at v5.7-rc7 3129 lines 94 kB view raw
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2/* 3 * RocketPort device driver for Linux 4 * 5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 6 * 7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 8 */ 9 10/* 11 * Kernel Synchronization: 12 * 13 * This driver has 2 kernel control paths - exception handlers (calls into the driver 14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 15 * are not used. 16 * 17 * Critical data: 18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 19 * serial port state information and the xmit_buf circular buffer. Protected by 20 * a per port spinlock. 21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 22 * is data to be transmitted. Protected by atomic bit operations. 23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 24 * 25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 26 * simultaneous access to the same port by more than one process. 27 */ 28 29/****** Defines ******/ 30#define ROCKET_PARANOIA_CHECK 31#define ROCKET_DISABLE_SIMUSAGE 32 33#undef ROCKET_SOFT_FLOW 34#undef ROCKET_DEBUG_OPEN 35#undef ROCKET_DEBUG_INTR 36#undef ROCKET_DEBUG_WRITE 37#undef ROCKET_DEBUG_FLOW 38#undef ROCKET_DEBUG_THROTTLE 39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 40#undef ROCKET_DEBUG_RECEIVE 41#undef ROCKET_DEBUG_HANGUP 42#undef REV_PCI_ORDER 43#undef ROCKET_DEBUG_IO 44 45#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 46 47/****** Kernel includes ******/ 48 49#include <linux/module.h> 50#include <linux/errno.h> 51#include <linux/major.h> 52#include <linux/kernel.h> 53#include <linux/signal.h> 54#include <linux/slab.h> 55#include <linux/mm.h> 56#include <linux/sched.h> 57#include <linux/timer.h> 58#include <linux/interrupt.h> 59#include <linux/tty.h> 60#include <linux/tty_driver.h> 61#include <linux/tty_flip.h> 62#include <linux/serial.h> 63#include <linux/string.h> 64#include <linux/fcntl.h> 65#include <linux/ptrace.h> 66#include <linux/mutex.h> 67#include <linux/ioport.h> 68#include <linux/delay.h> 69#include <linux/completion.h> 70#include <linux/wait.h> 71#include <linux/pci.h> 72#include <linux/uaccess.h> 73#include <linux/atomic.h> 74#include <asm/unaligned.h> 75#include <linux/bitops.h> 76#include <linux/spinlock.h> 77#include <linux/init.h> 78 79/****** RocketPort includes ******/ 80 81#include "rocket_int.h" 82#include "rocket.h" 83 84#define ROCKET_VERSION "2.09" 85#define ROCKET_DATE "12-June-2003" 86 87/****** RocketPort Local Variables ******/ 88 89static void rp_do_poll(struct timer_list *unused); 90 91static struct tty_driver *rocket_driver; 92 93static struct rocket_version driver_version = { 94 ROCKET_VERSION, ROCKET_DATE 95}; 96 97static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 98static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 99 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 100static atomic_t rp_num_ports_open; /* Number of serial ports open */ 101static DEFINE_TIMER(rocket_timer, rp_do_poll); 102 103static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 104static unsigned long board2; 105static unsigned long board3; 106static unsigned long board4; 107static unsigned long controller; 108static bool support_low_speed; 109static unsigned long modem1; 110static unsigned long modem2; 111static unsigned long modem3; 112static unsigned long modem4; 113static unsigned long pc104_1[8]; 114static unsigned long pc104_2[8]; 115static unsigned long pc104_3[8]; 116static unsigned long pc104_4[8]; 117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 118 119static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 120static unsigned long rcktpt_io_addr[NUM_BOARDS]; 121static int rcktpt_type[NUM_BOARDS]; 122static int is_PCI[NUM_BOARDS]; 123static rocketModel_t rocketModel[NUM_BOARDS]; 124static int max_board; 125static const struct tty_port_operations rocket_port_ops; 126 127/* 128 * The following arrays define the interrupt bits corresponding to each AIOP. 129 * These bits are different between the ISA and regular PCI boards and the 130 * Universal PCI boards. 131 */ 132 133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 134 AIOP_INTR_BIT_0, 135 AIOP_INTR_BIT_1, 136 AIOP_INTR_BIT_2, 137 AIOP_INTR_BIT_3 138}; 139 140#ifdef CONFIG_PCI 141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 142 UPCI_AIOP_INTR_BIT_0, 143 UPCI_AIOP_INTR_BIT_1, 144 UPCI_AIOP_INTR_BIT_2, 145 UPCI_AIOP_INTR_BIT_3 146}; 147#endif 148 149static Byte_t RData[RDATASIZE] = { 150 0x00, 0x09, 0xf6, 0x82, 151 0x02, 0x09, 0x86, 0xfb, 152 0x04, 0x09, 0x00, 0x0a, 153 0x06, 0x09, 0x01, 0x0a, 154 0x08, 0x09, 0x8a, 0x13, 155 0x0a, 0x09, 0xc5, 0x11, 156 0x0c, 0x09, 0x86, 0x85, 157 0x0e, 0x09, 0x20, 0x0a, 158 0x10, 0x09, 0x21, 0x0a, 159 0x12, 0x09, 0x41, 0xff, 160 0x14, 0x09, 0x82, 0x00, 161 0x16, 0x09, 0x82, 0x7b, 162 0x18, 0x09, 0x8a, 0x7d, 163 0x1a, 0x09, 0x88, 0x81, 164 0x1c, 0x09, 0x86, 0x7a, 165 0x1e, 0x09, 0x84, 0x81, 166 0x20, 0x09, 0x82, 0x7c, 167 0x22, 0x09, 0x0a, 0x0a 168}; 169 170static Byte_t RRegData[RREGDATASIZE] = { 171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 184}; 185 186static CONTROLLER_T sController[CTL_SIZE] = { 187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 195}; 196 197static Byte_t sBitMapClrTbl[8] = { 198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 199}; 200 201static Byte_t sBitMapSetTbl[8] = { 202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 203}; 204 205static int sClockPrescale = 0x14; 206 207/* 208 * Line number is the ttySIx number (x), the Minor number. We 209 * assign them sequentially, starting at zero. The following 210 * array keeps track of the line number assigned to a given board/aiop/channel. 211 */ 212static unsigned char lineNumbers[MAX_RP_PORTS]; 213static unsigned long nextLineNumber; 214 215/***** RocketPort Static Prototypes *********/ 216static int __init init_ISA(int i); 217static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 218static void rp_flush_buffer(struct tty_struct *tty); 219static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 220static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 221static void rp_start(struct tty_struct *tty); 222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 223 int ChanNum); 224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 225static void sFlushRxFIFO(CHANNEL_T * ChP); 226static void sFlushTxFIFO(CHANNEL_T * ChP); 227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 233 ByteIO_t * AiopIOList, int AiopIOListSize, 234 int IRQNum, Byte_t Frequency, int PeriodicOnly); 235static int sReadAiopID(ByteIO_t io); 236static int sReadAiopNumChan(WordIO_t io); 237 238MODULE_AUTHOR("Theodore Ts'o"); 239MODULE_DESCRIPTION("Comtrol RocketPort driver"); 240module_param_hw(board1, ulong, ioport, 0); 241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 242module_param_hw(board2, ulong, ioport, 0); 243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 244module_param_hw(board3, ulong, ioport, 0); 245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 246module_param_hw(board4, ulong, ioport, 0); 247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 248module_param_hw(controller, ulong, ioport, 0); 249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 250module_param(support_low_speed, bool, 0); 251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 252module_param(modem1, ulong, 0); 253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 254module_param(modem2, ulong, 0); 255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 256module_param(modem3, ulong, 0); 257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 258module_param(modem4, ulong, 0); 259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 260module_param_array(pc104_1, ulong, NULL, 0); 261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 262module_param_array(pc104_2, ulong, NULL, 0); 263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 264module_param_array(pc104_3, ulong, NULL, 0); 265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 266module_param_array(pc104_4, ulong, NULL, 0); 267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 268 269static int __init rp_init(void); 270static void rp_cleanup_module(void); 271 272module_init(rp_init); 273module_exit(rp_cleanup_module); 274 275 276MODULE_LICENSE("Dual BSD/GPL"); 277 278/*************************************************************************/ 279/* Module code starts here */ 280 281static inline int rocket_paranoia_check(struct r_port *info, 282 const char *routine) 283{ 284#ifdef ROCKET_PARANOIA_CHECK 285 if (!info) 286 return 1; 287 if (info->magic != RPORT_MAGIC) { 288 printk(KERN_WARNING "Warning: bad magic number for rocketport " 289 "struct in %s\n", routine); 290 return 1; 291 } 292#endif 293 return 0; 294} 295 296 297/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 299 * tty layer. 300 */ 301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 302 unsigned int ChanStatus) 303{ 304 unsigned int CharNStat; 305 int ToRecv, wRecv, space; 306 unsigned char *cbuf; 307 308 ToRecv = sGetRxCnt(cp); 309#ifdef ROCKET_DEBUG_INTR 310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 311#endif 312 if (ToRecv == 0) 313 return; 314 315 /* 316 * if status indicates there are errored characters in the 317 * FIFO, then enter status mode (a word in FIFO holds 318 * character and status). 319 */ 320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 321 if (!(ChanStatus & STATMODE)) { 322#ifdef ROCKET_DEBUG_RECEIVE 323 printk(KERN_INFO "Entering STATMODE...\n"); 324#endif 325 ChanStatus |= STATMODE; 326 sEnRxStatusMode(cp); 327 } 328 } 329 330 /* 331 * if we previously entered status mode, then read down the 332 * FIFO one word at a time, pulling apart the character and 333 * the status. Update error counters depending on status 334 */ 335 if (ChanStatus & STATMODE) { 336#ifdef ROCKET_DEBUG_RECEIVE 337 printk(KERN_INFO "Ignore %x, read %x...\n", 338 info->ignore_status_mask, info->read_status_mask); 339#endif 340 while (ToRecv) { 341 char flag; 342 343 CharNStat = sInW(sGetTxRxDataIO(cp)); 344#ifdef ROCKET_DEBUG_RECEIVE 345 printk(KERN_INFO "%x...\n", CharNStat); 346#endif 347 if (CharNStat & STMBREAKH) 348 CharNStat &= ~(STMFRAMEH | STMPARITYH); 349 if (CharNStat & info->ignore_status_mask) { 350 ToRecv--; 351 continue; 352 } 353 CharNStat &= info->read_status_mask; 354 if (CharNStat & STMBREAKH) 355 flag = TTY_BREAK; 356 else if (CharNStat & STMPARITYH) 357 flag = TTY_PARITY; 358 else if (CharNStat & STMFRAMEH) 359 flag = TTY_FRAME; 360 else if (CharNStat & STMRCVROVRH) 361 flag = TTY_OVERRUN; 362 else 363 flag = TTY_NORMAL; 364 tty_insert_flip_char(&info->port, CharNStat & 0xff, 365 flag); 366 ToRecv--; 367 } 368 369 /* 370 * after we've emptied the FIFO in status mode, turn 371 * status mode back off 372 */ 373 if (sGetRxCnt(cp) == 0) { 374#ifdef ROCKET_DEBUG_RECEIVE 375 printk(KERN_INFO "Status mode off.\n"); 376#endif 377 sDisRxStatusMode(cp); 378 } 379 } else { 380 /* 381 * we aren't in status mode, so read down the FIFO two 382 * characters at time by doing repeated word IO 383 * transfer. 384 */ 385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 386 if (space < ToRecv) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 389#endif 390 if (space <= 0) 391 return; 392 ToRecv = space; 393 } 394 wRecv = ToRecv >> 1; 395 if (wRecv) 396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 397 if (ToRecv & 1) 398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 399 } 400 /* Push the data up to the tty layer */ 401 tty_flip_buffer_push(&info->port); 402} 403 404/* 405 * Serial port transmit data function. Called from the timer polling loop as a 406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 409 */ 410static void rp_do_transmit(struct r_port *info) 411{ 412 int c; 413 CHANNEL_t *cp = &info->channel; 414 struct tty_struct *tty; 415 unsigned long flags; 416 417#ifdef ROCKET_DEBUG_INTR 418 printk(KERN_DEBUG "%s\n", __func__); 419#endif 420 if (!info) 421 return; 422 tty = tty_port_tty_get(&info->port); 423 424 if (tty == NULL) { 425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 427 return; 428 } 429 430 spin_lock_irqsave(&info->slock, flags); 431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 432 433 /* Loop sending data to FIFO until done or FIFO full */ 434 while (1) { 435 if (tty->stopped) 436 break; 437 c = min(info->xmit_fifo_room, info->xmit_cnt); 438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 439 if (c <= 0 || info->xmit_fifo_room <= 0) 440 break; 441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 442 if (c & 1) 443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 444 info->xmit_tail += c; 445 info->xmit_tail &= XMIT_BUF_SIZE - 1; 446 info->xmit_cnt -= c; 447 info->xmit_fifo_room -= c; 448#ifdef ROCKET_DEBUG_INTR 449 printk(KERN_INFO "tx %d chars...\n", c); 450#endif 451 } 452 453 if (info->xmit_cnt == 0) 454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 455 456 if (info->xmit_cnt < WAKEUP_CHARS) { 457 tty_wakeup(tty); 458#ifdef ROCKETPORT_HAVE_POLL_WAIT 459 wake_up_interruptible(&tty->poll_wait); 460#endif 461 } 462 463 spin_unlock_irqrestore(&info->slock, flags); 464 tty_kref_put(tty); 465 466#ifdef ROCKET_DEBUG_INTR 467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 468 info->xmit_tail, info->xmit_fifo_room); 469#endif 470} 471 472/* 473 * Called when a serial port signals it has read data in it's RX FIFO. 474 * It checks what interrupts are pending and services them, including 475 * receiving serial data. 476 */ 477static void rp_handle_port(struct r_port *info) 478{ 479 CHANNEL_t *cp; 480 unsigned int IntMask, ChanStatus; 481 482 if (!info) 483 return; 484 485 if (!tty_port_initialized(&info->port)) { 486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 487 "info->flags & NOT_INIT\n"); 488 return; 489 } 490 491 cp = &info->channel; 492 493 IntMask = sGetChanIntID(cp) & info->intmask; 494#ifdef ROCKET_DEBUG_INTR 495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 496#endif 497 ChanStatus = sGetChanStatus(cp); 498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 499 rp_do_receive(info, cp, ChanStatus); 500 } 501 if (IntMask & DELTA_CD) { /* CD change */ 502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 504 (ChanStatus & CD_ACT) ? "on" : "off"); 505#endif 506 if (!(ChanStatus & CD_ACT) && info->cd_status) { 507#ifdef ROCKET_DEBUG_HANGUP 508 printk(KERN_INFO "CD drop, calling hangup.\n"); 509#endif 510 tty_port_tty_hangup(&info->port, false); 511 } 512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 513 wake_up_interruptible(&info->port.open_wait); 514 } 515#ifdef ROCKET_DEBUG_INTR 516 if (IntMask & DELTA_CTS) { /* CTS change */ 517 printk(KERN_INFO "CTS change...\n"); 518 } 519 if (IntMask & DELTA_DSR) { /* DSR change */ 520 printk(KERN_INFO "DSR change...\n"); 521 } 522#endif 523} 524 525/* 526 * The top level polling routine. Repeats every 1/100 HZ (10ms). 527 */ 528static void rp_do_poll(struct timer_list *unused) 529{ 530 CONTROLLER_t *ctlp; 531 int ctrl, aiop, ch, line; 532 unsigned int xmitmask, i; 533 unsigned int CtlMask; 534 unsigned char AiopMask; 535 Word_t bit; 536 537 /* Walk through all the boards (ctrl's) */ 538 for (ctrl = 0; ctrl < max_board; ctrl++) { 539 if (rcktpt_io_addr[ctrl] <= 0) 540 continue; 541 542 /* Get a ptr to the board's control struct */ 543 ctlp = sCtlNumToCtlPtr(ctrl); 544 545 /* Get the interrupt status from the board */ 546#ifdef CONFIG_PCI 547 if (ctlp->BusType == isPCI) 548 CtlMask = sPCIGetControllerIntStatus(ctlp); 549 else 550#endif 551 CtlMask = sGetControllerIntStatus(ctlp); 552 553 /* Check if any AIOP read bits are set */ 554 for (aiop = 0; CtlMask; aiop++) { 555 bit = ctlp->AiopIntrBits[aiop]; 556 if (CtlMask & bit) { 557 CtlMask &= ~bit; 558 AiopMask = sGetAiopIntStatus(ctlp, aiop); 559 560 /* Check if any port read bits are set */ 561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 562 if (AiopMask & 1) { 563 564 /* Get the line number (/dev/ttyRx number). */ 565 /* Read the data from the port. */ 566 line = GetLineNumber(ctrl, aiop, ch); 567 rp_handle_port(rp_table[line]); 568 } 569 } 570 } 571 } 572 573 xmitmask = xmit_flags[ctrl]; 574 575 /* 576 * xmit_flags contains bit-significant flags, indicating there is data 577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 578 * 1, ... (32 total possible). The variable i has the aiop and ch 579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 580 */ 581 if (xmitmask) { 582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 583 if (xmitmask & (1 << i)) { 584 aiop = (i & 0x18) >> 3; 585 ch = i & 0x07; 586 line = GetLineNumber(ctrl, aiop, ch); 587 rp_do_transmit(rp_table[line]); 588 } 589 } 590 } 591 } 592 593 /* 594 * Reset the timer so we get called at the next clock tick (10ms). 595 */ 596 if (atomic_read(&rp_num_ports_open)) 597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 598} 599 600/* 601 * Initializes the r_port structure for a port, as well as enabling the port on 602 * the board. 603 * Inputs: board, aiop, chan numbers 604 */ 605static void __init 606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 607{ 608 unsigned rocketMode; 609 struct r_port *info; 610 int line; 611 CONTROLLER_T *ctlp; 612 613 /* Get the next available line number */ 614 line = SetLineNumber(board, aiop, chan); 615 616 ctlp = sCtlNumToCtlPtr(board); 617 618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 620 if (!info) { 621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 622 line); 623 return; 624 } 625 626 info->magic = RPORT_MAGIC; 627 info->line = line; 628 info->ctlp = ctlp; 629 info->board = board; 630 info->aiop = aiop; 631 info->chan = chan; 632 tty_port_init(&info->port); 633 info->port.ops = &rocket_port_ops; 634 info->flags &= ~ROCKET_MODE_MASK; 635 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1)) 636 switch (pc104[board][line]) { 637 case 422: 638 info->flags |= ROCKET_MODE_RS422; 639 break; 640 case 485: 641 info->flags |= ROCKET_MODE_RS485; 642 break; 643 case 232: 644 default: 645 info->flags |= ROCKET_MODE_RS232; 646 break; 647 } 648 else 649 info->flags |= ROCKET_MODE_RS232; 650 651 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 652 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 653 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 654 board, aiop, chan); 655 tty_port_destroy(&info->port); 656 kfree(info); 657 return; 658 } 659 660 rocketMode = info->flags & ROCKET_MODE_MASK; 661 662 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 663 sEnRTSToggle(&info->channel); 664 else 665 sDisRTSToggle(&info->channel); 666 667 if (ctlp->boardType == ROCKET_TYPE_PC104) { 668 switch (rocketMode) { 669 case ROCKET_MODE_RS485: 670 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 671 break; 672 case ROCKET_MODE_RS422: 673 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 674 break; 675 case ROCKET_MODE_RS232: 676 default: 677 if (info->flags & ROCKET_RTS_TOGGLE) 678 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 679 else 680 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 681 break; 682 } 683 } 684 spin_lock_init(&info->slock); 685 mutex_init(&info->write_mtx); 686 rp_table[line] = info; 687 tty_port_register_device(&info->port, rocket_driver, line, 688 pci_dev ? &pci_dev->dev : NULL); 689} 690 691/* 692 * Configures a rocketport port according to its termio settings. Called from 693 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 694 */ 695static void configure_r_port(struct tty_struct *tty, struct r_port *info, 696 struct ktermios *old_termios) 697{ 698 unsigned cflag; 699 unsigned long flags; 700 unsigned rocketMode; 701 int bits, baud, divisor; 702 CHANNEL_t *cp; 703 struct ktermios *t = &tty->termios; 704 705 cp = &info->channel; 706 cflag = t->c_cflag; 707 708 /* Byte size and parity */ 709 if ((cflag & CSIZE) == CS8) { 710 sSetData8(cp); 711 bits = 10; 712 } else { 713 sSetData7(cp); 714 bits = 9; 715 } 716 if (cflag & CSTOPB) { 717 sSetStop2(cp); 718 bits++; 719 } else { 720 sSetStop1(cp); 721 } 722 723 if (cflag & PARENB) { 724 sEnParity(cp); 725 bits++; 726 if (cflag & PARODD) { 727 sSetOddParity(cp); 728 } else { 729 sSetEvenParity(cp); 730 } 731 } else { 732 sDisParity(cp); 733 } 734 735 /* baud rate */ 736 baud = tty_get_baud_rate(tty); 737 if (!baud) 738 baud = 9600; 739 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 740 if ((divisor >= 8192 || divisor < 0) && old_termios) { 741 baud = tty_termios_baud_rate(old_termios); 742 if (!baud) 743 baud = 9600; 744 divisor = (rp_baud_base[info->board] / baud) - 1; 745 } 746 if (divisor >= 8192 || divisor < 0) { 747 baud = 9600; 748 divisor = (rp_baud_base[info->board] / baud) - 1; 749 } 750 info->cps = baud / bits; 751 sSetBaud(cp, divisor); 752 753 /* FIXME: Should really back compute a baud rate from the divisor */ 754 tty_encode_baud_rate(tty, baud, baud); 755 756 if (cflag & CRTSCTS) { 757 info->intmask |= DELTA_CTS; 758 sEnCTSFlowCtl(cp); 759 } else { 760 info->intmask &= ~DELTA_CTS; 761 sDisCTSFlowCtl(cp); 762 } 763 if (cflag & CLOCAL) { 764 info->intmask &= ~DELTA_CD; 765 } else { 766 spin_lock_irqsave(&info->slock, flags); 767 if (sGetChanStatus(cp) & CD_ACT) 768 info->cd_status = 1; 769 else 770 info->cd_status = 0; 771 info->intmask |= DELTA_CD; 772 spin_unlock_irqrestore(&info->slock, flags); 773 } 774 775 /* 776 * Handle software flow control in the board 777 */ 778#ifdef ROCKET_SOFT_FLOW 779 if (I_IXON(tty)) { 780 sEnTxSoftFlowCtl(cp); 781 if (I_IXANY(tty)) { 782 sEnIXANY(cp); 783 } else { 784 sDisIXANY(cp); 785 } 786 sSetTxXONChar(cp, START_CHAR(tty)); 787 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 788 } else { 789 sDisTxSoftFlowCtl(cp); 790 sDisIXANY(cp); 791 sClrTxXOFF(cp); 792 } 793#endif 794 795 /* 796 * Set up ignore/read mask words 797 */ 798 info->read_status_mask = STMRCVROVRH | 0xFF; 799 if (I_INPCK(tty)) 800 info->read_status_mask |= STMFRAMEH | STMPARITYH; 801 if (I_BRKINT(tty) || I_PARMRK(tty)) 802 info->read_status_mask |= STMBREAKH; 803 804 /* 805 * Characters to ignore 806 */ 807 info->ignore_status_mask = 0; 808 if (I_IGNPAR(tty)) 809 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 810 if (I_IGNBRK(tty)) { 811 info->ignore_status_mask |= STMBREAKH; 812 /* 813 * If we're ignoring parity and break indicators, 814 * ignore overruns too. (For real raw support). 815 */ 816 if (I_IGNPAR(tty)) 817 info->ignore_status_mask |= STMRCVROVRH; 818 } 819 820 rocketMode = info->flags & ROCKET_MODE_MASK; 821 822 if ((info->flags & ROCKET_RTS_TOGGLE) 823 || (rocketMode == ROCKET_MODE_RS485)) 824 sEnRTSToggle(cp); 825 else 826 sDisRTSToggle(cp); 827 828 sSetRTS(&info->channel); 829 830 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 831 switch (rocketMode) { 832 case ROCKET_MODE_RS485: 833 sSetInterfaceMode(cp, InterfaceModeRS485); 834 break; 835 case ROCKET_MODE_RS422: 836 sSetInterfaceMode(cp, InterfaceModeRS422); 837 break; 838 case ROCKET_MODE_RS232: 839 default: 840 if (info->flags & ROCKET_RTS_TOGGLE) 841 sSetInterfaceMode(cp, InterfaceModeRS232T); 842 else 843 sSetInterfaceMode(cp, InterfaceModeRS232); 844 break; 845 } 846 } 847} 848 849static int carrier_raised(struct tty_port *port) 850{ 851 struct r_port *info = container_of(port, struct r_port, port); 852 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 853} 854 855static void dtr_rts(struct tty_port *port, int on) 856{ 857 struct r_port *info = container_of(port, struct r_port, port); 858 if (on) { 859 sSetDTR(&info->channel); 860 sSetRTS(&info->channel); 861 } else { 862 sClrDTR(&info->channel); 863 sClrRTS(&info->channel); 864 } 865} 866 867/* 868 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 869 * port's r_port struct. Initializes the port hardware. 870 */ 871static int rp_open(struct tty_struct *tty, struct file *filp) 872{ 873 struct r_port *info; 874 struct tty_port *port; 875 int retval; 876 CHANNEL_t *cp; 877 unsigned long page; 878 879 info = rp_table[tty->index]; 880 if (info == NULL) 881 return -ENXIO; 882 port = &info->port; 883 884 page = __get_free_page(GFP_KERNEL); 885 if (!page) 886 return -ENOMEM; 887 888 /* 889 * We must not sleep from here until the port is marked fully in use. 890 */ 891 if (info->xmit_buf) 892 free_page(page); 893 else 894 info->xmit_buf = (unsigned char *) page; 895 896 tty->driver_data = info; 897 tty_port_tty_set(port, tty); 898 899 if (port->count++ == 0) { 900 atomic_inc(&rp_num_ports_open); 901 902#ifdef ROCKET_DEBUG_OPEN 903 printk(KERN_INFO "rocket mod++ = %d...\n", 904 atomic_read(&rp_num_ports_open)); 905#endif 906 } 907#ifdef ROCKET_DEBUG_OPEN 908 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 909#endif 910 911 /* 912 * Info->count is now 1; so it's safe to sleep now. 913 */ 914 if (!tty_port_initialized(port)) { 915 cp = &info->channel; 916 sSetRxTrigger(cp, TRIG_1); 917 if (sGetChanStatus(cp) & CD_ACT) 918 info->cd_status = 1; 919 else 920 info->cd_status = 0; 921 sDisRxStatusMode(cp); 922 sFlushRxFIFO(cp); 923 sFlushTxFIFO(cp); 924 925 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 926 sSetRxTrigger(cp, TRIG_1); 927 928 sGetChanStatus(cp); 929 sDisRxStatusMode(cp); 930 sClrTxXOFF(cp); 931 932 sDisCTSFlowCtl(cp); 933 sDisTxSoftFlowCtl(cp); 934 935 sEnRxFIFO(cp); 936 sEnTransmit(cp); 937 938 tty_port_set_initialized(&info->port, 1); 939 940 configure_r_port(tty, info, NULL); 941 if (C_BAUD(tty)) { 942 sSetDTR(cp); 943 sSetRTS(cp); 944 } 945 } 946 /* Starts (or resets) the maint polling loop */ 947 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 948 949 retval = tty_port_block_til_ready(port, tty, filp); 950 if (retval) { 951#ifdef ROCKET_DEBUG_OPEN 952 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 953#endif 954 return retval; 955 } 956 return 0; 957} 958 959/* 960 * Exception handler that closes a serial port. info->port.count is considered critical. 961 */ 962static void rp_close(struct tty_struct *tty, struct file *filp) 963{ 964 struct r_port *info = tty->driver_data; 965 struct tty_port *port = &info->port; 966 int timeout; 967 CHANNEL_t *cp; 968 969 if (rocket_paranoia_check(info, "rp_close")) 970 return; 971 972#ifdef ROCKET_DEBUG_OPEN 973 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 974#endif 975 976 if (tty_port_close_start(port, tty, filp) == 0) 977 return; 978 979 mutex_lock(&port->mutex); 980 cp = &info->channel; 981 /* 982 * Before we drop DTR, make sure the UART transmitter 983 * has completely drained; this is especially 984 * important if there is a transmit FIFO! 985 */ 986 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 987 if (timeout == 0) 988 timeout = 1; 989 rp_wait_until_sent(tty, timeout); 990 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 991 992 sDisTransmit(cp); 993 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 994 sDisCTSFlowCtl(cp); 995 sDisTxSoftFlowCtl(cp); 996 sClrTxXOFF(cp); 997 sFlushRxFIFO(cp); 998 sFlushTxFIFO(cp); 999 sClrRTS(cp); 1000 if (C_HUPCL(tty)) 1001 sClrDTR(cp); 1002 1003 rp_flush_buffer(tty); 1004 1005 tty_ldisc_flush(tty); 1006 1007 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1008 1009 /* We can't yet use tty_port_close_end as the buffer handling in this 1010 driver is a bit different to the usual */ 1011 1012 if (port->blocked_open) { 1013 if (port->close_delay) { 1014 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1015 } 1016 wake_up_interruptible(&port->open_wait); 1017 } else { 1018 if (info->xmit_buf) { 1019 free_page((unsigned long) info->xmit_buf); 1020 info->xmit_buf = NULL; 1021 } 1022 } 1023 spin_lock_irq(&port->lock); 1024 tty->closing = 0; 1025 spin_unlock_irq(&port->lock); 1026 tty_port_set_initialized(port, 0); 1027 tty_port_set_active(port, 0); 1028 mutex_unlock(&port->mutex); 1029 tty_port_tty_set(port, NULL); 1030 1031 atomic_dec(&rp_num_ports_open); 1032 1033#ifdef ROCKET_DEBUG_OPEN 1034 printk(KERN_INFO "rocket mod-- = %d...\n", 1035 atomic_read(&rp_num_ports_open)); 1036 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1037#endif 1038 1039} 1040 1041static void rp_set_termios(struct tty_struct *tty, 1042 struct ktermios *old_termios) 1043{ 1044 struct r_port *info = tty->driver_data; 1045 CHANNEL_t *cp; 1046 unsigned cflag; 1047 1048 if (rocket_paranoia_check(info, "rp_set_termios")) 1049 return; 1050 1051 cflag = tty->termios.c_cflag; 1052 1053 /* 1054 * This driver doesn't support CS5 or CS6 1055 */ 1056 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1057 tty->termios.c_cflag = 1058 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1059 /* Or CMSPAR */ 1060 tty->termios.c_cflag &= ~CMSPAR; 1061 1062 configure_r_port(tty, info, old_termios); 1063 1064 cp = &info->channel; 1065 1066 /* Handle transition to B0 status */ 1067 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1068 sClrDTR(cp); 1069 sClrRTS(cp); 1070 } 1071 1072 /* Handle transition away from B0 status */ 1073 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1074 sSetRTS(cp); 1075 sSetDTR(cp); 1076 } 1077 1078 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1079 rp_start(tty); 1080} 1081 1082static int rp_break(struct tty_struct *tty, int break_state) 1083{ 1084 struct r_port *info = tty->driver_data; 1085 unsigned long flags; 1086 1087 if (rocket_paranoia_check(info, "rp_break")) 1088 return -EINVAL; 1089 1090 spin_lock_irqsave(&info->slock, flags); 1091 if (break_state == -1) 1092 sSendBreak(&info->channel); 1093 else 1094 sClrBreak(&info->channel); 1095 spin_unlock_irqrestore(&info->slock, flags); 1096 return 0; 1097} 1098 1099/* 1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1101 * the UPCI boards was added, it was decided to make this a function because 1102 * the macro was getting too complicated. All cases except the first one 1103 * (UPCIRingInd) are taken directly from the original macro. 1104 */ 1105static int sGetChanRI(CHANNEL_T * ChP) 1106{ 1107 CONTROLLER_t *CtlP = ChP->CtlP; 1108 int ChanNum = ChP->ChanNum; 1109 int RingInd = 0; 1110 1111 if (CtlP->UPCIRingInd) 1112 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1113 else if (CtlP->AltChanRingIndicator) 1114 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1115 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1116 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1117 1118 return RingInd; 1119} 1120 1121/********************************************************************************************/ 1122/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1123 1124/* 1125 * Returns the state of the serial modem control lines. These next 2 functions 1126 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1127 */ 1128static int rp_tiocmget(struct tty_struct *tty) 1129{ 1130 struct r_port *info = tty->driver_data; 1131 unsigned int control, result, ChanStatus; 1132 1133 ChanStatus = sGetChanStatusLo(&info->channel); 1134 control = info->channel.TxControl[3]; 1135 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1136 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1137 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1138 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1139 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1140 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1141 1142 return result; 1143} 1144 1145/* 1146 * Sets the modem control lines 1147 */ 1148static int rp_tiocmset(struct tty_struct *tty, 1149 unsigned int set, unsigned int clear) 1150{ 1151 struct r_port *info = tty->driver_data; 1152 1153 if (set & TIOCM_RTS) 1154 info->channel.TxControl[3] |= SET_RTS; 1155 if (set & TIOCM_DTR) 1156 info->channel.TxControl[3] |= SET_DTR; 1157 if (clear & TIOCM_RTS) 1158 info->channel.TxControl[3] &= ~SET_RTS; 1159 if (clear & TIOCM_DTR) 1160 info->channel.TxControl[3] &= ~SET_DTR; 1161 1162 out32(info->channel.IndexAddr, info->channel.TxControl); 1163 return 0; 1164} 1165 1166static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1167{ 1168 struct rocket_config tmp; 1169 1170 memset(&tmp, 0, sizeof (tmp)); 1171 mutex_lock(&info->port.mutex); 1172 tmp.line = info->line; 1173 tmp.flags = info->flags; 1174 tmp.close_delay = info->port.close_delay; 1175 tmp.closing_wait = info->port.closing_wait; 1176 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1177 mutex_unlock(&info->port.mutex); 1178 1179 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1180 return -EFAULT; 1181 return 0; 1182} 1183 1184static int set_config(struct tty_struct *tty, struct r_port *info, 1185 struct rocket_config __user *new_info) 1186{ 1187 struct rocket_config new_serial; 1188 1189 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1190 return -EFAULT; 1191 1192 mutex_lock(&info->port.mutex); 1193 if (!capable(CAP_SYS_ADMIN)) 1194 { 1195 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1196 mutex_unlock(&info->port.mutex); 1197 return -EPERM; 1198 } 1199 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1200 mutex_unlock(&info->port.mutex); 1201 return 0; 1202 } 1203 1204 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) { 1205 /* warn about deprecation, unless clearing */ 1206 if (new_serial.flags & ROCKET_SPD_MASK) 1207 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n"); 1208 } 1209 1210 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1211 info->port.close_delay = new_serial.close_delay; 1212 info->port.closing_wait = new_serial.closing_wait; 1213 1214 mutex_unlock(&info->port.mutex); 1215 1216 configure_r_port(tty, info, NULL); 1217 return 0; 1218} 1219 1220/* 1221 * This function fills in a rocket_ports struct with information 1222 * about what boards/ports are in the system. This info is passed 1223 * to user space. See setrocket.c where the info is used to create 1224 * the /dev/ttyRx ports. 1225 */ 1226static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1227{ 1228 struct rocket_ports *tmp; 1229 int board, ret = 0; 1230 1231 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); 1232 if (!tmp) 1233 return -ENOMEM; 1234 1235 tmp->tty_major = rocket_driver->major; 1236 1237 for (board = 0; board < 4; board++) { 1238 tmp->rocketModel[board].model = rocketModel[board].model; 1239 strcpy(tmp->rocketModel[board].modelString, 1240 rocketModel[board].modelString); 1241 tmp->rocketModel[board].numPorts = rocketModel[board].numPorts; 1242 tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1243 tmp->rocketModel[board].startingPortNumber = 1244 rocketModel[board].startingPortNumber; 1245 } 1246 if (copy_to_user(retports, tmp, sizeof(*retports))) 1247 ret = -EFAULT; 1248 kfree(tmp); 1249 return ret; 1250} 1251 1252static int reset_rm2(struct r_port *info, void __user *arg) 1253{ 1254 int reset; 1255 1256 if (!capable(CAP_SYS_ADMIN)) 1257 return -EPERM; 1258 1259 if (copy_from_user(&reset, arg, sizeof (int))) 1260 return -EFAULT; 1261 if (reset) 1262 reset = 1; 1263 1264 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1265 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1266 return -EINVAL; 1267 1268 if (info->ctlp->BusType == isISA) 1269 sModemReset(info->ctlp, info->chan, reset); 1270 else 1271 sPCIModemReset(info->ctlp, info->chan, reset); 1272 1273 return 0; 1274} 1275 1276static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1277{ 1278 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1279 return -EFAULT; 1280 return 0; 1281} 1282 1283/* IOCTL call handler into the driver */ 1284static int rp_ioctl(struct tty_struct *tty, 1285 unsigned int cmd, unsigned long arg) 1286{ 1287 struct r_port *info = tty->driver_data; 1288 void __user *argp = (void __user *)arg; 1289 int ret = 0; 1290 1291 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1292 return -ENXIO; 1293 1294 switch (cmd) { 1295 case RCKP_GET_CONFIG: 1296 dev_warn_ratelimited(tty->dev, 1297 "RCKP_GET_CONFIG option is deprecated\n"); 1298 ret = get_config(info, argp); 1299 break; 1300 case RCKP_SET_CONFIG: 1301 dev_warn_ratelimited(tty->dev, 1302 "RCKP_SET_CONFIG option is deprecated\n"); 1303 ret = set_config(tty, info, argp); 1304 break; 1305 case RCKP_GET_PORTS: 1306 dev_warn_ratelimited(tty->dev, 1307 "RCKP_GET_PORTS option is deprecated\n"); 1308 ret = get_ports(info, argp); 1309 break; 1310 case RCKP_RESET_RM2: 1311 dev_warn_ratelimited(tty->dev, 1312 "RCKP_RESET_RM2 option is deprecated\n"); 1313 ret = reset_rm2(info, argp); 1314 break; 1315 case RCKP_GET_VERSION: 1316 dev_warn_ratelimited(tty->dev, 1317 "RCKP_GET_VERSION option is deprecated\n"); 1318 ret = get_version(info, argp); 1319 break; 1320 default: 1321 ret = -ENOIOCTLCMD; 1322 } 1323 return ret; 1324} 1325 1326static void rp_send_xchar(struct tty_struct *tty, char ch) 1327{ 1328 struct r_port *info = tty->driver_data; 1329 CHANNEL_t *cp; 1330 1331 if (rocket_paranoia_check(info, "rp_send_xchar")) 1332 return; 1333 1334 cp = &info->channel; 1335 if (sGetTxCnt(cp)) 1336 sWriteTxPrioByte(cp, ch); 1337 else 1338 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1339} 1340 1341static void rp_throttle(struct tty_struct *tty) 1342{ 1343 struct r_port *info = tty->driver_data; 1344 1345#ifdef ROCKET_DEBUG_THROTTLE 1346 printk(KERN_INFO "throttle %s ....\n", tty->name); 1347#endif 1348 1349 if (rocket_paranoia_check(info, "rp_throttle")) 1350 return; 1351 1352 if (I_IXOFF(tty)) 1353 rp_send_xchar(tty, STOP_CHAR(tty)); 1354 1355 sClrRTS(&info->channel); 1356} 1357 1358static void rp_unthrottle(struct tty_struct *tty) 1359{ 1360 struct r_port *info = tty->driver_data; 1361#ifdef ROCKET_DEBUG_THROTTLE 1362 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1363#endif 1364 1365 if (rocket_paranoia_check(info, "rp_unthrottle")) 1366 return; 1367 1368 if (I_IXOFF(tty)) 1369 rp_send_xchar(tty, START_CHAR(tty)); 1370 1371 sSetRTS(&info->channel); 1372} 1373 1374/* 1375 * ------------------------------------------------------------ 1376 * rp_stop() and rp_start() 1377 * 1378 * This routines are called before setting or resetting tty->stopped. 1379 * They enable or disable transmitter interrupts, as necessary. 1380 * ------------------------------------------------------------ 1381 */ 1382static void rp_stop(struct tty_struct *tty) 1383{ 1384 struct r_port *info = tty->driver_data; 1385 1386#ifdef ROCKET_DEBUG_FLOW 1387 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1388 info->xmit_cnt, info->xmit_fifo_room); 1389#endif 1390 1391 if (rocket_paranoia_check(info, "rp_stop")) 1392 return; 1393 1394 if (sGetTxCnt(&info->channel)) 1395 sDisTransmit(&info->channel); 1396} 1397 1398static void rp_start(struct tty_struct *tty) 1399{ 1400 struct r_port *info = tty->driver_data; 1401 1402#ifdef ROCKET_DEBUG_FLOW 1403 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1404 info->xmit_cnt, info->xmit_fifo_room); 1405#endif 1406 1407 if (rocket_paranoia_check(info, "rp_stop")) 1408 return; 1409 1410 sEnTransmit(&info->channel); 1411 set_bit((info->aiop * 8) + info->chan, 1412 (void *) &xmit_flags[info->board]); 1413} 1414 1415/* 1416 * rp_wait_until_sent() --- wait until the transmitter is empty 1417 */ 1418static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1419{ 1420 struct r_port *info = tty->driver_data; 1421 CHANNEL_t *cp; 1422 unsigned long orig_jiffies; 1423 int check_time, exit_time; 1424 int txcnt; 1425 1426 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1427 return; 1428 1429 cp = &info->channel; 1430 1431 orig_jiffies = jiffies; 1432#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1433 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1434 jiffies); 1435 printk(KERN_INFO "cps=%d...\n", info->cps); 1436#endif 1437 while (1) { 1438 txcnt = sGetTxCnt(cp); 1439 if (!txcnt) { 1440 if (sGetChanStatusLo(cp) & TXSHRMT) 1441 break; 1442 check_time = (HZ / info->cps) / 5; 1443 } else { 1444 check_time = HZ * txcnt / info->cps; 1445 } 1446 if (timeout) { 1447 exit_time = orig_jiffies + timeout - jiffies; 1448 if (exit_time <= 0) 1449 break; 1450 if (exit_time < check_time) 1451 check_time = exit_time; 1452 } 1453 if (check_time == 0) 1454 check_time = 1; 1455#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1456 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1457 jiffies, check_time); 1458#endif 1459 msleep_interruptible(jiffies_to_msecs(check_time)); 1460 if (signal_pending(current)) 1461 break; 1462 } 1463 __set_current_state(TASK_RUNNING); 1464#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1465 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1466#endif 1467} 1468 1469/* 1470 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1471 */ 1472static void rp_hangup(struct tty_struct *tty) 1473{ 1474 CHANNEL_t *cp; 1475 struct r_port *info = tty->driver_data; 1476 unsigned long flags; 1477 1478 if (rocket_paranoia_check(info, "rp_hangup")) 1479 return; 1480 1481#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1482 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1483#endif 1484 rp_flush_buffer(tty); 1485 spin_lock_irqsave(&info->port.lock, flags); 1486 if (info->port.count) 1487 atomic_dec(&rp_num_ports_open); 1488 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1489 spin_unlock_irqrestore(&info->port.lock, flags); 1490 1491 tty_port_hangup(&info->port); 1492 1493 cp = &info->channel; 1494 sDisRxFIFO(cp); 1495 sDisTransmit(cp); 1496 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1497 sDisCTSFlowCtl(cp); 1498 sDisTxSoftFlowCtl(cp); 1499 sClrTxXOFF(cp); 1500 tty_port_set_initialized(&info->port, 0); 1501 1502 wake_up_interruptible(&info->port.open_wait); 1503} 1504 1505/* 1506 * Exception handler - write char routine. The RocketPort driver uses a 1507 * double-buffering strategy, with the twist that if the in-memory CPU 1508 * buffer is empty, and there's space in the transmit FIFO, the 1509 * writing routines will write directly to transmit FIFO. 1510 * Write buffer and counters protected by spinlocks 1511 */ 1512static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1513{ 1514 struct r_port *info = tty->driver_data; 1515 CHANNEL_t *cp; 1516 unsigned long flags; 1517 1518 if (rocket_paranoia_check(info, "rp_put_char")) 1519 return 0; 1520 1521 /* 1522 * Grab the port write mutex, locking out other processes that try to 1523 * write to this port 1524 */ 1525 mutex_lock(&info->write_mtx); 1526 1527#ifdef ROCKET_DEBUG_WRITE 1528 printk(KERN_INFO "rp_put_char %c...\n", ch); 1529#endif 1530 1531 spin_lock_irqsave(&info->slock, flags); 1532 cp = &info->channel; 1533 1534 if (!tty->stopped && info->xmit_fifo_room == 0) 1535 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1536 1537 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1538 info->xmit_buf[info->xmit_head++] = ch; 1539 info->xmit_head &= XMIT_BUF_SIZE - 1; 1540 info->xmit_cnt++; 1541 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1542 } else { 1543 sOutB(sGetTxRxDataIO(cp), ch); 1544 info->xmit_fifo_room--; 1545 } 1546 spin_unlock_irqrestore(&info->slock, flags); 1547 mutex_unlock(&info->write_mtx); 1548 return 1; 1549} 1550 1551/* 1552 * Exception handler - write routine, called when user app writes to the device. 1553 * A per port write mutex is used to protect from another process writing to 1554 * this port at the same time. This other process could be running on the other CPU 1555 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1556 * Spinlocks protect the info xmit members. 1557 */ 1558static int rp_write(struct tty_struct *tty, 1559 const unsigned char *buf, int count) 1560{ 1561 struct r_port *info = tty->driver_data; 1562 CHANNEL_t *cp; 1563 const unsigned char *b; 1564 int c, retval = 0; 1565 unsigned long flags; 1566 1567 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1568 return 0; 1569 1570 if (mutex_lock_interruptible(&info->write_mtx)) 1571 return -ERESTARTSYS; 1572 1573#ifdef ROCKET_DEBUG_WRITE 1574 printk(KERN_INFO "rp_write %d chars...\n", count); 1575#endif 1576 cp = &info->channel; 1577 1578 if (!tty->stopped && info->xmit_fifo_room < count) 1579 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1580 1581 /* 1582 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1583 * into FIFO. Use the write queue for temp storage. 1584 */ 1585 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1586 c = min(count, info->xmit_fifo_room); 1587 b = buf; 1588 1589 /* Push data into FIFO, 2 bytes at a time */ 1590 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1591 1592 /* If there is a byte remaining, write it */ 1593 if (c & 1) 1594 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1595 1596 retval += c; 1597 buf += c; 1598 count -= c; 1599 1600 spin_lock_irqsave(&info->slock, flags); 1601 info->xmit_fifo_room -= c; 1602 spin_unlock_irqrestore(&info->slock, flags); 1603 } 1604 1605 /* If count is zero, we wrote it all and are done */ 1606 if (!count) 1607 goto end; 1608 1609 /* Write remaining data into the port's xmit_buf */ 1610 while (1) { 1611 /* Hung up ? */ 1612 if (!tty_port_active(&info->port)) 1613 goto end; 1614 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1615 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1616 if (c <= 0) 1617 break; 1618 1619 b = buf; 1620 memcpy(info->xmit_buf + info->xmit_head, b, c); 1621 1622 spin_lock_irqsave(&info->slock, flags); 1623 info->xmit_head = 1624 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1625 info->xmit_cnt += c; 1626 spin_unlock_irqrestore(&info->slock, flags); 1627 1628 buf += c; 1629 count -= c; 1630 retval += c; 1631 } 1632 1633 if ((retval > 0) && !tty->stopped) 1634 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1635 1636end: 1637 if (info->xmit_cnt < WAKEUP_CHARS) { 1638 tty_wakeup(tty); 1639#ifdef ROCKETPORT_HAVE_POLL_WAIT 1640 wake_up_interruptible(&tty->poll_wait); 1641#endif 1642 } 1643 mutex_unlock(&info->write_mtx); 1644 return retval; 1645} 1646 1647/* 1648 * Return the number of characters that can be sent. We estimate 1649 * only using the in-memory transmit buffer only, and ignore the 1650 * potential space in the transmit FIFO. 1651 */ 1652static int rp_write_room(struct tty_struct *tty) 1653{ 1654 struct r_port *info = tty->driver_data; 1655 int ret; 1656 1657 if (rocket_paranoia_check(info, "rp_write_room")) 1658 return 0; 1659 1660 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1661 if (ret < 0) 1662 ret = 0; 1663#ifdef ROCKET_DEBUG_WRITE 1664 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1665#endif 1666 return ret; 1667} 1668 1669/* 1670 * Return the number of characters in the buffer. Again, this only 1671 * counts those characters in the in-memory transmit buffer. 1672 */ 1673static int rp_chars_in_buffer(struct tty_struct *tty) 1674{ 1675 struct r_port *info = tty->driver_data; 1676 1677 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1678 return 0; 1679 1680#ifdef ROCKET_DEBUG_WRITE 1681 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1682#endif 1683 return info->xmit_cnt; 1684} 1685 1686/* 1687 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1688 * r_port struct for the port. Note that spinlock are used to protect info members, 1689 * do not call this function if the spinlock is already held. 1690 */ 1691static void rp_flush_buffer(struct tty_struct *tty) 1692{ 1693 struct r_port *info = tty->driver_data; 1694 CHANNEL_t *cp; 1695 unsigned long flags; 1696 1697 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1698 return; 1699 1700 spin_lock_irqsave(&info->slock, flags); 1701 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1702 spin_unlock_irqrestore(&info->slock, flags); 1703 1704#ifdef ROCKETPORT_HAVE_POLL_WAIT 1705 wake_up_interruptible(&tty->poll_wait); 1706#endif 1707 tty_wakeup(tty); 1708 1709 cp = &info->channel; 1710 sFlushTxFIFO(cp); 1711} 1712 1713#ifdef CONFIG_PCI 1714 1715static const struct pci_device_id rocket_pci_ids[] = { 1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1738 { } 1739}; 1740MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1741 1742/* Resets the speaker controller on RocketModem II and III devices */ 1743static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1744{ 1745 ByteIO_t addr; 1746 1747 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1748 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1749 addr = CtlP->AiopIO[0] + 0x4F; 1750 sOutB(addr, 0); 1751 } 1752 1753 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1754 if ((model == MODEL_UPCI_RM3_8PORT) 1755 || (model == MODEL_UPCI_RM3_4PORT)) { 1756 addr = CtlP->AiopIO[0] + 0x88; 1757 sOutB(addr, 0); 1758 } 1759} 1760 1761/*************************************************************************** 1762Function: sPCIInitController 1763Purpose: Initialization of controller global registers and controller 1764 structure. 1765Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1766 IRQNum,Frequency,PeriodicOnly) 1767 CONTROLLER_T *CtlP; Ptr to controller structure 1768 int CtlNum; Controller number 1769 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1770 This list must be in the order the AIOPs will be found on the 1771 controller. Once an AIOP in the list is not found, it is 1772 assumed that there are no more AIOPs on the controller. 1773 int AiopIOListSize; Number of addresses in AiopIOList 1774 int IRQNum; Interrupt Request number. Can be any of the following: 1775 0: Disable global interrupts 1776 3: IRQ 3 1777 4: IRQ 4 1778 5: IRQ 5 1779 9: IRQ 9 1780 10: IRQ 10 1781 11: IRQ 11 1782 12: IRQ 12 1783 15: IRQ 15 1784 Byte_t Frequency: A flag identifying the frequency 1785 of the periodic interrupt, can be any one of the following: 1786 FREQ_DIS - periodic interrupt disabled 1787 FREQ_137HZ - 137 Hertz 1788 FREQ_69HZ - 69 Hertz 1789 FREQ_34HZ - 34 Hertz 1790 FREQ_17HZ - 17 Hertz 1791 FREQ_9HZ - 9 Hertz 1792 FREQ_4HZ - 4 Hertz 1793 If IRQNum is set to 0 the Frequency parameter is 1794 overidden, it is forced to a value of FREQ_DIS. 1795 int PeriodicOnly: 1 if all interrupts except the periodic 1796 interrupt are to be blocked. 1797 0 is both the periodic interrupt and 1798 other channel interrupts are allowed. 1799 If IRQNum is set to 0 the PeriodicOnly parameter is 1800 overidden, it is forced to a value of 0. 1801Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1802 initialization failed. 1803 1804Comments: 1805 If periodic interrupts are to be disabled but AIOP interrupts 1806 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1807 1808 If interrupts are to be completely disabled set IRQNum to 0. 1809 1810 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1811 invalid combination. 1812 1813 This function performs initialization of global interrupt modes, 1814 but it does not actually enable global interrupts. To enable 1815 and disable global interrupts use functions sEnGlobalInt() and 1816 sDisGlobalInt(). Enabling of global interrupts is normally not 1817 done until all other initializations are complete. 1818 1819 Even if interrupts are globally enabled, they must also be 1820 individually enabled for each channel that is to generate 1821 interrupts. 1822 1823Warnings: No range checking on any of the parameters is done. 1824 1825 No context switches are allowed while executing this function. 1826 1827 After this function all AIOPs on the controller are disabled, 1828 they can be enabled with sEnAiop(). 1829*/ 1830static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1831 ByteIO_t * AiopIOList, int AiopIOListSize, 1832 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1833 int PeriodicOnly, int altChanRingIndicator, 1834 int UPCIRingInd) 1835{ 1836 int i; 1837 ByteIO_t io; 1838 1839 CtlP->AltChanRingIndicator = altChanRingIndicator; 1840 CtlP->UPCIRingInd = UPCIRingInd; 1841 CtlP->CtlNum = CtlNum; 1842 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1843 CtlP->BusType = isPCI; /* controller release 1 */ 1844 1845 if (ConfigIO) { 1846 CtlP->isUPCI = 1; 1847 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1848 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1849 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1850 } else { 1851 CtlP->isUPCI = 0; 1852 CtlP->PCIIO = 1853 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1854 CtlP->AiopIntrBits = aiop_intr_bits; 1855 } 1856 1857 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1858 /* Init AIOPs */ 1859 CtlP->NumAiop = 0; 1860 for (i = 0; i < AiopIOListSize; i++) { 1861 io = AiopIOList[i]; 1862 CtlP->AiopIO[i] = (WordIO_t) io; 1863 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1864 1865 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1866 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1867 break; /* done looking for AIOPs */ 1868 1869 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1870 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1871 sOutB(io + _INDX_DATA, sClockPrescale); 1872 CtlP->NumAiop++; /* bump count of AIOPs */ 1873 } 1874 1875 if (CtlP->NumAiop == 0) 1876 return (-1); 1877 else 1878 return (CtlP->NumAiop); 1879} 1880 1881/* 1882 * Called when a PCI card is found. Retrieves and stores model information, 1883 * init's aiopic and serial port hardware. 1884 * Inputs: i is the board number (0-n) 1885 */ 1886static __init int register_PCI(int i, struct pci_dev *dev) 1887{ 1888 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1889 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1890 CONTROLLER_t *ctlp; 1891 1892 int fast_clock = 0; 1893 int altChanRingIndicator = 0; 1894 int ports_per_aiop = 8; 1895 WordIO_t ConfigIO = 0; 1896 ByteIO_t UPCIRingInd = 0; 1897 1898 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1899 pci_enable_device(dev) || i >= NUM_BOARDS) 1900 return 0; 1901 1902 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1903 1904 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1905 rocketModel[i].loadrm2 = 0; 1906 rocketModel[i].startingPortNumber = nextLineNumber; 1907 1908 /* Depending on the model, set up some config variables */ 1909 switch (dev->device) { 1910 case PCI_DEVICE_ID_RP4QUAD: 1911 max_num_aiops = 1; 1912 ports_per_aiop = 4; 1913 rocketModel[i].model = MODEL_RP4QUAD; 1914 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1915 rocketModel[i].numPorts = 4; 1916 break; 1917 case PCI_DEVICE_ID_RP8OCTA: 1918 max_num_aiops = 1; 1919 rocketModel[i].model = MODEL_RP8OCTA; 1920 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1921 rocketModel[i].numPorts = 8; 1922 break; 1923 case PCI_DEVICE_ID_URP8OCTA: 1924 max_num_aiops = 1; 1925 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1926 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1927 rocketModel[i].numPorts = 8; 1928 break; 1929 case PCI_DEVICE_ID_RP8INTF: 1930 max_num_aiops = 1; 1931 rocketModel[i].model = MODEL_RP8INTF; 1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1933 rocketModel[i].numPorts = 8; 1934 break; 1935 case PCI_DEVICE_ID_URP8INTF: 1936 max_num_aiops = 1; 1937 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1938 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1939 rocketModel[i].numPorts = 8; 1940 break; 1941 case PCI_DEVICE_ID_RP8J: 1942 max_num_aiops = 1; 1943 rocketModel[i].model = MODEL_RP8J; 1944 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1945 rocketModel[i].numPorts = 8; 1946 break; 1947 case PCI_DEVICE_ID_RP4J: 1948 max_num_aiops = 1; 1949 ports_per_aiop = 4; 1950 rocketModel[i].model = MODEL_RP4J; 1951 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1952 rocketModel[i].numPorts = 4; 1953 break; 1954 case PCI_DEVICE_ID_RP8SNI: 1955 max_num_aiops = 1; 1956 rocketModel[i].model = MODEL_RP8SNI; 1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1958 rocketModel[i].numPorts = 8; 1959 break; 1960 case PCI_DEVICE_ID_RP16SNI: 1961 max_num_aiops = 2; 1962 rocketModel[i].model = MODEL_RP16SNI; 1963 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1964 rocketModel[i].numPorts = 16; 1965 break; 1966 case PCI_DEVICE_ID_RP16INTF: 1967 max_num_aiops = 2; 1968 rocketModel[i].model = MODEL_RP16INTF; 1969 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1970 rocketModel[i].numPorts = 16; 1971 break; 1972 case PCI_DEVICE_ID_URP16INTF: 1973 max_num_aiops = 2; 1974 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1975 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1976 rocketModel[i].numPorts = 16; 1977 break; 1978 case PCI_DEVICE_ID_CRP16INTF: 1979 max_num_aiops = 2; 1980 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1981 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1982 rocketModel[i].numPorts = 16; 1983 break; 1984 case PCI_DEVICE_ID_RP32INTF: 1985 max_num_aiops = 4; 1986 rocketModel[i].model = MODEL_RP32INTF; 1987 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1988 rocketModel[i].numPorts = 32; 1989 break; 1990 case PCI_DEVICE_ID_URP32INTF: 1991 max_num_aiops = 4; 1992 rocketModel[i].model = MODEL_UPCI_RP32INTF; 1993 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 1994 rocketModel[i].numPorts = 32; 1995 break; 1996 case PCI_DEVICE_ID_RPP4: 1997 max_num_aiops = 1; 1998 ports_per_aiop = 4; 1999 altChanRingIndicator++; 2000 fast_clock++; 2001 rocketModel[i].model = MODEL_RPP4; 2002 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2003 rocketModel[i].numPorts = 4; 2004 break; 2005 case PCI_DEVICE_ID_RPP8: 2006 max_num_aiops = 2; 2007 ports_per_aiop = 4; 2008 altChanRingIndicator++; 2009 fast_clock++; 2010 rocketModel[i].model = MODEL_RPP8; 2011 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2012 rocketModel[i].numPorts = 8; 2013 break; 2014 case PCI_DEVICE_ID_RP2_232: 2015 max_num_aiops = 1; 2016 ports_per_aiop = 2; 2017 altChanRingIndicator++; 2018 fast_clock++; 2019 rocketModel[i].model = MODEL_RP2_232; 2020 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2021 rocketModel[i].numPorts = 2; 2022 break; 2023 case PCI_DEVICE_ID_RP2_422: 2024 max_num_aiops = 1; 2025 ports_per_aiop = 2; 2026 altChanRingIndicator++; 2027 fast_clock++; 2028 rocketModel[i].model = MODEL_RP2_422; 2029 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2030 rocketModel[i].numPorts = 2; 2031 break; 2032 case PCI_DEVICE_ID_RP6M: 2033 2034 max_num_aiops = 1; 2035 ports_per_aiop = 6; 2036 2037 /* If revision is 1, the rocketmodem flash must be loaded. 2038 * If it is 2 it is a "socketed" version. */ 2039 if (dev->revision == 1) { 2040 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2041 rocketModel[i].loadrm2 = 1; 2042 } else { 2043 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2044 } 2045 2046 rocketModel[i].model = MODEL_RP6M; 2047 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2048 rocketModel[i].numPorts = 6; 2049 break; 2050 case PCI_DEVICE_ID_RP4M: 2051 max_num_aiops = 1; 2052 ports_per_aiop = 4; 2053 if (dev->revision == 1) { 2054 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2055 rocketModel[i].loadrm2 = 1; 2056 } else { 2057 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2058 } 2059 2060 rocketModel[i].model = MODEL_RP4M; 2061 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2062 rocketModel[i].numPorts = 4; 2063 break; 2064 default: 2065 max_num_aiops = 0; 2066 break; 2067 } 2068 2069 /* 2070 * Check for UPCI boards. 2071 */ 2072 2073 switch (dev->device) { 2074 case PCI_DEVICE_ID_URP32INTF: 2075 case PCI_DEVICE_ID_URP8INTF: 2076 case PCI_DEVICE_ID_URP16INTF: 2077 case PCI_DEVICE_ID_CRP16INTF: 2078 case PCI_DEVICE_ID_URP8OCTA: 2079 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2080 ConfigIO = pci_resource_start(dev, 1); 2081 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2082 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2083 2084 /* 2085 * Check for octa or quad cable. 2086 */ 2087 if (! 2088 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2089 PCI_GPIO_CTRL_8PORT)) { 2090 ports_per_aiop = 4; 2091 rocketModel[i].numPorts = 4; 2092 } 2093 } 2094 break; 2095 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2096 max_num_aiops = 1; 2097 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2098 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2099 rocketModel[i].numPorts = 8; 2100 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2101 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2102 ConfigIO = pci_resource_start(dev, 1); 2103 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2104 break; 2105 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2106 max_num_aiops = 1; 2107 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2108 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2109 rocketModel[i].numPorts = 4; 2110 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2111 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2112 ConfigIO = pci_resource_start(dev, 1); 2113 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2114 break; 2115 default: 2116 break; 2117 } 2118 2119 if (fast_clock) { 2120 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2121 rp_baud_base[i] = 921600; 2122 } else { 2123 /* 2124 * If support_low_speed is set, use the slow clock 2125 * prescale, which supports 50 bps 2126 */ 2127 if (support_low_speed) { 2128 /* mod 9 (divide by 10) prescale */ 2129 sClockPrescale = 0x19; 2130 rp_baud_base[i] = 230400; 2131 } else { 2132 /* mod 4 (divide by 5) prescale */ 2133 sClockPrescale = 0x14; 2134 rp_baud_base[i] = 460800; 2135 } 2136 } 2137 2138 for (aiop = 0; aiop < max_num_aiops; aiop++) 2139 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2140 ctlp = sCtlNumToCtlPtr(i); 2141 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2142 for (aiop = 0; aiop < max_num_aiops; aiop++) 2143 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2144 2145 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2146 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2147 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2148 rocketModel[i].startingPortNumber, 2149 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2150 2151 if (num_aiops <= 0) { 2152 rcktpt_io_addr[i] = 0; 2153 return (0); 2154 } 2155 is_PCI[i] = 1; 2156 2157 /* Reset the AIOPIC, init the serial ports */ 2158 for (aiop = 0; aiop < num_aiops; aiop++) { 2159 sResetAiopByNum(ctlp, aiop); 2160 num_chan = ports_per_aiop; 2161 for (chan = 0; chan < num_chan; chan++) 2162 init_r_port(i, aiop, chan, dev); 2163 } 2164 2165 /* Rocket modems must be reset */ 2166 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2167 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2168 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2169 num_chan = ports_per_aiop; 2170 for (chan = 0; chan < num_chan; chan++) 2171 sPCIModemReset(ctlp, chan, 1); 2172 msleep(500); 2173 for (chan = 0; chan < num_chan; chan++) 2174 sPCIModemReset(ctlp, chan, 0); 2175 msleep(500); 2176 rmSpeakerReset(ctlp, rocketModel[i].model); 2177 } 2178 return (1); 2179} 2180 2181/* 2182 * Probes for PCI cards, inits them if found 2183 * Input: board_found = number of ISA boards already found, or the 2184 * starting board number 2185 * Returns: Number of PCI boards found 2186 */ 2187static int __init init_PCI(int boards_found) 2188{ 2189 struct pci_dev *dev = NULL; 2190 int count = 0; 2191 2192 /* Work through the PCI device list, pulling out ours */ 2193 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2194 if (register_PCI(count + boards_found, dev)) 2195 count++; 2196 } 2197 return (count); 2198} 2199 2200#endif /* CONFIG_PCI */ 2201 2202/* 2203 * Probes for ISA cards 2204 * Input: i = the board number to look for 2205 * Returns: 1 if board found, 0 else 2206 */ 2207static int __init init_ISA(int i) 2208{ 2209 int num_aiops, num_chan = 0, total_num_chan = 0; 2210 int aiop, chan; 2211 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2212 CONTROLLER_t *ctlp; 2213 char *type_string; 2214 2215 /* If io_addr is zero, no board configured */ 2216 if (rcktpt_io_addr[i] == 0) 2217 return (0); 2218 2219 /* Reserve the IO region */ 2220 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2221 printk(KERN_ERR "Unable to reserve IO region for configured " 2222 "ISA RocketPort at address 0x%lx, board not " 2223 "installed...\n", rcktpt_io_addr[i]); 2224 rcktpt_io_addr[i] = 0; 2225 return (0); 2226 } 2227 2228 ctlp = sCtlNumToCtlPtr(i); 2229 2230 ctlp->boardType = rcktpt_type[i]; 2231 2232 switch (rcktpt_type[i]) { 2233 case ROCKET_TYPE_PC104: 2234 type_string = "(PC104)"; 2235 break; 2236 case ROCKET_TYPE_MODEM: 2237 type_string = "(RocketModem)"; 2238 break; 2239 case ROCKET_TYPE_MODEMII: 2240 type_string = "(RocketModem II)"; 2241 break; 2242 default: 2243 type_string = ""; 2244 break; 2245 } 2246 2247 /* 2248 * If support_low_speed is set, use the slow clock prescale, 2249 * which supports 50 bps 2250 */ 2251 if (support_low_speed) { 2252 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2253 rp_baud_base[i] = 230400; 2254 } else { 2255 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2256 rp_baud_base[i] = 460800; 2257 } 2258 2259 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2260 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2261 2262 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2263 2264 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2265 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2266 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2267 } 2268 2269 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2270 if (num_aiops <= 0) { 2271 release_region(rcktpt_io_addr[i], 64); 2272 rcktpt_io_addr[i] = 0; 2273 return (0); 2274 } 2275 2276 rocketModel[i].startingPortNumber = nextLineNumber; 2277 2278 for (aiop = 0; aiop < num_aiops; aiop++) { 2279 sResetAiopByNum(ctlp, aiop); 2280 sEnAiop(ctlp, aiop); 2281 num_chan = sGetAiopNumChan(ctlp, aiop); 2282 total_num_chan += num_chan; 2283 for (chan = 0; chan < num_chan; chan++) 2284 init_r_port(i, aiop, chan, NULL); 2285 } 2286 is_PCI[i] = 0; 2287 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2288 num_chan = sGetAiopNumChan(ctlp, 0); 2289 total_num_chan = num_chan; 2290 for (chan = 0; chan < num_chan; chan++) 2291 sModemReset(ctlp, chan, 1); 2292 msleep(500); 2293 for (chan = 0; chan < num_chan; chan++) 2294 sModemReset(ctlp, chan, 0); 2295 msleep(500); 2296 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2297 } else { 2298 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2299 } 2300 rocketModel[i].numPorts = total_num_chan; 2301 rocketModel[i].model = MODEL_ISA; 2302 2303 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2304 i, rcktpt_io_addr[i], num_aiops, type_string); 2305 2306 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2307 rocketModel[i].modelString, 2308 rocketModel[i].startingPortNumber, 2309 rocketModel[i].startingPortNumber + 2310 rocketModel[i].numPorts - 1); 2311 2312 return (1); 2313} 2314 2315static const struct tty_operations rocket_ops = { 2316 .open = rp_open, 2317 .close = rp_close, 2318 .write = rp_write, 2319 .put_char = rp_put_char, 2320 .write_room = rp_write_room, 2321 .chars_in_buffer = rp_chars_in_buffer, 2322 .flush_buffer = rp_flush_buffer, 2323 .ioctl = rp_ioctl, 2324 .throttle = rp_throttle, 2325 .unthrottle = rp_unthrottle, 2326 .set_termios = rp_set_termios, 2327 .stop = rp_stop, 2328 .start = rp_start, 2329 .hangup = rp_hangup, 2330 .break_ctl = rp_break, 2331 .send_xchar = rp_send_xchar, 2332 .wait_until_sent = rp_wait_until_sent, 2333 .tiocmget = rp_tiocmget, 2334 .tiocmset = rp_tiocmset, 2335}; 2336 2337static const struct tty_port_operations rocket_port_ops = { 2338 .carrier_raised = carrier_raised, 2339 .dtr_rts = dtr_rts, 2340}; 2341 2342/* 2343 * The module "startup" routine; it's run when the module is loaded. 2344 */ 2345static int __init rp_init(void) 2346{ 2347 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2348 2349 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2350 ROCKET_VERSION, ROCKET_DATE); 2351 2352 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2353 if (!rocket_driver) 2354 goto err; 2355 2356 /* 2357 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2358 * zero, use the default controller IO address of board1 + 0x40. 2359 */ 2360 if (board1) { 2361 if (controller == 0) 2362 controller = board1 + 0x40; 2363 } else { 2364 controller = 0; /* Used as a flag, meaning no ISA boards */ 2365 } 2366 2367 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2368 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2369 printk(KERN_ERR "Unable to reserve IO region for first " 2370 "configured ISA RocketPort controller 0x%lx. " 2371 "Driver exiting\n", controller); 2372 ret = -EBUSY; 2373 goto err_tty; 2374 } 2375 2376 /* Store ISA variable retrieved from command line or .conf file. */ 2377 rcktpt_io_addr[0] = board1; 2378 rcktpt_io_addr[1] = board2; 2379 rcktpt_io_addr[2] = board3; 2380 rcktpt_io_addr[3] = board4; 2381 2382 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2383 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2384 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2385 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2386 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2387 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2388 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2389 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2390 2391 /* 2392 * Set up the tty driver structure and then register this 2393 * driver with the tty layer. 2394 */ 2395 2396 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2397 rocket_driver->name = "ttyR"; 2398 rocket_driver->driver_name = "Comtrol RocketPort"; 2399 rocket_driver->major = TTY_ROCKET_MAJOR; 2400 rocket_driver->minor_start = 0; 2401 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2402 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2403 rocket_driver->init_termios = tty_std_termios; 2404 rocket_driver->init_termios.c_cflag = 2405 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2406 rocket_driver->init_termios.c_ispeed = 9600; 2407 rocket_driver->init_termios.c_ospeed = 9600; 2408#ifdef ROCKET_SOFT_FLOW 2409 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2410#endif 2411 tty_set_operations(rocket_driver, &rocket_ops); 2412 2413 ret = tty_register_driver(rocket_driver); 2414 if (ret < 0) { 2415 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2416 goto err_controller; 2417 } 2418 2419#ifdef ROCKET_DEBUG_OPEN 2420 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2421#endif 2422 2423 /* 2424 * OK, let's probe each of the controllers looking for boards. Any boards found 2425 * will be initialized here. 2426 */ 2427 isa_boards_found = 0; 2428 pci_boards_found = 0; 2429 2430 for (i = 0; i < NUM_BOARDS; i++) { 2431 if (init_ISA(i)) 2432 isa_boards_found++; 2433 } 2434 2435#ifdef CONFIG_PCI 2436 if (isa_boards_found < NUM_BOARDS) 2437 pci_boards_found = init_PCI(isa_boards_found); 2438#endif 2439 2440 max_board = pci_boards_found + isa_boards_found; 2441 2442 if (max_board == 0) { 2443 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2444 ret = -ENXIO; 2445 goto err_ttyu; 2446 } 2447 2448 return 0; 2449err_ttyu: 2450 tty_unregister_driver(rocket_driver); 2451err_controller: 2452 if (controller) 2453 release_region(controller, 4); 2454err_tty: 2455 put_tty_driver(rocket_driver); 2456err: 2457 return ret; 2458} 2459 2460 2461static void rp_cleanup_module(void) 2462{ 2463 int retval; 2464 int i; 2465 2466 del_timer_sync(&rocket_timer); 2467 2468 retval = tty_unregister_driver(rocket_driver); 2469 if (retval) 2470 printk(KERN_ERR "Error %d while trying to unregister " 2471 "rocketport driver\n", -retval); 2472 2473 for (i = 0; i < MAX_RP_PORTS; i++) 2474 if (rp_table[i]) { 2475 tty_unregister_device(rocket_driver, i); 2476 tty_port_destroy(&rp_table[i]->port); 2477 kfree(rp_table[i]); 2478 } 2479 2480 put_tty_driver(rocket_driver); 2481 2482 for (i = 0; i < NUM_BOARDS; i++) { 2483 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2484 continue; 2485 release_region(rcktpt_io_addr[i], 64); 2486 } 2487 if (controller) 2488 release_region(controller, 4); 2489} 2490 2491/*************************************************************************** 2492Function: sInitController 2493Purpose: Initialization of controller global registers and controller 2494 structure. 2495Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2496 IRQNum,Frequency,PeriodicOnly) 2497 CONTROLLER_T *CtlP; Ptr to controller structure 2498 int CtlNum; Controller number 2499 ByteIO_t MudbacIO; Mudbac base I/O address. 2500 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2501 This list must be in the order the AIOPs will be found on the 2502 controller. Once an AIOP in the list is not found, it is 2503 assumed that there are no more AIOPs on the controller. 2504 int AiopIOListSize; Number of addresses in AiopIOList 2505 int IRQNum; Interrupt Request number. Can be any of the following: 2506 0: Disable global interrupts 2507 3: IRQ 3 2508 4: IRQ 4 2509 5: IRQ 5 2510 9: IRQ 9 2511 10: IRQ 10 2512 11: IRQ 11 2513 12: IRQ 12 2514 15: IRQ 15 2515 Byte_t Frequency: A flag identifying the frequency 2516 of the periodic interrupt, can be any one of the following: 2517 FREQ_DIS - periodic interrupt disabled 2518 FREQ_137HZ - 137 Hertz 2519 FREQ_69HZ - 69 Hertz 2520 FREQ_34HZ - 34 Hertz 2521 FREQ_17HZ - 17 Hertz 2522 FREQ_9HZ - 9 Hertz 2523 FREQ_4HZ - 4 Hertz 2524 If IRQNum is set to 0 the Frequency parameter is 2525 overidden, it is forced to a value of FREQ_DIS. 2526 int PeriodicOnly: 1 if all interrupts except the periodic 2527 interrupt are to be blocked. 2528 0 is both the periodic interrupt and 2529 other channel interrupts are allowed. 2530 If IRQNum is set to 0 the PeriodicOnly parameter is 2531 overidden, it is forced to a value of 0. 2532Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2533 initialization failed. 2534 2535Comments: 2536 If periodic interrupts are to be disabled but AIOP interrupts 2537 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2538 2539 If interrupts are to be completely disabled set IRQNum to 0. 2540 2541 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2542 invalid combination. 2543 2544 This function performs initialization of global interrupt modes, 2545 but it does not actually enable global interrupts. To enable 2546 and disable global interrupts use functions sEnGlobalInt() and 2547 sDisGlobalInt(). Enabling of global interrupts is normally not 2548 done until all other initializations are complete. 2549 2550 Even if interrupts are globally enabled, they must also be 2551 individually enabled for each channel that is to generate 2552 interrupts. 2553 2554Warnings: No range checking on any of the parameters is done. 2555 2556 No context switches are allowed while executing this function. 2557 2558 After this function all AIOPs on the controller are disabled, 2559 they can be enabled with sEnAiop(). 2560*/ 2561static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2562 ByteIO_t * AiopIOList, int AiopIOListSize, 2563 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2564{ 2565 int i; 2566 ByteIO_t io; 2567 int done; 2568 2569 CtlP->AiopIntrBits = aiop_intr_bits; 2570 CtlP->AltChanRingIndicator = 0; 2571 CtlP->CtlNum = CtlNum; 2572 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2573 CtlP->BusType = isISA; 2574 CtlP->MBaseIO = MudbacIO; 2575 CtlP->MReg1IO = MudbacIO + 1; 2576 CtlP->MReg2IO = MudbacIO + 2; 2577 CtlP->MReg3IO = MudbacIO + 3; 2578#if 1 2579 CtlP->MReg2 = 0; /* interrupt disable */ 2580 CtlP->MReg3 = 0; /* no periodic interrupts */ 2581#else 2582 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2583 CtlP->MReg2 = 0; /* interrupt disable */ 2584 CtlP->MReg3 = 0; /* no periodic interrupts */ 2585 } else { 2586 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2587 CtlP->MReg3 = Frequency; /* set frequency */ 2588 if (PeriodicOnly) { /* periodic interrupt only */ 2589 CtlP->MReg3 |= PERIODIC_ONLY; 2590 } 2591 } 2592#endif 2593 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2594 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2595 sControllerEOI(CtlP); /* clear EOI if warm init */ 2596 /* Init AIOPs */ 2597 CtlP->NumAiop = 0; 2598 for (i = done = 0; i < AiopIOListSize; i++) { 2599 io = AiopIOList[i]; 2600 CtlP->AiopIO[i] = (WordIO_t) io; 2601 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2602 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2603 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2604 if (done) 2605 continue; 2606 sEnAiop(CtlP, i); /* enable the AIOP */ 2607 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2608 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2609 done = 1; /* done looking for AIOPs */ 2610 else { 2611 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2612 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2613 sOutB(io + _INDX_DATA, sClockPrescale); 2614 CtlP->NumAiop++; /* bump count of AIOPs */ 2615 } 2616 sDisAiop(CtlP, i); /* disable AIOP */ 2617 } 2618 2619 if (CtlP->NumAiop == 0) 2620 return (-1); 2621 else 2622 return (CtlP->NumAiop); 2623} 2624 2625/*************************************************************************** 2626Function: sReadAiopID 2627Purpose: Read the AIOP idenfication number directly from an AIOP. 2628Call: sReadAiopID(io) 2629 ByteIO_t io: AIOP base I/O address 2630Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2631 is replace by an identifying number. 2632 Flag AIOPID_NULL if no valid AIOP is found 2633Warnings: No context switches are allowed while executing this function. 2634 2635*/ 2636static int sReadAiopID(ByteIO_t io) 2637{ 2638 Byte_t AiopID; /* ID byte from AIOP */ 2639 2640 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2641 sOutB(io + _CMD_REG, 0x0); 2642 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2643 if (AiopID == 0x06) 2644 return (1); 2645 else /* AIOP does not exist */ 2646 return (-1); 2647} 2648 2649/*************************************************************************** 2650Function: sReadAiopNumChan 2651Purpose: Read the number of channels available in an AIOP directly from 2652 an AIOP. 2653Call: sReadAiopNumChan(io) 2654 WordIO_t io: AIOP base I/O address 2655Return: int: The number of channels available 2656Comments: The number of channels is determined by write/reads from identical 2657 offsets within the SRAM address spaces for channels 0 and 4. 2658 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2659 AIOP, otherwise it is an 8 channel. 2660Warnings: No context switches are allowed while executing this function. 2661*/ 2662static int sReadAiopNumChan(WordIO_t io) 2663{ 2664 Word_t x; 2665 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2666 2667 /* write to chan 0 SRAM */ 2668 out32((DWordIO_t) io + _INDX_ADDR, R); 2669 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2670 x = sInW(io + _INDX_DATA); 2671 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2672 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2673 return (8); 2674 else 2675 return (4); 2676} 2677 2678/*************************************************************************** 2679Function: sInitChan 2680Purpose: Initialization of a channel and channel structure 2681Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2682 CONTROLLER_T *CtlP; Ptr to controller structure 2683 CHANNEL_T *ChP; Ptr to channel structure 2684 int AiopNum; AIOP number within controller 2685 int ChanNum; Channel number within AIOP 2686Return: int: 1 if initialization succeeded, 0 if it fails because channel 2687 number exceeds number of channels available in AIOP. 2688Comments: This function must be called before a channel can be used. 2689Warnings: No range checking on any of the parameters is done. 2690 2691 No context switches are allowed while executing this function. 2692*/ 2693static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2694 int ChanNum) 2695{ 2696 int i; 2697 WordIO_t AiopIO; 2698 WordIO_t ChIOOff; 2699 Byte_t *ChR; 2700 Word_t ChOff; 2701 static Byte_t R[4]; 2702 int brd9600; 2703 2704 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2705 return 0; /* exceeds num chans in AIOP */ 2706 2707 /* Channel, AIOP, and controller identifiers */ 2708 ChP->CtlP = CtlP; 2709 ChP->ChanID = CtlP->AiopID[AiopNum]; 2710 ChP->AiopNum = AiopNum; 2711 ChP->ChanNum = ChanNum; 2712 2713 /* Global direct addresses */ 2714 AiopIO = CtlP->AiopIO[AiopNum]; 2715 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2716 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2717 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2718 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2719 ChP->IndexData = AiopIO + _INDX_DATA; 2720 2721 /* Channel direct addresses */ 2722 ChIOOff = AiopIO + ChP->ChanNum * 2; 2723 ChP->TxRxData = ChIOOff + _TD0; 2724 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2725 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2726 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2727 2728 /* Initialize the channel from the RData array */ 2729 for (i = 0; i < RDATASIZE; i += 4) { 2730 R[0] = RData[i]; 2731 R[1] = RData[i + 1] + 0x10 * ChanNum; 2732 R[2] = RData[i + 2]; 2733 R[3] = RData[i + 3]; 2734 out32(ChP->IndexAddr, R); 2735 } 2736 2737 ChR = ChP->R; 2738 for (i = 0; i < RREGDATASIZE; i += 4) { 2739 ChR[i] = RRegData[i]; 2740 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2741 ChR[i + 2] = RRegData[i + 2]; 2742 ChR[i + 3] = RRegData[i + 3]; 2743 } 2744 2745 /* Indexed registers */ 2746 ChOff = (Word_t) ChanNum *0x1000; 2747 2748 if (sClockPrescale == 0x14) 2749 brd9600 = 47; 2750 else 2751 brd9600 = 23; 2752 2753 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2754 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2755 ChP->BaudDiv[2] = (Byte_t) brd9600; 2756 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2757 out32(ChP->IndexAddr, ChP->BaudDiv); 2758 2759 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2760 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2761 ChP->TxControl[2] = 0; 2762 ChP->TxControl[3] = 0; 2763 out32(ChP->IndexAddr, ChP->TxControl); 2764 2765 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2766 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2767 ChP->RxControl[2] = 0; 2768 ChP->RxControl[3] = 0; 2769 out32(ChP->IndexAddr, ChP->RxControl); 2770 2771 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2772 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2773 ChP->TxEnables[2] = 0; 2774 ChP->TxEnables[3] = 0; 2775 out32(ChP->IndexAddr, ChP->TxEnables); 2776 2777 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2778 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2779 ChP->TxCompare[2] = 0; 2780 ChP->TxCompare[3] = 0; 2781 out32(ChP->IndexAddr, ChP->TxCompare); 2782 2783 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2784 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2785 ChP->TxReplace1[2] = 0; 2786 ChP->TxReplace1[3] = 0; 2787 out32(ChP->IndexAddr, ChP->TxReplace1); 2788 2789 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2790 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2791 ChP->TxReplace2[2] = 0; 2792 ChP->TxReplace2[3] = 0; 2793 out32(ChP->IndexAddr, ChP->TxReplace2); 2794 2795 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2796 ChP->TxFIFO = ChOff + _TX_FIFO; 2797 2798 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2799 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2800 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2801 sOutW(ChP->IndexData, 0); 2802 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2803 ChP->RxFIFO = ChOff + _RX_FIFO; 2804 2805 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2806 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2807 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2808 sOutW(ChP->IndexData, 0); 2809 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2810 sOutW(ChP->IndexData, 0); 2811 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2812 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2813 sOutB(ChP->IndexData, 0); 2814 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2815 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2816 sOutB(ChP->IndexData, 0); 2817 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2818 sEnRxProcessor(ChP); /* start the Rx processor */ 2819 2820 return 1; 2821} 2822 2823/*************************************************************************** 2824Function: sStopRxProcessor 2825Purpose: Stop the receive processor from processing a channel. 2826Call: sStopRxProcessor(ChP) 2827 CHANNEL_T *ChP; Ptr to channel structure 2828 2829Comments: The receive processor can be started again with sStartRxProcessor(). 2830 This function causes the receive processor to skip over the 2831 stopped channel. It does not stop it from processing other channels. 2832 2833Warnings: No context switches are allowed while executing this function. 2834 2835 Do not leave the receive processor stopped for more than one 2836 character time. 2837 2838 After calling this function a delay of 4 uS is required to ensure 2839 that the receive processor is no longer processing this channel. 2840*/ 2841static void sStopRxProcessor(CHANNEL_T * ChP) 2842{ 2843 Byte_t R[4]; 2844 2845 R[0] = ChP->R[0]; 2846 R[1] = ChP->R[1]; 2847 R[2] = 0x0a; 2848 R[3] = ChP->R[3]; 2849 out32(ChP->IndexAddr, R); 2850} 2851 2852/*************************************************************************** 2853Function: sFlushRxFIFO 2854Purpose: Flush the Rx FIFO 2855Call: sFlushRxFIFO(ChP) 2856 CHANNEL_T *ChP; Ptr to channel structure 2857Return: void 2858Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2859 while it is being flushed the receive processor is stopped 2860 and the transmitter is disabled. After these operations a 2861 4 uS delay is done before clearing the pointers to allow 2862 the receive processor to stop. These items are handled inside 2863 this function. 2864Warnings: No context switches are allowed while executing this function. 2865*/ 2866static void sFlushRxFIFO(CHANNEL_T * ChP) 2867{ 2868 int i; 2869 Byte_t Ch; /* channel number within AIOP */ 2870 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2871 2872 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2873 return; /* don't need to flush */ 2874 2875 RxFIFOEnabled = 0; 2876 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2877 RxFIFOEnabled = 1; 2878 sDisRxFIFO(ChP); /* disable it */ 2879 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2880 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2881 } 2882 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2883 Ch = (Byte_t) sGetChanNum(ChP); 2884 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2885 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2886 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2887 sOutW(ChP->IndexData, 0); 2888 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2889 sOutW(ChP->IndexData, 0); 2890 if (RxFIFOEnabled) 2891 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2892} 2893 2894/*************************************************************************** 2895Function: sFlushTxFIFO 2896Purpose: Flush the Tx FIFO 2897Call: sFlushTxFIFO(ChP) 2898 CHANNEL_T *ChP; Ptr to channel structure 2899Return: void 2900Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2901 while it is being flushed the receive processor is stopped 2902 and the transmitter is disabled. After these operations a 2903 4 uS delay is done before clearing the pointers to allow 2904 the receive processor to stop. These items are handled inside 2905 this function. 2906Warnings: No context switches are allowed while executing this function. 2907*/ 2908static void sFlushTxFIFO(CHANNEL_T * ChP) 2909{ 2910 int i; 2911 Byte_t Ch; /* channel number within AIOP */ 2912 int TxEnabled; /* 1 if transmitter enabled */ 2913 2914 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2915 return; /* don't need to flush */ 2916 2917 TxEnabled = 0; 2918 if (ChP->TxControl[3] & TX_ENABLE) { 2919 TxEnabled = 1; 2920 sDisTransmit(ChP); /* disable transmitter */ 2921 } 2922 sStopRxProcessor(ChP); /* stop Rx processor */ 2923 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2924 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2925 Ch = (Byte_t) sGetChanNum(ChP); 2926 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2927 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2928 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2929 sOutW(ChP->IndexData, 0); 2930 if (TxEnabled) 2931 sEnTransmit(ChP); /* enable transmitter */ 2932 sStartRxProcessor(ChP); /* restart Rx processor */ 2933} 2934 2935/*************************************************************************** 2936Function: sWriteTxPrioByte 2937Purpose: Write a byte of priority transmit data to a channel 2938Call: sWriteTxPrioByte(ChP,Data) 2939 CHANNEL_T *ChP; Ptr to channel structure 2940 Byte_t Data; The transmit data byte 2941 2942Return: int: 1 if the bytes is successfully written, otherwise 0. 2943 2944Comments: The priority byte is transmitted before any data in the Tx FIFO. 2945 2946Warnings: No context switches are allowed while executing this function. 2947*/ 2948static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2949{ 2950 Byte_t DWBuf[4]; /* buffer for double word writes */ 2951 Word_t *WordPtr; /* must be far because Win SS != DS */ 2952 register DWordIO_t IndexAddr; 2953 2954 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2955 IndexAddr = ChP->IndexAddr; 2956 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2957 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2958 return (0); /* nothing sent */ 2959 2960 WordPtr = (Word_t *) (&DWBuf[0]); 2961 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2962 2963 DWBuf[2] = Data; /* data byte value */ 2964 out32(IndexAddr, DWBuf); /* write it out */ 2965 2966 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2967 2968 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2969 DWBuf[3] = 0; /* priority buffer pointer */ 2970 out32(IndexAddr, DWBuf); /* write it out */ 2971 } else { /* write it to Tx FIFO */ 2972 2973 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2974 } 2975 return (1); /* 1 byte sent */ 2976} 2977 2978/*************************************************************************** 2979Function: sEnInterrupts 2980Purpose: Enable one or more interrupts for a channel 2981Call: sEnInterrupts(ChP,Flags) 2982 CHANNEL_T *ChP; Ptr to channel structure 2983 Word_t Flags: Interrupt enable flags, can be any combination 2984 of the following flags: 2985 TXINT_EN: Interrupt on Tx FIFO empty 2986 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 2987 sSetRxTrigger()) 2988 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 2989 MCINT_EN: Interrupt on modem input change 2990 CHANINT_EN: Allow channel interrupt signal to the AIOP's 2991 Interrupt Channel Register. 2992Return: void 2993Comments: If an interrupt enable flag is set in Flags, that interrupt will be 2994 enabled. If an interrupt enable flag is not set in Flags, that 2995 interrupt will not be changed. Interrupts can be disabled with 2996 function sDisInterrupts(). 2997 2998 This function sets the appropriate bit for the channel in the AIOP's 2999 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3000 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3001 3002 Interrupts must also be globally enabled before channel interrupts 3003 will be passed on to the host. This is done with function 3004 sEnGlobalInt(). 3005 3006 In some cases it may be desirable to disable interrupts globally but 3007 enable channel interrupts. This would allow the global interrupt 3008 status register to be used to determine which AIOPs need service. 3009*/ 3010static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3011{ 3012 Byte_t Mask; /* Interrupt Mask Register */ 3013 3014 ChP->RxControl[2] |= 3015 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3016 3017 out32(ChP->IndexAddr, ChP->RxControl); 3018 3019 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3020 3021 out32(ChP->IndexAddr, ChP->TxControl); 3022 3023 if (Flags & CHANINT_EN) { 3024 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3025 sOutB(ChP->IntMask, Mask); 3026 } 3027} 3028 3029/*************************************************************************** 3030Function: sDisInterrupts 3031Purpose: Disable one or more interrupts for a channel 3032Call: sDisInterrupts(ChP,Flags) 3033 CHANNEL_T *ChP; Ptr to channel structure 3034 Word_t Flags: Interrupt flags, can be any combination 3035 of the following flags: 3036 TXINT_EN: Interrupt on Tx FIFO empty 3037 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3038 sSetRxTrigger()) 3039 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3040 MCINT_EN: Interrupt on modem input change 3041 CHANINT_EN: Disable channel interrupt signal to the 3042 AIOP's Interrupt Channel Register. 3043Return: void 3044Comments: If an interrupt flag is set in Flags, that interrupt will be 3045 disabled. If an interrupt flag is not set in Flags, that 3046 interrupt will not be changed. Interrupts can be enabled with 3047 function sEnInterrupts(). 3048 3049 This function clears the appropriate bit for the channel in the AIOP's 3050 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3051 this channel's bit from being set in the AIOP's Interrupt Channel 3052 Register. 3053*/ 3054static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3055{ 3056 Byte_t Mask; /* Interrupt Mask Register */ 3057 3058 ChP->RxControl[2] &= 3059 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3060 out32(ChP->IndexAddr, ChP->RxControl); 3061 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3062 out32(ChP->IndexAddr, ChP->TxControl); 3063 3064 if (Flags & CHANINT_EN) { 3065 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3066 sOutB(ChP->IntMask, Mask); 3067 } 3068} 3069 3070static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3071{ 3072 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3073} 3074 3075/* 3076 * Not an official SSCI function, but how to reset RocketModems. 3077 * ISA bus version 3078 */ 3079static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3080{ 3081 ByteIO_t addr; 3082 Byte_t val; 3083 3084 addr = CtlP->AiopIO[0] + 0x400; 3085 val = sInB(CtlP->MReg3IO); 3086 /* if AIOP[1] is not enabled, enable it */ 3087 if ((val & 2) == 0) { 3088 val = sInB(CtlP->MReg2IO); 3089 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3090 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3091 } 3092 3093 sEnAiop(CtlP, 1); 3094 if (!on) 3095 addr += 8; 3096 sOutB(addr + chan, 0); /* apply or remove reset */ 3097 sDisAiop(CtlP, 1); 3098} 3099 3100/* 3101 * Not an official SSCI function, but how to reset RocketModems. 3102 * PCI bus version 3103 */ 3104static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3105{ 3106 ByteIO_t addr; 3107 3108 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3109 if (!on) 3110 addr += 8; 3111 sOutB(addr + chan, 0); /* apply or remove reset */ 3112} 3113 3114/* Returns the line number given the controller (board), aiop and channel number */ 3115static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3116{ 3117 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3118} 3119 3120/* 3121 * Stores the line number associated with a given controller (board), aiop 3122 * and channel number. 3123 * Returns: The line number assigned 3124 */ 3125static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3126{ 3127 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3128 return (nextLineNumber - 1); 3129}