Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/pgtable-hwdef.h>
13#include <asm/pgtable-prot.h>
14#include <asm/tlbflush.h>
15
16/*
17 * VMALLOC range.
18 *
19 * VMALLOC_START: beginning of the kernel vmalloc space
20 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
21 * and fixed mappings
22 */
23#define VMALLOC_START (MODULES_END)
24#define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
25
26#define FIRST_USER_ADDRESS 0UL
27
28#ifndef __ASSEMBLY__
29
30#include <asm/cmpxchg.h>
31#include <asm/fixmap.h>
32#include <linux/mmdebug.h>
33#include <linux/mm_types.h>
34#include <linux/sched.h>
35
36extern struct page *vmemmap;
37
38extern void __pte_error(const char *file, int line, unsigned long val);
39extern void __pmd_error(const char *file, int line, unsigned long val);
40extern void __pud_error(const char *file, int line, unsigned long val);
41extern void __pgd_error(const char *file, int line, unsigned long val);
42
43/*
44 * ZERO_PAGE is a global shared page that is always zero: used
45 * for zero-mapped memory areas etc..
46 */
47extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
48#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
49
50#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
51
52/*
53 * Macros to convert between a physical address and its placement in a
54 * page table entry, taking care of 52-bit addresses.
55 */
56#ifdef CONFIG_ARM64_PA_BITS_52
57#define __pte_to_phys(pte) \
58 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
59#define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
60#else
61#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
62#define __phys_to_pte_val(phys) (phys)
63#endif
64
65#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
66#define pfn_pte(pfn,prot) \
67 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
68
69#define pte_none(pte) (!pte_val(pte))
70#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
71#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
72
73/*
74 * The following only work if pte_present(). Undefined behaviour otherwise.
75 */
76#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
77#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
78#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
79#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
80#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
81#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
82#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
83
84#define pte_cont_addr_end(addr, end) \
85({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
86 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
87})
88
89#define pmd_cont_addr_end(addr, end) \
90({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
91 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
92})
93
94#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
95#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
96#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
97
98#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
99#define pte_valid_not_user(pte) \
100 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
101#define pte_valid_young(pte) \
102 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
103#define pte_valid_user(pte) \
104 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
105
106/*
107 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
108 * so that we don't erroneously return false for pages that have been
109 * remapped as PROT_NONE but are yet to be flushed from the TLB.
110 */
111#define pte_accessible(mm, pte) \
112 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
113
114/*
115 * p??_access_permitted() is true for valid user mappings (subject to the
116 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
117 * set.
118 */
119#define pte_access_permitted(pte, write) \
120 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
121#define pmd_access_permitted(pmd, write) \
122 (pte_access_permitted(pmd_pte(pmd), (write)))
123#define pud_access_permitted(pud, write) \
124 (pte_access_permitted(pud_pte(pud), (write)))
125
126static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
127{
128 pte_val(pte) &= ~pgprot_val(prot);
129 return pte;
130}
131
132static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
133{
134 pte_val(pte) |= pgprot_val(prot);
135 return pte;
136}
137
138static inline pte_t pte_wrprotect(pte_t pte)
139{
140 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
141 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
142 return pte;
143}
144
145static inline pte_t pte_mkwrite(pte_t pte)
146{
147 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
148 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
149 return pte;
150}
151
152static inline pte_t pte_mkclean(pte_t pte)
153{
154 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
155 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
156
157 return pte;
158}
159
160static inline pte_t pte_mkdirty(pte_t pte)
161{
162 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
163
164 if (pte_write(pte))
165 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
166
167 return pte;
168}
169
170static inline pte_t pte_mkold(pte_t pte)
171{
172 return clear_pte_bit(pte, __pgprot(PTE_AF));
173}
174
175static inline pte_t pte_mkyoung(pte_t pte)
176{
177 return set_pte_bit(pte, __pgprot(PTE_AF));
178}
179
180static inline pte_t pte_mkspecial(pte_t pte)
181{
182 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
183}
184
185static inline pte_t pte_mkcont(pte_t pte)
186{
187 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
188 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
189}
190
191static inline pte_t pte_mknoncont(pte_t pte)
192{
193 return clear_pte_bit(pte, __pgprot(PTE_CONT));
194}
195
196static inline pte_t pte_mkpresent(pte_t pte)
197{
198 return set_pte_bit(pte, __pgprot(PTE_VALID));
199}
200
201static inline pmd_t pmd_mkcont(pmd_t pmd)
202{
203 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
204}
205
206static inline pte_t pte_mkdevmap(pte_t pte)
207{
208 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
209}
210
211static inline void set_pte(pte_t *ptep, pte_t pte)
212{
213 WRITE_ONCE(*ptep, pte);
214
215 /*
216 * Only if the new pte is valid and kernel, otherwise TLB maintenance
217 * or update_mmu_cache() have the necessary barriers.
218 */
219 if (pte_valid_not_user(pte)) {
220 dsb(ishst);
221 isb();
222 }
223}
224
225extern void __sync_icache_dcache(pte_t pteval);
226
227/*
228 * PTE bits configuration in the presence of hardware Dirty Bit Management
229 * (PTE_WRITE == PTE_DBM):
230 *
231 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
232 * 0 0 | 1 0 0
233 * 0 1 | 1 1 0
234 * 1 0 | 1 0 1
235 * 1 1 | 0 1 x
236 *
237 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
238 * the page fault mechanism. Checking the dirty status of a pte becomes:
239 *
240 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
241 */
242
243static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
244 pte_t pte)
245{
246 pte_t old_pte;
247
248 if (!IS_ENABLED(CONFIG_DEBUG_VM))
249 return;
250
251 old_pte = READ_ONCE(*ptep);
252
253 if (!pte_valid(old_pte) || !pte_valid(pte))
254 return;
255 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
256 return;
257
258 /*
259 * Check for potential race with hardware updates of the pte
260 * (ptep_set_access_flags safely changes valid ptes without going
261 * through an invalid entry).
262 */
263 VM_WARN_ONCE(!pte_young(pte),
264 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
265 __func__, pte_val(old_pte), pte_val(pte));
266 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
267 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
268 __func__, pte_val(old_pte), pte_val(pte));
269}
270
271static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
272 pte_t *ptep, pte_t pte)
273{
274 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
275 __sync_icache_dcache(pte);
276
277 __check_racy_pte_update(mm, ptep, pte);
278
279 set_pte(ptep, pte);
280}
281
282/*
283 * Huge pte definitions.
284 */
285#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
286
287/*
288 * Hugetlb definitions.
289 */
290#define HUGE_MAX_HSTATE 4
291#define HPAGE_SHIFT PMD_SHIFT
292#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
293#define HPAGE_MASK (~(HPAGE_SIZE - 1))
294#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
295
296static inline pte_t pgd_pte(pgd_t pgd)
297{
298 return __pte(pgd_val(pgd));
299}
300
301static inline pte_t pud_pte(pud_t pud)
302{
303 return __pte(pud_val(pud));
304}
305
306static inline pud_t pte_pud(pte_t pte)
307{
308 return __pud(pte_val(pte));
309}
310
311static inline pmd_t pud_pmd(pud_t pud)
312{
313 return __pmd(pud_val(pud));
314}
315
316static inline pte_t pmd_pte(pmd_t pmd)
317{
318 return __pte(pmd_val(pmd));
319}
320
321static inline pmd_t pte_pmd(pte_t pte)
322{
323 return __pmd(pte_val(pte));
324}
325
326static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
327{
328 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
329}
330
331static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
332{
333 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
334}
335
336#ifdef CONFIG_NUMA_BALANCING
337/*
338 * See the comment in include/asm-generic/pgtable.h
339 */
340static inline int pte_protnone(pte_t pte)
341{
342 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
343}
344
345static inline int pmd_protnone(pmd_t pmd)
346{
347 return pte_protnone(pmd_pte(pmd));
348}
349#endif
350
351/*
352 * THP definitions.
353 */
354
355#ifdef CONFIG_TRANSPARENT_HUGEPAGE
356#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
357#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
358
359#define pmd_present(pmd) pte_present(pmd_pte(pmd))
360#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
361#define pmd_young(pmd) pte_young(pmd_pte(pmd))
362#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
363#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
364#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
365#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
366#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
367#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
368#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
369#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
370
371#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
372
373#define pmd_write(pmd) pte_write(pmd_pte(pmd))
374
375#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
376
377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
378#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
379#endif
380static inline pmd_t pmd_mkdevmap(pmd_t pmd)
381{
382 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
383}
384
385#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
386#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
387#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
388#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
389#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
390
391#define pud_young(pud) pte_young(pud_pte(pud))
392#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
393#define pud_write(pud) pte_write(pud_pte(pud))
394
395#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
396
397#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
398#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
399#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
400#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
401
402#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
403
404#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
405#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
406
407#define __pgprot_modify(prot,mask,bits) \
408 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
409
410/*
411 * Mark the prot value as uncacheable and unbufferable.
412 */
413#define pgprot_noncached(prot) \
414 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
415#define pgprot_writecombine(prot) \
416 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
417#define pgprot_device(prot) \
418 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
419/*
420 * DMA allocations for non-coherent devices use what the Arm architecture calls
421 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
422 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
423 * is intended for MMIO and thus forbids speculation, preserves access size,
424 * requires strict alignment and can also force write responses to come from the
425 * endpoint.
426 */
427#define pgprot_dmacoherent(prot) \
428 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
429 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
430
431#define __HAVE_PHYS_MEM_ACCESS_PROT
432struct file;
433extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
434 unsigned long size, pgprot_t vma_prot);
435
436#define pmd_none(pmd) (!pmd_val(pmd))
437
438#define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
439
440#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
441 PMD_TYPE_TABLE)
442#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
443 PMD_TYPE_SECT)
444#define pmd_leaf(pmd) pmd_sect(pmd)
445
446#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
447static inline bool pud_sect(pud_t pud) { return false; }
448static inline bool pud_table(pud_t pud) { return true; }
449#else
450#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
451 PUD_TYPE_SECT)
452#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
453 PUD_TYPE_TABLE)
454#endif
455
456extern pgd_t init_pg_dir[PTRS_PER_PGD];
457extern pgd_t init_pg_end[];
458extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
459extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
460extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
461
462extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
463
464static inline bool in_swapper_pgdir(void *addr)
465{
466 return ((unsigned long)addr & PAGE_MASK) ==
467 ((unsigned long)swapper_pg_dir & PAGE_MASK);
468}
469
470static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
471{
472#ifdef __PAGETABLE_PMD_FOLDED
473 if (in_swapper_pgdir(pmdp)) {
474 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
475 return;
476 }
477#endif /* __PAGETABLE_PMD_FOLDED */
478
479 WRITE_ONCE(*pmdp, pmd);
480
481 if (pmd_valid(pmd)) {
482 dsb(ishst);
483 isb();
484 }
485}
486
487static inline void pmd_clear(pmd_t *pmdp)
488{
489 set_pmd(pmdp, __pmd(0));
490}
491
492static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
493{
494 return __pmd_to_phys(pmd);
495}
496
497static inline void pte_unmap(pte_t *pte) { }
498
499/* Find an entry in the third-level page table. */
500#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
501
502#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
503#define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
504
505#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
506
507#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
508#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
509#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
510
511#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
512
513/* use ONLY for statically allocated translation tables */
514#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
515
516/*
517 * Conversion functions: convert a page and protection to a page entry,
518 * and a page entry and page directory to the page they refer to.
519 */
520#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
521
522#if CONFIG_PGTABLE_LEVELS > 2
523
524#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
525
526#define pud_none(pud) (!pud_val(pud))
527#define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
528#define pud_present(pud) pte_present(pud_pte(pud))
529#define pud_leaf(pud) pud_sect(pud)
530#define pud_valid(pud) pte_valid(pud_pte(pud))
531
532static inline void set_pud(pud_t *pudp, pud_t pud)
533{
534#ifdef __PAGETABLE_PUD_FOLDED
535 if (in_swapper_pgdir(pudp)) {
536 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
537 return;
538 }
539#endif /* __PAGETABLE_PUD_FOLDED */
540
541 WRITE_ONCE(*pudp, pud);
542
543 if (pud_valid(pud)) {
544 dsb(ishst);
545 isb();
546 }
547}
548
549static inline void pud_clear(pud_t *pudp)
550{
551 set_pud(pudp, __pud(0));
552}
553
554static inline phys_addr_t pud_page_paddr(pud_t pud)
555{
556 return __pud_to_phys(pud);
557}
558
559/* Find an entry in the second-level page table. */
560#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
561
562#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
563#define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
564
565#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
566#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
567#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
568
569#define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
570
571/* use ONLY for statically allocated translation tables */
572#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
573
574#else
575
576#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
577
578/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
579#define pmd_set_fixmap(addr) NULL
580#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
581#define pmd_clear_fixmap()
582
583#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
584
585#endif /* CONFIG_PGTABLE_LEVELS > 2 */
586
587#if CONFIG_PGTABLE_LEVELS > 3
588
589#define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
590
591#define pgd_none(pgd) (!pgd_val(pgd))
592#define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
593#define pgd_present(pgd) (pgd_val(pgd))
594
595static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
596{
597 if (in_swapper_pgdir(pgdp)) {
598 set_swapper_pgd(pgdp, pgd);
599 return;
600 }
601
602 WRITE_ONCE(*pgdp, pgd);
603 dsb(ishst);
604 isb();
605}
606
607static inline void pgd_clear(pgd_t *pgdp)
608{
609 set_pgd(pgdp, __pgd(0));
610}
611
612static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
613{
614 return __pgd_to_phys(pgd);
615}
616
617/* Find an entry in the frst-level page table. */
618#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
619
620#define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
621#define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr))))
622
623#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
624#define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr))
625#define pud_clear_fixmap() clear_fixmap(FIX_PUD)
626
627#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
628
629/* use ONLY for statically allocated translation tables */
630#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
631
632#else
633
634#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
635
636/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
637#define pud_set_fixmap(addr) NULL
638#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
639#define pud_clear_fixmap()
640
641#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
642
643#endif /* CONFIG_PGTABLE_LEVELS > 3 */
644
645#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
646
647/* to find an entry in a page-table-directory */
648#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
649
650#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
651
652#define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr)))
653
654/* to find an entry in a kernel page-table-directory */
655#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
656
657#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
658#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
659
660static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
661{
662 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
663 PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
664 /* preserve the hardware dirty information */
665 if (pte_hw_dirty(pte))
666 pte = pte_mkdirty(pte);
667 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
668 return pte;
669}
670
671static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
672{
673 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
674}
675
676#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
677extern int ptep_set_access_flags(struct vm_area_struct *vma,
678 unsigned long address, pte_t *ptep,
679 pte_t entry, int dirty);
680
681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
682#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
683static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
684 unsigned long address, pmd_t *pmdp,
685 pmd_t entry, int dirty)
686{
687 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
688}
689
690static inline int pud_devmap(pud_t pud)
691{
692 return 0;
693}
694
695static inline int pgd_devmap(pgd_t pgd)
696{
697 return 0;
698}
699#endif
700
701/*
702 * Atomic pte/pmd modifications.
703 */
704#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
705static inline int __ptep_test_and_clear_young(pte_t *ptep)
706{
707 pte_t old_pte, pte;
708
709 pte = READ_ONCE(*ptep);
710 do {
711 old_pte = pte;
712 pte = pte_mkold(pte);
713 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
714 pte_val(old_pte), pte_val(pte));
715 } while (pte_val(pte) != pte_val(old_pte));
716
717 return pte_young(pte);
718}
719
720static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
721 unsigned long address,
722 pte_t *ptep)
723{
724 return __ptep_test_and_clear_young(ptep);
725}
726
727#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
728static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
729 unsigned long address, pte_t *ptep)
730{
731 int young = ptep_test_and_clear_young(vma, address, ptep);
732
733 if (young) {
734 /*
735 * We can elide the trailing DSB here since the worst that can
736 * happen is that a CPU continues to use the young entry in its
737 * TLB and we mistakenly reclaim the associated page. The
738 * window for such an event is bounded by the next
739 * context-switch, which provides a DSB to complete the TLB
740 * invalidation.
741 */
742 flush_tlb_page_nosync(vma, address);
743 }
744
745 return young;
746}
747
748#ifdef CONFIG_TRANSPARENT_HUGEPAGE
749#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
750static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
751 unsigned long address,
752 pmd_t *pmdp)
753{
754 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
755}
756#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757
758#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
759static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
760 unsigned long address, pte_t *ptep)
761{
762 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
763}
764
765#ifdef CONFIG_TRANSPARENT_HUGEPAGE
766#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
767static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
768 unsigned long address, pmd_t *pmdp)
769{
770 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
771}
772#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
773
774/*
775 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
776 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
777 */
778#define __HAVE_ARCH_PTEP_SET_WRPROTECT
779static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
780{
781 pte_t old_pte, pte;
782
783 pte = READ_ONCE(*ptep);
784 do {
785 old_pte = pte;
786 /*
787 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
788 * clear), set the PTE_DIRTY bit.
789 */
790 if (pte_hw_dirty(pte))
791 pte = pte_mkdirty(pte);
792 pte = pte_wrprotect(pte);
793 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
794 pte_val(old_pte), pte_val(pte));
795 } while (pte_val(pte) != pte_val(old_pte));
796}
797
798#ifdef CONFIG_TRANSPARENT_HUGEPAGE
799#define __HAVE_ARCH_PMDP_SET_WRPROTECT
800static inline void pmdp_set_wrprotect(struct mm_struct *mm,
801 unsigned long address, pmd_t *pmdp)
802{
803 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
804}
805
806#define pmdp_establish pmdp_establish
807static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
808 unsigned long address, pmd_t *pmdp, pmd_t pmd)
809{
810 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
811}
812#endif
813
814/*
815 * Encode and decode a swap entry:
816 * bits 0-1: present (must be zero)
817 * bits 2-7: swap type
818 * bits 8-57: swap offset
819 * bit 58: PTE_PROT_NONE (must be zero)
820 */
821#define __SWP_TYPE_SHIFT 2
822#define __SWP_TYPE_BITS 6
823#define __SWP_OFFSET_BITS 50
824#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
825#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
826#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
827
828#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
829#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
830#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
831
832#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
833#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
834
835/*
836 * Ensure that there are not more swap files than can be encoded in the kernel
837 * PTEs.
838 */
839#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
840
841extern int kern_addr_valid(unsigned long addr);
842
843#include <asm-generic/pgtable.h>
844
845/*
846 * On AArch64, the cache coherency is handled via the set_pte_at() function.
847 */
848static inline void update_mmu_cache(struct vm_area_struct *vma,
849 unsigned long addr, pte_t *ptep)
850{
851 /*
852 * We don't do anything here, so there's a very small chance of
853 * us retaking a user fault which we just fixed up. The alternative
854 * is doing a dsb(ishst), but that penalises the fastpath.
855 */
856}
857
858#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
859
860#ifdef CONFIG_ARM64_PA_BITS_52
861#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
862#else
863#define phys_to_ttbr(addr) (addr)
864#endif
865
866/*
867 * On arm64 without hardware Access Flag, copying from user will fail because
868 * the pte is old and cannot be marked young. So we always end up with zeroed
869 * page after fork() + CoW for pfn mappings. We don't always have a
870 * hardware-managed access flag on arm64.
871 */
872static inline bool arch_faults_on_old_pte(void)
873{
874 WARN_ON(preemptible());
875
876 return !cpu_has_hw_af();
877}
878#define arch_faults_on_old_pte arch_faults_on_old_pte
879
880#endif /* !__ASSEMBLY__ */
881
882#endif /* __ASM_PGTABLE_H */