID | _PAGE_PROTECT) 410 411#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 412 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 413#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 415#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 416 _PAGE_PROTECT | _PAGE_NOEXEC) 417#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 418 _PAGE_YOUNG | _PAGE_DIRTY) 419 420/* 421 * On s390 the page table entry has an invalid bit and a read-only bit. 422 * Read permission implies execute permission and write permission 423 * implies read permission. 424 */ 425 /*xwr*/ 426#define __P000 PAGE_NONE 427#define __P001 PAGE_RO 428#define __P010 PAGE_RO 429#define __P011 PAGE_RO 430#define __P100 PAGE_RX 431#define __P101 PAGE_RX 432#define __P110 PAGE_RX 433#define __P111 PAGE_RX 434 435#define __S000 PAGE_NONE 436#define __S001 PAGE_RO 437#define __S010 PAGE_RW 438#define __S011 PAGE_RW 439#define __S100 PAGE_RX 440#define __S101 PAGE_RX 441#define __S110 PAGE_RWX 442#define __S111 PAGE_RWX 443 444/* 445 * Segment entry (large page) protection definitions. 446 */ 447#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 448 _SEGMENT_ENTRY_PROTECT) 449#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 450 _SEGMENT_ENTRY_READ | \ 451 _SEGMENT_ENTRY_NOEXEC) 452#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 453 _SEGMENT_ENTRY_READ) 454#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 455 _SEGMENT_ENTRY_WRITE | \ 456 _SEGMENT_ENTRY_NOEXEC) 457#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 458 _SEGMENT_ENTRY_WRITE) 459#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 460 _SEGMENT_ENTRY_LARGE | \ 461 _SEGMENT_ENTRY_READ | \ 462 _SEGMENT_ENTRY_WRITE | \ 463 _SEGMENT_ENTRY_YOUNG | \ 464 _SEGMENT_ENTRY_DIRTY | \ 465 _SEGMENT_ENTRY_NOEXEC) 466#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 467 _SEGMENT_ENTRY_LARGE | \ 468 _SEGMENT_ENTRY_READ | \ 469 _SEGMENT_ENTRY_YOUNG | \ 470 _SEGMENT_ENTRY_PROTECT | \ 471 _SEGMENT_ENTRY_NOEXEC) 472#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 473 _SEGMENT_ENTRY_LARGE | \ 474 _SEGMENT_ENTRY_READ | \ 475 _SEGMENT_ENTRY_WRITE | \ 476 _SEGMENT_ENTRY_YOUNG | \ 477 _SEGMENT_ENTRY_DIRTY) 478 479/* 480 * Region3 entry (large page) protection definitions. 481 */ 482 483#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 484 _REGION3_ENTRY_LARGE | \ 485 _REGION3_ENTRY_READ | \ 486 _REGION3_ENTRY_WRITE | \ 487 _REGION3_ENTRY_YOUNG | \ 488 _REGION3_ENTRY_DIRTY | \ 489 _REGION_ENTRY_NOEXEC) 490#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 491 _REGION3_ENTRY_LARGE | \ 492 _REGION3_ENTRY_READ | \ 493 _REGION3_ENTRY_YOUNG | \ 494 _REGION_ENTRY_PROTECT | \ 495 _REGION_ENTRY_NOEXEC) 496 497static inline bool mm_p4d_folded(struct mm_struct *mm) 498{ 499 return mm->context.asce_limit <= _REGION1_SIZE; 500} 501#define mm_p4d_folded(mm) mm_p4d_folded(mm) 502 503static inline bool mm_pud_folded(struct mm_struct *mm) 504{ 505 return mm->context.asce_limit <= _REGION2_SIZE; 506} 507#define mm_pud_folded(mm) mm_pud_folded(mm) 508 509static inline bool mm_pmd_folded(struct mm_struct *mm) 510{ 511 return mm->context.asce_limit <= _REGION3_SIZE; 512} 513#define mm_pmd_folded(mm) mm_pmd_folded(mm) 514 515static inline int mm_has_pgste(struct mm_struct *mm) 516{ 517#ifdef CONFIG_PGSTE 518 if (unlikely(mm->context.has_pgste)) 519 return 1; 520#endif 521 return 0; 522} 523 524static inline int mm_is_protected(struct mm_struct *mm) 525{ 526#ifdef CONFIG_PGSTE 527 if (unlikely(atomic_read(&mm->context.is_protected))) 528 return 1; 529#endif 530 return 0; 531} 532 533static inline int mm_alloc_pgste(struct mm_struct *mm) 534{ 535#ifdef CONFIG_PGSTE 536 if (unlikely(mm->context.alloc_pgste)) 537 return 1; 538#endif 539 return 0; 540} 541 542/* 543 * In the case that a guest uses storage keys 544 * faults should no longer be backed by zero pages 545 */ 546#define mm_forbids_zeropage mm_has_pgste 547static inline int mm_uses_skeys(struct mm_struct *mm) 548{ 549#ifdef CONFIG_PGSTE 550 if (mm->context.uses_skeys) 551 return 1; 552#endif 553 return 0; 554} 555 556static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 557{ 558 register unsigned long reg2 asm("2") = old; 559 register unsigned long reg3 asm("3") = new; 560 unsigned long address = (unsigned long)ptr | 1; 561 562 asm volatile( 563 " csp %0,%3" 564 : "+d" (reg2), "+m" (*ptr) 565 : "d" (reg3), "d" (address) 566 : "cc"); 567} 568 569static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 570{ 571 register unsigned long reg2 asm("2") = old; 572 register unsigned long reg3 asm("3") = new; 573 unsigned long address = (unsigned long)ptr | 1; 574 575 asm volatile( 576 " .insn rre,0xb98a0000,%0,%3" 577 : "+d" (reg2), "+m" (*ptr) 578 : "d" (reg3), "d" (address) 579 : "cc"); 580} 581 582#define CRDTE_DTT_PAGE 0x00UL 583#define CRDTE_DTT_SEGMENT 0x10UL 584#define CRDTE_DTT_REGION3 0x14UL 585#define CRDTE_DTT_REGION2 0x18UL 586#define CRDTE_DTT_REGION1 0x1cUL 587 588static inline void crdte(unsigned long old, unsigned long new, 589 unsigned long table, unsigned long dtt, 590 unsigned long address, unsigned long asce) 591{ 592 register unsigned long reg2 asm("2") = old; 593 register unsigned long reg3 asm("3") = new; 594 register unsigned long reg4 asm("4") = table | dtt; 595 register unsigned long reg5 asm("5") = address; 596 597 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 598 : "+d" (reg2) 599 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 600 : "memory", "cc"); 601} 602 603/* 604 * pgd/p4d/pud/pmd/pte query functions 605 */ 606static inline int pgd_folded(pgd_t pgd) 607{ 608 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 609} 610 611static inline int pgd_present(pgd_t pgd) 612{ 613 if (pgd_folded(pgd)) 614 return 1; 615 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 616} 617 618static inline int pgd_none(pgd_t pgd) 619{ 620 if (pgd_folded(pgd)) 621 return 0; 622 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 623} 624 625static inline int pgd_bad(pgd_t pgd) 626{ 627 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 628 return 0; 629 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 630} 631 632static inline unsigned long pgd_pfn(pgd_t pgd) 633{ 634 unsigned long origin_mask; 635 636 origin_mask = _REGION_ENTRY_ORIGIN; 637 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 638} 639 640static inline int p4d_folded(p4d_t p4d) 641{ 642 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 643} 644 645static inline int p4d_present(p4d_t p4d) 646{ 647 if (p4d_folded(p4d)) 648 return 1; 649 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 650} 651 652static inline int p4d_none(p4d_t p4d) 653{ 654 if (p4d_folded(p4d)) 655 return 0; 656 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 657} 658 659static inline unsigned long p4d_pfn(p4d_t p4d) 660{ 661 unsigned long origin_mask; 662 663 origin_mask = _REGION_ENTRY_ORIGIN; 664 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 665} 666 667static inline int pud_folded(pud_t pud) 668{ 669 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 670} 671 672static inline int pud_present(pud_t pud) 673{ 674 if (pud_folded(pud)) 675 return 1; 676 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 677} 678 679static inline int pud_none(pud_t pud) 680{ 681 if (pud_folded(pud)) 682 return 0; 683 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 684} 685 686#define pud_leaf pud_large 687static inline int pud_large(pud_t pud) 688{ 689 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 690 return 0; 691 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 692} 693 694static inline unsigned long pud_pfn(pud_t pud) 695{ 696 unsigned long origin_mask; 697 698 origin_mask = _REGION_ENTRY_ORIGIN; 699 if (pud_large(pud)) 700 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 701 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 702} 703 704#define pmd_leaf pmd_large 705static inline int pmd_large(pmd_t pmd) 706{ 707 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 708} 709 710static inline int pmd_bad(pmd_t pmd) 711{ 712 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 713 return 1; 714 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 715} 716 717static inline int pud_bad(pud_t pud) 718{ 719 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 720 721 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 722 return 1; 723 if (type < _REGION_ENTRY_TYPE_R3) 724 return 0; 725 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 726} 727 728static inline int p4d_bad(p4d_t p4d) 729{ 730 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 731 732 if (type > _REGION_ENTRY_TYPE_R2) 733 return 1; 734 if (type < _REGION_ENTRY_TYPE_R2) 735 return 0; 736 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 737} 738 739static inline int pmd_present(pmd_t pmd) 740{ 741 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 742} 743 744static inline int pmd_none(pmd_t pmd) 745{ 746 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 747} 748 749static inline unsigned long pmd_pfn(pmd_t pmd) 750{ 751 unsigned long origin_mask; 752 753 origin_mask = _SEGMENT_ENTRY_ORIGIN; 754 if (pmd_large(pmd)) 755 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 756 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 757} 758 759#define pmd_write pmd_write 760static inline int pmd_write(pmd_t pmd) 761{ 762 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 763} 764 765#define pud_write pud_write 766static inline int pud_write(pud_t pud) 767{ 768 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 769} 770 771static inline int pmd_dirty(pmd_t pmd) 772{ 773 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 774} 775 776static inline int pmd_young(pmd_t pmd) 777{ 778 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 779} 780 781static inline int pte_present(pte_t pte) 782{ 783 /* Bit pattern: (pte & 0x001) == 0x001 */ 784 return (pte_val(pte) & _PAGE_PRESENT) != 0; 785} 786 787static inline int pte_none(pte_t pte) 788{ 789 /* Bit pattern: pte == 0x400 */ 790 return pte_val(pte) == _PAGE_INVALID; 791} 792 793static inline int pte_swap(pte_t pte) 794{ 795 /* Bit pattern: (pte & 0x201) == 0x200 */ 796 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 797 == _PAGE_PROTECT; 798} 799 800static inline int pte_special(pte_t pte) 801{ 802 return (pte_val(pte) & _PAGE_SPECIAL); 803} 804 805#define __HAVE_ARCH_PTE_SAME 806static inline int pte_same(pte_t a, pte_t b) 807{ 808 return pte_val(a) == pte_val(b); 809} 810 811#ifdef CONFIG_NUMA_BALANCING 812static inline int pte_protnone(pte_t pte) 813{ 814 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 815} 816 817static inline int pmd_protnone(pmd_t pmd) 818{ 819 /* pmd_large(pmd) implies pmd_present(pmd) */ 820 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 821} 822#endif 823 824static inline int pte_soft_dirty(pte_t pte) 825{ 826 return pte_val(pte) & _PAGE_SOFT_DIRTY; 827} 828#define pte_swp_soft_dirty pte_soft_dirty 829 830static inline pte_t pte_mksoft_dirty(pte_t pte) 831{ 832 pte_val(pte) |= _PAGE_SOFT_DIRTY; 833 return pte; 834} 835#define pte_swp_mksoft_dirty pte_mksoft_dirty 836 837static inline pte_t pte_clear_soft_dirty(pte_t pte) 838{ 839 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 840 return pte; 841} 842#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 843 844static inline int pmd_soft_dirty(pmd_t pmd) 845{ 846 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 847} 848 849static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 850{ 851 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 852 return pmd; 853} 854 855static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 856{ 857 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 858 return pmd; 859} 860 861/* 862 * query functions pte_write/pte_dirty/pte_young only work if 863 * pte_present() is true. Undefined behaviour if not.. 864 */ 865static inline int pte_write(pte_t pte) 866{ 867 return (pte_val(pte) & _PAGE_WRITE) != 0; 868} 869 870static inline int pte_dirty(pte_t pte) 871{ 872 return (pte_val(pte) & _PAGE_DIRTY) != 0; 873} 874 875static inline int pte_young(pte_t pte) 876{ 877 return (pte_val(pte) & _PAGE_YOUNG) != 0; 878} 879 880#define __HAVE_ARCH_PTE_UNUSED 881static inline int pte_unused(pte_t pte) 882{ 883 return pte_val(pte) & _PAGE_UNUSED; 884} 885 886/* 887 * pgd/pmd/pte modification functions 888 */ 889 890static inline void pgd_clear(pgd_t *pgd) 891{ 892 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 893 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 894} 895 896static inline void p4d_clear(p4d_t *p4d) 897{ 898 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 899 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 900} 901 902static inline void pud_clear(pud_t *pud) 903{ 904 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 905 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 906} 907 908static inline void pmd_clear(pmd_t *pmdp) 909{ 910 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 911} 912 913static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 914{ 915 pte_val(*ptep) = _PAGE_INVALID; 916} 917 918/* 919 * The following pte modification functions only work if 920 * pte_present() is true. Undefined behaviour if not.. 921 */ 922static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 923{ 924 pte_val(pte) &= _PAGE_CHG_MASK; 925 pte_val(pte) |= pgprot_val(newprot); 926 /* 927 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 928 * has the invalid bit set, clear it again for readable, young pages 929 */ 930 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 931 pte_val(pte) &= ~_PAGE_INVALID; 932 /* 933 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 934 * protection bit set, clear it again for writable, dirty pages 935 */ 936 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 937 pte_val(pte) &= ~_PAGE_PROTECT; 938 return pte; 939} 940 941static inline pte_t pte_wrprotect(pte_t pte) 942{ 943 pte_val(pte) &= ~_PAGE_WRITE; 944 pte_val(pte) |= _PAGE_PROTECT; 945 return pte; 946} 947 948static inline pte_t pte_mkwrite(pte_t pte) 949{ 950 pte_val(pte) |= _PAGE_WRITE; 951 if (pte_val(pte) & _PAGE_DIRTY) 952 pte_val(pte) &= ~_PAGE_PROTECT; 953 return pte; 954} 955 956static inline pte_t pte_mkclean(pte_t pte) 957{ 958 pte_val(pte) &= ~_PAGE_DIRTY; 959 pte_val(pte) |= _PAGE_PROTECT; 960 return pte; 961} 962 963static inline pte_t pte_mkdirty(pte_t pte) 964{ 965 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 966 if (pte_val(pte) & _PAGE_WRITE) 967 pte_val(pte) &= ~_PAGE_PROTECT; 968 return pte; 969} 970 971static inline pte_t pte_mkold(pte_t pte) 972{ 973 pte_val(pte) &= ~_PAGE_YOUNG; 974 pte_val(pte) |= _PAGE_INVALID; 975 return pte; 976} 977 978static inline pte_t pte_mkyoung(pte_t pte) 979{ 980 pte_val(pte) |= _PAGE_YOUNG; 981 if (pte_val(pte) & _PAGE_READ) 982 pte_val(pte) &= ~_PAGE_INVALID; 983 return pte; 984} 985 986static inline pte_t pte_mkspecial(pte_t pte) 987{ 988 pte_val(pte) |= _PAGE_SPECIAL; 989 return pte; 990} 991 992#ifdef CONFIG_HUGETLB_PAGE 993static inline pte_t pte_mkhuge(pte_t pte) 994{ 995 pte_val(pte) |= _PAGE_LARGE; 996 return pte; 997} 998#endif 999 1000#define IPTE_GLOBAL 0 1001#define IPTE_LOCAL 1 1002 1003#define IPTE_NODAT 0x400 1004#define IPTE_GUEST_ASCE 0x800 1005 1006static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1007 unsigned long opt, unsigned long asce, 1008 int local) 1009{ 1010 unsigned long pto = (unsigned long) ptep; 1011 1012 if (__builtin_constant_p(opt) && opt == 0) { 1013 /* Invalidation + TLB flush for the pte */ 1014 asm volatile( 1015 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 1016 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1017 [m4] "i" (local)); 1018 return; 1019 } 1020 1021 /* Invalidate ptes with options + TLB flush of the ptes */ 1022 opt = opt | (asce & _ASCE_ORIGIN); 1023 asm volatile( 1024 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1025 : [r2] "+a" (address), [r3] "+a" (opt) 1026 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1027} 1028 1029static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1030 pte_t *ptep, int local) 1031{ 1032 unsigned long pto = (unsigned long) ptep; 1033 1034 /* Invalidate a range of ptes + TLB flush of the ptes */ 1035 do { 1036 asm volatile( 1037 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1038 : [r2] "+a" (address), [r3] "+a" (nr) 1039 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1040 } while (nr != 255); 1041} 1042 1043/* 1044 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1045 * both clear the TLB for the unmapped pte. The reason is that 1046 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1047 * to modify an active pte. The sequence is 1048 * 1) ptep_get_and_clear 1049 * 2) set_pte_at 1050 * 3) flush_tlb_range 1051 * On s390 the tlb needs to get flushed with the modification of the pte 1052 * if the pte is active. The only way how this can be implemented is to 1053 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1054 * is a nop. 1055 */ 1056pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1057pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1058 1059#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1060static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1061 unsigned long addr, pte_t *ptep) 1062{ 1063 pte_t pte = *ptep; 1064 1065 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1066 return pte_young(pte); 1067} 1068 1069#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1070static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1071 unsigned long address, pte_t *ptep) 1072{ 1073 return ptep_test_and_clear_young(vma, address, ptep); 1074} 1075 1076#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1077static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1078 unsigned long addr, pte_t *ptep) 1079{ 1080 pte_t res; 1081 1082 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1083 if (mm_is_protected(mm) && pte_present(res)) 1084 uv_convert_from_secure(pte_val(res) & PAGE_MASK); 1085 return res; 1086} 1087 1088#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1089pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1090void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1091 pte_t *, pte_t, pte_t); 1092 1093#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1094static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1095 unsigned long addr, pte_t *ptep) 1096{ 1097 pte_t res; 1098 1099 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1100 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1101 uv_convert_from_secure(pte_val(res) & PAGE_MASK); 1102 return res; 1103} 1104 1105/* 1106 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1107 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1108 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1109 * cannot be accessed while the batched unmap is running. In this case 1110 * full==1 and a simple pte_clear is enough. See tlb.h. 1111 */ 1112#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1113static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1114 unsigned long addr, 1115 pte_t *ptep, int full) 1116{ 1117 pte_t res; 1118 1119 if (full) { 1120 res = *ptep; 1121 *ptep = __pte(_PAGE_INVALID); 1122 } else { 1123 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1124 } 1125 if (mm_is_protected(mm) && pte_present(res)) 1126 uv_convert_from_secure(pte_val(res) & PAGE_MASK); 1127 return res; 1128} 1129 1130#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1131static inline void ptep_set_wrprotect(struct mm_struct *mm, 1132 unsigned long addr, pte_t *ptep) 1133{ 1134 pte_t pte = *ptep; 1135 1136 if (pte_write(pte)) 1137 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1138} 1139 1140#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1141static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1142 unsigned long addr, pte_t *ptep, 1143 pte_t entry, int dirty) 1144{ 1145 if (pte_same(*ptep, entry)) 1146 return 0; 1147 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1148 return 1; 1149} 1150 1151/* 1152 * Additional functions to handle KVM guest page tables 1153 */ 1154void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1155 pte_t *ptep, pte_t entry); 1156void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1157void ptep_notify(struct mm_struct *mm, unsigned long addr, 1158 pte_t *ptep, unsigned long bits); 1159int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1160 pte_t *ptep, int prot, unsigned long bit); 1161void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1162 pte_t *ptep , int reset); 1163void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1164int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1165 pte_t *sptep, pte_t *tptep, pte_t pte); 1166void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1167 1168bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1169 pte_t *ptep); 1170int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1171 unsigned char key, bool nq); 1172int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1173 unsigned char key, unsigned char *oldkey, 1174 bool nq, bool mr, bool mc); 1175int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1176int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1177 unsigned char *key); 1178 1179int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1180 unsigned long bits, unsigned long value); 1181int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1182int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1183 unsigned long *oldpte, unsigned long *oldpgste); 1184void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1185void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1186void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1187void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1188 1189/* 1190 * Certain architectures need to do special things when PTEs 1191 * within a page table are directly modified. Thus, the following 1192 * hook is made available. 1193 */ 1194static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1195 pte_t *ptep, pte_t entry) 1196{ 1197 if (pte_present(entry)) 1198 pte_val(entry) &= ~_PAGE_UNUSED; 1199 if (mm_has_pgste(mm)) 1200 ptep_set_pte_at(mm, addr, ptep, entry); 1201 else 1202 *ptep = entry; 1203} 1204 1205/* 1206 * Conversion functions: convert a page and protection to a page entry, 1207 * and a page entry and page directory to the page they refer to. 1208 */ 1209static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1210{ 1211 pte_t __pte; 1212 pte_val(__pte) = physpage + pgprot_val(pgprot); 1213 if (!MACHINE_HAS_NX) 1214 pte_val(__pte) &= ~_PAGE_NOEXEC; 1215 return pte_mkyoung(__pte); 1216} 1217 1218static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1219{ 1220 unsigned long physpage = page_to_phys(page); 1221 pte_t __pte = mk_pte_phys(physpage, pgprot); 1222 1223 if (pte_write(__pte) && PageDirty(page)) 1224 __pte = pte_mkdirty(__pte); 1225 return __pte; 1226} 1227 1228#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1229#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1230#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1231#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1232#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1233 1234#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1235#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1236#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1237#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1238 1239/* 1240 * The pgd_offset function *always* adds the index for the top-level 1241 * region/segment table. This is done to get a sequence like the 1242 * following to work: 1243 * pgdp = pgd_offset(current->mm, addr); 1244 * pgd = READ_ONCE(*pgdp); 1245 * p4dp = p4d_offset(&pgd, addr); 1246 * ... 1247 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1248 * only add an index if they dereferenced the pointer. 1249 */ 1250static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1251{ 1252 unsigned long rste; 1253 unsigned int shift; 1254 1255 /* Get the first entry of the top level table */ 1256 rste = pgd_val(*pgd); 1257 /* Pick up the shift from the table type of the first entry */ 1258 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1259 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1260} 1261 1262#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1263#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1264 1265static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1266{ 1267 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1268 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address); 1269 return (p4d_t *) pgd; 1270} 1271 1272static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1273{ 1274 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1275 return (pud_t *) p4d_deref(*p4d) + pud_index(address); 1276 return (pud_t *) p4d; 1277} 1278 1279static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1280{ 1281 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1282 return (pmd_t *) pud_deref(*pud) + pmd_index(address); 1283 return (pmd_t *) pud; 1284} 1285 1286static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address) 1287{ 1288 return (pte_t *) pmd_deref(*pmd) + pte_index(address); 1289} 1290 1291#define pte_offset_kernel(pmd, address) pte_offset(pmd, address) 1292#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1293 1294static inline void pte_unmap(pte_t *pte) { } 1295 1296static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1297{ 1298 return end <= current->mm->context.asce_limit; 1299} 1300#define gup_fast_permitted gup_fast_permitted 1301 1302#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1303#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1304#define pte_page(x) pfn_to_page(pte_pfn(x)) 1305 1306#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1307#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1308#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1309#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1310 1311static inline pmd_t pmd_wrprotect(pmd_t pmd) 1312{ 1313 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1314 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1315 return pmd; 1316} 1317 1318static inline pmd_t pmd_mkwrite(pmd_t pmd) 1319{ 1320 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1321 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1322 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1323 return pmd; 1324} 1325 1326static inline pmd_t pmd_mkclean(pmd_t pmd) 1327{ 1328 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1329 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1330 return pmd; 1331} 1332 1333static inline pmd_t pmd_mkdirty(pmd_t pmd) 1334{ 1335 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY; 1336 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1337 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1338 return pmd; 1339} 1340 1341static inline pud_t pud_wrprotect(pud_t pud) 1342{ 1343 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1344 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1345 return pud; 1346} 1347 1348static inline pud_t pud_mkwrite(pud_t pud) 1349{ 1350 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1351 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1352 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1353 return pud; 1354} 1355 1356static inline pud_t pud_mkclean(pud_t pud) 1357{ 1358 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1359 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1360 return pud; 1361} 1362 1363static inline pud_t pud_mkdirty(pud_t pud) 1364{ 1365 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY; 1366 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1367 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1368 return pud; 1369} 1370 1371#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1372static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1373{ 1374 /* 1375 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1376 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1377 */ 1378 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1379 return pgprot_val(SEGMENT_NONE); 1380 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1381 return pgprot_val(SEGMENT_RO); 1382 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1383 return pgprot_val(SEGMENT_RX); 1384 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1385 return pgprot_val(SEGMENT_RW); 1386 return pgprot_val(SEGMENT_RWX); 1387} 1388 1389static inline pmd_t pmd_mkyoung(pmd_t pmd) 1390{ 1391 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1392 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1394 return pmd; 1395} 1396 1397static inline pmd_t pmd_mkold(pmd_t pmd) 1398{ 1399 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1400 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1401 return pmd; 1402} 1403 1404static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1405{ 1406 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1407 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1408 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1409 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1410 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1411 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1412 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1413 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1414 return pmd; 1415} 1416 1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1418{ 1419 pmd_t __pmd; 1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1421 return __pmd; 1422} 1423 1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1425 1426static inline void __pmdp_csp(pmd_t *pmdp) 1427{ 1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1430} 1431 1432#define IDTE_GLOBAL 0 1433#define IDTE_LOCAL 1 1434 1435#define IDTE_PTOA 0x0800 1436#define IDTE_NODAT 0x1000 1437#define IDTE_GUEST_ASCE 0x2000 1438 1439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1440 unsigned long opt, unsigned long asce, 1441 int local) 1442{ 1443 unsigned long sto; 1444 1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1446 if (__builtin_constant_p(opt) && opt == 0) { 1447 /* flush without guest asce */ 1448 asm volatile( 1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1450 : "+m" (*pmdp) 1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1452 [m4] "i" (local) 1453 : "cc" ); 1454 } else { 1455 /* flush with guest asce */ 1456 asm volatile( 1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1458 : "+m" (*pmdp) 1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1460 [r3] "a" (asce), [m4] "i" (local) 1461 : "cc" ); 1462 } 1463} 1464 1465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1466 unsigned long opt, unsigned long asce, 1467 int local) 1468{ 1469 unsigned long r3o; 1470 1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1472 r3o |= _ASCE_TYPE_REGION3; 1473 if (__builtin_constant_p(opt) && opt == 0) { 1474 /* flush without guest asce */ 1475 asm volatile( 1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1477 : "+m" (*pudp) 1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1479 [m4] "i" (local) 1480 : "cc"); 1481 } else { 1482 /* flush with guest asce */ 1483 asm volatile( 1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1485 : "+m" (*pudp) 1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1487 [r3] "a" (asce), [m4] "i" (local) 1488 : "cc" ); 1489 } 1490} 1491 1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1495 1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1497 1498#define __HAVE_ARCH_PGTABLE_DEPOSIT 1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1500 pgtable_t pgtable); 1501 1502#define __HAVE_ARCH_PGTABLE_WITHDRAW 1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1504 1505#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1507 unsigned long addr, pmd_t *pmdp, 1508 pmd_t entry, int dirty) 1509{ 1510 VM_BUG_ON(addr & ~HPAGE_MASK); 1511 1512 entry = pmd_mkyoung(entry); 1513 if (dirty) 1514 entry = pmd_mkdirty(entry); 1515 if (pmd_val(*pmdp) == pmd_val(entry)) 1516 return 0; 1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1518 return 1; 1519} 1520 1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1523 unsigned long addr, pmd_t *pmdp) 1524{ 1525 pmd_t pmd = *pmdp; 1526 1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1528 return pmd_young(pmd); 1529} 1530 1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1533 unsigned long addr, pmd_t *pmdp) 1534{ 1535 VM_BUG_ON(addr & ~HPAGE_MASK); 1536 return pmdp_test_and_clear_young(vma, addr, pmdp); 1537} 1538 1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1540 pmd_t *pmdp, pmd_t entry) 1541{ 1542 if (!MACHINE_HAS_NX) 1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1544 *pmdp = entry; 1545} 1546 1547static inline pmd_t pmd_mkhuge(pmd_t pmd) 1548{ 1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1552 return pmd; 1553} 1554 1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1557 unsigned long addr, pmd_t *pmdp) 1558{ 1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1560} 1561 1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1564 unsigned long addr, 1565 pmd_t *pmdp, int full) 1566{ 1567 if (full) { 1568 pmd_t pmd = *pmdp; 1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1570 return pmd; 1571 } 1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1573} 1574 1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1577 unsigned long addr, pmd_t *pmdp) 1578{ 1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1580} 1581 1582#define __HAVE_ARCH_PMDP_INVALIDATE 1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1584 unsigned long addr, pmd_t *pmdp) 1585{ 1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1587 1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1589} 1590 1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1592static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1593 unsigned long addr, pmd_t *pmdp) 1594{ 1595 pmd_t pmd = *pmdp; 1596 1597 if (pmd_write(pmd)) 1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1599} 1600 1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1602 unsigned long address, 1603 pmd_t *pmdp) 1604{ 1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1606} 1607#define pmdp_collapse_flush pmdp_collapse_flush 1608 1609#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1610#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1611 1612static inline int pmd_trans_huge(pmd_t pmd) 1613{ 1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1615} 1616 1617#define has_transparent_hugepage has_transparent_hugepage 1618static inline int has_transparent_hugepage(void) 1619{ 1620 return MACHINE_HAS_EDAT1 ? 1 : 0; 1621} 1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1623 1624/* 1625 * 64 bit swap entry format: 1626 * A page-table entry has some bits we have to treat in a special way. 1627 * Bits 52 and bit 55 have to be zero, otherwise a specification 1628 * exception will occur instead of a page translation exception. The 1629 * specification exception has the bad habit not to store necessary 1630 * information in the lowcore. 1631 * Bits 54 and 63 are used to indicate the page type. 1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1635 * for the offset. 1636 * | offset |01100|type |00| 1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1639 */ 1640 1641#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1642#define __SWP_OFFSET_SHIFT 12 1643#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1644#define __SWP_TYPE_SHIFT 2 1645 1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1647{ 1648 pte_t pte; 1649 1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1653 return pte; 1654} 1655 1656static inline unsigned long __swp_type(swp_entry_t entry) 1657{ 1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1659} 1660 1661static inline unsigned long __swp_offset(swp_entry_t entry) 1662{ 1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1664} 1665 1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1667{ 1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1669} 1670 1671#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1672#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1673 1674#define kern_addr_valid(addr) (1) 1675 1676extern int vmem_add_mapping(unsigned long start, unsigned long size); 1677extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1678extern int s390_enable_sie(void); 1679extern int s390_enable_skey(void); 1680extern void s390_reset_cmma(struct mm_struct *mm); 1681 1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1683#define HAVE_ARCH_UNMAPPED_AREA 1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1685 1686#include <asm-generic/pgtable.h> 1687 1688#endif /* _S390_PAGE_H */