Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/swait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct mutex kvm_lock;
161extern struct list_head vm_list;
162
163struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167};
168
169#define NR_IOBUS_DEVS 1000
170
171struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175};
176
177enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183};
184
185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198#ifdef CONFIG_KVM_ASYNC_PF
199struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209};
210
211void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
212void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
213int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
214 unsigned long hva, struct kvm_arch_async_pf *arch);
215int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
216#endif
217
218enum {
219 OUTSIDE_GUEST_MODE,
220 IN_GUEST_MODE,
221 EXITING_GUEST_MODE,
222 READING_SHADOW_PAGE_TABLES,
223};
224
225#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
226
227struct kvm_host_map {
228 /*
229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
230 * a 'struct page' for it. When using mem= kernel parameter some memory
231 * can be used as guest memory but they are not managed by host
232 * kernel).
233 * If 'pfn' is not managed by the host kernel, this field is
234 * initialized to KVM_UNMAPPED_PAGE.
235 */
236 struct page *page;
237 void *hva;
238 kvm_pfn_t pfn;
239 kvm_pfn_t gfn;
240};
241
242/*
243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
244 * directly to check for that.
245 */
246static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
247{
248 return !!map->hva;
249}
250
251/*
252 * Sometimes a large or cross-page mmio needs to be broken up into separate
253 * exits for userspace servicing.
254 */
255struct kvm_mmio_fragment {
256 gpa_t gpa;
257 void *data;
258 unsigned len;
259};
260
261struct kvm_vcpu {
262 struct kvm *kvm;
263#ifdef CONFIG_PREEMPT_NOTIFIERS
264 struct preempt_notifier preempt_notifier;
265#endif
266 int cpu;
267 int vcpu_id; /* id given by userspace at creation */
268 int vcpu_idx; /* index in kvm->vcpus array */
269 int srcu_idx;
270 int mode;
271 u64 requests;
272 unsigned long guest_debug;
273
274 int pre_pcpu;
275 struct list_head blocked_vcpu_list;
276
277 struct mutex mutex;
278 struct kvm_run *run;
279
280 struct swait_queue_head wq;
281 struct pid __rcu *pid;
282 int sigset_active;
283 sigset_t sigset;
284 struct kvm_vcpu_stat stat;
285 unsigned int halt_poll_ns;
286 bool valid_wakeup;
287
288#ifdef CONFIG_HAS_IOMEM
289 int mmio_needed;
290 int mmio_read_completed;
291 int mmio_is_write;
292 int mmio_cur_fragment;
293 int mmio_nr_fragments;
294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
295#endif
296
297#ifdef CONFIG_KVM_ASYNC_PF
298 struct {
299 u32 queued;
300 struct list_head queue;
301 struct list_head done;
302 spinlock_t lock;
303 } async_pf;
304#endif
305
306#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
307 /*
308 * Cpu relax intercept or pause loop exit optimization
309 * in_spin_loop: set when a vcpu does a pause loop exit
310 * or cpu relax intercepted.
311 * dy_eligible: indicates whether vcpu is eligible for directed yield.
312 */
313 struct {
314 bool in_spin_loop;
315 bool dy_eligible;
316 } spin_loop;
317#endif
318 bool preempted;
319 bool ready;
320 struct kvm_vcpu_arch arch;
321 struct dentry *debugfs_dentry;
322};
323
324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325{
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333}
334
335/*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349};
350
351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352{
353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354}
355
356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357{
358 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359
360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361}
362
363#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
364#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
365#endif
366
367struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373};
374
375struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378};
379
380struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402};
403
404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[0];
413};
414#endif
415
416#ifndef KVM_PRIVATE_MEM_SLOTS
417#define KVM_PRIVATE_MEM_SLOTS 0
418#endif
419
420#ifndef KVM_MEM_SLOTS_NUM
421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422#endif
423
424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426{
427 return 0;
428}
429#endif
430
431/*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436struct kvm_memslots {
437 u64 generation;
438 /* The mapping table from slot id to the index in memslots[]. */
439 short id_to_index[KVM_MEM_SLOTS_NUM];
440 atomic_t lru_slot;
441 int used_slots;
442 struct kvm_memory_slot memslots[];
443};
444
445struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464#ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472#endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476#ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480#endif
481
482 struct mutex irq_lock;
483#ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488#endif
489#ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491#endif
492
493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497#endif
498 long tlbs_dirty;
499 struct list_head devices;
500 u64 manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506};
507
508#define kvm_err(fmt, ...) \
509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510#define kvm_info(fmt, ...) \
511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512#define kvm_debug(fmt, ...) \
513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514#define kvm_debug_ratelimited(fmt, ...) \
515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
516 ## __VA_ARGS__)
517#define kvm_pr_unimpl(fmt, ...) \
518 pr_err_ratelimited("kvm [%i]: " fmt, \
519 task_tgid_nr(current), ## __VA_ARGS__)
520
521/* The guest did something we don't support. */
522#define vcpu_unimpl(vcpu, fmt, ...) \
523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
525
526#define vcpu_debug(vcpu, fmt, ...) \
527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
528#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
530 ## __VA_ARGS__)
531#define vcpu_err(vcpu, fmt, ...) \
532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
533
534static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
535{
536 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
537}
538
539static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
540{
541 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
542 lockdep_is_held(&kvm->slots_lock) ||
543 !refcount_read(&kvm->users_count));
544}
545
546static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
547{
548 int num_vcpus = atomic_read(&kvm->online_vcpus);
549 i = array_index_nospec(i, num_vcpus);
550
551 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
552 smp_rmb();
553 return kvm->vcpus[i];
554}
555
556#define kvm_for_each_vcpu(idx, vcpup, kvm) \
557 for (idx = 0; \
558 idx < atomic_read(&kvm->online_vcpus) && \
559 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
560 idx++)
561
562static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
563{
564 struct kvm_vcpu *vcpu = NULL;
565 int i;
566
567 if (id < 0)
568 return NULL;
569 if (id < KVM_MAX_VCPUS)
570 vcpu = kvm_get_vcpu(kvm, id);
571 if (vcpu && vcpu->vcpu_id == id)
572 return vcpu;
573 kvm_for_each_vcpu(i, vcpu, kvm)
574 if (vcpu->vcpu_id == id)
575 return vcpu;
576 return NULL;
577}
578
579static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
580{
581 return vcpu->vcpu_idx;
582}
583
584#define kvm_for_each_memslot(memslot, slots) \
585 for (memslot = &slots->memslots[0]; \
586 memslot < slots->memslots + slots->used_slots; memslot++) \
587 if (WARN_ON_ONCE(!memslot->npages)) { \
588 } else
589
590void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
591
592void vcpu_load(struct kvm_vcpu *vcpu);
593void vcpu_put(struct kvm_vcpu *vcpu);
594
595#ifdef __KVM_HAVE_IOAPIC
596void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
597void kvm_arch_post_irq_routing_update(struct kvm *kvm);
598#else
599static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
600{
601}
602static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
603{
604}
605#endif
606
607#ifdef CONFIG_HAVE_KVM_IRQFD
608int kvm_irqfd_init(void);
609void kvm_irqfd_exit(void);
610#else
611static inline int kvm_irqfd_init(void)
612{
613 return 0;
614}
615
616static inline void kvm_irqfd_exit(void)
617{
618}
619#endif
620int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
621 struct module *module);
622void kvm_exit(void);
623
624void kvm_get_kvm(struct kvm *kvm);
625void kvm_put_kvm(struct kvm *kvm);
626void kvm_put_kvm_no_destroy(struct kvm *kvm);
627
628static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
629{
630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
632 lockdep_is_held(&kvm->slots_lock) ||
633 !refcount_read(&kvm->users_count));
634}
635
636static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
637{
638 return __kvm_memslots(kvm, 0);
639}
640
641static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
642{
643 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
644
645 return __kvm_memslots(vcpu->kvm, as_id);
646}
647
648static inline
649struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
650{
651 int index = slots->id_to_index[id];
652 struct kvm_memory_slot *slot;
653
654 if (index < 0)
655 return NULL;
656
657 slot = &slots->memslots[index];
658
659 WARN_ON(slot->id != id);
660 return slot;
661}
662
663/*
664 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
665 * - create a new memory slot
666 * - delete an existing memory slot
667 * - modify an existing memory slot
668 * -- move it in the guest physical memory space
669 * -- just change its flags
670 *
671 * Since flags can be changed by some of these operations, the following
672 * differentiation is the best we can do for __kvm_set_memory_region():
673 */
674enum kvm_mr_change {
675 KVM_MR_CREATE,
676 KVM_MR_DELETE,
677 KVM_MR_MOVE,
678 KVM_MR_FLAGS_ONLY,
679};
680
681int kvm_set_memory_region(struct kvm *kvm,
682 const struct kvm_userspace_memory_region *mem);
683int __kvm_set_memory_region(struct kvm *kvm,
684 const struct kvm_userspace_memory_region *mem);
685void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
686void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
687int kvm_arch_prepare_memory_region(struct kvm *kvm,
688 struct kvm_memory_slot *memslot,
689 const struct kvm_userspace_memory_region *mem,
690 enum kvm_mr_change change);
691void kvm_arch_commit_memory_region(struct kvm *kvm,
692 const struct kvm_userspace_memory_region *mem,
693 struct kvm_memory_slot *old,
694 const struct kvm_memory_slot *new,
695 enum kvm_mr_change change);
696/* flush all memory translations */
697void kvm_arch_flush_shadow_all(struct kvm *kvm);
698/* flush memory translations pointing to 'slot' */
699void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 struct kvm_memory_slot *slot);
701
702int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
703 struct page **pages, int nr_pages);
704
705struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
706unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
707unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
708unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
709unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
710 bool *writable);
711void kvm_release_page_clean(struct page *page);
712void kvm_release_page_dirty(struct page *page);
713void kvm_set_page_accessed(struct page *page);
714
715kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
716kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
717 bool *writable);
718kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
719kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
720kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
721 bool atomic, bool *async, bool write_fault,
722 bool *writable);
723
724void kvm_release_pfn_clean(kvm_pfn_t pfn);
725void kvm_release_pfn_dirty(kvm_pfn_t pfn);
726void kvm_set_pfn_dirty(kvm_pfn_t pfn);
727void kvm_set_pfn_accessed(kvm_pfn_t pfn);
728void kvm_get_pfn(kvm_pfn_t pfn);
729
730void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
731int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
732 int len);
733int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
734int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
735 void *data, unsigned long len);
736int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
737 int offset, int len);
738int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
739 unsigned long len);
740int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
741 void *data, unsigned long len);
742int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
743 void *data, unsigned int offset,
744 unsigned long len);
745int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
746 gpa_t gpa, unsigned long len);
747
748#define __kvm_put_guest(kvm, gfn, offset, value, type) \
749({ \
750 unsigned long __addr = gfn_to_hva(kvm, gfn); \
751 type __user *__uaddr = (type __user *)(__addr + offset); \
752 int __ret = -EFAULT; \
753 \
754 if (!kvm_is_error_hva(__addr)) \
755 __ret = put_user(value, __uaddr); \
756 if (!__ret) \
757 mark_page_dirty(kvm, gfn); \
758 __ret; \
759})
760
761#define kvm_put_guest(kvm, gpa, value, type) \
762({ \
763 gpa_t __gpa = gpa; \
764 struct kvm *__kvm = kvm; \
765 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
766 offset_in_page(__gpa), (value), type); \
767})
768
769int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
770int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
771struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
772bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
773unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
774void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
775
776struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
777struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
778kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
779kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
780int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
781int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
782 struct gfn_to_pfn_cache *cache, bool atomic);
783struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
784void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
785int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
786 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
787unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
789int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
790 int len);
791int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
792 unsigned long len);
793int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
794 unsigned long len);
795int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
796 int offset, int len);
797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
798 unsigned long len);
799void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
800
801void kvm_sigset_activate(struct kvm_vcpu *vcpu);
802void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
803
804void kvm_vcpu_block(struct kvm_vcpu *vcpu);
805void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
806void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
807bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
808void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
809int kvm_vcpu_yield_to(struct kvm_vcpu *target);
810void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
811
812void kvm_flush_remote_tlbs(struct kvm *kvm);
813void kvm_reload_remote_mmus(struct kvm *kvm);
814
815bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
816 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
817bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
818bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
819 unsigned long *vcpu_bitmap);
820
821long kvm_arch_dev_ioctl(struct file *filp,
822 unsigned int ioctl, unsigned long arg);
823long kvm_arch_vcpu_ioctl(struct file *filp,
824 unsigned int ioctl, unsigned long arg);
825vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
826
827int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
828
829void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
830 struct kvm_memory_slot *slot,
831 gfn_t gfn_offset,
832 unsigned long mask);
833void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
834
835#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
836void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
837 struct kvm_memory_slot *memslot);
838#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
839int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
840int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
841 int *is_dirty, struct kvm_memory_slot **memslot);
842#endif
843
844int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
845 bool line_status);
846int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
847 struct kvm_enable_cap *cap);
848long kvm_arch_vm_ioctl(struct file *filp,
849 unsigned int ioctl, unsigned long arg);
850
851int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
852int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
853
854int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
855 struct kvm_translation *tr);
856
857int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
858int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
859int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
860 struct kvm_sregs *sregs);
861int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
862 struct kvm_sregs *sregs);
863int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
864 struct kvm_mp_state *mp_state);
865int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
866 struct kvm_mp_state *mp_state);
867int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
868 struct kvm_guest_debug *dbg);
869int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
870
871int kvm_arch_init(void *opaque);
872void kvm_arch_exit(void);
873
874void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
875
876void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
877void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
878int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
879int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
880void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
881void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
882
883#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
884void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
885#endif
886
887int kvm_arch_hardware_enable(void);
888void kvm_arch_hardware_disable(void);
889int kvm_arch_hardware_setup(void *opaque);
890void kvm_arch_hardware_unsetup(void);
891int kvm_arch_check_processor_compat(void *opaque);
892int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
893bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
894int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
895bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
896int kvm_arch_post_init_vm(struct kvm *kvm);
897void kvm_arch_pre_destroy_vm(struct kvm *kvm);
898
899#ifndef __KVM_HAVE_ARCH_VM_ALLOC
900/*
901 * All architectures that want to use vzalloc currently also
902 * need their own kvm_arch_alloc_vm implementation.
903 */
904static inline struct kvm *kvm_arch_alloc_vm(void)
905{
906 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
907}
908
909static inline void kvm_arch_free_vm(struct kvm *kvm)
910{
911 kfree(kvm);
912}
913#endif
914
915#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
916static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
917{
918 return -ENOTSUPP;
919}
920#endif
921
922#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
923void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
924void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
925bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
926#else
927static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
928{
929}
930
931static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
932{
933}
934
935static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
936{
937 return false;
938}
939#endif
940#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
941void kvm_arch_start_assignment(struct kvm *kvm);
942void kvm_arch_end_assignment(struct kvm *kvm);
943bool kvm_arch_has_assigned_device(struct kvm *kvm);
944#else
945static inline void kvm_arch_start_assignment(struct kvm *kvm)
946{
947}
948
949static inline void kvm_arch_end_assignment(struct kvm *kvm)
950{
951}
952
953static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
954{
955 return false;
956}
957#endif
958
959static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
960{
961#ifdef __KVM_HAVE_ARCH_WQP
962 return vcpu->arch.wqp;
963#else
964 return &vcpu->wq;
965#endif
966}
967
968#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
969/*
970 * returns true if the virtual interrupt controller is initialized and
971 * ready to accept virtual IRQ. On some architectures the virtual interrupt
972 * controller is dynamically instantiated and this is not always true.
973 */
974bool kvm_arch_intc_initialized(struct kvm *kvm);
975#else
976static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
977{
978 return true;
979}
980#endif
981
982int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
983void kvm_arch_destroy_vm(struct kvm *kvm);
984void kvm_arch_sync_events(struct kvm *kvm);
985
986int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
987
988bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
989bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
990bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
991
992struct kvm_irq_ack_notifier {
993 struct hlist_node link;
994 unsigned gsi;
995 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
996};
997
998int kvm_irq_map_gsi(struct kvm *kvm,
999 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1000int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1001
1002int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1003 bool line_status);
1004int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1005 int irq_source_id, int level, bool line_status);
1006int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1007 struct kvm *kvm, int irq_source_id,
1008 int level, bool line_status);
1009bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1010void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1011void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1012void kvm_register_irq_ack_notifier(struct kvm *kvm,
1013 struct kvm_irq_ack_notifier *kian);
1014void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1015 struct kvm_irq_ack_notifier *kian);
1016int kvm_request_irq_source_id(struct kvm *kvm);
1017void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1018bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1019
1020/*
1021 * search_memslots() and __gfn_to_memslot() are here because they are
1022 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1023 * gfn_to_memslot() itself isn't here as an inline because that would
1024 * bloat other code too much.
1025 *
1026 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1027 */
1028static inline struct kvm_memory_slot *
1029search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1030{
1031 int start = 0, end = slots->used_slots;
1032 int slot = atomic_read(&slots->lru_slot);
1033 struct kvm_memory_slot *memslots = slots->memslots;
1034
1035 if (unlikely(!slots->used_slots))
1036 return NULL;
1037
1038 if (gfn >= memslots[slot].base_gfn &&
1039 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1040 return &memslots[slot];
1041
1042 while (start < end) {
1043 slot = start + (end - start) / 2;
1044
1045 if (gfn >= memslots[slot].base_gfn)
1046 end = slot;
1047 else
1048 start = slot + 1;
1049 }
1050
1051 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1052 gfn < memslots[start].base_gfn + memslots[start].npages) {
1053 atomic_set(&slots->lru_slot, start);
1054 return &memslots[start];
1055 }
1056
1057 return NULL;
1058}
1059
1060static inline struct kvm_memory_slot *
1061__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1062{
1063 return search_memslots(slots, gfn);
1064}
1065
1066static inline unsigned long
1067__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1068{
1069 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1070}
1071
1072static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1073{
1074 return gfn_to_memslot(kvm, gfn)->id;
1075}
1076
1077static inline gfn_t
1078hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1079{
1080 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1081
1082 return slot->base_gfn + gfn_offset;
1083}
1084
1085static inline gpa_t gfn_to_gpa(gfn_t gfn)
1086{
1087 return (gpa_t)gfn << PAGE_SHIFT;
1088}
1089
1090static inline gfn_t gpa_to_gfn(gpa_t gpa)
1091{
1092 return (gfn_t)(gpa >> PAGE_SHIFT);
1093}
1094
1095static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1096{
1097 return (hpa_t)pfn << PAGE_SHIFT;
1098}
1099
1100static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1101 gpa_t gpa)
1102{
1103 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1104}
1105
1106static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1107{
1108 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1109
1110 return kvm_is_error_hva(hva);
1111}
1112
1113enum kvm_stat_kind {
1114 KVM_STAT_VM,
1115 KVM_STAT_VCPU,
1116};
1117
1118struct kvm_stat_data {
1119 struct kvm *kvm;
1120 struct kvm_stats_debugfs_item *dbgfs_item;
1121};
1122
1123struct kvm_stats_debugfs_item {
1124 const char *name;
1125 int offset;
1126 enum kvm_stat_kind kind;
1127 int mode;
1128};
1129
1130#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1131 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1132
1133extern struct kvm_stats_debugfs_item debugfs_entries[];
1134extern struct dentry *kvm_debugfs_dir;
1135
1136#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1137static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1138{
1139 if (unlikely(kvm->mmu_notifier_count))
1140 return 1;
1141 /*
1142 * Ensure the read of mmu_notifier_count happens before the read
1143 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1144 * mmu_notifier_invalidate_range_end to make sure that the caller
1145 * either sees the old (non-zero) value of mmu_notifier_count or
1146 * the new (incremented) value of mmu_notifier_seq.
1147 * PowerPC Book3s HV KVM calls this under a per-page lock
1148 * rather than under kvm->mmu_lock, for scalability, so
1149 * can't rely on kvm->mmu_lock to keep things ordered.
1150 */
1151 smp_rmb();
1152 if (kvm->mmu_notifier_seq != mmu_seq)
1153 return 1;
1154 return 0;
1155}
1156#endif
1157
1158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1159
1160#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1161
1162bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1163int kvm_set_irq_routing(struct kvm *kvm,
1164 const struct kvm_irq_routing_entry *entries,
1165 unsigned nr,
1166 unsigned flags);
1167int kvm_set_routing_entry(struct kvm *kvm,
1168 struct kvm_kernel_irq_routing_entry *e,
1169 const struct kvm_irq_routing_entry *ue);
1170void kvm_free_irq_routing(struct kvm *kvm);
1171
1172#else
1173
1174static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1175
1176#endif
1177
1178int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1179
1180#ifdef CONFIG_HAVE_KVM_EVENTFD
1181
1182void kvm_eventfd_init(struct kvm *kvm);
1183int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1184
1185#ifdef CONFIG_HAVE_KVM_IRQFD
1186int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1187void kvm_irqfd_release(struct kvm *kvm);
1188void kvm_irq_routing_update(struct kvm *);
1189#else
1190static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1191{
1192 return -EINVAL;
1193}
1194
1195static inline void kvm_irqfd_release(struct kvm *kvm) {}
1196#endif
1197
1198#else
1199
1200static inline void kvm_eventfd_init(struct kvm *kvm) {}
1201
1202static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1203{
1204 return -EINVAL;
1205}
1206
1207static inline void kvm_irqfd_release(struct kvm *kvm) {}
1208
1209#ifdef CONFIG_HAVE_KVM_IRQCHIP
1210static inline void kvm_irq_routing_update(struct kvm *kvm)
1211{
1212}
1213#endif
1214
1215static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1216{
1217 return -ENOSYS;
1218}
1219
1220#endif /* CONFIG_HAVE_KVM_EVENTFD */
1221
1222void kvm_arch_irq_routing_update(struct kvm *kvm);
1223
1224static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1225{
1226 /*
1227 * Ensure the rest of the request is published to kvm_check_request's
1228 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1229 */
1230 smp_wmb();
1231 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1232}
1233
1234static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1235{
1236 return READ_ONCE(vcpu->requests);
1237}
1238
1239static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1240{
1241 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1242}
1243
1244static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1245{
1246 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1247}
1248
1249static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1250{
1251 if (kvm_test_request(req, vcpu)) {
1252 kvm_clear_request(req, vcpu);
1253
1254 /*
1255 * Ensure the rest of the request is visible to kvm_check_request's
1256 * caller. Paired with the smp_wmb in kvm_make_request.
1257 */
1258 smp_mb__after_atomic();
1259 return true;
1260 } else {
1261 return false;
1262 }
1263}
1264
1265extern bool kvm_rebooting;
1266
1267extern unsigned int halt_poll_ns;
1268extern unsigned int halt_poll_ns_grow;
1269extern unsigned int halt_poll_ns_grow_start;
1270extern unsigned int halt_poll_ns_shrink;
1271
1272struct kvm_device {
1273 const struct kvm_device_ops *ops;
1274 struct kvm *kvm;
1275 void *private;
1276 struct list_head vm_node;
1277};
1278
1279/* create, destroy, and name are mandatory */
1280struct kvm_device_ops {
1281 const char *name;
1282
1283 /*
1284 * create is called holding kvm->lock and any operations not suitable
1285 * to do while holding the lock should be deferred to init (see
1286 * below).
1287 */
1288 int (*create)(struct kvm_device *dev, u32 type);
1289
1290 /*
1291 * init is called after create if create is successful and is called
1292 * outside of holding kvm->lock.
1293 */
1294 void (*init)(struct kvm_device *dev);
1295
1296 /*
1297 * Destroy is responsible for freeing dev.
1298 *
1299 * Destroy may be called before or after destructors are called
1300 * on emulated I/O regions, depending on whether a reference is
1301 * held by a vcpu or other kvm component that gets destroyed
1302 * after the emulated I/O.
1303 */
1304 void (*destroy)(struct kvm_device *dev);
1305
1306 /*
1307 * Release is an alternative method to free the device. It is
1308 * called when the device file descriptor is closed. Once
1309 * release is called, the destroy method will not be called
1310 * anymore as the device is removed from the device list of
1311 * the VM. kvm->lock is held.
1312 */
1313 void (*release)(struct kvm_device *dev);
1314
1315 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1316 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1317 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1318 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1319 unsigned long arg);
1320 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1321};
1322
1323void kvm_device_get(struct kvm_device *dev);
1324void kvm_device_put(struct kvm_device *dev);
1325struct kvm_device *kvm_device_from_filp(struct file *filp);
1326int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1327void kvm_unregister_device_ops(u32 type);
1328
1329extern struct kvm_device_ops kvm_mpic_ops;
1330extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1331extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1332
1333#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1334
1335static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1336{
1337 vcpu->spin_loop.in_spin_loop = val;
1338}
1339static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1340{
1341 vcpu->spin_loop.dy_eligible = val;
1342}
1343
1344#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1345
1346static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1347{
1348}
1349
1350static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1351{
1352}
1353#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1354
1355struct kvm_vcpu *kvm_get_running_vcpu(void);
1356struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1357
1358#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1359bool kvm_arch_has_irq_bypass(void);
1360int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1361 struct irq_bypass_producer *);
1362void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1363 struct irq_bypass_producer *);
1364void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1365void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1366int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1367 uint32_t guest_irq, bool set);
1368#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1369
1370#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1371/* If we wakeup during the poll time, was it a sucessful poll? */
1372static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1373{
1374 return vcpu->valid_wakeup;
1375}
1376
1377#else
1378static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1379{
1380 return true;
1381}
1382#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1383
1384#ifdef CONFIG_HAVE_KVM_NO_POLL
1385/* Callback that tells if we must not poll */
1386bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1387#else
1388static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1389{
1390 return false;
1391}
1392#endif /* CONFIG_HAVE_KVM_NO_POLL */
1393
1394#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1395long kvm_arch_vcpu_async_ioctl(struct file *filp,
1396 unsigned int ioctl, unsigned long arg);
1397#else
1398static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1399 unsigned int ioctl,
1400 unsigned long arg)
1401{
1402 return -ENOIOCTLCMD;
1403}
1404#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1405
1406int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1407 unsigned long start, unsigned long end, bool blockable);
1408
1409#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1410int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1411#else
1412static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1413{
1414 return 0;
1415}
1416#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1417
1418typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1419
1420int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1421 uintptr_t data, const char *name,
1422 struct task_struct **thread_ptr);
1423
1424#endif