at v5.7 882 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5#ifndef __ASM_PGTABLE_H 6#define __ASM_PGTABLE_H 7 8#include <asm/bug.h> 9#include <asm/proc-fns.h> 10 11#include <asm/memory.h> 12#include <asm/pgtable-hwdef.h> 13#include <asm/pgtable-prot.h> 14#include <asm/tlbflush.h> 15 16/* 17 * VMALLOC range. 18 * 19 * VMALLOC_START: beginning of the kernel vmalloc space 20 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space 21 * and fixed mappings 22 */ 23#define VMALLOC_START (MODULES_END) 24#define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K) 25 26#define FIRST_USER_ADDRESS 0UL 27 28#ifndef __ASSEMBLY__ 29 30#include <asm/cmpxchg.h> 31#include <asm/fixmap.h> 32#include <linux/mmdebug.h> 33#include <linux/mm_types.h> 34#include <linux/sched.h> 35 36extern struct page *vmemmap; 37 38extern void __pte_error(const char *file, int line, unsigned long val); 39extern void __pmd_error(const char *file, int line, unsigned long val); 40extern void __pud_error(const char *file, int line, unsigned long val); 41extern void __pgd_error(const char *file, int line, unsigned long val); 42 43/* 44 * ZERO_PAGE is a global shared page that is always zero: used 45 * for zero-mapped memory areas etc.. 46 */ 47extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 48#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 49 50#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 51 52/* 53 * Macros to convert between a physical address and its placement in a 54 * page table entry, taking care of 52-bit addresses. 55 */ 56#ifdef CONFIG_ARM64_PA_BITS_52 57#define __pte_to_phys(pte) \ 58 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36)) 59#define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK) 60#else 61#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) 62#define __phys_to_pte_val(phys) (phys) 63#endif 64 65#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 66#define pfn_pte(pfn,prot) \ 67 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 68 69#define pte_none(pte) (!pte_val(pte)) 70#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 71#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 72 73/* 74 * The following only work if pte_present(). Undefined behaviour otherwise. 75 */ 76#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 77#define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 78#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 79#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 80#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 81#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 82#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 83 84#define pte_cont_addr_end(addr, end) \ 85({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 86 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 87}) 88 89#define pmd_cont_addr_end(addr, end) \ 90({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 91 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 92}) 93 94#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 95#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 96#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 97 98#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 99#define pte_valid_not_user(pte) \ 100 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID) 101#define pte_valid_young(pte) \ 102 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF)) 103#define pte_valid_user(pte) \ 104 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) 105 106/* 107 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 108 * so that we don't erroneously return false for pages that have been 109 * remapped as PROT_NONE but are yet to be flushed from the TLB. 110 */ 111#define pte_accessible(mm, pte) \ 112 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte)) 113 114/* 115 * p??_access_permitted() is true for valid user mappings (subject to the 116 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit 117 * set. 118 */ 119#define pte_access_permitted(pte, write) \ 120 (pte_valid_user(pte) && (!(write) || pte_write(pte))) 121#define pmd_access_permitted(pmd, write) \ 122 (pte_access_permitted(pmd_pte(pmd), (write))) 123#define pud_access_permitted(pud, write) \ 124 (pte_access_permitted(pud_pte(pud), (write))) 125 126static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 127{ 128 pte_val(pte) &= ~pgprot_val(prot); 129 return pte; 130} 131 132static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 133{ 134 pte_val(pte) |= pgprot_val(prot); 135 return pte; 136} 137 138static inline pte_t pte_wrprotect(pte_t pte) 139{ 140 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 141 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 142 return pte; 143} 144 145static inline pte_t pte_mkwrite(pte_t pte) 146{ 147 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 148 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 149 return pte; 150} 151 152static inline pte_t pte_mkclean(pte_t pte) 153{ 154 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 155 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 156 157 return pte; 158} 159 160static inline pte_t pte_mkdirty(pte_t pte) 161{ 162 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 163 164 if (pte_write(pte)) 165 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 166 167 return pte; 168} 169 170static inline pte_t pte_mkold(pte_t pte) 171{ 172 return clear_pte_bit(pte, __pgprot(PTE_AF)); 173} 174 175static inline pte_t pte_mkyoung(pte_t pte) 176{ 177 return set_pte_bit(pte, __pgprot(PTE_AF)); 178} 179 180static inline pte_t pte_mkspecial(pte_t pte) 181{ 182 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 183} 184 185static inline pte_t pte_mkcont(pte_t pte) 186{ 187 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 188 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 189} 190 191static inline pte_t pte_mknoncont(pte_t pte) 192{ 193 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 194} 195 196static inline pte_t pte_mkpresent(pte_t pte) 197{ 198 return set_pte_bit(pte, __pgprot(PTE_VALID)); 199} 200 201static inline pmd_t pmd_mkcont(pmd_t pmd) 202{ 203 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 204} 205 206static inline pte_t pte_mkdevmap(pte_t pte) 207{ 208 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 209} 210 211static inline void set_pte(pte_t *ptep, pte_t pte) 212{ 213 WRITE_ONCE(*ptep, pte); 214 215 /* 216 * Only if the new pte is valid and kernel, otherwise TLB maintenance 217 * or update_mmu_cache() have the necessary barriers. 218 */ 219 if (pte_valid_not_user(pte)) { 220 dsb(ishst); 221 isb(); 222 } 223} 224 225extern void __sync_icache_dcache(pte_t pteval); 226 227/* 228 * PTE bits configuration in the presence of hardware Dirty Bit Management 229 * (PTE_WRITE == PTE_DBM): 230 * 231 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 232 * 0 0 | 1 0 0 233 * 0 1 | 1 1 0 234 * 1 0 | 1 0 1 235 * 1 1 | 0 1 x 236 * 237 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 238 * the page fault mechanism. Checking the dirty status of a pte becomes: 239 * 240 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 241 */ 242 243static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, 244 pte_t pte) 245{ 246 pte_t old_pte; 247 248 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 249 return; 250 251 old_pte = READ_ONCE(*ptep); 252 253 if (!pte_valid(old_pte) || !pte_valid(pte)) 254 return; 255 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 256 return; 257 258 /* 259 * Check for potential race with hardware updates of the pte 260 * (ptep_set_access_flags safely changes valid ptes without going 261 * through an invalid entry). 262 */ 263 VM_WARN_ONCE(!pte_young(pte), 264 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 265 __func__, pte_val(old_pte), pte_val(pte)); 266 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 267 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 268 __func__, pte_val(old_pte), pte_val(pte)); 269} 270 271static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 272 pte_t *ptep, pte_t pte) 273{ 274 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 275 __sync_icache_dcache(pte); 276 277 __check_racy_pte_update(mm, ptep, pte); 278 279 set_pte(ptep, pte); 280} 281 282/* 283 * Huge pte definitions. 284 */ 285#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 286 287/* 288 * Hugetlb definitions. 289 */ 290#define HUGE_MAX_HSTATE 4 291#define HPAGE_SHIFT PMD_SHIFT 292#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 293#define HPAGE_MASK (~(HPAGE_SIZE - 1)) 294#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 295 296static inline pte_t pgd_pte(pgd_t pgd) 297{ 298 return __pte(pgd_val(pgd)); 299} 300 301static inline pte_t pud_pte(pud_t pud) 302{ 303 return __pte(pud_val(pud)); 304} 305 306static inline pud_t pte_pud(pte_t pte) 307{ 308 return __pud(pte_val(pte)); 309} 310 311static inline pmd_t pud_pmd(pud_t pud) 312{ 313 return __pmd(pud_val(pud)); 314} 315 316static inline pte_t pmd_pte(pmd_t pmd) 317{ 318 return __pte(pmd_val(pmd)); 319} 320 321static inline pmd_t pte_pmd(pte_t pte) 322{ 323 return __pmd(pte_val(pte)); 324} 325 326static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 327{ 328 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 329} 330 331static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 332{ 333 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 334} 335 336#ifdef CONFIG_NUMA_BALANCING 337/* 338 * See the comment in include/asm-generic/pgtable.h 339 */ 340static inline int pte_protnone(pte_t pte) 341{ 342 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; 343} 344 345static inline int pmd_protnone(pmd_t pmd) 346{ 347 return pte_protnone(pmd_pte(pmd)); 348} 349#endif 350 351/* 352 * THP definitions. 353 */ 354 355#ifdef CONFIG_TRANSPARENT_HUGEPAGE 356#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT)) 357#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 358 359#define pmd_present(pmd) pte_present(pmd_pte(pmd)) 360#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 361#define pmd_young(pmd) pte_young(pmd_pte(pmd)) 362#define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 363#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 364#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 365#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 366#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 367#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 368#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 369#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID)) 370 371#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) 372 373#define pmd_write(pmd) pte_write(pmd_pte(pmd)) 374 375#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 376 377#ifdef CONFIG_TRANSPARENT_HUGEPAGE 378#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 379#endif 380static inline pmd_t pmd_mkdevmap(pmd_t pmd) 381{ 382 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 383} 384 385#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 386#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 387#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 388#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 389#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 390 391#define pud_young(pud) pte_young(pud_pte(pud)) 392#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 393#define pud_write(pud) pte_write(pud_pte(pud)) 394 395#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 396 397#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 398#define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 399#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 400#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 401 402#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) 403 404#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 405#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 406 407#define __pgprot_modify(prot,mask,bits) \ 408 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 409 410/* 411 * Mark the prot value as uncacheable and unbufferable. 412 */ 413#define pgprot_noncached(prot) \ 414 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 415#define pgprot_writecombine(prot) \ 416 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 417#define pgprot_device(prot) \ 418 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 419/* 420 * DMA allocations for non-coherent devices use what the Arm architecture calls 421 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 422 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 423 * is intended for MMIO and thus forbids speculation, preserves access size, 424 * requires strict alignment and can also force write responses to come from the 425 * endpoint. 426 */ 427#define pgprot_dmacoherent(prot) \ 428 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 429 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 430 431#define __HAVE_PHYS_MEM_ACCESS_PROT 432struct file; 433extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 434 unsigned long size, pgprot_t vma_prot); 435 436#define pmd_none(pmd) (!pmd_val(pmd)) 437 438#define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT)) 439 440#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 441 PMD_TYPE_TABLE) 442#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 443 PMD_TYPE_SECT) 444#define pmd_leaf(pmd) pmd_sect(pmd) 445 446#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 447static inline bool pud_sect(pud_t pud) { return false; } 448static inline bool pud_table(pud_t pud) { return true; } 449#else 450#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 451 PUD_TYPE_SECT) 452#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 453 PUD_TYPE_TABLE) 454#endif 455 456extern pgd_t init_pg_dir[PTRS_PER_PGD]; 457extern pgd_t init_pg_end[]; 458extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 459extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 460extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; 461 462extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 463 464static inline bool in_swapper_pgdir(void *addr) 465{ 466 return ((unsigned long)addr & PAGE_MASK) == 467 ((unsigned long)swapper_pg_dir & PAGE_MASK); 468} 469 470static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 471{ 472#ifdef __PAGETABLE_PMD_FOLDED 473 if (in_swapper_pgdir(pmdp)) { 474 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 475 return; 476 } 477#endif /* __PAGETABLE_PMD_FOLDED */ 478 479 WRITE_ONCE(*pmdp, pmd); 480 481 if (pmd_valid(pmd)) { 482 dsb(ishst); 483 isb(); 484 } 485} 486 487static inline void pmd_clear(pmd_t *pmdp) 488{ 489 set_pmd(pmdp, __pmd(0)); 490} 491 492static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 493{ 494 return __pmd_to_phys(pmd); 495} 496 497static inline void pte_unmap(pte_t *pte) { } 498 499/* Find an entry in the third-level page table. */ 500#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 501 502#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 503#define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr)))) 504 505#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 506 507#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 508#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 509#define pte_clear_fixmap() clear_fixmap(FIX_PTE) 510 511#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd))) 512 513/* use ONLY for statically allocated translation tables */ 514#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 515 516/* 517 * Conversion functions: convert a page and protection to a page entry, 518 * and a page entry and page directory to the page they refer to. 519 */ 520#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 521 522#if CONFIG_PGTABLE_LEVELS > 2 523 524#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 525 526#define pud_none(pud) (!pud_val(pud)) 527#define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT)) 528#define pud_present(pud) pte_present(pud_pte(pud)) 529#define pud_leaf(pud) pud_sect(pud) 530#define pud_valid(pud) pte_valid(pud_pte(pud)) 531 532static inline void set_pud(pud_t *pudp, pud_t pud) 533{ 534#ifdef __PAGETABLE_PUD_FOLDED 535 if (in_swapper_pgdir(pudp)) { 536 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 537 return; 538 } 539#endif /* __PAGETABLE_PUD_FOLDED */ 540 541 WRITE_ONCE(*pudp, pud); 542 543 if (pud_valid(pud)) { 544 dsb(ishst); 545 isb(); 546 } 547} 548 549static inline void pud_clear(pud_t *pudp) 550{ 551 set_pud(pudp, __pud(0)); 552} 553 554static inline phys_addr_t pud_page_paddr(pud_t pud) 555{ 556 return __pud_to_phys(pud); 557} 558 559/* Find an entry in the second-level page table. */ 560#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 561 562#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 563#define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr)))) 564 565#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 566#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 567#define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 568 569#define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud))) 570 571/* use ONLY for statically allocated translation tables */ 572#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 573 574#else 575 576#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 577 578/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 579#define pmd_set_fixmap(addr) NULL 580#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 581#define pmd_clear_fixmap() 582 583#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 584 585#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 586 587#if CONFIG_PGTABLE_LEVELS > 3 588 589#define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud)) 590 591#define pgd_none(pgd) (!pgd_val(pgd)) 592#define pgd_bad(pgd) (!(pgd_val(pgd) & 2)) 593#define pgd_present(pgd) (pgd_val(pgd)) 594 595static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 596{ 597 if (in_swapper_pgdir(pgdp)) { 598 set_swapper_pgd(pgdp, pgd); 599 return; 600 } 601 602 WRITE_ONCE(*pgdp, pgd); 603 dsb(ishst); 604 isb(); 605} 606 607static inline void pgd_clear(pgd_t *pgdp) 608{ 609 set_pgd(pgdp, __pgd(0)); 610} 611 612static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 613{ 614 return __pgd_to_phys(pgd); 615} 616 617/* Find an entry in the frst-level page table. */ 618#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 619 620#define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) 621#define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr)))) 622 623#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) 624#define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr)) 625#define pud_clear_fixmap() clear_fixmap(FIX_PUD) 626 627#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 628 629/* use ONLY for statically allocated translation tables */ 630#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) 631 632#else 633 634#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) 635 636/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 637#define pud_set_fixmap(addr) NULL 638#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 639#define pud_clear_fixmap() 640 641#define pud_offset_kimg(dir,addr) ((pud_t *)dir) 642 643#endif /* CONFIG_PGTABLE_LEVELS > 3 */ 644 645#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 646 647/* to find an entry in a page-table-directory */ 648#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 649 650#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr)) 651 652#define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr))) 653 654/* to find an entry in a kernel page-table-directory */ 655#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 656 657#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 658#define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 659 660static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 661{ 662 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 663 PTE_PROT_NONE | PTE_VALID | PTE_WRITE; 664 /* preserve the hardware dirty information */ 665 if (pte_hw_dirty(pte)) 666 pte = pte_mkdirty(pte); 667 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 668 return pte; 669} 670 671static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 672{ 673 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 674} 675 676#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 677extern int ptep_set_access_flags(struct vm_area_struct *vma, 678 unsigned long address, pte_t *ptep, 679 pte_t entry, int dirty); 680 681#ifdef CONFIG_TRANSPARENT_HUGEPAGE 682#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 683static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 684 unsigned long address, pmd_t *pmdp, 685 pmd_t entry, int dirty) 686{ 687 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 688} 689 690static inline int pud_devmap(pud_t pud) 691{ 692 return 0; 693} 694 695static inline int pgd_devmap(pgd_t pgd) 696{ 697 return 0; 698} 699#endif 700 701/* 702 * Atomic pte/pmd modifications. 703 */ 704#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 705static inline int __ptep_test_and_clear_young(pte_t *ptep) 706{ 707 pte_t old_pte, pte; 708 709 pte = READ_ONCE(*ptep); 710 do { 711 old_pte = pte; 712 pte = pte_mkold(pte); 713 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 714 pte_val(old_pte), pte_val(pte)); 715 } while (pte_val(pte) != pte_val(old_pte)); 716 717 return pte_young(pte); 718} 719 720static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 721 unsigned long address, 722 pte_t *ptep) 723{ 724 return __ptep_test_and_clear_young(ptep); 725} 726 727#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 728static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 729 unsigned long address, pte_t *ptep) 730{ 731 int young = ptep_test_and_clear_young(vma, address, ptep); 732 733 if (young) { 734 /* 735 * We can elide the trailing DSB here since the worst that can 736 * happen is that a CPU continues to use the young entry in its 737 * TLB and we mistakenly reclaim the associated page. The 738 * window for such an event is bounded by the next 739 * context-switch, which provides a DSB to complete the TLB 740 * invalidation. 741 */ 742 flush_tlb_page_nosync(vma, address); 743 } 744 745 return young; 746} 747 748#ifdef CONFIG_TRANSPARENT_HUGEPAGE 749#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 750static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 751 unsigned long address, 752 pmd_t *pmdp) 753{ 754 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 755} 756#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 759static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 760 unsigned long address, pte_t *ptep) 761{ 762 return __pte(xchg_relaxed(&pte_val(*ptep), 0)); 763} 764 765#ifdef CONFIG_TRANSPARENT_HUGEPAGE 766#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 767static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 768 unsigned long address, pmd_t *pmdp) 769{ 770 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); 771} 772#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 773 774/* 775 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 776 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 777 */ 778#define __HAVE_ARCH_PTEP_SET_WRPROTECT 779static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 780{ 781 pte_t old_pte, pte; 782 783 pte = READ_ONCE(*ptep); 784 do { 785 old_pte = pte; 786 /* 787 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 788 * clear), set the PTE_DIRTY bit. 789 */ 790 if (pte_hw_dirty(pte)) 791 pte = pte_mkdirty(pte); 792 pte = pte_wrprotect(pte); 793 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 794 pte_val(old_pte), pte_val(pte)); 795 } while (pte_val(pte) != pte_val(old_pte)); 796} 797 798#ifdef CONFIG_TRANSPARENT_HUGEPAGE 799#define __HAVE_ARCH_PMDP_SET_WRPROTECT 800static inline void pmdp_set_wrprotect(struct mm_struct *mm, 801 unsigned long address, pmd_t *pmdp) 802{ 803 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 804} 805 806#define pmdp_establish pmdp_establish 807static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 808 unsigned long address, pmd_t *pmdp, pmd_t pmd) 809{ 810 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 811} 812#endif 813 814/* 815 * Encode and decode a swap entry: 816 * bits 0-1: present (must be zero) 817 * bits 2-7: swap type 818 * bits 8-57: swap offset 819 * bit 58: PTE_PROT_NONE (must be zero) 820 */ 821#define __SWP_TYPE_SHIFT 2 822#define __SWP_TYPE_BITS 6 823#define __SWP_OFFSET_BITS 50 824#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 825#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 826#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 827 828#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 829#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 830#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 831 832#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 833#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 834 835/* 836 * Ensure that there are not more swap files than can be encoded in the kernel 837 * PTEs. 838 */ 839#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 840 841extern int kern_addr_valid(unsigned long addr); 842 843#include <asm-generic/pgtable.h> 844 845/* 846 * On AArch64, the cache coherency is handled via the set_pte_at() function. 847 */ 848static inline void update_mmu_cache(struct vm_area_struct *vma, 849 unsigned long addr, pte_t *ptep) 850{ 851 /* 852 * We don't do anything here, so there's a very small chance of 853 * us retaking a user fault which we just fixed up. The alternative 854 * is doing a dsb(ishst), but that penalises the fastpath. 855 */ 856} 857 858#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 859 860#ifdef CONFIG_ARM64_PA_BITS_52 861#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 862#else 863#define phys_to_ttbr(addr) (addr) 864#endif 865 866/* 867 * On arm64 without hardware Access Flag, copying from user will fail because 868 * the pte is old and cannot be marked young. So we always end up with zeroed 869 * page after fork() + CoW for pfn mappings. We don't always have a 870 * hardware-managed access flag on arm64. 871 */ 872static inline bool arch_faults_on_old_pte(void) 873{ 874 WARN_ON(preemptible()); 875 876 return !cpu_has_hw_af(); 877} 878#define arch_faults_on_old_pte arch_faults_on_old_pte 879 880#endif /* !__ASSEMBLY__ */ 881 882#endif /* __ASM_PGTABLE_H */