at v5.7 578 lines 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _PARISC_PGTABLE_H 3#define _PARISC_PGTABLE_H 4 5#include <asm/page.h> 6 7#if CONFIG_PGTABLE_LEVELS == 3 8#include <asm-generic/pgtable-nopud.h> 9#elif CONFIG_PGTABLE_LEVELS == 2 10#include <asm-generic/pgtable-nopmd.h> 11#endif 12 13#include <asm/fixmap.h> 14 15#ifndef __ASSEMBLY__ 16/* 17 * we simulate an x86-style page table for the linux mm code 18 */ 19 20#include <linux/bitops.h> 21#include <linux/spinlock.h> 22#include <linux/mm_types.h> 23#include <asm/processor.h> 24#include <asm/cache.h> 25 26static inline spinlock_t *pgd_spinlock(pgd_t *); 27 28/* 29 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 30 * memory. For the return value to be meaningful, ADDR must be >= 31 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 32 * require a hash-, or multi-level tree-lookup or something of that 33 * sort) but it guarantees to return TRUE only if accessing the page 34 * at that address does not cause an error. Note that there may be 35 * addresses for which kern_addr_valid() returns FALSE even though an 36 * access would not cause an error (e.g., this is typically true for 37 * memory mapped I/O regions. 38 * 39 * XXX Need to implement this for parisc. 40 */ 41#define kern_addr_valid(addr) (1) 42 43/* This is for the serialization of PxTLB broadcasts. At least on the N class 44 * systems, only one PxTLB inter processor broadcast can be active at any one 45 * time on the Merced bus. 46 47 * PTE updates are protected by locks in the PMD. 48 */ 49extern spinlock_t pa_tlb_flush_lock; 50extern spinlock_t pa_swapper_pg_lock; 51#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 52extern int pa_serialize_tlb_flushes; 53#else 54#define pa_serialize_tlb_flushes (0) 55#endif 56 57#define purge_tlb_start(flags) do { \ 58 if (pa_serialize_tlb_flushes) \ 59 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \ 60 else \ 61 local_irq_save(flags); \ 62 } while (0) 63#define purge_tlb_end(flags) do { \ 64 if (pa_serialize_tlb_flushes) \ 65 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \ 66 else \ 67 local_irq_restore(flags); \ 68 } while (0) 69 70/* Purge data and instruction TLB entries. The TLB purge instructions 71 * are slow on SMP machines since the purge must be broadcast to all CPUs. 72 */ 73 74static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 75{ 76 unsigned long flags; 77 78 purge_tlb_start(flags); 79 mtsp(mm->context, 1); 80 pdtlb(addr); 81 pitlb(addr); 82 purge_tlb_end(flags); 83} 84 85/* Certain architectures need to do special things when PTEs 86 * within a page table are directly modified. Thus, the following 87 * hook is made available. 88 */ 89#define set_pte(pteptr, pteval) \ 90 do{ \ 91 *(pteptr) = (pteval); \ 92 } while(0) 93 94#define set_pte_at(mm, addr, ptep, pteval) \ 95 do { \ 96 pte_t old_pte; \ 97 unsigned long flags; \ 98 spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);\ 99 old_pte = *ptep; \ 100 set_pte(ptep, pteval); \ 101 purge_tlb_entries(mm, addr); \ 102 spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);\ 103 } while (0) 104 105#endif /* !__ASSEMBLY__ */ 106 107#define pte_ERROR(e) \ 108 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 109#if CONFIG_PGTABLE_LEVELS == 3 110#define pmd_ERROR(e) \ 111 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 112#endif 113#define pgd_ERROR(e) \ 114 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 115 116/* This is the size of the initially mapped kernel memory */ 117#if defined(CONFIG_64BIT) 118#define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */ 119#else 120#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */ 121#endif 122#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 123 124#if CONFIG_PGTABLE_LEVELS == 3 125#define PGD_ORDER 1 /* Number of pages per pgd */ 126#define PMD_ORDER 1 /* Number of pages per pmd */ 127#define PGD_ALLOC_ORDER (2 + 1) /* first pgd contains pmd */ 128#else 129#define PGD_ORDER 1 /* Number of pages per pgd */ 130#define PGD_ALLOC_ORDER (PGD_ORDER + 1) 131#endif 132 133/* Definitions for 3rd level (we use PLD here for Page Lower directory 134 * because PTE_SHIFT is used lower down to mean shift that has to be 135 * done to get usable bits out of the PTE) */ 136#define PLD_SHIFT PAGE_SHIFT 137#define PLD_SIZE PAGE_SIZE 138#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 139#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 140 141/* Definitions for 2nd level */ 142#if CONFIG_PGTABLE_LEVELS == 3 143#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 144#define PMD_SIZE (1UL << PMD_SHIFT) 145#define PMD_MASK (~(PMD_SIZE-1)) 146#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) 147#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 148#else 149#define BITS_PER_PMD 0 150#endif 151 152/* Definitions for 1st level */ 153#define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD) 154#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 155#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 156#else 157#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 158#endif 159#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 160#define PGDIR_MASK (~(PGDIR_SIZE-1)) 161#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 162#define USER_PTRS_PER_PGD PTRS_PER_PGD 163 164#ifdef CONFIG_64BIT 165#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 166#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 167#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 168#else 169#define MAX_ADDRBITS (BITS_PER_LONG) 170#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 171#define SPACEID_SHIFT 0 172#endif 173 174/* This calculates the number of initial pages we need for the initial 175 * page tables */ 176#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 177# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 178#else 179# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 180#endif 181 182/* 183 * pgd entries used up by user/kernel: 184 */ 185 186#define FIRST_USER_ADDRESS 0UL 187 188/* NB: The tlb miss handlers make certain assumptions about the order */ 189/* of the following bits, so be careful (One example, bits 25-31 */ 190/* are moved together in one instruction). */ 191 192#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 193#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 194#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 195#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 196#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 197#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 198#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 199#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 200#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 201#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 202#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */ 203#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 204 205/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 206/* following macro is ok for both 32 and 64 bit. */ 207 208#define xlate_pabit(x) (31 - x) 209 210/* this defines the shift to the usable bits in the PTE it is set so 211 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 212 * to zero */ 213#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 214 215/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 216#define PFN_PTE_SHIFT 12 217 218#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 219#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 220#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 221#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 222#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 223#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 224#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 225#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 226#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 227#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 228#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 229#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT)) 230#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 231 232#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 233#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 234#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 235#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 236#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 237#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 238 239/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 240 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 241 * for a few meta-information bits, so we shift the address to be 242 * able to effectively address 40/42/44-bits of physical address space 243 * depending on 4k/16k/64k PAGE_SIZE */ 244#define _PxD_PRESENT_BIT 31 245#define _PxD_ATTACHED_BIT 30 246#define _PxD_VALID_BIT 29 247 248#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 249#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) 250#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 251#define PxD_FLAG_MASK (0xf) 252#define PxD_FLAG_SHIFT (4) 253#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT) 254 255#ifndef __ASSEMBLY__ 256 257#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER) 258#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE) 259/* Others seem to make this executable, I don't know if that's correct 260 or not. The stack is mapped this way though so this is necessary 261 in the short term - dhd@linuxcare.com, 2000-08-08 */ 262#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ) 263#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE) 264#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC) 265#define PAGE_COPY PAGE_EXECREAD 266#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 267#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 268#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 269#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 270#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 271#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 272#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ) 273 274 275/* 276 * We could have an execute only page using "gateway - promote to priv 277 * level 3", but that is kind of silly. So, the way things are defined 278 * now, we must always have read permission for pages with execute 279 * permission. For the fun of it we'll go ahead and support write only 280 * pages. 281 */ 282 283 /*xwr*/ 284#define __P000 PAGE_NONE 285#define __P001 PAGE_READONLY 286#define __P010 __P000 /* copy on write */ 287#define __P011 __P001 /* copy on write */ 288#define __P100 PAGE_EXECREAD 289#define __P101 PAGE_EXECREAD 290#define __P110 __P100 /* copy on write */ 291#define __P111 __P101 /* copy on write */ 292 293#define __S000 PAGE_NONE 294#define __S001 PAGE_READONLY 295#define __S010 PAGE_WRITEONLY 296#define __S011 PAGE_SHARED 297#define __S100 PAGE_EXECREAD 298#define __S101 PAGE_EXECREAD 299#define __S110 PAGE_RWX 300#define __S111 PAGE_RWX 301 302 303extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 304 305/* initial page tables for 0-8MB for kernel */ 306 307extern pte_t pg0[]; 308 309/* zero page used for uninitialized stuff */ 310 311extern unsigned long *empty_zero_page; 312 313/* 314 * ZERO_PAGE is a global shared page that is always zero: used 315 * for zero-mapped memory areas etc.. 316 */ 317 318#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 319 320#define pte_none(x) (pte_val(x) == 0) 321#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 322#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0)) 323 324#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 325#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 326#define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK) 327#define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 328#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 329#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 330 331#if CONFIG_PGTABLE_LEVELS == 3 332/* The first entry of the permanent pmd is not there if it contains 333 * the gateway marker */ 334#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) 335#else 336#define pmd_none(x) (!pmd_val(x)) 337#endif 338#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 339#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 340static inline void pmd_clear(pmd_t *pmd) { 341#if CONFIG_PGTABLE_LEVELS == 3 342 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) 343 /* This is the entry pointing to the permanent pmd 344 * attached to the pgd; cannot clear it */ 345 set_pmd(pmd, __pmd(PxD_FLAG_ATTACHED)); 346 else 347#endif 348 set_pmd(pmd, __pmd(0)); 349} 350 351 352 353#if CONFIG_PGTABLE_LEVELS == 3 354#define pud_page_vaddr(pud) ((unsigned long) __va(pud_address(pud))) 355#define pud_page(pud) virt_to_page((void *)pud_page_vaddr(pud)) 356 357/* For 64 bit we have three level tables */ 358 359#define pud_none(x) (!pud_val(x)) 360#define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID)) 361#define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT) 362static inline void pud_clear(pud_t *pud) { 363#if CONFIG_PGTABLE_LEVELS == 3 364 if(pud_flag(*pud) & PxD_FLAG_ATTACHED) 365 /* This is the permanent pmd attached to the pud; cannot 366 * free it */ 367 return; 368#endif 369 set_pud(pud, __pud(0)); 370} 371#endif 372 373/* 374 * The following only work if pte_present() is true. 375 * Undefined behaviour if not.. 376 */ 377static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 378static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 379static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 380 381static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 382static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 383static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 384static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 385static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 386static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 387 388/* 389 * Huge pte definitions. 390 */ 391#ifdef CONFIG_HUGETLB_PAGE 392#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE) 393#define pte_mkhuge(pte) (__pte(pte_val(pte) | \ 394 (parisc_requires_coherency() ? 0 : _PAGE_HUGE))) 395#else 396#define pte_huge(pte) (0) 397#define pte_mkhuge(pte) (pte) 398#endif 399 400 401/* 402 * Conversion functions: convert a page and protection to a page entry, 403 * and a page entry and page directory to the page they refer to. 404 */ 405#define __mk_pte(addr,pgprot) \ 406({ \ 407 pte_t __pte; \ 408 \ 409 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 410 \ 411 __pte; \ 412}) 413 414#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 415 416static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 417{ 418 pte_t pte; 419 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 420 return pte; 421} 422 423static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 424{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 425 426/* Permanent address of a page. On parisc we don't have highmem. */ 427 428#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 429 430#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 431 432#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) 433 434#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 435#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 436 437#define pgd_index(address) ((address) >> PGDIR_SHIFT) 438 439/* to find an entry in a page-table-directory */ 440#define pgd_offset(mm, address) \ 441((mm)->pgd + ((address) >> PGDIR_SHIFT)) 442 443/* to find an entry in a kernel page-table-directory */ 444#define pgd_offset_k(address) pgd_offset(&init_mm, address) 445 446/* Find an entry in the second-level page table.. */ 447 448#if CONFIG_PGTABLE_LEVELS == 3 449#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 450#define pmd_offset(dir,address) \ 451((pmd_t *) pud_page_vaddr(*(dir)) + pmd_index(address)) 452#else 453#define pmd_offset(dir,addr) ((pmd_t *) dir) 454#endif 455 456/* Find an entry in the third-level page table.. */ 457#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 458#define pte_offset_kernel(pmd, address) \ 459 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 460#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 461#define pte_unmap(pte) do { } while (0) 462 463#define pte_unmap(pte) do { } while (0) 464#define pte_unmap_nested(pte) do { } while (0) 465 466extern void paging_init (void); 467 468/* Used for deferring calls to flush_dcache_page() */ 469 470#define PG_dcache_dirty PG_arch_1 471 472extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 473 474/* Encode and de-code a swap entry */ 475 476#define __swp_type(x) ((x).val & 0x1f) 477#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 478 (((x).val >> 8) & ~0x7) ) 479#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 480 ((offset & 0x7) << 6) | \ 481 ((offset & ~0x7) << 8) }) 482#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 483#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 484 485 486static inline spinlock_t *pgd_spinlock(pgd_t *pgd) 487{ 488 if (unlikely(pgd == swapper_pg_dir)) 489 return &pa_swapper_pg_lock; 490 return (spinlock_t *)((char *)pgd + (PAGE_SIZE << (PGD_ALLOC_ORDER - 1))); 491} 492 493 494static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 495{ 496 pte_t pte; 497 unsigned long flags; 498 499 if (!pte_young(*ptep)) 500 return 0; 501 502 spin_lock_irqsave(pgd_spinlock(vma->vm_mm->pgd), flags); 503 pte = *ptep; 504 if (!pte_young(pte)) { 505 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags); 506 return 0; 507 } 508 set_pte(ptep, pte_mkold(pte)); 509 purge_tlb_entries(vma->vm_mm, addr); 510 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags); 511 return 1; 512} 513 514struct mm_struct; 515static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 516{ 517 pte_t old_pte; 518 unsigned long flags; 519 520 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags); 521 old_pte = *ptep; 522 set_pte(ptep, __pte(0)); 523 purge_tlb_entries(mm, addr); 524 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags); 525 526 return old_pte; 527} 528 529static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 530{ 531 unsigned long flags; 532 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags); 533 set_pte(ptep, pte_wrprotect(*ptep)); 534 purge_tlb_entries(mm, addr); 535 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags); 536} 537 538#define pte_same(A,B) (pte_val(A) == pte_val(B)) 539 540struct seq_file; 541extern void arch_report_meminfo(struct seq_file *m); 542 543#endif /* !__ASSEMBLY__ */ 544 545 546/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 547#define _PAGE_SIZE_ENCODING_4K 0 548#define _PAGE_SIZE_ENCODING_16K 1 549#define _PAGE_SIZE_ENCODING_64K 2 550#define _PAGE_SIZE_ENCODING_256K 3 551#define _PAGE_SIZE_ENCODING_1M 4 552#define _PAGE_SIZE_ENCODING_4M 5 553#define _PAGE_SIZE_ENCODING_16M 6 554#define _PAGE_SIZE_ENCODING_64M 7 555 556#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 557# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 558#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 559# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 560#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 561# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 562#endif 563 564 565#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 566 567/* We provide our own get_unmapped_area to provide cache coherency */ 568 569#define HAVE_ARCH_UNMAPPED_AREA 570#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 571 572#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 573#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 574#define __HAVE_ARCH_PTEP_SET_WRPROTECT 575#define __HAVE_ARCH_PTE_SAME 576#include <asm-generic/pgtable.h> 577 578#endif /* _PARISC_PGTABLE_H */