at v5.7-rc4 102 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30#include <linux/sched.h> 31 32struct mempolicy; 33struct anon_vma; 34struct anon_vma_chain; 35struct file_ra_state; 36struct user_struct; 37struct writeback_control; 38struct bdi_writeback; 39 40void init_mm_internals(void); 41 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 43extern unsigned long max_mapnr; 44 45static inline void set_max_mapnr(unsigned long limit) 46{ 47 max_mapnr = limit; 48} 49#else 50static inline void set_max_mapnr(unsigned long limit) { } 51#endif 52 53extern atomic_long_t _totalram_pages; 54static inline unsigned long totalram_pages(void) 55{ 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57} 58 59static inline void totalram_pages_inc(void) 60{ 61 atomic_long_inc(&_totalram_pages); 62} 63 64static inline void totalram_pages_dec(void) 65{ 66 atomic_long_dec(&_totalram_pages); 67} 68 69static inline void totalram_pages_add(long count) 70{ 71 atomic_long_add(count, &_totalram_pages); 72} 73 74extern void * high_memory; 75extern int page_cluster; 76 77#ifdef CONFIG_SYSCTL 78extern int sysctl_legacy_va_layout; 79#else 80#define sysctl_legacy_va_layout 0 81#endif 82 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84extern const int mmap_rnd_bits_min; 85extern const int mmap_rnd_bits_max; 86extern int mmap_rnd_bits __read_mostly; 87#endif 88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89extern const int mmap_rnd_compat_bits_min; 90extern const int mmap_rnd_compat_bits_max; 91extern int mmap_rnd_compat_bits __read_mostly; 92#endif 93 94#include <asm/page.h> 95#include <asm/pgtable.h> 96#include <asm/processor.h> 97 98/* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for arcitectures that don't support memory tagging. 104 */ 105#ifndef untagged_addr 106#define untagged_addr(addr) (addr) 107#endif 108 109#ifndef __pa_symbol 110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111#endif 112 113#ifndef page_to_virt 114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115#endif 116 117#ifndef lm_alias 118#define lm_alias(x) __va(__pa_symbol(x)) 119#endif 120 121/* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128#ifndef mm_forbids_zeropage 129#define mm_forbids_zeropage(X) (0) 130#endif 131 132/* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138#if BITS_PER_LONG == 64 139/* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statments if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146static inline void __mm_zero_struct_page(struct page *page) 147{ 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; /* fallthrough */ 158 case 72: 159 _pp[8] = 0; /* fallthrough */ 160 case 64: 161 _pp[7] = 0; /* fallthrough */ 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171} 172#else 173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174#endif 175 176/* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192#define MAPCOUNT_ELF_CORE_MARGIN (5) 193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195extern int sysctl_max_map_count; 196 197extern unsigned long sysctl_user_reserve_kbytes; 198extern unsigned long sysctl_admin_reserve_kbytes; 199 200extern int sysctl_overcommit_memory; 201extern int sysctl_overcommit_ratio; 202extern unsigned long sysctl_overcommit_kbytes; 203 204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 205 size_t *, loff_t *); 206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 207 size_t *, loff_t *); 208 209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 211/* to align the pointer to the (next) page boundary */ 212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 213 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 218 219/* 220 * Linux kernel virtual memory manager primitives. 221 * The idea being to have a "virtual" mm in the same way 222 * we have a virtual fs - giving a cleaner interface to the 223 * mm details, and allowing different kinds of memory mappings 224 * (from shared memory to executable loading to arbitrary 225 * mmap() functions). 226 */ 227 228struct vm_area_struct *vm_area_alloc(struct mm_struct *); 229struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 230void vm_area_free(struct vm_area_struct *); 231 232#ifndef CONFIG_MMU 233extern struct rb_root nommu_region_tree; 234extern struct rw_semaphore nommu_region_sem; 235 236extern unsigned int kobjsize(const void *objp); 237#endif 238 239/* 240 * vm_flags in vm_area_struct, see mm_types.h. 241 * When changing, update also include/trace/events/mmflags.h 242 */ 243#define VM_NONE 0x00000000 244 245#define VM_READ 0x00000001 /* currently active flags */ 246#define VM_WRITE 0x00000002 247#define VM_EXEC 0x00000004 248#define VM_SHARED 0x00000008 249 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 252#define VM_MAYWRITE 0x00000020 253#define VM_MAYEXEC 0x00000040 254#define VM_MAYSHARE 0x00000080 255 256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 261 262#define VM_LOCKED 0x00002000 263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 264 265 /* Used by sys_madvise() */ 266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 268 269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 275#define VM_SYNC 0x00800000 /* Synchronous page faults */ 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 279 280#ifdef CONFIG_MEM_SOFT_DIRTY 281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 282#else 283# define VM_SOFTDIRTY 0 284#endif 285 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 290 291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 303 304#ifdef CONFIG_ARCH_HAS_PKEYS 305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 310#ifdef CONFIG_PPC 311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 312#else 313# define VM_PKEY_BIT4 0 314#endif 315#endif /* CONFIG_ARCH_HAS_PKEYS */ 316 317#if defined(CONFIG_X86) 318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 319#elif defined(CONFIG_PPC) 320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 321#elif defined(CONFIG_PARISC) 322# define VM_GROWSUP VM_ARCH_1 323#elif defined(CONFIG_IA64) 324# define VM_GROWSUP VM_ARCH_1 325#elif defined(CONFIG_SPARC64) 326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 327# define VM_ARCH_CLEAR VM_SPARC_ADI 328#elif !defined(CONFIG_MMU) 329# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 330#endif 331 332#if defined(CONFIG_X86_INTEL_MPX) 333/* MPX specific bounds table or bounds directory */ 334# define VM_MPX VM_HIGH_ARCH_4 335#else 336# define VM_MPX VM_NONE 337#endif 338 339#ifndef VM_GROWSUP 340# define VM_GROWSUP VM_NONE 341#endif 342 343/* Bits set in the VMA until the stack is in its final location */ 344#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 345 346#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 347 348/* Common data flag combinations */ 349#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 351#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 352 VM_MAYWRITE | VM_MAYEXEC) 353#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 354 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 355 356#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 357#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 358#endif 359 360#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 361#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 362#endif 363 364#ifdef CONFIG_STACK_GROWSUP 365#define VM_STACK VM_GROWSUP 366#else 367#define VM_STACK VM_GROWSDOWN 368#endif 369 370#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 371 372/* VMA basic access permission flags */ 373#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 374 375 376/* 377 * Special vmas that are non-mergable, non-mlock()able. 378 */ 379#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 380 381/* This mask prevents VMA from being scanned with khugepaged */ 382#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 383 384/* This mask defines which mm->def_flags a process can inherit its parent */ 385#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 386 387/* This mask is used to clear all the VMA flags used by mlock */ 388#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 389 390/* Arch-specific flags to clear when updating VM flags on protection change */ 391#ifndef VM_ARCH_CLEAR 392# define VM_ARCH_CLEAR VM_NONE 393#endif 394#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 395 396/* 397 * mapping from the currently active vm_flags protection bits (the 398 * low four bits) to a page protection mask.. 399 */ 400extern pgprot_t protection_map[16]; 401 402/** 403 * Fault flag definitions. 404 * 405 * @FAULT_FLAG_WRITE: Fault was a write fault. 406 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 407 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 408 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying. 409 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 410 * @FAULT_FLAG_TRIED: The fault has been tried once. 411 * @FAULT_FLAG_USER: The fault originated in userspace. 412 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 413 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 414 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 415 * 416 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 417 * whether we would allow page faults to retry by specifying these two 418 * fault flags correctly. Currently there can be three legal combinations: 419 * 420 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 421 * this is the first try 422 * 423 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 424 * we've already tried at least once 425 * 426 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 427 * 428 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 429 * be used. Note that page faults can be allowed to retry for multiple times, 430 * in which case we'll have an initial fault with flags (a) then later on 431 * continuous faults with flags (b). We should always try to detect pending 432 * signals before a retry to make sure the continuous page faults can still be 433 * interrupted if necessary. 434 */ 435#define FAULT_FLAG_WRITE 0x01 436#define FAULT_FLAG_MKWRITE 0x02 437#define FAULT_FLAG_ALLOW_RETRY 0x04 438#define FAULT_FLAG_RETRY_NOWAIT 0x08 439#define FAULT_FLAG_KILLABLE 0x10 440#define FAULT_FLAG_TRIED 0x20 441#define FAULT_FLAG_USER 0x40 442#define FAULT_FLAG_REMOTE 0x80 443#define FAULT_FLAG_INSTRUCTION 0x100 444#define FAULT_FLAG_INTERRUPTIBLE 0x200 445 446/* 447 * The default fault flags that should be used by most of the 448 * arch-specific page fault handlers. 449 */ 450#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 451 FAULT_FLAG_KILLABLE | \ 452 FAULT_FLAG_INTERRUPTIBLE) 453 454/** 455 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 456 * 457 * This is mostly used for places where we want to try to avoid taking 458 * the mmap_sem for too long a time when waiting for another condition 459 * to change, in which case we can try to be polite to release the 460 * mmap_sem in the first round to avoid potential starvation of other 461 * processes that would also want the mmap_sem. 462 * 463 * Return: true if the page fault allows retry and this is the first 464 * attempt of the fault handling; false otherwise. 465 */ 466static inline bool fault_flag_allow_retry_first(unsigned int flags) 467{ 468 return (flags & FAULT_FLAG_ALLOW_RETRY) && 469 (!(flags & FAULT_FLAG_TRIED)); 470} 471 472#define FAULT_FLAG_TRACE \ 473 { FAULT_FLAG_WRITE, "WRITE" }, \ 474 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 475 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 476 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 477 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 478 { FAULT_FLAG_TRIED, "TRIED" }, \ 479 { FAULT_FLAG_USER, "USER" }, \ 480 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 481 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 482 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 483 484/* 485 * vm_fault is filled by the the pagefault handler and passed to the vma's 486 * ->fault function. The vma's ->fault is responsible for returning a bitmask 487 * of VM_FAULT_xxx flags that give details about how the fault was handled. 488 * 489 * MM layer fills up gfp_mask for page allocations but fault handler might 490 * alter it if its implementation requires a different allocation context. 491 * 492 * pgoff should be used in favour of virtual_address, if possible. 493 */ 494struct vm_fault { 495 struct vm_area_struct *vma; /* Target VMA */ 496 unsigned int flags; /* FAULT_FLAG_xxx flags */ 497 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 498 pgoff_t pgoff; /* Logical page offset based on vma */ 499 unsigned long address; /* Faulting virtual address */ 500 pmd_t *pmd; /* Pointer to pmd entry matching 501 * the 'address' */ 502 pud_t *pud; /* Pointer to pud entry matching 503 * the 'address' 504 */ 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 507 struct page *cow_page; /* Page handler may use for COW fault */ 508 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 509 struct page *page; /* ->fault handlers should return a 510 * page here, unless VM_FAULT_NOPAGE 511 * is set (which is also implied by 512 * VM_FAULT_ERROR). 513 */ 514 /* These three entries are valid only while holding ptl lock */ 515 pte_t *pte; /* Pointer to pte entry matching 516 * the 'address'. NULL if the page 517 * table hasn't been allocated. 518 */ 519 spinlock_t *ptl; /* Page table lock. 520 * Protects pte page table if 'pte' 521 * is not NULL, otherwise pmd. 522 */ 523 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 524 * vm_ops->map_pages() calls 525 * alloc_set_pte() from atomic context. 526 * do_fault_around() pre-allocates 527 * page table to avoid allocation from 528 * atomic context. 529 */ 530}; 531 532/* page entry size for vm->huge_fault() */ 533enum page_entry_size { 534 PE_SIZE_PTE = 0, 535 PE_SIZE_PMD, 536 PE_SIZE_PUD, 537}; 538 539/* 540 * These are the virtual MM functions - opening of an area, closing and 541 * unmapping it (needed to keep files on disk up-to-date etc), pointer 542 * to the functions called when a no-page or a wp-page exception occurs. 543 */ 544struct vm_operations_struct { 545 void (*open)(struct vm_area_struct * area); 546 void (*close)(struct vm_area_struct * area); 547 int (*split)(struct vm_area_struct * area, unsigned long addr); 548 int (*mremap)(struct vm_area_struct * area); 549 vm_fault_t (*fault)(struct vm_fault *vmf); 550 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 551 enum page_entry_size pe_size); 552 void (*map_pages)(struct vm_fault *vmf, 553 pgoff_t start_pgoff, pgoff_t end_pgoff); 554 unsigned long (*pagesize)(struct vm_area_struct * area); 555 556 /* notification that a previously read-only page is about to become 557 * writable, if an error is returned it will cause a SIGBUS */ 558 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 559 560 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 561 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 562 563 /* called by access_process_vm when get_user_pages() fails, typically 564 * for use by special VMAs that can switch between memory and hardware 565 */ 566 int (*access)(struct vm_area_struct *vma, unsigned long addr, 567 void *buf, int len, int write); 568 569 /* Called by the /proc/PID/maps code to ask the vma whether it 570 * has a special name. Returning non-NULL will also cause this 571 * vma to be dumped unconditionally. */ 572 const char *(*name)(struct vm_area_struct *vma); 573 574#ifdef CONFIG_NUMA 575 /* 576 * set_policy() op must add a reference to any non-NULL @new mempolicy 577 * to hold the policy upon return. Caller should pass NULL @new to 578 * remove a policy and fall back to surrounding context--i.e. do not 579 * install a MPOL_DEFAULT policy, nor the task or system default 580 * mempolicy. 581 */ 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 583 584 /* 585 * get_policy() op must add reference [mpol_get()] to any policy at 586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 587 * in mm/mempolicy.c will do this automatically. 588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 589 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 591 * must return NULL--i.e., do not "fallback" to task or system default 592 * policy. 593 */ 594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 595 unsigned long addr); 596#endif 597 /* 598 * Called by vm_normal_page() for special PTEs to find the 599 * page for @addr. This is useful if the default behavior 600 * (using pte_page()) would not find the correct page. 601 */ 602 struct page *(*find_special_page)(struct vm_area_struct *vma, 603 unsigned long addr); 604}; 605 606static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 607{ 608 static const struct vm_operations_struct dummy_vm_ops = {}; 609 610 memset(vma, 0, sizeof(*vma)); 611 vma->vm_mm = mm; 612 vma->vm_ops = &dummy_vm_ops; 613 INIT_LIST_HEAD(&vma->anon_vma_chain); 614} 615 616static inline void vma_set_anonymous(struct vm_area_struct *vma) 617{ 618 vma->vm_ops = NULL; 619} 620 621static inline bool vma_is_anonymous(struct vm_area_struct *vma) 622{ 623 return !vma->vm_ops; 624} 625 626static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 627{ 628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 629 630 if (!maybe_stack) 631 return false; 632 633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 634 VM_STACK_INCOMPLETE_SETUP) 635 return true; 636 637 return false; 638} 639 640static inline bool vma_is_foreign(struct vm_area_struct *vma) 641{ 642 if (!current->mm) 643 return true; 644 645 if (current->mm != vma->vm_mm) 646 return true; 647 648 return false; 649} 650 651static inline bool vma_is_accessible(struct vm_area_struct *vma) 652{ 653 return vma->vm_flags & VM_ACCESS_FLAGS; 654} 655 656#ifdef CONFIG_SHMEM 657/* 658 * The vma_is_shmem is not inline because it is used only by slow 659 * paths in userfault. 660 */ 661bool vma_is_shmem(struct vm_area_struct *vma); 662#else 663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 664#endif 665 666int vma_is_stack_for_current(struct vm_area_struct *vma); 667 668/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 669#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 670 671struct mmu_gather; 672struct inode; 673 674/* 675 * FIXME: take this include out, include page-flags.h in 676 * files which need it (119 of them) 677 */ 678#include <linux/page-flags.h> 679#include <linux/huge_mm.h> 680 681/* 682 * Methods to modify the page usage count. 683 * 684 * What counts for a page usage: 685 * - cache mapping (page->mapping) 686 * - private data (page->private) 687 * - page mapped in a task's page tables, each mapping 688 * is counted separately 689 * 690 * Also, many kernel routines increase the page count before a critical 691 * routine so they can be sure the page doesn't go away from under them. 692 */ 693 694/* 695 * Drop a ref, return true if the refcount fell to zero (the page has no users) 696 */ 697static inline int put_page_testzero(struct page *page) 698{ 699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 700 return page_ref_dec_and_test(page); 701} 702 703/* 704 * Try to grab a ref unless the page has a refcount of zero, return false if 705 * that is the case. 706 * This can be called when MMU is off so it must not access 707 * any of the virtual mappings. 708 */ 709static inline int get_page_unless_zero(struct page *page) 710{ 711 return page_ref_add_unless(page, 1, 0); 712} 713 714extern int page_is_ram(unsigned long pfn); 715 716enum { 717 REGION_INTERSECTS, 718 REGION_DISJOINT, 719 REGION_MIXED, 720}; 721 722int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 723 unsigned long desc); 724 725/* Support for virtually mapped pages */ 726struct page *vmalloc_to_page(const void *addr); 727unsigned long vmalloc_to_pfn(const void *addr); 728 729/* 730 * Determine if an address is within the vmalloc range 731 * 732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 733 * is no special casing required. 734 */ 735 736#ifndef is_ioremap_addr 737#define is_ioremap_addr(x) is_vmalloc_addr(x) 738#endif 739 740#ifdef CONFIG_MMU 741extern bool is_vmalloc_addr(const void *x); 742extern int is_vmalloc_or_module_addr(const void *x); 743#else 744static inline bool is_vmalloc_addr(const void *x) 745{ 746 return false; 747} 748static inline int is_vmalloc_or_module_addr(const void *x) 749{ 750 return 0; 751} 752#endif 753 754extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 755static inline void *kvmalloc(size_t size, gfp_t flags) 756{ 757 return kvmalloc_node(size, flags, NUMA_NO_NODE); 758} 759static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 760{ 761 return kvmalloc_node(size, flags | __GFP_ZERO, node); 762} 763static inline void *kvzalloc(size_t size, gfp_t flags) 764{ 765 return kvmalloc(size, flags | __GFP_ZERO); 766} 767 768static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 769{ 770 size_t bytes; 771 772 if (unlikely(check_mul_overflow(n, size, &bytes))) 773 return NULL; 774 775 return kvmalloc(bytes, flags); 776} 777 778static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 779{ 780 return kvmalloc_array(n, size, flags | __GFP_ZERO); 781} 782 783extern void kvfree(const void *addr); 784 785static inline int compound_mapcount(struct page *page) 786{ 787 VM_BUG_ON_PAGE(!PageCompound(page), page); 788 page = compound_head(page); 789 return atomic_read(compound_mapcount_ptr(page)) + 1; 790} 791 792/* 793 * The atomic page->_mapcount, starts from -1: so that transitions 794 * both from it and to it can be tracked, using atomic_inc_and_test 795 * and atomic_add_negative(-1). 796 */ 797static inline void page_mapcount_reset(struct page *page) 798{ 799 atomic_set(&(page)->_mapcount, -1); 800} 801 802int __page_mapcount(struct page *page); 803 804static inline int page_mapcount(struct page *page) 805{ 806 VM_BUG_ON_PAGE(PageSlab(page), page); 807 808 if (unlikely(PageCompound(page))) 809 return __page_mapcount(page); 810 return atomic_read(&page->_mapcount) + 1; 811} 812 813#ifdef CONFIG_TRANSPARENT_HUGEPAGE 814int total_mapcount(struct page *page); 815int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 816#else 817static inline int total_mapcount(struct page *page) 818{ 819 return page_mapcount(page); 820} 821static inline int page_trans_huge_mapcount(struct page *page, 822 int *total_mapcount) 823{ 824 int mapcount = page_mapcount(page); 825 if (total_mapcount) 826 *total_mapcount = mapcount; 827 return mapcount; 828} 829#endif 830 831static inline struct page *virt_to_head_page(const void *x) 832{ 833 struct page *page = virt_to_page(x); 834 835 return compound_head(page); 836} 837 838void __put_page(struct page *page); 839 840void put_pages_list(struct list_head *pages); 841 842void split_page(struct page *page, unsigned int order); 843 844/* 845 * Compound pages have a destructor function. Provide a 846 * prototype for that function and accessor functions. 847 * These are _only_ valid on the head of a compound page. 848 */ 849typedef void compound_page_dtor(struct page *); 850 851/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 852enum compound_dtor_id { 853 NULL_COMPOUND_DTOR, 854 COMPOUND_PAGE_DTOR, 855#ifdef CONFIG_HUGETLB_PAGE 856 HUGETLB_PAGE_DTOR, 857#endif 858#ifdef CONFIG_TRANSPARENT_HUGEPAGE 859 TRANSHUGE_PAGE_DTOR, 860#endif 861 NR_COMPOUND_DTORS, 862}; 863extern compound_page_dtor * const compound_page_dtors[]; 864 865static inline void set_compound_page_dtor(struct page *page, 866 enum compound_dtor_id compound_dtor) 867{ 868 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 869 page[1].compound_dtor = compound_dtor; 870} 871 872static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 873{ 874 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 875 return compound_page_dtors[page[1].compound_dtor]; 876} 877 878static inline unsigned int compound_order(struct page *page) 879{ 880 if (!PageHead(page)) 881 return 0; 882 return page[1].compound_order; 883} 884 885static inline bool hpage_pincount_available(struct page *page) 886{ 887 /* 888 * Can the page->hpage_pinned_refcount field be used? That field is in 889 * the 3rd page of the compound page, so the smallest (2-page) compound 890 * pages cannot support it. 891 */ 892 page = compound_head(page); 893 return PageCompound(page) && compound_order(page) > 1; 894} 895 896static inline int compound_pincount(struct page *page) 897{ 898 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 899 page = compound_head(page); 900 return atomic_read(compound_pincount_ptr(page)); 901} 902 903static inline void set_compound_order(struct page *page, unsigned int order) 904{ 905 page[1].compound_order = order; 906} 907 908/* Returns the number of pages in this potentially compound page. */ 909static inline unsigned long compound_nr(struct page *page) 910{ 911 return 1UL << compound_order(page); 912} 913 914/* Returns the number of bytes in this potentially compound page. */ 915static inline unsigned long page_size(struct page *page) 916{ 917 return PAGE_SIZE << compound_order(page); 918} 919 920/* Returns the number of bits needed for the number of bytes in a page */ 921static inline unsigned int page_shift(struct page *page) 922{ 923 return PAGE_SHIFT + compound_order(page); 924} 925 926void free_compound_page(struct page *page); 927 928#ifdef CONFIG_MMU 929/* 930 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 931 * servicing faults for write access. In the normal case, do always want 932 * pte_mkwrite. But get_user_pages can cause write faults for mappings 933 * that do not have writing enabled, when used by access_process_vm. 934 */ 935static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 936{ 937 if (likely(vma->vm_flags & VM_WRITE)) 938 pte = pte_mkwrite(pte); 939 return pte; 940} 941 942vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 943 struct page *page); 944vm_fault_t finish_fault(struct vm_fault *vmf); 945vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 946#endif 947 948/* 949 * Multiple processes may "see" the same page. E.g. for untouched 950 * mappings of /dev/null, all processes see the same page full of 951 * zeroes, and text pages of executables and shared libraries have 952 * only one copy in memory, at most, normally. 953 * 954 * For the non-reserved pages, page_count(page) denotes a reference count. 955 * page_count() == 0 means the page is free. page->lru is then used for 956 * freelist management in the buddy allocator. 957 * page_count() > 0 means the page has been allocated. 958 * 959 * Pages are allocated by the slab allocator in order to provide memory 960 * to kmalloc and kmem_cache_alloc. In this case, the management of the 961 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 962 * unless a particular usage is carefully commented. (the responsibility of 963 * freeing the kmalloc memory is the caller's, of course). 964 * 965 * A page may be used by anyone else who does a __get_free_page(). 966 * In this case, page_count still tracks the references, and should only 967 * be used through the normal accessor functions. The top bits of page->flags 968 * and page->virtual store page management information, but all other fields 969 * are unused and could be used privately, carefully. The management of this 970 * page is the responsibility of the one who allocated it, and those who have 971 * subsequently been given references to it. 972 * 973 * The other pages (we may call them "pagecache pages") are completely 974 * managed by the Linux memory manager: I/O, buffers, swapping etc. 975 * The following discussion applies only to them. 976 * 977 * A pagecache page contains an opaque `private' member, which belongs to the 978 * page's address_space. Usually, this is the address of a circular list of 979 * the page's disk buffers. PG_private must be set to tell the VM to call 980 * into the filesystem to release these pages. 981 * 982 * A page may belong to an inode's memory mapping. In this case, page->mapping 983 * is the pointer to the inode, and page->index is the file offset of the page, 984 * in units of PAGE_SIZE. 985 * 986 * If pagecache pages are not associated with an inode, they are said to be 987 * anonymous pages. These may become associated with the swapcache, and in that 988 * case PG_swapcache is set, and page->private is an offset into the swapcache. 989 * 990 * In either case (swapcache or inode backed), the pagecache itself holds one 991 * reference to the page. Setting PG_private should also increment the 992 * refcount. The each user mapping also has a reference to the page. 993 * 994 * The pagecache pages are stored in a per-mapping radix tree, which is 995 * rooted at mapping->i_pages, and indexed by offset. 996 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 997 * lists, we instead now tag pages as dirty/writeback in the radix tree. 998 * 999 * All pagecache pages may be subject to I/O: 1000 * - inode pages may need to be read from disk, 1001 * - inode pages which have been modified and are MAP_SHARED may need 1002 * to be written back to the inode on disk, 1003 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1004 * modified may need to be swapped out to swap space and (later) to be read 1005 * back into memory. 1006 */ 1007 1008/* 1009 * The zone field is never updated after free_area_init_core() 1010 * sets it, so none of the operations on it need to be atomic. 1011 */ 1012 1013/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1014#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1015#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1016#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1017#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1018#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1019 1020/* 1021 * Define the bit shifts to access each section. For non-existent 1022 * sections we define the shift as 0; that plus a 0 mask ensures 1023 * the compiler will optimise away reference to them. 1024 */ 1025#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1026#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1027#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1028#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1029#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1030 1031/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1032#ifdef NODE_NOT_IN_PAGE_FLAGS 1033#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1034#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1035 SECTIONS_PGOFF : ZONES_PGOFF) 1036#else 1037#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1038#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1039 NODES_PGOFF : ZONES_PGOFF) 1040#endif 1041 1042#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1043 1044#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1045#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1046#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1047#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1048#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1049#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1050 1051static inline enum zone_type page_zonenum(const struct page *page) 1052{ 1053 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1054} 1055 1056#ifdef CONFIG_ZONE_DEVICE 1057static inline bool is_zone_device_page(const struct page *page) 1058{ 1059 return page_zonenum(page) == ZONE_DEVICE; 1060} 1061extern void memmap_init_zone_device(struct zone *, unsigned long, 1062 unsigned long, struct dev_pagemap *); 1063#else 1064static inline bool is_zone_device_page(const struct page *page) 1065{ 1066 return false; 1067} 1068#endif 1069 1070#ifdef CONFIG_DEV_PAGEMAP_OPS 1071void free_devmap_managed_page(struct page *page); 1072DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1073 1074static inline bool page_is_devmap_managed(struct page *page) 1075{ 1076 if (!static_branch_unlikely(&devmap_managed_key)) 1077 return false; 1078 if (!is_zone_device_page(page)) 1079 return false; 1080 switch (page->pgmap->type) { 1081 case MEMORY_DEVICE_PRIVATE: 1082 case MEMORY_DEVICE_FS_DAX: 1083 return true; 1084 default: 1085 break; 1086 } 1087 return false; 1088} 1089 1090void put_devmap_managed_page(struct page *page); 1091 1092#else /* CONFIG_DEV_PAGEMAP_OPS */ 1093static inline bool page_is_devmap_managed(struct page *page) 1094{ 1095 return false; 1096} 1097 1098static inline void put_devmap_managed_page(struct page *page) 1099{ 1100} 1101#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1102 1103static inline bool is_device_private_page(const struct page *page) 1104{ 1105 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1106 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1107 is_zone_device_page(page) && 1108 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1109} 1110 1111static inline bool is_pci_p2pdma_page(const struct page *page) 1112{ 1113 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1114 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1115 is_zone_device_page(page) && 1116 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1117} 1118 1119/* 127: arbitrary random number, small enough to assemble well */ 1120#define page_ref_zero_or_close_to_overflow(page) \ 1121 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1122 1123static inline void get_page(struct page *page) 1124{ 1125 page = compound_head(page); 1126 /* 1127 * Getting a normal page or the head of a compound page 1128 * requires to already have an elevated page->_refcount. 1129 */ 1130 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1131 page_ref_inc(page); 1132} 1133 1134bool __must_check try_grab_page(struct page *page, unsigned int flags); 1135 1136static inline __must_check bool try_get_page(struct page *page) 1137{ 1138 page = compound_head(page); 1139 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1140 return false; 1141 page_ref_inc(page); 1142 return true; 1143} 1144 1145static inline void put_page(struct page *page) 1146{ 1147 page = compound_head(page); 1148 1149 /* 1150 * For devmap managed pages we need to catch refcount transition from 1151 * 2 to 1, when refcount reach one it means the page is free and we 1152 * need to inform the device driver through callback. See 1153 * include/linux/memremap.h and HMM for details. 1154 */ 1155 if (page_is_devmap_managed(page)) { 1156 put_devmap_managed_page(page); 1157 return; 1158 } 1159 1160 if (put_page_testzero(page)) 1161 __put_page(page); 1162} 1163 1164/* 1165 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1166 * the page's refcount so that two separate items are tracked: the original page 1167 * reference count, and also a new count of how many pin_user_pages() calls were 1168 * made against the page. ("gup-pinned" is another term for the latter). 1169 * 1170 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1171 * distinct from normal pages. As such, the unpin_user_page() call (and its 1172 * variants) must be used in order to release gup-pinned pages. 1173 * 1174 * Choice of value: 1175 * 1176 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1177 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1178 * simpler, due to the fact that adding an even power of two to the page 1179 * refcount has the effect of using only the upper N bits, for the code that 1180 * counts up using the bias value. This means that the lower bits are left for 1181 * the exclusive use of the original code that increments and decrements by one 1182 * (or at least, by much smaller values than the bias value). 1183 * 1184 * Of course, once the lower bits overflow into the upper bits (and this is 1185 * OK, because subtraction recovers the original values), then visual inspection 1186 * no longer suffices to directly view the separate counts. However, for normal 1187 * applications that don't have huge page reference counts, this won't be an 1188 * issue. 1189 * 1190 * Locking: the lockless algorithm described in page_cache_get_speculative() 1191 * and page_cache_gup_pin_speculative() provides safe operation for 1192 * get_user_pages and page_mkclean and other calls that race to set up page 1193 * table entries. 1194 */ 1195#define GUP_PIN_COUNTING_BIAS (1U << 10) 1196 1197void unpin_user_page(struct page *page); 1198void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1199 bool make_dirty); 1200void unpin_user_pages(struct page **pages, unsigned long npages); 1201 1202/** 1203 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1204 * 1205 * This function checks if a page has been pinned via a call to 1206 * pin_user_pages*(). 1207 * 1208 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1209 * because it means "definitely not pinned for DMA", but true means "probably 1210 * pinned for DMA, but possibly a false positive due to having at least 1211 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1212 * 1213 * False positives are OK, because: a) it's unlikely for a page to get that many 1214 * refcounts, and b) all the callers of this routine are expected to be able to 1215 * deal gracefully with a false positive. 1216 * 1217 * For huge pages, the result will be exactly correct. That's because we have 1218 * more tracking data available: the 3rd struct page in the compound page is 1219 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1220 * scheme). 1221 * 1222 * For more information, please see Documentation/vm/pin_user_pages.rst. 1223 * 1224 * @page: pointer to page to be queried. 1225 * @Return: True, if it is likely that the page has been "dma-pinned". 1226 * False, if the page is definitely not dma-pinned. 1227 */ 1228static inline bool page_maybe_dma_pinned(struct page *page) 1229{ 1230 if (hpage_pincount_available(page)) 1231 return compound_pincount(page) > 0; 1232 1233 /* 1234 * page_ref_count() is signed. If that refcount overflows, then 1235 * page_ref_count() returns a negative value, and callers will avoid 1236 * further incrementing the refcount. 1237 * 1238 * Here, for that overflow case, use the signed bit to count a little 1239 * bit higher via unsigned math, and thus still get an accurate result. 1240 */ 1241 return ((unsigned int)page_ref_count(compound_head(page))) >= 1242 GUP_PIN_COUNTING_BIAS; 1243} 1244 1245#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1246#define SECTION_IN_PAGE_FLAGS 1247#endif 1248 1249/* 1250 * The identification function is mainly used by the buddy allocator for 1251 * determining if two pages could be buddies. We are not really identifying 1252 * the zone since we could be using the section number id if we do not have 1253 * node id available in page flags. 1254 * We only guarantee that it will return the same value for two combinable 1255 * pages in a zone. 1256 */ 1257static inline int page_zone_id(struct page *page) 1258{ 1259 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1260} 1261 1262#ifdef NODE_NOT_IN_PAGE_FLAGS 1263extern int page_to_nid(const struct page *page); 1264#else 1265static inline int page_to_nid(const struct page *page) 1266{ 1267 struct page *p = (struct page *)page; 1268 1269 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1270} 1271#endif 1272 1273#ifdef CONFIG_NUMA_BALANCING 1274static inline int cpu_pid_to_cpupid(int cpu, int pid) 1275{ 1276 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1277} 1278 1279static inline int cpupid_to_pid(int cpupid) 1280{ 1281 return cpupid & LAST__PID_MASK; 1282} 1283 1284static inline int cpupid_to_cpu(int cpupid) 1285{ 1286 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1287} 1288 1289static inline int cpupid_to_nid(int cpupid) 1290{ 1291 return cpu_to_node(cpupid_to_cpu(cpupid)); 1292} 1293 1294static inline bool cpupid_pid_unset(int cpupid) 1295{ 1296 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1297} 1298 1299static inline bool cpupid_cpu_unset(int cpupid) 1300{ 1301 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1302} 1303 1304static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1305{ 1306 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1307} 1308 1309#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1310#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1311static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1312{ 1313 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1314} 1315 1316static inline int page_cpupid_last(struct page *page) 1317{ 1318 return page->_last_cpupid; 1319} 1320static inline void page_cpupid_reset_last(struct page *page) 1321{ 1322 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1323} 1324#else 1325static inline int page_cpupid_last(struct page *page) 1326{ 1327 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1328} 1329 1330extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1331 1332static inline void page_cpupid_reset_last(struct page *page) 1333{ 1334 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1335} 1336#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1337#else /* !CONFIG_NUMA_BALANCING */ 1338static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1339{ 1340 return page_to_nid(page); /* XXX */ 1341} 1342 1343static inline int page_cpupid_last(struct page *page) 1344{ 1345 return page_to_nid(page); /* XXX */ 1346} 1347 1348static inline int cpupid_to_nid(int cpupid) 1349{ 1350 return -1; 1351} 1352 1353static inline int cpupid_to_pid(int cpupid) 1354{ 1355 return -1; 1356} 1357 1358static inline int cpupid_to_cpu(int cpupid) 1359{ 1360 return -1; 1361} 1362 1363static inline int cpu_pid_to_cpupid(int nid, int pid) 1364{ 1365 return -1; 1366} 1367 1368static inline bool cpupid_pid_unset(int cpupid) 1369{ 1370 return 1; 1371} 1372 1373static inline void page_cpupid_reset_last(struct page *page) 1374{ 1375} 1376 1377static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1378{ 1379 return false; 1380} 1381#endif /* CONFIG_NUMA_BALANCING */ 1382 1383#ifdef CONFIG_KASAN_SW_TAGS 1384static inline u8 page_kasan_tag(const struct page *page) 1385{ 1386 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1387} 1388 1389static inline void page_kasan_tag_set(struct page *page, u8 tag) 1390{ 1391 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1392 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1393} 1394 1395static inline void page_kasan_tag_reset(struct page *page) 1396{ 1397 page_kasan_tag_set(page, 0xff); 1398} 1399#else 1400static inline u8 page_kasan_tag(const struct page *page) 1401{ 1402 return 0xff; 1403} 1404 1405static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1406static inline void page_kasan_tag_reset(struct page *page) { } 1407#endif 1408 1409static inline struct zone *page_zone(const struct page *page) 1410{ 1411 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1412} 1413 1414static inline pg_data_t *page_pgdat(const struct page *page) 1415{ 1416 return NODE_DATA(page_to_nid(page)); 1417} 1418 1419#ifdef SECTION_IN_PAGE_FLAGS 1420static inline void set_page_section(struct page *page, unsigned long section) 1421{ 1422 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1423 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1424} 1425 1426static inline unsigned long page_to_section(const struct page *page) 1427{ 1428 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1429} 1430#endif 1431 1432static inline void set_page_zone(struct page *page, enum zone_type zone) 1433{ 1434 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1435 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1436} 1437 1438static inline void set_page_node(struct page *page, unsigned long node) 1439{ 1440 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1441 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1442} 1443 1444static inline void set_page_links(struct page *page, enum zone_type zone, 1445 unsigned long node, unsigned long pfn) 1446{ 1447 set_page_zone(page, zone); 1448 set_page_node(page, node); 1449#ifdef SECTION_IN_PAGE_FLAGS 1450 set_page_section(page, pfn_to_section_nr(pfn)); 1451#endif 1452} 1453 1454#ifdef CONFIG_MEMCG 1455static inline struct mem_cgroup *page_memcg(struct page *page) 1456{ 1457 return page->mem_cgroup; 1458} 1459static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1460{ 1461 WARN_ON_ONCE(!rcu_read_lock_held()); 1462 return READ_ONCE(page->mem_cgroup); 1463} 1464#else 1465static inline struct mem_cgroup *page_memcg(struct page *page) 1466{ 1467 return NULL; 1468} 1469static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1470{ 1471 WARN_ON_ONCE(!rcu_read_lock_held()); 1472 return NULL; 1473} 1474#endif 1475 1476/* 1477 * Some inline functions in vmstat.h depend on page_zone() 1478 */ 1479#include <linux/vmstat.h> 1480 1481static __always_inline void *lowmem_page_address(const struct page *page) 1482{ 1483 return page_to_virt(page); 1484} 1485 1486#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1487#define HASHED_PAGE_VIRTUAL 1488#endif 1489 1490#if defined(WANT_PAGE_VIRTUAL) 1491static inline void *page_address(const struct page *page) 1492{ 1493 return page->virtual; 1494} 1495static inline void set_page_address(struct page *page, void *address) 1496{ 1497 page->virtual = address; 1498} 1499#define page_address_init() do { } while(0) 1500#endif 1501 1502#if defined(HASHED_PAGE_VIRTUAL) 1503void *page_address(const struct page *page); 1504void set_page_address(struct page *page, void *virtual); 1505void page_address_init(void); 1506#endif 1507 1508#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1509#define page_address(page) lowmem_page_address(page) 1510#define set_page_address(page, address) do { } while(0) 1511#define page_address_init() do { } while(0) 1512#endif 1513 1514extern void *page_rmapping(struct page *page); 1515extern struct anon_vma *page_anon_vma(struct page *page); 1516extern struct address_space *page_mapping(struct page *page); 1517 1518extern struct address_space *__page_file_mapping(struct page *); 1519 1520static inline 1521struct address_space *page_file_mapping(struct page *page) 1522{ 1523 if (unlikely(PageSwapCache(page))) 1524 return __page_file_mapping(page); 1525 1526 return page->mapping; 1527} 1528 1529extern pgoff_t __page_file_index(struct page *page); 1530 1531/* 1532 * Return the pagecache index of the passed page. Regular pagecache pages 1533 * use ->index whereas swapcache pages use swp_offset(->private) 1534 */ 1535static inline pgoff_t page_index(struct page *page) 1536{ 1537 if (unlikely(PageSwapCache(page))) 1538 return __page_file_index(page); 1539 return page->index; 1540} 1541 1542bool page_mapped(struct page *page); 1543struct address_space *page_mapping(struct page *page); 1544struct address_space *page_mapping_file(struct page *page); 1545 1546/* 1547 * Return true only if the page has been allocated with 1548 * ALLOC_NO_WATERMARKS and the low watermark was not 1549 * met implying that the system is under some pressure. 1550 */ 1551static inline bool page_is_pfmemalloc(struct page *page) 1552{ 1553 /* 1554 * Page index cannot be this large so this must be 1555 * a pfmemalloc page. 1556 */ 1557 return page->index == -1UL; 1558} 1559 1560/* 1561 * Only to be called by the page allocator on a freshly allocated 1562 * page. 1563 */ 1564static inline void set_page_pfmemalloc(struct page *page) 1565{ 1566 page->index = -1UL; 1567} 1568 1569static inline void clear_page_pfmemalloc(struct page *page) 1570{ 1571 page->index = 0; 1572} 1573 1574/* 1575 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1576 */ 1577extern void pagefault_out_of_memory(void); 1578 1579#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1580 1581/* 1582 * Flags passed to show_mem() and show_free_areas() to suppress output in 1583 * various contexts. 1584 */ 1585#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1586 1587extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1588 1589#ifdef CONFIG_MMU 1590extern bool can_do_mlock(void); 1591#else 1592static inline bool can_do_mlock(void) { return false; } 1593#endif 1594extern int user_shm_lock(size_t, struct user_struct *); 1595extern void user_shm_unlock(size_t, struct user_struct *); 1596 1597/* 1598 * Parameter block passed down to zap_pte_range in exceptional cases. 1599 */ 1600struct zap_details { 1601 struct address_space *check_mapping; /* Check page->mapping if set */ 1602 pgoff_t first_index; /* Lowest page->index to unmap */ 1603 pgoff_t last_index; /* Highest page->index to unmap */ 1604}; 1605 1606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1607 pte_t pte); 1608struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1609 pmd_t pmd); 1610 1611void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1612 unsigned long size); 1613void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1614 unsigned long size); 1615void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1616 unsigned long start, unsigned long end); 1617 1618struct mmu_notifier_range; 1619 1620void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1621 unsigned long end, unsigned long floor, unsigned long ceiling); 1622int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1623 struct vm_area_struct *vma); 1624int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1625 struct mmu_notifier_range *range, 1626 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1627int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1628 unsigned long *pfn); 1629int follow_phys(struct vm_area_struct *vma, unsigned long address, 1630 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1631int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1632 void *buf, int len, int write); 1633 1634extern void truncate_pagecache(struct inode *inode, loff_t new); 1635extern void truncate_setsize(struct inode *inode, loff_t newsize); 1636void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1637void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1638int truncate_inode_page(struct address_space *mapping, struct page *page); 1639int generic_error_remove_page(struct address_space *mapping, struct page *page); 1640int invalidate_inode_page(struct page *page); 1641 1642#ifdef CONFIG_MMU 1643extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1644 unsigned long address, unsigned int flags); 1645extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1646 unsigned long address, unsigned int fault_flags, 1647 bool *unlocked); 1648void unmap_mapping_pages(struct address_space *mapping, 1649 pgoff_t start, pgoff_t nr, bool even_cows); 1650void unmap_mapping_range(struct address_space *mapping, 1651 loff_t const holebegin, loff_t const holelen, int even_cows); 1652#else 1653static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1654 unsigned long address, unsigned int flags) 1655{ 1656 /* should never happen if there's no MMU */ 1657 BUG(); 1658 return VM_FAULT_SIGBUS; 1659} 1660static inline int fixup_user_fault(struct task_struct *tsk, 1661 struct mm_struct *mm, unsigned long address, 1662 unsigned int fault_flags, bool *unlocked) 1663{ 1664 /* should never happen if there's no MMU */ 1665 BUG(); 1666 return -EFAULT; 1667} 1668static inline void unmap_mapping_pages(struct address_space *mapping, 1669 pgoff_t start, pgoff_t nr, bool even_cows) { } 1670static inline void unmap_mapping_range(struct address_space *mapping, 1671 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1672#endif 1673 1674static inline void unmap_shared_mapping_range(struct address_space *mapping, 1675 loff_t const holebegin, loff_t const holelen) 1676{ 1677 unmap_mapping_range(mapping, holebegin, holelen, 0); 1678} 1679 1680extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1681 void *buf, int len, unsigned int gup_flags); 1682extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1683 void *buf, int len, unsigned int gup_flags); 1684extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1685 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1686 1687long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1688 unsigned long start, unsigned long nr_pages, 1689 unsigned int gup_flags, struct page **pages, 1690 struct vm_area_struct **vmas, int *locked); 1691long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1692 unsigned long start, unsigned long nr_pages, 1693 unsigned int gup_flags, struct page **pages, 1694 struct vm_area_struct **vmas, int *locked); 1695long get_user_pages(unsigned long start, unsigned long nr_pages, 1696 unsigned int gup_flags, struct page **pages, 1697 struct vm_area_struct **vmas); 1698long pin_user_pages(unsigned long start, unsigned long nr_pages, 1699 unsigned int gup_flags, struct page **pages, 1700 struct vm_area_struct **vmas); 1701long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1702 unsigned int gup_flags, struct page **pages, int *locked); 1703long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1704 struct page **pages, unsigned int gup_flags); 1705 1706int get_user_pages_fast(unsigned long start, int nr_pages, 1707 unsigned int gup_flags, struct page **pages); 1708int pin_user_pages_fast(unsigned long start, int nr_pages, 1709 unsigned int gup_flags, struct page **pages); 1710 1711int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1712int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1713 struct task_struct *task, bool bypass_rlim); 1714 1715/* Container for pinned pfns / pages */ 1716struct frame_vector { 1717 unsigned int nr_allocated; /* Number of frames we have space for */ 1718 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1719 bool got_ref; /* Did we pin pages by getting page ref? */ 1720 bool is_pfns; /* Does array contain pages or pfns? */ 1721 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1722 * pfns_vector_pages() or pfns_vector_pfns() 1723 * for access */ 1724}; 1725 1726struct frame_vector *frame_vector_create(unsigned int nr_frames); 1727void frame_vector_destroy(struct frame_vector *vec); 1728int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1729 unsigned int gup_flags, struct frame_vector *vec); 1730void put_vaddr_frames(struct frame_vector *vec); 1731int frame_vector_to_pages(struct frame_vector *vec); 1732void frame_vector_to_pfns(struct frame_vector *vec); 1733 1734static inline unsigned int frame_vector_count(struct frame_vector *vec) 1735{ 1736 return vec->nr_frames; 1737} 1738 1739static inline struct page **frame_vector_pages(struct frame_vector *vec) 1740{ 1741 if (vec->is_pfns) { 1742 int err = frame_vector_to_pages(vec); 1743 1744 if (err) 1745 return ERR_PTR(err); 1746 } 1747 return (struct page **)(vec->ptrs); 1748} 1749 1750static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1751{ 1752 if (!vec->is_pfns) 1753 frame_vector_to_pfns(vec); 1754 return (unsigned long *)(vec->ptrs); 1755} 1756 1757struct kvec; 1758int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1759 struct page **pages); 1760int get_kernel_page(unsigned long start, int write, struct page **pages); 1761struct page *get_dump_page(unsigned long addr); 1762 1763extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1764extern void do_invalidatepage(struct page *page, unsigned int offset, 1765 unsigned int length); 1766 1767void __set_page_dirty(struct page *, struct address_space *, int warn); 1768int __set_page_dirty_nobuffers(struct page *page); 1769int __set_page_dirty_no_writeback(struct page *page); 1770int redirty_page_for_writepage(struct writeback_control *wbc, 1771 struct page *page); 1772void account_page_dirtied(struct page *page, struct address_space *mapping); 1773void account_page_cleaned(struct page *page, struct address_space *mapping, 1774 struct bdi_writeback *wb); 1775int set_page_dirty(struct page *page); 1776int set_page_dirty_lock(struct page *page); 1777void __cancel_dirty_page(struct page *page); 1778static inline void cancel_dirty_page(struct page *page) 1779{ 1780 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1781 if (PageDirty(page)) 1782 __cancel_dirty_page(page); 1783} 1784int clear_page_dirty_for_io(struct page *page); 1785 1786int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1787 1788extern unsigned long move_page_tables(struct vm_area_struct *vma, 1789 unsigned long old_addr, struct vm_area_struct *new_vma, 1790 unsigned long new_addr, unsigned long len, 1791 bool need_rmap_locks); 1792 1793/* 1794 * Flags used by change_protection(). For now we make it a bitmap so 1795 * that we can pass in multiple flags just like parameters. However 1796 * for now all the callers are only use one of the flags at the same 1797 * time. 1798 */ 1799/* Whether we should allow dirty bit accounting */ 1800#define MM_CP_DIRTY_ACCT (1UL << 0) 1801/* Whether this protection change is for NUMA hints */ 1802#define MM_CP_PROT_NUMA (1UL << 1) 1803/* Whether this change is for write protecting */ 1804#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1805#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1806#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1807 MM_CP_UFFD_WP_RESOLVE) 1808 1809extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1810 unsigned long end, pgprot_t newprot, 1811 unsigned long cp_flags); 1812extern int mprotect_fixup(struct vm_area_struct *vma, 1813 struct vm_area_struct **pprev, unsigned long start, 1814 unsigned long end, unsigned long newflags); 1815 1816/* 1817 * doesn't attempt to fault and will return short. 1818 */ 1819int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1820 struct page **pages); 1821/* 1822 * per-process(per-mm_struct) statistics. 1823 */ 1824static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1825{ 1826 long val = atomic_long_read(&mm->rss_stat.count[member]); 1827 1828#ifdef SPLIT_RSS_COUNTING 1829 /* 1830 * counter is updated in asynchronous manner and may go to minus. 1831 * But it's never be expected number for users. 1832 */ 1833 if (val < 0) 1834 val = 0; 1835#endif 1836 return (unsigned long)val; 1837} 1838 1839void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1840 1841static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1842{ 1843 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1844 1845 mm_trace_rss_stat(mm, member, count); 1846} 1847 1848static inline void inc_mm_counter(struct mm_struct *mm, int member) 1849{ 1850 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1851 1852 mm_trace_rss_stat(mm, member, count); 1853} 1854 1855static inline void dec_mm_counter(struct mm_struct *mm, int member) 1856{ 1857 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1858 1859 mm_trace_rss_stat(mm, member, count); 1860} 1861 1862/* Optimized variant when page is already known not to be PageAnon */ 1863static inline int mm_counter_file(struct page *page) 1864{ 1865 if (PageSwapBacked(page)) 1866 return MM_SHMEMPAGES; 1867 return MM_FILEPAGES; 1868} 1869 1870static inline int mm_counter(struct page *page) 1871{ 1872 if (PageAnon(page)) 1873 return MM_ANONPAGES; 1874 return mm_counter_file(page); 1875} 1876 1877static inline unsigned long get_mm_rss(struct mm_struct *mm) 1878{ 1879 return get_mm_counter(mm, MM_FILEPAGES) + 1880 get_mm_counter(mm, MM_ANONPAGES) + 1881 get_mm_counter(mm, MM_SHMEMPAGES); 1882} 1883 1884static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1885{ 1886 return max(mm->hiwater_rss, get_mm_rss(mm)); 1887} 1888 1889static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1890{ 1891 return max(mm->hiwater_vm, mm->total_vm); 1892} 1893 1894static inline void update_hiwater_rss(struct mm_struct *mm) 1895{ 1896 unsigned long _rss = get_mm_rss(mm); 1897 1898 if ((mm)->hiwater_rss < _rss) 1899 (mm)->hiwater_rss = _rss; 1900} 1901 1902static inline void update_hiwater_vm(struct mm_struct *mm) 1903{ 1904 if (mm->hiwater_vm < mm->total_vm) 1905 mm->hiwater_vm = mm->total_vm; 1906} 1907 1908static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1909{ 1910 mm->hiwater_rss = get_mm_rss(mm); 1911} 1912 1913static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1914 struct mm_struct *mm) 1915{ 1916 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1917 1918 if (*maxrss < hiwater_rss) 1919 *maxrss = hiwater_rss; 1920} 1921 1922#if defined(SPLIT_RSS_COUNTING) 1923void sync_mm_rss(struct mm_struct *mm); 1924#else 1925static inline void sync_mm_rss(struct mm_struct *mm) 1926{ 1927} 1928#endif 1929 1930#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1931static inline int pte_special(pte_t pte) 1932{ 1933 return 0; 1934} 1935 1936static inline pte_t pte_mkspecial(pte_t pte) 1937{ 1938 return pte; 1939} 1940#endif 1941 1942#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1943static inline int pte_devmap(pte_t pte) 1944{ 1945 return 0; 1946} 1947#endif 1948 1949int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1950 1951extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1952 spinlock_t **ptl); 1953static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1954 spinlock_t **ptl) 1955{ 1956 pte_t *ptep; 1957 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1958 return ptep; 1959} 1960 1961#ifdef __PAGETABLE_P4D_FOLDED 1962static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1963 unsigned long address) 1964{ 1965 return 0; 1966} 1967#else 1968int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1969#endif 1970 1971#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1972static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1973 unsigned long address) 1974{ 1975 return 0; 1976} 1977static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1978static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1979 1980#else 1981int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1982 1983static inline void mm_inc_nr_puds(struct mm_struct *mm) 1984{ 1985 if (mm_pud_folded(mm)) 1986 return; 1987 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1988} 1989 1990static inline void mm_dec_nr_puds(struct mm_struct *mm) 1991{ 1992 if (mm_pud_folded(mm)) 1993 return; 1994 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1995} 1996#endif 1997 1998#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1999static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2000 unsigned long address) 2001{ 2002 return 0; 2003} 2004 2005static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2006static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2007 2008#else 2009int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2010 2011static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2012{ 2013 if (mm_pmd_folded(mm)) 2014 return; 2015 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2016} 2017 2018static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2019{ 2020 if (mm_pmd_folded(mm)) 2021 return; 2022 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2023} 2024#endif 2025 2026#ifdef CONFIG_MMU 2027static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2028{ 2029 atomic_long_set(&mm->pgtables_bytes, 0); 2030} 2031 2032static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2033{ 2034 return atomic_long_read(&mm->pgtables_bytes); 2035} 2036 2037static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2038{ 2039 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2040} 2041 2042static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2043{ 2044 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2045} 2046#else 2047 2048static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2049static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2050{ 2051 return 0; 2052} 2053 2054static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2055static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2056#endif 2057 2058int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2059int __pte_alloc_kernel(pmd_t *pmd); 2060 2061#if defined(CONFIG_MMU) 2062 2063/* 2064 * The following ifdef needed to get the 5level-fixup.h header to work. 2065 * Remove it when 5level-fixup.h has been removed. 2066 */ 2067#ifndef __ARCH_HAS_5LEVEL_HACK 2068static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2069 unsigned long address) 2070{ 2071 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2072 NULL : p4d_offset(pgd, address); 2073} 2074 2075static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2076 unsigned long address) 2077{ 2078 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2079 NULL : pud_offset(p4d, address); 2080} 2081#endif /* !__ARCH_HAS_5LEVEL_HACK */ 2082 2083static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2084{ 2085 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2086 NULL: pmd_offset(pud, address); 2087} 2088#endif /* CONFIG_MMU */ 2089 2090#if USE_SPLIT_PTE_PTLOCKS 2091#if ALLOC_SPLIT_PTLOCKS 2092void __init ptlock_cache_init(void); 2093extern bool ptlock_alloc(struct page *page); 2094extern void ptlock_free(struct page *page); 2095 2096static inline spinlock_t *ptlock_ptr(struct page *page) 2097{ 2098 return page->ptl; 2099} 2100#else /* ALLOC_SPLIT_PTLOCKS */ 2101static inline void ptlock_cache_init(void) 2102{ 2103} 2104 2105static inline bool ptlock_alloc(struct page *page) 2106{ 2107 return true; 2108} 2109 2110static inline void ptlock_free(struct page *page) 2111{ 2112} 2113 2114static inline spinlock_t *ptlock_ptr(struct page *page) 2115{ 2116 return &page->ptl; 2117} 2118#endif /* ALLOC_SPLIT_PTLOCKS */ 2119 2120static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2121{ 2122 return ptlock_ptr(pmd_page(*pmd)); 2123} 2124 2125static inline bool ptlock_init(struct page *page) 2126{ 2127 /* 2128 * prep_new_page() initialize page->private (and therefore page->ptl) 2129 * with 0. Make sure nobody took it in use in between. 2130 * 2131 * It can happen if arch try to use slab for page table allocation: 2132 * slab code uses page->slab_cache, which share storage with page->ptl. 2133 */ 2134 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2135 if (!ptlock_alloc(page)) 2136 return false; 2137 spin_lock_init(ptlock_ptr(page)); 2138 return true; 2139} 2140 2141#else /* !USE_SPLIT_PTE_PTLOCKS */ 2142/* 2143 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2144 */ 2145static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2146{ 2147 return &mm->page_table_lock; 2148} 2149static inline void ptlock_cache_init(void) {} 2150static inline bool ptlock_init(struct page *page) { return true; } 2151static inline void ptlock_free(struct page *page) {} 2152#endif /* USE_SPLIT_PTE_PTLOCKS */ 2153 2154static inline void pgtable_init(void) 2155{ 2156 ptlock_cache_init(); 2157 pgtable_cache_init(); 2158} 2159 2160static inline bool pgtable_pte_page_ctor(struct page *page) 2161{ 2162 if (!ptlock_init(page)) 2163 return false; 2164 __SetPageTable(page); 2165 inc_zone_page_state(page, NR_PAGETABLE); 2166 return true; 2167} 2168 2169static inline void pgtable_pte_page_dtor(struct page *page) 2170{ 2171 ptlock_free(page); 2172 __ClearPageTable(page); 2173 dec_zone_page_state(page, NR_PAGETABLE); 2174} 2175 2176#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2177({ \ 2178 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2179 pte_t *__pte = pte_offset_map(pmd, address); \ 2180 *(ptlp) = __ptl; \ 2181 spin_lock(__ptl); \ 2182 __pte; \ 2183}) 2184 2185#define pte_unmap_unlock(pte, ptl) do { \ 2186 spin_unlock(ptl); \ 2187 pte_unmap(pte); \ 2188} while (0) 2189 2190#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2191 2192#define pte_alloc_map(mm, pmd, address) \ 2193 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2194 2195#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2196 (pte_alloc(mm, pmd) ? \ 2197 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2198 2199#define pte_alloc_kernel(pmd, address) \ 2200 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2201 NULL: pte_offset_kernel(pmd, address)) 2202 2203#if USE_SPLIT_PMD_PTLOCKS 2204 2205static struct page *pmd_to_page(pmd_t *pmd) 2206{ 2207 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2208 return virt_to_page((void *)((unsigned long) pmd & mask)); 2209} 2210 2211static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2212{ 2213 return ptlock_ptr(pmd_to_page(pmd)); 2214} 2215 2216static inline bool pgtable_pmd_page_ctor(struct page *page) 2217{ 2218#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2219 page->pmd_huge_pte = NULL; 2220#endif 2221 return ptlock_init(page); 2222} 2223 2224static inline void pgtable_pmd_page_dtor(struct page *page) 2225{ 2226#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2227 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2228#endif 2229 ptlock_free(page); 2230} 2231 2232#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2233 2234#else 2235 2236static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2237{ 2238 return &mm->page_table_lock; 2239} 2240 2241static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2242static inline void pgtable_pmd_page_dtor(struct page *page) {} 2243 2244#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2245 2246#endif 2247 2248static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2249{ 2250 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2251 spin_lock(ptl); 2252 return ptl; 2253} 2254 2255/* 2256 * No scalability reason to split PUD locks yet, but follow the same pattern 2257 * as the PMD locks to make it easier if we decide to. The VM should not be 2258 * considered ready to switch to split PUD locks yet; there may be places 2259 * which need to be converted from page_table_lock. 2260 */ 2261static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2262{ 2263 return &mm->page_table_lock; 2264} 2265 2266static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2267{ 2268 spinlock_t *ptl = pud_lockptr(mm, pud); 2269 2270 spin_lock(ptl); 2271 return ptl; 2272} 2273 2274extern void __init pagecache_init(void); 2275extern void free_area_init(unsigned long * zones_size); 2276extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2277 unsigned long zone_start_pfn, unsigned long *zholes_size); 2278extern void free_initmem(void); 2279 2280/* 2281 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2282 * into the buddy system. The freed pages will be poisoned with pattern 2283 * "poison" if it's within range [0, UCHAR_MAX]. 2284 * Return pages freed into the buddy system. 2285 */ 2286extern unsigned long free_reserved_area(void *start, void *end, 2287 int poison, const char *s); 2288 2289#ifdef CONFIG_HIGHMEM 2290/* 2291 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2292 * and totalram_pages. 2293 */ 2294extern void free_highmem_page(struct page *page); 2295#endif 2296 2297extern void adjust_managed_page_count(struct page *page, long count); 2298extern void mem_init_print_info(const char *str); 2299 2300extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2301 2302/* Free the reserved page into the buddy system, so it gets managed. */ 2303static inline void __free_reserved_page(struct page *page) 2304{ 2305 ClearPageReserved(page); 2306 init_page_count(page); 2307 __free_page(page); 2308} 2309 2310static inline void free_reserved_page(struct page *page) 2311{ 2312 __free_reserved_page(page); 2313 adjust_managed_page_count(page, 1); 2314} 2315 2316static inline void mark_page_reserved(struct page *page) 2317{ 2318 SetPageReserved(page); 2319 adjust_managed_page_count(page, -1); 2320} 2321 2322/* 2323 * Default method to free all the __init memory into the buddy system. 2324 * The freed pages will be poisoned with pattern "poison" if it's within 2325 * range [0, UCHAR_MAX]. 2326 * Return pages freed into the buddy system. 2327 */ 2328static inline unsigned long free_initmem_default(int poison) 2329{ 2330 extern char __init_begin[], __init_end[]; 2331 2332 return free_reserved_area(&__init_begin, &__init_end, 2333 poison, "unused kernel"); 2334} 2335 2336static inline unsigned long get_num_physpages(void) 2337{ 2338 int nid; 2339 unsigned long phys_pages = 0; 2340 2341 for_each_online_node(nid) 2342 phys_pages += node_present_pages(nid); 2343 2344 return phys_pages; 2345} 2346 2347#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2348/* 2349 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2350 * zones, allocate the backing mem_map and account for memory holes in a more 2351 * architecture independent manner. This is a substitute for creating the 2352 * zone_sizes[] and zholes_size[] arrays and passing them to 2353 * free_area_init_node() 2354 * 2355 * An architecture is expected to register range of page frames backed by 2356 * physical memory with memblock_add[_node]() before calling 2357 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2358 * usage, an architecture is expected to do something like 2359 * 2360 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2361 * max_highmem_pfn}; 2362 * for_each_valid_physical_page_range() 2363 * memblock_add_node(base, size, nid) 2364 * free_area_init_nodes(max_zone_pfns); 2365 * 2366 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2367 * registered physical page range. Similarly 2368 * sparse_memory_present_with_active_regions() calls memory_present() for 2369 * each range when SPARSEMEM is enabled. 2370 * 2371 * See mm/page_alloc.c for more information on each function exposed by 2372 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2373 */ 2374extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2375unsigned long node_map_pfn_alignment(void); 2376unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2377 unsigned long end_pfn); 2378extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2379 unsigned long end_pfn); 2380extern void get_pfn_range_for_nid(unsigned int nid, 2381 unsigned long *start_pfn, unsigned long *end_pfn); 2382extern unsigned long find_min_pfn_with_active_regions(void); 2383extern void free_bootmem_with_active_regions(int nid, 2384 unsigned long max_low_pfn); 2385extern void sparse_memory_present_with_active_regions(int nid); 2386 2387#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2388 2389#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2390 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2391static inline int __early_pfn_to_nid(unsigned long pfn, 2392 struct mminit_pfnnid_cache *state) 2393{ 2394 return 0; 2395} 2396#else 2397/* please see mm/page_alloc.c */ 2398extern int __meminit early_pfn_to_nid(unsigned long pfn); 2399/* there is a per-arch backend function. */ 2400extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2401 struct mminit_pfnnid_cache *state); 2402#endif 2403 2404extern void set_dma_reserve(unsigned long new_dma_reserve); 2405extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2406 enum memmap_context, struct vmem_altmap *); 2407extern void setup_per_zone_wmarks(void); 2408extern int __meminit init_per_zone_wmark_min(void); 2409extern void mem_init(void); 2410extern void __init mmap_init(void); 2411extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2412extern long si_mem_available(void); 2413extern void si_meminfo(struct sysinfo * val); 2414extern void si_meminfo_node(struct sysinfo *val, int nid); 2415#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2416extern unsigned long arch_reserved_kernel_pages(void); 2417#endif 2418 2419extern __printf(3, 4) 2420void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2421 2422extern void setup_per_cpu_pageset(void); 2423 2424/* page_alloc.c */ 2425extern int min_free_kbytes; 2426extern int watermark_boost_factor; 2427extern int watermark_scale_factor; 2428 2429/* nommu.c */ 2430extern atomic_long_t mmap_pages_allocated; 2431extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2432 2433/* interval_tree.c */ 2434void vma_interval_tree_insert(struct vm_area_struct *node, 2435 struct rb_root_cached *root); 2436void vma_interval_tree_insert_after(struct vm_area_struct *node, 2437 struct vm_area_struct *prev, 2438 struct rb_root_cached *root); 2439void vma_interval_tree_remove(struct vm_area_struct *node, 2440 struct rb_root_cached *root); 2441struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2442 unsigned long start, unsigned long last); 2443struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2444 unsigned long start, unsigned long last); 2445 2446#define vma_interval_tree_foreach(vma, root, start, last) \ 2447 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2448 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2449 2450void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2451 struct rb_root_cached *root); 2452void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2453 struct rb_root_cached *root); 2454struct anon_vma_chain * 2455anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2456 unsigned long start, unsigned long last); 2457struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2458 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2459#ifdef CONFIG_DEBUG_VM_RB 2460void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2461#endif 2462 2463#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2464 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2465 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2466 2467/* mmap.c */ 2468extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2469extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2470 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2471 struct vm_area_struct *expand); 2472static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2473 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2474{ 2475 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2476} 2477extern struct vm_area_struct *vma_merge(struct mm_struct *, 2478 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2479 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2480 struct mempolicy *, struct vm_userfaultfd_ctx); 2481extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2482extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2483 unsigned long addr, int new_below); 2484extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2485 unsigned long addr, int new_below); 2486extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2487extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2488 struct rb_node **, struct rb_node *); 2489extern void unlink_file_vma(struct vm_area_struct *); 2490extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2491 unsigned long addr, unsigned long len, pgoff_t pgoff, 2492 bool *need_rmap_locks); 2493extern void exit_mmap(struct mm_struct *); 2494 2495static inline int check_data_rlimit(unsigned long rlim, 2496 unsigned long new, 2497 unsigned long start, 2498 unsigned long end_data, 2499 unsigned long start_data) 2500{ 2501 if (rlim < RLIM_INFINITY) { 2502 if (((new - start) + (end_data - start_data)) > rlim) 2503 return -ENOSPC; 2504 } 2505 2506 return 0; 2507} 2508 2509extern int mm_take_all_locks(struct mm_struct *mm); 2510extern void mm_drop_all_locks(struct mm_struct *mm); 2511 2512extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2513extern struct file *get_mm_exe_file(struct mm_struct *mm); 2514extern struct file *get_task_exe_file(struct task_struct *task); 2515 2516extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2517extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2518 2519extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2520 const struct vm_special_mapping *sm); 2521extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2522 unsigned long addr, unsigned long len, 2523 unsigned long flags, 2524 const struct vm_special_mapping *spec); 2525/* This is an obsolete alternative to _install_special_mapping. */ 2526extern int install_special_mapping(struct mm_struct *mm, 2527 unsigned long addr, unsigned long len, 2528 unsigned long flags, struct page **pages); 2529 2530unsigned long randomize_stack_top(unsigned long stack_top); 2531 2532extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2533 2534extern unsigned long mmap_region(struct file *file, unsigned long addr, 2535 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2536 struct list_head *uf); 2537extern unsigned long do_mmap(struct file *file, unsigned long addr, 2538 unsigned long len, unsigned long prot, unsigned long flags, 2539 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2540 struct list_head *uf); 2541extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2542 struct list_head *uf, bool downgrade); 2543extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2544 struct list_head *uf); 2545extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2546 2547static inline unsigned long 2548do_mmap_pgoff(struct file *file, unsigned long addr, 2549 unsigned long len, unsigned long prot, unsigned long flags, 2550 unsigned long pgoff, unsigned long *populate, 2551 struct list_head *uf) 2552{ 2553 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2554} 2555 2556#ifdef CONFIG_MMU 2557extern int __mm_populate(unsigned long addr, unsigned long len, 2558 int ignore_errors); 2559static inline void mm_populate(unsigned long addr, unsigned long len) 2560{ 2561 /* Ignore errors */ 2562 (void) __mm_populate(addr, len, 1); 2563} 2564#else 2565static inline void mm_populate(unsigned long addr, unsigned long len) {} 2566#endif 2567 2568/* These take the mm semaphore themselves */ 2569extern int __must_check vm_brk(unsigned long, unsigned long); 2570extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2571extern int vm_munmap(unsigned long, size_t); 2572extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2573 unsigned long, unsigned long, 2574 unsigned long, unsigned long); 2575 2576struct vm_unmapped_area_info { 2577#define VM_UNMAPPED_AREA_TOPDOWN 1 2578 unsigned long flags; 2579 unsigned long length; 2580 unsigned long low_limit; 2581 unsigned long high_limit; 2582 unsigned long align_mask; 2583 unsigned long align_offset; 2584}; 2585 2586extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2587 2588/* truncate.c */ 2589extern void truncate_inode_pages(struct address_space *, loff_t); 2590extern void truncate_inode_pages_range(struct address_space *, 2591 loff_t lstart, loff_t lend); 2592extern void truncate_inode_pages_final(struct address_space *); 2593 2594/* generic vm_area_ops exported for stackable file systems */ 2595extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2596extern void filemap_map_pages(struct vm_fault *vmf, 2597 pgoff_t start_pgoff, pgoff_t end_pgoff); 2598extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2599 2600/* mm/page-writeback.c */ 2601int __must_check write_one_page(struct page *page); 2602void task_dirty_inc(struct task_struct *tsk); 2603 2604/* readahead.c */ 2605#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2606 2607int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2608 pgoff_t offset, unsigned long nr_to_read); 2609 2610void page_cache_sync_readahead(struct address_space *mapping, 2611 struct file_ra_state *ra, 2612 struct file *filp, 2613 pgoff_t offset, 2614 unsigned long size); 2615 2616void page_cache_async_readahead(struct address_space *mapping, 2617 struct file_ra_state *ra, 2618 struct file *filp, 2619 struct page *pg, 2620 pgoff_t offset, 2621 unsigned long size); 2622 2623extern unsigned long stack_guard_gap; 2624/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2625extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2626 2627/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2628extern int expand_downwards(struct vm_area_struct *vma, 2629 unsigned long address); 2630#if VM_GROWSUP 2631extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2632#else 2633 #define expand_upwards(vma, address) (0) 2634#endif 2635 2636/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2637extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2638extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2639 struct vm_area_struct **pprev); 2640 2641/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2642 NULL if none. Assume start_addr < end_addr. */ 2643static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2644{ 2645 struct vm_area_struct * vma = find_vma(mm,start_addr); 2646 2647 if (vma && end_addr <= vma->vm_start) 2648 vma = NULL; 2649 return vma; 2650} 2651 2652static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2653{ 2654 unsigned long vm_start = vma->vm_start; 2655 2656 if (vma->vm_flags & VM_GROWSDOWN) { 2657 vm_start -= stack_guard_gap; 2658 if (vm_start > vma->vm_start) 2659 vm_start = 0; 2660 } 2661 return vm_start; 2662} 2663 2664static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2665{ 2666 unsigned long vm_end = vma->vm_end; 2667 2668 if (vma->vm_flags & VM_GROWSUP) { 2669 vm_end += stack_guard_gap; 2670 if (vm_end < vma->vm_end) 2671 vm_end = -PAGE_SIZE; 2672 } 2673 return vm_end; 2674} 2675 2676static inline unsigned long vma_pages(struct vm_area_struct *vma) 2677{ 2678 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2679} 2680 2681/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2682static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2683 unsigned long vm_start, unsigned long vm_end) 2684{ 2685 struct vm_area_struct *vma = find_vma(mm, vm_start); 2686 2687 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2688 vma = NULL; 2689 2690 return vma; 2691} 2692 2693static inline bool range_in_vma(struct vm_area_struct *vma, 2694 unsigned long start, unsigned long end) 2695{ 2696 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2697} 2698 2699#ifdef CONFIG_MMU 2700pgprot_t vm_get_page_prot(unsigned long vm_flags); 2701void vma_set_page_prot(struct vm_area_struct *vma); 2702#else 2703static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2704{ 2705 return __pgprot(0); 2706} 2707static inline void vma_set_page_prot(struct vm_area_struct *vma) 2708{ 2709 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2710} 2711#endif 2712 2713#ifdef CONFIG_NUMA_BALANCING 2714unsigned long change_prot_numa(struct vm_area_struct *vma, 2715 unsigned long start, unsigned long end); 2716#endif 2717 2718struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2719int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2720 unsigned long pfn, unsigned long size, pgprot_t); 2721int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2722int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2723 struct page **pages, unsigned long *num); 2724int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2725 unsigned long num); 2726int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2727 unsigned long num); 2728vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2729 unsigned long pfn); 2730vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2731 unsigned long pfn, pgprot_t pgprot); 2732vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2733 pfn_t pfn); 2734vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2735 pfn_t pfn, pgprot_t pgprot); 2736vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2737 unsigned long addr, pfn_t pfn); 2738int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2739 2740static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2741 unsigned long addr, struct page *page) 2742{ 2743 int err = vm_insert_page(vma, addr, page); 2744 2745 if (err == -ENOMEM) 2746 return VM_FAULT_OOM; 2747 if (err < 0 && err != -EBUSY) 2748 return VM_FAULT_SIGBUS; 2749 2750 return VM_FAULT_NOPAGE; 2751} 2752 2753static inline vm_fault_t vmf_error(int err) 2754{ 2755 if (err == -ENOMEM) 2756 return VM_FAULT_OOM; 2757 return VM_FAULT_SIGBUS; 2758} 2759 2760struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2761 unsigned int foll_flags); 2762 2763#define FOLL_WRITE 0x01 /* check pte is writable */ 2764#define FOLL_TOUCH 0x02 /* mark page accessed */ 2765#define FOLL_GET 0x04 /* do get_page on page */ 2766#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2767#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2768#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2769 * and return without waiting upon it */ 2770#define FOLL_POPULATE 0x40 /* fault in page */ 2771#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2772#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2773#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2774#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2775#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2776#define FOLL_MLOCK 0x1000 /* lock present pages */ 2777#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2778#define FOLL_COW 0x4000 /* internal GUP flag */ 2779#define FOLL_ANON 0x8000 /* don't do file mappings */ 2780#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2781#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2782#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2783 2784/* 2785 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2786 * other. Here is what they mean, and how to use them: 2787 * 2788 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2789 * period _often_ under userspace control. This is in contrast to 2790 * iov_iter_get_pages(), whose usages are transient. 2791 * 2792 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2793 * lifetime enforced by the filesystem and we need guarantees that longterm 2794 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2795 * the filesystem. Ideas for this coordination include revoking the longterm 2796 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2797 * added after the problem with filesystems was found FS DAX VMAs are 2798 * specifically failed. Filesystem pages are still subject to bugs and use of 2799 * FOLL_LONGTERM should be avoided on those pages. 2800 * 2801 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2802 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2803 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2804 * is due to an incompatibility with the FS DAX check and 2805 * FAULT_FLAG_ALLOW_RETRY. 2806 * 2807 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2808 * that region. And so, CMA attempts to migrate the page before pinning, when 2809 * FOLL_LONGTERM is specified. 2810 * 2811 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2812 * but an additional pin counting system) will be invoked. This is intended for 2813 * anything that gets a page reference and then touches page data (for example, 2814 * Direct IO). This lets the filesystem know that some non-file-system entity is 2815 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2816 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2817 * a call to unpin_user_page(). 2818 * 2819 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2820 * and separate refcounting mechanisms, however, and that means that each has 2821 * its own acquire and release mechanisms: 2822 * 2823 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2824 * 2825 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2826 * 2827 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2828 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2829 * calls applied to them, and that's perfectly OK. This is a constraint on the 2830 * callers, not on the pages.) 2831 * 2832 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2833 * directly by the caller. That's in order to help avoid mismatches when 2834 * releasing pages: get_user_pages*() pages must be released via put_page(), 2835 * while pin_user_pages*() pages must be released via unpin_user_page(). 2836 * 2837 * Please see Documentation/vm/pin_user_pages.rst for more information. 2838 */ 2839 2840static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2841{ 2842 if (vm_fault & VM_FAULT_OOM) 2843 return -ENOMEM; 2844 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2845 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2846 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2847 return -EFAULT; 2848 return 0; 2849} 2850 2851typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2852extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2853 unsigned long size, pte_fn_t fn, void *data); 2854extern int apply_to_existing_page_range(struct mm_struct *mm, 2855 unsigned long address, unsigned long size, 2856 pte_fn_t fn, void *data); 2857 2858#ifdef CONFIG_PAGE_POISONING 2859extern bool page_poisoning_enabled(void); 2860extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2861#else 2862static inline bool page_poisoning_enabled(void) { return false; } 2863static inline void kernel_poison_pages(struct page *page, int numpages, 2864 int enable) { } 2865#endif 2866 2867#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2868DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2869#else 2870DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2871#endif 2872static inline bool want_init_on_alloc(gfp_t flags) 2873{ 2874 if (static_branch_unlikely(&init_on_alloc) && 2875 !page_poisoning_enabled()) 2876 return true; 2877 return flags & __GFP_ZERO; 2878} 2879 2880#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2881DECLARE_STATIC_KEY_TRUE(init_on_free); 2882#else 2883DECLARE_STATIC_KEY_FALSE(init_on_free); 2884#endif 2885static inline bool want_init_on_free(void) 2886{ 2887 return static_branch_unlikely(&init_on_free) && 2888 !page_poisoning_enabled(); 2889} 2890 2891#ifdef CONFIG_DEBUG_PAGEALLOC 2892extern void init_debug_pagealloc(void); 2893#else 2894static inline void init_debug_pagealloc(void) {} 2895#endif 2896extern bool _debug_pagealloc_enabled_early; 2897DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2898 2899static inline bool debug_pagealloc_enabled(void) 2900{ 2901 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2902 _debug_pagealloc_enabled_early; 2903} 2904 2905/* 2906 * For use in fast paths after init_debug_pagealloc() has run, or when a 2907 * false negative result is not harmful when called too early. 2908 */ 2909static inline bool debug_pagealloc_enabled_static(void) 2910{ 2911 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2912 return false; 2913 2914 return static_branch_unlikely(&_debug_pagealloc_enabled); 2915} 2916 2917#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2918extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2919 2920/* 2921 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2922 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2923 */ 2924static inline void 2925kernel_map_pages(struct page *page, int numpages, int enable) 2926{ 2927 __kernel_map_pages(page, numpages, enable); 2928} 2929#ifdef CONFIG_HIBERNATION 2930extern bool kernel_page_present(struct page *page); 2931#endif /* CONFIG_HIBERNATION */ 2932#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2933static inline void 2934kernel_map_pages(struct page *page, int numpages, int enable) {} 2935#ifdef CONFIG_HIBERNATION 2936static inline bool kernel_page_present(struct page *page) { return true; } 2937#endif /* CONFIG_HIBERNATION */ 2938#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2939 2940#ifdef __HAVE_ARCH_GATE_AREA 2941extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2942extern int in_gate_area_no_mm(unsigned long addr); 2943extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2944#else 2945static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2946{ 2947 return NULL; 2948} 2949static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2950static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2951{ 2952 return 0; 2953} 2954#endif /* __HAVE_ARCH_GATE_AREA */ 2955 2956extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2957 2958#ifdef CONFIG_SYSCTL 2959extern int sysctl_drop_caches; 2960int drop_caches_sysctl_handler(struct ctl_table *, int, 2961 void __user *, size_t *, loff_t *); 2962#endif 2963 2964void drop_slab(void); 2965void drop_slab_node(int nid); 2966 2967#ifndef CONFIG_MMU 2968#define randomize_va_space 0 2969#else 2970extern int randomize_va_space; 2971#endif 2972 2973const char * arch_vma_name(struct vm_area_struct *vma); 2974#ifdef CONFIG_MMU 2975void print_vma_addr(char *prefix, unsigned long rip); 2976#else 2977static inline void print_vma_addr(char *prefix, unsigned long rip) 2978{ 2979} 2980#endif 2981 2982void *sparse_buffer_alloc(unsigned long size); 2983struct page * __populate_section_memmap(unsigned long pfn, 2984 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2985pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2986p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2987pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2988pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2989pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2990void *vmemmap_alloc_block(unsigned long size, int node); 2991struct vmem_altmap; 2992void *vmemmap_alloc_block_buf(unsigned long size, int node); 2993void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2994void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2995int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2996 int node); 2997int vmemmap_populate(unsigned long start, unsigned long end, int node, 2998 struct vmem_altmap *altmap); 2999void vmemmap_populate_print_last(void); 3000#ifdef CONFIG_MEMORY_HOTPLUG 3001void vmemmap_free(unsigned long start, unsigned long end, 3002 struct vmem_altmap *altmap); 3003#endif 3004void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3005 unsigned long nr_pages); 3006 3007enum mf_flags { 3008 MF_COUNT_INCREASED = 1 << 0, 3009 MF_ACTION_REQUIRED = 1 << 1, 3010 MF_MUST_KILL = 1 << 2, 3011 MF_SOFT_OFFLINE = 1 << 3, 3012}; 3013extern int memory_failure(unsigned long pfn, int flags); 3014extern void memory_failure_queue(unsigned long pfn, int flags); 3015extern int unpoison_memory(unsigned long pfn); 3016extern int get_hwpoison_page(struct page *page); 3017#define put_hwpoison_page(page) put_page(page) 3018extern int sysctl_memory_failure_early_kill; 3019extern int sysctl_memory_failure_recovery; 3020extern void shake_page(struct page *p, int access); 3021extern atomic_long_t num_poisoned_pages __read_mostly; 3022extern int soft_offline_page(unsigned long pfn, int flags); 3023 3024 3025/* 3026 * Error handlers for various types of pages. 3027 */ 3028enum mf_result { 3029 MF_IGNORED, /* Error: cannot be handled */ 3030 MF_FAILED, /* Error: handling failed */ 3031 MF_DELAYED, /* Will be handled later */ 3032 MF_RECOVERED, /* Successfully recovered */ 3033}; 3034 3035enum mf_action_page_type { 3036 MF_MSG_KERNEL, 3037 MF_MSG_KERNEL_HIGH_ORDER, 3038 MF_MSG_SLAB, 3039 MF_MSG_DIFFERENT_COMPOUND, 3040 MF_MSG_POISONED_HUGE, 3041 MF_MSG_HUGE, 3042 MF_MSG_FREE_HUGE, 3043 MF_MSG_NON_PMD_HUGE, 3044 MF_MSG_UNMAP_FAILED, 3045 MF_MSG_DIRTY_SWAPCACHE, 3046 MF_MSG_CLEAN_SWAPCACHE, 3047 MF_MSG_DIRTY_MLOCKED_LRU, 3048 MF_MSG_CLEAN_MLOCKED_LRU, 3049 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3050 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3051 MF_MSG_DIRTY_LRU, 3052 MF_MSG_CLEAN_LRU, 3053 MF_MSG_TRUNCATED_LRU, 3054 MF_MSG_BUDDY, 3055 MF_MSG_BUDDY_2ND, 3056 MF_MSG_DAX, 3057 MF_MSG_UNKNOWN, 3058}; 3059 3060#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3061extern void clear_huge_page(struct page *page, 3062 unsigned long addr_hint, 3063 unsigned int pages_per_huge_page); 3064extern void copy_user_huge_page(struct page *dst, struct page *src, 3065 unsigned long addr_hint, 3066 struct vm_area_struct *vma, 3067 unsigned int pages_per_huge_page); 3068extern long copy_huge_page_from_user(struct page *dst_page, 3069 const void __user *usr_src, 3070 unsigned int pages_per_huge_page, 3071 bool allow_pagefault); 3072 3073/** 3074 * vma_is_special_huge - Are transhuge page-table entries considered special? 3075 * @vma: Pointer to the struct vm_area_struct to consider 3076 * 3077 * Whether transhuge page-table entries are considered "special" following 3078 * the definition in vm_normal_page(). 3079 * 3080 * Return: true if transhuge page-table entries should be considered special, 3081 * false otherwise. 3082 */ 3083static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3084{ 3085 return vma_is_dax(vma) || (vma->vm_file && 3086 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3087} 3088 3089#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3090 3091#ifdef CONFIG_DEBUG_PAGEALLOC 3092extern unsigned int _debug_guardpage_minorder; 3093DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3094 3095static inline unsigned int debug_guardpage_minorder(void) 3096{ 3097 return _debug_guardpage_minorder; 3098} 3099 3100static inline bool debug_guardpage_enabled(void) 3101{ 3102 return static_branch_unlikely(&_debug_guardpage_enabled); 3103} 3104 3105static inline bool page_is_guard(struct page *page) 3106{ 3107 if (!debug_guardpage_enabled()) 3108 return false; 3109 3110 return PageGuard(page); 3111} 3112#else 3113static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3114static inline bool debug_guardpage_enabled(void) { return false; } 3115static inline bool page_is_guard(struct page *page) { return false; } 3116#endif /* CONFIG_DEBUG_PAGEALLOC */ 3117 3118#if MAX_NUMNODES > 1 3119void __init setup_nr_node_ids(void); 3120#else 3121static inline void setup_nr_node_ids(void) {} 3122#endif 3123 3124extern int memcmp_pages(struct page *page1, struct page *page2); 3125 3126static inline int pages_identical(struct page *page1, struct page *page2) 3127{ 3128 return !memcmp_pages(page1, page2); 3129} 3130 3131#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3132unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3133 pgoff_t first_index, pgoff_t nr, 3134 pgoff_t bitmap_pgoff, 3135 unsigned long *bitmap, 3136 pgoff_t *start, 3137 pgoff_t *end); 3138 3139unsigned long wp_shared_mapping_range(struct address_space *mapping, 3140 pgoff_t first_index, pgoff_t nr); 3141#endif 3142 3143#endif /* __KERNEL__ */ 3144#endif /* _LINUX_MM_H */