Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include <asm-generic/gpio.h>
31#endif
32
33#include "core.h"
34#include "devicetree.h"
35#include "pinmux.h"
36#include "pinconf.h"
37
38
39static bool pinctrl_dummy_state;
40
41/* Mutex taken to protect pinctrl_list */
42static DEFINE_MUTEX(pinctrl_list_mutex);
43
44/* Mutex taken to protect pinctrl_maps */
45DEFINE_MUTEX(pinctrl_maps_mutex);
46
47/* Mutex taken to protect pinctrldev_list */
48static DEFINE_MUTEX(pinctrldev_list_mutex);
49
50/* Global list of pin control devices (struct pinctrl_dev) */
51static LIST_HEAD(pinctrldev_list);
52
53/* List of pin controller handles (struct pinctrl) */
54static LIST_HEAD(pinctrl_list);
55
56/* List of pinctrl maps (struct pinctrl_maps) */
57LIST_HEAD(pinctrl_maps);
58
59
60/**
61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62 *
63 * Usually this function is called by platforms without pinctrl driver support
64 * but run with some shared drivers using pinctrl APIs.
65 * After calling this function, the pinctrl core will return successfully
66 * with creating a dummy state for the driver to keep going smoothly.
67 */
68void pinctrl_provide_dummies(void)
69{
70 pinctrl_dummy_state = true;
71}
72
73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74{
75 /* We're not allowed to register devices without name */
76 return pctldev->desc->name;
77}
78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79
80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81{
82 return dev_name(pctldev->dev);
83}
84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85
86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87{
88 return pctldev->driver_data;
89}
90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91
92/**
93 * get_pinctrl_dev_from_devname() - look up pin controller device
94 * @devname: the name of a device instance, as returned by dev_name()
95 *
96 * Looks up a pin control device matching a certain device name or pure device
97 * pointer, the pure device pointer will take precedence.
98 */
99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100{
101 struct pinctrl_dev *pctldev;
102
103 if (!devname)
104 return NULL;
105
106 mutex_lock(&pinctrldev_list_mutex);
107
108 list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 if (!strcmp(dev_name(pctldev->dev), devname)) {
110 /* Matched on device name */
111 mutex_unlock(&pinctrldev_list_mutex);
112 return pctldev;
113 }
114 }
115
116 mutex_unlock(&pinctrldev_list_mutex);
117
118 return NULL;
119}
120
121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122{
123 struct pinctrl_dev *pctldev;
124
125 mutex_lock(&pinctrldev_list_mutex);
126
127 list_for_each_entry(pctldev, &pinctrldev_list, node)
128 if (pctldev->dev->of_node == np) {
129 mutex_unlock(&pinctrldev_list_mutex);
130 return pctldev;
131 }
132
133 mutex_unlock(&pinctrldev_list_mutex);
134
135 return NULL;
136}
137
138/**
139 * pin_get_from_name() - look up a pin number from a name
140 * @pctldev: the pin control device to lookup the pin on
141 * @name: the name of the pin to look up
142 */
143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144{
145 unsigned i, pin;
146
147 /* The pin number can be retrived from the pin controller descriptor */
148 for (i = 0; i < pctldev->desc->npins; i++) {
149 struct pin_desc *desc;
150
151 pin = pctldev->desc->pins[i].number;
152 desc = pin_desc_get(pctldev, pin);
153 /* Pin space may be sparse */
154 if (desc && !strcmp(name, desc->name))
155 return pin;
156 }
157
158 return -EINVAL;
159}
160
161/**
162 * pin_get_name_from_id() - look up a pin name from a pin id
163 * @pctldev: the pin control device to lookup the pin on
164 * @name: the name of the pin to look up
165 */
166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167{
168 const struct pin_desc *desc;
169
170 desc = pin_desc_get(pctldev, pin);
171 if (!desc) {
172 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 pin);
174 return NULL;
175 }
176
177 return desc->name;
178}
179EXPORT_SYMBOL_GPL(pin_get_name);
180
181/* Deletes a range of pin descriptors */
182static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
183 const struct pinctrl_pin_desc *pins,
184 unsigned num_pins)
185{
186 int i;
187
188 for (i = 0; i < num_pins; i++) {
189 struct pin_desc *pindesc;
190
191 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
192 pins[i].number);
193 if (pindesc) {
194 radix_tree_delete(&pctldev->pin_desc_tree,
195 pins[i].number);
196 if (pindesc->dynamic_name)
197 kfree(pindesc->name);
198 }
199 kfree(pindesc);
200 }
201}
202
203static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
204 const struct pinctrl_pin_desc *pin)
205{
206 struct pin_desc *pindesc;
207
208 pindesc = pin_desc_get(pctldev, pin->number);
209 if (pindesc) {
210 dev_err(pctldev->dev, "pin %d already registered\n",
211 pin->number);
212 return -EINVAL;
213 }
214
215 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
216 if (!pindesc)
217 return -ENOMEM;
218
219 /* Set owner */
220 pindesc->pctldev = pctldev;
221
222 /* Copy basic pin info */
223 if (pin->name) {
224 pindesc->name = pin->name;
225 } else {
226 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
227 if (!pindesc->name) {
228 kfree(pindesc);
229 return -ENOMEM;
230 }
231 pindesc->dynamic_name = true;
232 }
233
234 pindesc->drv_data = pin->drv_data;
235
236 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
237 pr_debug("registered pin %d (%s) on %s\n",
238 pin->number, pindesc->name, pctldev->desc->name);
239 return 0;
240}
241
242static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
243 const struct pinctrl_pin_desc *pins,
244 unsigned num_descs)
245{
246 unsigned i;
247 int ret = 0;
248
249 for (i = 0; i < num_descs; i++) {
250 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
251 if (ret)
252 return ret;
253 }
254
255 return 0;
256}
257
258/**
259 * gpio_to_pin() - GPIO range GPIO number to pin number translation
260 * @range: GPIO range used for the translation
261 * @gpio: gpio pin to translate to a pin number
262 *
263 * Finds the pin number for a given GPIO using the specified GPIO range
264 * as a base for translation. The distinction between linear GPIO ranges
265 * and pin list based GPIO ranges is managed correctly by this function.
266 *
267 * This function assumes the gpio is part of the specified GPIO range, use
268 * only after making sure this is the case (e.g. by calling it on the
269 * result of successful pinctrl_get_device_gpio_range calls)!
270 */
271static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
272 unsigned int gpio)
273{
274 unsigned int offset = gpio - range->base;
275 if (range->pins)
276 return range->pins[offset];
277 else
278 return range->pin_base + offset;
279}
280
281/**
282 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
283 * @pctldev: pin controller device to check
284 * @gpio: gpio pin to check taken from the global GPIO pin space
285 *
286 * Tries to match a GPIO pin number to the ranges handled by a certain pin
287 * controller, return the range or NULL
288 */
289static struct pinctrl_gpio_range *
290pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
291{
292 struct pinctrl_gpio_range *range;
293
294 mutex_lock(&pctldev->mutex);
295 /* Loop over the ranges */
296 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
297 /* Check if we're in the valid range */
298 if (gpio >= range->base &&
299 gpio < range->base + range->npins) {
300 mutex_unlock(&pctldev->mutex);
301 return range;
302 }
303 }
304 mutex_unlock(&pctldev->mutex);
305 return NULL;
306}
307
308/**
309 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
310 * the same GPIO chip are in range
311 * @gpio: gpio pin to check taken from the global GPIO pin space
312 *
313 * This function is complement of pinctrl_match_gpio_range(). If the return
314 * value of pinctrl_match_gpio_range() is NULL, this function could be used
315 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
316 * of the same GPIO chip don't have back-end pinctrl interface.
317 * If the return value is true, it means that pinctrl device is ready & the
318 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
319 * is false, it means that pinctrl device may not be ready.
320 */
321#ifdef CONFIG_GPIOLIB
322static bool pinctrl_ready_for_gpio_range(unsigned gpio)
323{
324 struct pinctrl_dev *pctldev;
325 struct pinctrl_gpio_range *range = NULL;
326 struct gpio_chip *chip = gpio_to_chip(gpio);
327
328 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
329 return false;
330
331 mutex_lock(&pinctrldev_list_mutex);
332
333 /* Loop over the pin controllers */
334 list_for_each_entry(pctldev, &pinctrldev_list, node) {
335 /* Loop over the ranges */
336 mutex_lock(&pctldev->mutex);
337 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
338 /* Check if any gpio range overlapped with gpio chip */
339 if (range->base + range->npins - 1 < chip->base ||
340 range->base > chip->base + chip->ngpio - 1)
341 continue;
342 mutex_unlock(&pctldev->mutex);
343 mutex_unlock(&pinctrldev_list_mutex);
344 return true;
345 }
346 mutex_unlock(&pctldev->mutex);
347 }
348
349 mutex_unlock(&pinctrldev_list_mutex);
350
351 return false;
352}
353#else
354static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
355#endif
356
357/**
358 * pinctrl_get_device_gpio_range() - find device for GPIO range
359 * @gpio: the pin to locate the pin controller for
360 * @outdev: the pin control device if found
361 * @outrange: the GPIO range if found
362 *
363 * Find the pin controller handling a certain GPIO pin from the pinspace of
364 * the GPIO subsystem, return the device and the matching GPIO range. Returns
365 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
366 * may still have not been registered.
367 */
368static int pinctrl_get_device_gpio_range(unsigned gpio,
369 struct pinctrl_dev **outdev,
370 struct pinctrl_gpio_range **outrange)
371{
372 struct pinctrl_dev *pctldev;
373
374 mutex_lock(&pinctrldev_list_mutex);
375
376 /* Loop over the pin controllers */
377 list_for_each_entry(pctldev, &pinctrldev_list, node) {
378 struct pinctrl_gpio_range *range;
379
380 range = pinctrl_match_gpio_range(pctldev, gpio);
381 if (range) {
382 *outdev = pctldev;
383 *outrange = range;
384 mutex_unlock(&pinctrldev_list_mutex);
385 return 0;
386 }
387 }
388
389 mutex_unlock(&pinctrldev_list_mutex);
390
391 return -EPROBE_DEFER;
392}
393
394/**
395 * pinctrl_add_gpio_range() - register a GPIO range for a controller
396 * @pctldev: pin controller device to add the range to
397 * @range: the GPIO range to add
398 *
399 * This adds a range of GPIOs to be handled by a certain pin controller. Call
400 * this to register handled ranges after registering your pin controller.
401 */
402void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
403 struct pinctrl_gpio_range *range)
404{
405 mutex_lock(&pctldev->mutex);
406 list_add_tail(&range->node, &pctldev->gpio_ranges);
407 mutex_unlock(&pctldev->mutex);
408}
409EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
410
411void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
412 struct pinctrl_gpio_range *ranges,
413 unsigned nranges)
414{
415 int i;
416
417 for (i = 0; i < nranges; i++)
418 pinctrl_add_gpio_range(pctldev, &ranges[i]);
419}
420EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
421
422struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
423 struct pinctrl_gpio_range *range)
424{
425 struct pinctrl_dev *pctldev;
426
427 pctldev = get_pinctrl_dev_from_devname(devname);
428
429 /*
430 * If we can't find this device, let's assume that is because
431 * it has not probed yet, so the driver trying to register this
432 * range need to defer probing.
433 */
434 if (!pctldev) {
435 return ERR_PTR(-EPROBE_DEFER);
436 }
437 pinctrl_add_gpio_range(pctldev, range);
438
439 return pctldev;
440}
441EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
442
443int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
444 const unsigned **pins, unsigned *num_pins)
445{
446 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
447 int gs;
448
449 if (!pctlops->get_group_pins)
450 return -EINVAL;
451
452 gs = pinctrl_get_group_selector(pctldev, pin_group);
453 if (gs < 0)
454 return gs;
455
456 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
457}
458EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
459
460struct pinctrl_gpio_range *
461pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
462 unsigned int pin)
463{
464 struct pinctrl_gpio_range *range;
465
466 /* Loop over the ranges */
467 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
468 /* Check if we're in the valid range */
469 if (range->pins) {
470 int a;
471 for (a = 0; a < range->npins; a++) {
472 if (range->pins[a] == pin)
473 return range;
474 }
475 } else if (pin >= range->pin_base &&
476 pin < range->pin_base + range->npins)
477 return range;
478 }
479
480 return NULL;
481}
482EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
483
484/**
485 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
486 * @pctldev: the pin controller device to look in
487 * @pin: a controller-local number to find the range for
488 */
489struct pinctrl_gpio_range *
490pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
491 unsigned int pin)
492{
493 struct pinctrl_gpio_range *range;
494
495 mutex_lock(&pctldev->mutex);
496 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
497 mutex_unlock(&pctldev->mutex);
498
499 return range;
500}
501EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
502
503/**
504 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
505 * @pctldev: pin controller device to remove the range from
506 * @range: the GPIO range to remove
507 */
508void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
509 struct pinctrl_gpio_range *range)
510{
511 mutex_lock(&pctldev->mutex);
512 list_del(&range->node);
513 mutex_unlock(&pctldev->mutex);
514}
515EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
516
517#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
518
519/**
520 * pinctrl_generic_get_group_count() - returns the number of pin groups
521 * @pctldev: pin controller device
522 */
523int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
524{
525 return pctldev->num_groups;
526}
527EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
528
529/**
530 * pinctrl_generic_get_group_name() - returns the name of a pin group
531 * @pctldev: pin controller device
532 * @selector: group number
533 */
534const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
535 unsigned int selector)
536{
537 struct group_desc *group;
538
539 group = radix_tree_lookup(&pctldev->pin_group_tree,
540 selector);
541 if (!group)
542 return NULL;
543
544 return group->name;
545}
546EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
547
548/**
549 * pinctrl_generic_get_group_pins() - gets the pin group pins
550 * @pctldev: pin controller device
551 * @selector: group number
552 * @pins: pins in the group
553 * @num_pins: number of pins in the group
554 */
555int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
556 unsigned int selector,
557 const unsigned int **pins,
558 unsigned int *num_pins)
559{
560 struct group_desc *group;
561
562 group = radix_tree_lookup(&pctldev->pin_group_tree,
563 selector);
564 if (!group) {
565 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
566 __func__, selector);
567 return -EINVAL;
568 }
569
570 *pins = group->pins;
571 *num_pins = group->num_pins;
572
573 return 0;
574}
575EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
576
577/**
578 * pinctrl_generic_get_group() - returns a pin group based on the number
579 * @pctldev: pin controller device
580 * @gselector: group number
581 */
582struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
583 unsigned int selector)
584{
585 struct group_desc *group;
586
587 group = radix_tree_lookup(&pctldev->pin_group_tree,
588 selector);
589 if (!group)
590 return NULL;
591
592 return group;
593}
594EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
595
596static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
597 const char *function)
598{
599 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
600 int ngroups = ops->get_groups_count(pctldev);
601 int selector = 0;
602
603 /* See if this pctldev has this group */
604 while (selector < ngroups) {
605 const char *gname = ops->get_group_name(pctldev, selector);
606
607 if (gname && !strcmp(function, gname))
608 return selector;
609
610 selector++;
611 }
612
613 return -EINVAL;
614}
615
616/**
617 * pinctrl_generic_add_group() - adds a new pin group
618 * @pctldev: pin controller device
619 * @name: name of the pin group
620 * @pins: pins in the pin group
621 * @num_pins: number of pins in the pin group
622 * @data: pin controller driver specific data
623 *
624 * Note that the caller must take care of locking.
625 */
626int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
627 int *pins, int num_pins, void *data)
628{
629 struct group_desc *group;
630 int selector;
631
632 if (!name)
633 return -EINVAL;
634
635 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
636 if (selector >= 0)
637 return selector;
638
639 selector = pctldev->num_groups;
640
641 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
642 if (!group)
643 return -ENOMEM;
644
645 group->name = name;
646 group->pins = pins;
647 group->num_pins = num_pins;
648 group->data = data;
649
650 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
651
652 pctldev->num_groups++;
653
654 return selector;
655}
656EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
657
658/**
659 * pinctrl_generic_remove_group() - removes a numbered pin group
660 * @pctldev: pin controller device
661 * @selector: group number
662 *
663 * Note that the caller must take care of locking.
664 */
665int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
666 unsigned int selector)
667{
668 struct group_desc *group;
669
670 group = radix_tree_lookup(&pctldev->pin_group_tree,
671 selector);
672 if (!group)
673 return -ENOENT;
674
675 radix_tree_delete(&pctldev->pin_group_tree, selector);
676 devm_kfree(pctldev->dev, group);
677
678 pctldev->num_groups--;
679
680 return 0;
681}
682EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
683
684/**
685 * pinctrl_generic_free_groups() - removes all pin groups
686 * @pctldev: pin controller device
687 *
688 * Note that the caller must take care of locking. The pinctrl groups
689 * are allocated with devm_kzalloc() so no need to free them here.
690 */
691static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
692{
693 struct radix_tree_iter iter;
694 void __rcu **slot;
695
696 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
697 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
698
699 pctldev->num_groups = 0;
700}
701
702#else
703static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
704{
705}
706#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
707
708/**
709 * pinctrl_get_group_selector() - returns the group selector for a group
710 * @pctldev: the pin controller handling the group
711 * @pin_group: the pin group to look up
712 */
713int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
714 const char *pin_group)
715{
716 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
717 unsigned ngroups = pctlops->get_groups_count(pctldev);
718 unsigned group_selector = 0;
719
720 while (group_selector < ngroups) {
721 const char *gname = pctlops->get_group_name(pctldev,
722 group_selector);
723 if (gname && !strcmp(gname, pin_group)) {
724 dev_dbg(pctldev->dev,
725 "found group selector %u for %s\n",
726 group_selector,
727 pin_group);
728 return group_selector;
729 }
730
731 group_selector++;
732 }
733
734 dev_err(pctldev->dev, "does not have pin group %s\n",
735 pin_group);
736
737 return -EINVAL;
738}
739
740bool pinctrl_gpio_can_use_line(unsigned gpio)
741{
742 struct pinctrl_dev *pctldev;
743 struct pinctrl_gpio_range *range;
744 bool result;
745 int pin;
746
747 /*
748 * Try to obtain GPIO range, if it fails
749 * we're probably dealing with GPIO driver
750 * without a backing pin controller - bail out.
751 */
752 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
753 return true;
754
755 mutex_lock(&pctldev->mutex);
756
757 /* Convert to the pin controllers number space */
758 pin = gpio_to_pin(range, gpio);
759
760 result = pinmux_can_be_used_for_gpio(pctldev, pin);
761
762 mutex_unlock(&pctldev->mutex);
763
764 return result;
765}
766EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
767
768/**
769 * pinctrl_gpio_request() - request a single pin to be used as GPIO
770 * @gpio: the GPIO pin number from the GPIO subsystem number space
771 *
772 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
773 * as part of their gpio_request() semantics, platforms and individual drivers
774 * shall *NOT* request GPIO pins to be muxed in.
775 */
776int pinctrl_gpio_request(unsigned gpio)
777{
778 struct pinctrl_dev *pctldev;
779 struct pinctrl_gpio_range *range;
780 int ret;
781 int pin;
782
783 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
784 if (ret) {
785 if (pinctrl_ready_for_gpio_range(gpio))
786 ret = 0;
787 return ret;
788 }
789
790 mutex_lock(&pctldev->mutex);
791
792 /* Convert to the pin controllers number space */
793 pin = gpio_to_pin(range, gpio);
794
795 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
796
797 mutex_unlock(&pctldev->mutex);
798
799 return ret;
800}
801EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
802
803/**
804 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
805 * @gpio: the GPIO pin number from the GPIO subsystem number space
806 *
807 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
808 * as part of their gpio_free() semantics, platforms and individual drivers
809 * shall *NOT* request GPIO pins to be muxed out.
810 */
811void pinctrl_gpio_free(unsigned gpio)
812{
813 struct pinctrl_dev *pctldev;
814 struct pinctrl_gpio_range *range;
815 int ret;
816 int pin;
817
818 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
819 if (ret) {
820 return;
821 }
822 mutex_lock(&pctldev->mutex);
823
824 /* Convert to the pin controllers number space */
825 pin = gpio_to_pin(range, gpio);
826
827 pinmux_free_gpio(pctldev, pin, range);
828
829 mutex_unlock(&pctldev->mutex);
830}
831EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
832
833static int pinctrl_gpio_direction(unsigned gpio, bool input)
834{
835 struct pinctrl_dev *pctldev;
836 struct pinctrl_gpio_range *range;
837 int ret;
838 int pin;
839
840 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
841 if (ret) {
842 return ret;
843 }
844
845 mutex_lock(&pctldev->mutex);
846
847 /* Convert to the pin controllers number space */
848 pin = gpio_to_pin(range, gpio);
849 ret = pinmux_gpio_direction(pctldev, range, pin, input);
850
851 mutex_unlock(&pctldev->mutex);
852
853 return ret;
854}
855
856/**
857 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
858 * @gpio: the GPIO pin number from the GPIO subsystem number space
859 *
860 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
861 * as part of their gpio_direction_input() semantics, platforms and individual
862 * drivers shall *NOT* touch pin control GPIO calls.
863 */
864int pinctrl_gpio_direction_input(unsigned gpio)
865{
866 return pinctrl_gpio_direction(gpio, true);
867}
868EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
869
870/**
871 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
872 * @gpio: the GPIO pin number from the GPIO subsystem number space
873 *
874 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
875 * as part of their gpio_direction_output() semantics, platforms and individual
876 * drivers shall *NOT* touch pin control GPIO calls.
877 */
878int pinctrl_gpio_direction_output(unsigned gpio)
879{
880 return pinctrl_gpio_direction(gpio, false);
881}
882EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
883
884/**
885 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
886 * @gpio: the GPIO pin number from the GPIO subsystem number space
887 * @config: the configuration to apply to the GPIO
888 *
889 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
890 * they need to call the underlying pin controller to change GPIO config
891 * (for example set debounce time).
892 */
893int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
894{
895 unsigned long configs[] = { config };
896 struct pinctrl_gpio_range *range;
897 struct pinctrl_dev *pctldev;
898 int ret, pin;
899
900 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
901 if (ret)
902 return ret;
903
904 mutex_lock(&pctldev->mutex);
905 pin = gpio_to_pin(range, gpio);
906 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
907 mutex_unlock(&pctldev->mutex);
908
909 return ret;
910}
911EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
912
913static struct pinctrl_state *find_state(struct pinctrl *p,
914 const char *name)
915{
916 struct pinctrl_state *state;
917
918 list_for_each_entry(state, &p->states, node)
919 if (!strcmp(state->name, name))
920 return state;
921
922 return NULL;
923}
924
925static struct pinctrl_state *create_state(struct pinctrl *p,
926 const char *name)
927{
928 struct pinctrl_state *state;
929
930 state = kzalloc(sizeof(*state), GFP_KERNEL);
931 if (!state)
932 return ERR_PTR(-ENOMEM);
933
934 state->name = name;
935 INIT_LIST_HEAD(&state->settings);
936
937 list_add_tail(&state->node, &p->states);
938
939 return state;
940}
941
942static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
943 const struct pinctrl_map *map)
944{
945 struct pinctrl_state *state;
946 struct pinctrl_setting *setting;
947 int ret;
948
949 state = find_state(p, map->name);
950 if (!state)
951 state = create_state(p, map->name);
952 if (IS_ERR(state))
953 return PTR_ERR(state);
954
955 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
956 return 0;
957
958 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
959 if (!setting)
960 return -ENOMEM;
961
962 setting->type = map->type;
963
964 if (pctldev)
965 setting->pctldev = pctldev;
966 else
967 setting->pctldev =
968 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
969 if (!setting->pctldev) {
970 kfree(setting);
971 /* Do not defer probing of hogs (circular loop) */
972 if (!strcmp(map->ctrl_dev_name, map->dev_name))
973 return -ENODEV;
974 /*
975 * OK let us guess that the driver is not there yet, and
976 * let's defer obtaining this pinctrl handle to later...
977 */
978 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
979 map->ctrl_dev_name);
980 return -EPROBE_DEFER;
981 }
982
983 setting->dev_name = map->dev_name;
984
985 switch (map->type) {
986 case PIN_MAP_TYPE_MUX_GROUP:
987 ret = pinmux_map_to_setting(map, setting);
988 break;
989 case PIN_MAP_TYPE_CONFIGS_PIN:
990 case PIN_MAP_TYPE_CONFIGS_GROUP:
991 ret = pinconf_map_to_setting(map, setting);
992 break;
993 default:
994 ret = -EINVAL;
995 break;
996 }
997 if (ret < 0) {
998 kfree(setting);
999 return ret;
1000 }
1001
1002 list_add_tail(&setting->node, &state->settings);
1003
1004 return 0;
1005}
1006
1007static struct pinctrl *find_pinctrl(struct device *dev)
1008{
1009 struct pinctrl *p;
1010
1011 mutex_lock(&pinctrl_list_mutex);
1012 list_for_each_entry(p, &pinctrl_list, node)
1013 if (p->dev == dev) {
1014 mutex_unlock(&pinctrl_list_mutex);
1015 return p;
1016 }
1017
1018 mutex_unlock(&pinctrl_list_mutex);
1019 return NULL;
1020}
1021
1022static void pinctrl_free(struct pinctrl *p, bool inlist);
1023
1024static struct pinctrl *create_pinctrl(struct device *dev,
1025 struct pinctrl_dev *pctldev)
1026{
1027 struct pinctrl *p;
1028 const char *devname;
1029 struct pinctrl_maps *maps_node;
1030 int i;
1031 const struct pinctrl_map *map;
1032 int ret;
1033
1034 /*
1035 * create the state cookie holder struct pinctrl for each
1036 * mapping, this is what consumers will get when requesting
1037 * a pin control handle with pinctrl_get()
1038 */
1039 p = kzalloc(sizeof(*p), GFP_KERNEL);
1040 if (!p)
1041 return ERR_PTR(-ENOMEM);
1042 p->dev = dev;
1043 INIT_LIST_HEAD(&p->states);
1044 INIT_LIST_HEAD(&p->dt_maps);
1045
1046 ret = pinctrl_dt_to_map(p, pctldev);
1047 if (ret < 0) {
1048 kfree(p);
1049 return ERR_PTR(ret);
1050 }
1051
1052 devname = dev_name(dev);
1053
1054 mutex_lock(&pinctrl_maps_mutex);
1055 /* Iterate over the pin control maps to locate the right ones */
1056 for_each_maps(maps_node, i, map) {
1057 /* Map must be for this device */
1058 if (strcmp(map->dev_name, devname))
1059 continue;
1060 /*
1061 * If pctldev is not null, we are claiming hog for it,
1062 * that means, setting that is served by pctldev by itself.
1063 *
1064 * Thus we must skip map that is for this device but is served
1065 * by other device.
1066 */
1067 if (pctldev &&
1068 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1069 continue;
1070
1071 ret = add_setting(p, pctldev, map);
1072 /*
1073 * At this point the adding of a setting may:
1074 *
1075 * - Defer, if the pinctrl device is not yet available
1076 * - Fail, if the pinctrl device is not yet available,
1077 * AND the setting is a hog. We cannot defer that, since
1078 * the hog will kick in immediately after the device
1079 * is registered.
1080 *
1081 * If the error returned was not -EPROBE_DEFER then we
1082 * accumulate the errors to see if we end up with
1083 * an -EPROBE_DEFER later, as that is the worst case.
1084 */
1085 if (ret == -EPROBE_DEFER) {
1086 pinctrl_free(p, false);
1087 mutex_unlock(&pinctrl_maps_mutex);
1088 return ERR_PTR(ret);
1089 }
1090 }
1091 mutex_unlock(&pinctrl_maps_mutex);
1092
1093 if (ret < 0) {
1094 /* If some other error than deferral occurred, return here */
1095 pinctrl_free(p, false);
1096 return ERR_PTR(ret);
1097 }
1098
1099 kref_init(&p->users);
1100
1101 /* Add the pinctrl handle to the global list */
1102 mutex_lock(&pinctrl_list_mutex);
1103 list_add_tail(&p->node, &pinctrl_list);
1104 mutex_unlock(&pinctrl_list_mutex);
1105
1106 return p;
1107}
1108
1109/**
1110 * pinctrl_get() - retrieves the pinctrl handle for a device
1111 * @dev: the device to obtain the handle for
1112 */
1113struct pinctrl *pinctrl_get(struct device *dev)
1114{
1115 struct pinctrl *p;
1116
1117 if (WARN_ON(!dev))
1118 return ERR_PTR(-EINVAL);
1119
1120 /*
1121 * See if somebody else (such as the device core) has already
1122 * obtained a handle to the pinctrl for this device. In that case,
1123 * return another pointer to it.
1124 */
1125 p = find_pinctrl(dev);
1126 if (p) {
1127 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1128 kref_get(&p->users);
1129 return p;
1130 }
1131
1132 return create_pinctrl(dev, NULL);
1133}
1134EXPORT_SYMBOL_GPL(pinctrl_get);
1135
1136static void pinctrl_free_setting(bool disable_setting,
1137 struct pinctrl_setting *setting)
1138{
1139 switch (setting->type) {
1140 case PIN_MAP_TYPE_MUX_GROUP:
1141 if (disable_setting)
1142 pinmux_disable_setting(setting);
1143 pinmux_free_setting(setting);
1144 break;
1145 case PIN_MAP_TYPE_CONFIGS_PIN:
1146 case PIN_MAP_TYPE_CONFIGS_GROUP:
1147 pinconf_free_setting(setting);
1148 break;
1149 default:
1150 break;
1151 }
1152}
1153
1154static void pinctrl_free(struct pinctrl *p, bool inlist)
1155{
1156 struct pinctrl_state *state, *n1;
1157 struct pinctrl_setting *setting, *n2;
1158
1159 mutex_lock(&pinctrl_list_mutex);
1160 list_for_each_entry_safe(state, n1, &p->states, node) {
1161 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1162 pinctrl_free_setting(state == p->state, setting);
1163 list_del(&setting->node);
1164 kfree(setting);
1165 }
1166 list_del(&state->node);
1167 kfree(state);
1168 }
1169
1170 pinctrl_dt_free_maps(p);
1171
1172 if (inlist)
1173 list_del(&p->node);
1174 kfree(p);
1175 mutex_unlock(&pinctrl_list_mutex);
1176}
1177
1178/**
1179 * pinctrl_release() - release the pinctrl handle
1180 * @kref: the kref in the pinctrl being released
1181 */
1182static void pinctrl_release(struct kref *kref)
1183{
1184 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1185
1186 pinctrl_free(p, true);
1187}
1188
1189/**
1190 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1191 * @p: the pinctrl handle to release
1192 */
1193void pinctrl_put(struct pinctrl *p)
1194{
1195 kref_put(&p->users, pinctrl_release);
1196}
1197EXPORT_SYMBOL_GPL(pinctrl_put);
1198
1199/**
1200 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1201 * @p: the pinctrl handle to retrieve the state from
1202 * @name: the state name to retrieve
1203 */
1204struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1205 const char *name)
1206{
1207 struct pinctrl_state *state;
1208
1209 state = find_state(p, name);
1210 if (!state) {
1211 if (pinctrl_dummy_state) {
1212 /* create dummy state */
1213 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1214 name);
1215 state = create_state(p, name);
1216 } else
1217 state = ERR_PTR(-ENODEV);
1218 }
1219
1220 return state;
1221}
1222EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1223
1224static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1225 struct device *consumer)
1226{
1227 if (pctldev->desc->link_consumers)
1228 device_link_add(consumer, pctldev->dev,
1229 DL_FLAG_PM_RUNTIME |
1230 DL_FLAG_AUTOREMOVE_CONSUMER);
1231}
1232
1233/**
1234 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1235 * @p: the pinctrl handle for the device that requests configuration
1236 * @state: the state handle to select/activate/program
1237 */
1238static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1239{
1240 struct pinctrl_setting *setting, *setting2;
1241 struct pinctrl_state *old_state = p->state;
1242 int ret;
1243
1244 if (p->state) {
1245 /*
1246 * For each pinmux setting in the old state, forget SW's record
1247 * of mux owner for that pingroup. Any pingroups which are
1248 * still owned by the new state will be re-acquired by the call
1249 * to pinmux_enable_setting() in the loop below.
1250 */
1251 list_for_each_entry(setting, &p->state->settings, node) {
1252 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1253 continue;
1254 pinmux_disable_setting(setting);
1255 }
1256 }
1257
1258 p->state = NULL;
1259
1260 /* Apply all the settings for the new state */
1261 list_for_each_entry(setting, &state->settings, node) {
1262 switch (setting->type) {
1263 case PIN_MAP_TYPE_MUX_GROUP:
1264 ret = pinmux_enable_setting(setting);
1265 break;
1266 case PIN_MAP_TYPE_CONFIGS_PIN:
1267 case PIN_MAP_TYPE_CONFIGS_GROUP:
1268 ret = pinconf_apply_setting(setting);
1269 break;
1270 default:
1271 ret = -EINVAL;
1272 break;
1273 }
1274
1275 if (ret < 0) {
1276 goto unapply_new_state;
1277 }
1278
1279 /* Do not link hogs (circular dependency) */
1280 if (p != setting->pctldev->p)
1281 pinctrl_link_add(setting->pctldev, p->dev);
1282 }
1283
1284 p->state = state;
1285
1286 return 0;
1287
1288unapply_new_state:
1289 dev_err(p->dev, "Error applying setting, reverse things back\n");
1290
1291 list_for_each_entry(setting2, &state->settings, node) {
1292 if (&setting2->node == &setting->node)
1293 break;
1294 /*
1295 * All we can do here is pinmux_disable_setting.
1296 * That means that some pins are muxed differently now
1297 * than they were before applying the setting (We can't
1298 * "unmux a pin"!), but it's not a big deal since the pins
1299 * are free to be muxed by another apply_setting.
1300 */
1301 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1302 pinmux_disable_setting(setting2);
1303 }
1304
1305 /* There's no infinite recursive loop here because p->state is NULL */
1306 if (old_state)
1307 pinctrl_select_state(p, old_state);
1308
1309 return ret;
1310}
1311
1312/**
1313 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1314 * @p: the pinctrl handle for the device that requests configuration
1315 * @state: the state handle to select/activate/program
1316 */
1317int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1318{
1319 if (p->state == state)
1320 return 0;
1321
1322 return pinctrl_commit_state(p, state);
1323}
1324EXPORT_SYMBOL_GPL(pinctrl_select_state);
1325
1326static void devm_pinctrl_release(struct device *dev, void *res)
1327{
1328 pinctrl_put(*(struct pinctrl **)res);
1329}
1330
1331/**
1332 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1333 * @dev: the device to obtain the handle for
1334 *
1335 * If there is a need to explicitly destroy the returned struct pinctrl,
1336 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1337 */
1338struct pinctrl *devm_pinctrl_get(struct device *dev)
1339{
1340 struct pinctrl **ptr, *p;
1341
1342 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1343 if (!ptr)
1344 return ERR_PTR(-ENOMEM);
1345
1346 p = pinctrl_get(dev);
1347 if (!IS_ERR(p)) {
1348 *ptr = p;
1349 devres_add(dev, ptr);
1350 } else {
1351 devres_free(ptr);
1352 }
1353
1354 return p;
1355}
1356EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1357
1358static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1359{
1360 struct pinctrl **p = res;
1361
1362 return *p == data;
1363}
1364
1365/**
1366 * devm_pinctrl_put() - Resource managed pinctrl_put()
1367 * @p: the pinctrl handle to release
1368 *
1369 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1370 * this function will not need to be called and the resource management
1371 * code will ensure that the resource is freed.
1372 */
1373void devm_pinctrl_put(struct pinctrl *p)
1374{
1375 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1376 devm_pinctrl_match, p));
1377}
1378EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1379
1380/**
1381 * pinctrl_register_mappings() - register a set of pin controller mappings
1382 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1383 * keeps a reference to the passed in maps, so they should _not_ be
1384 * marked with __initdata.
1385 * @num_maps: the number of maps in the mapping table
1386 */
1387int pinctrl_register_mappings(const struct pinctrl_map *maps,
1388 unsigned num_maps)
1389{
1390 int i, ret;
1391 struct pinctrl_maps *maps_node;
1392
1393 pr_debug("add %u pinctrl maps\n", num_maps);
1394
1395 /* First sanity check the new mapping */
1396 for (i = 0; i < num_maps; i++) {
1397 if (!maps[i].dev_name) {
1398 pr_err("failed to register map %s (%d): no device given\n",
1399 maps[i].name, i);
1400 return -EINVAL;
1401 }
1402
1403 if (!maps[i].name) {
1404 pr_err("failed to register map %d: no map name given\n",
1405 i);
1406 return -EINVAL;
1407 }
1408
1409 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1410 !maps[i].ctrl_dev_name) {
1411 pr_err("failed to register map %s (%d): no pin control device given\n",
1412 maps[i].name, i);
1413 return -EINVAL;
1414 }
1415
1416 switch (maps[i].type) {
1417 case PIN_MAP_TYPE_DUMMY_STATE:
1418 break;
1419 case PIN_MAP_TYPE_MUX_GROUP:
1420 ret = pinmux_validate_map(&maps[i], i);
1421 if (ret < 0)
1422 return ret;
1423 break;
1424 case PIN_MAP_TYPE_CONFIGS_PIN:
1425 case PIN_MAP_TYPE_CONFIGS_GROUP:
1426 ret = pinconf_validate_map(&maps[i], i);
1427 if (ret < 0)
1428 return ret;
1429 break;
1430 default:
1431 pr_err("failed to register map %s (%d): invalid type given\n",
1432 maps[i].name, i);
1433 return -EINVAL;
1434 }
1435 }
1436
1437 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1438 if (!maps_node)
1439 return -ENOMEM;
1440
1441 maps_node->maps = maps;
1442 maps_node->num_maps = num_maps;
1443
1444 mutex_lock(&pinctrl_maps_mutex);
1445 list_add_tail(&maps_node->node, &pinctrl_maps);
1446 mutex_unlock(&pinctrl_maps_mutex);
1447
1448 return 0;
1449}
1450EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1451
1452/**
1453 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1454 * @maps: the pincontrol mappings table passed to pinctrl_register_mappings()
1455 * when registering the mappings.
1456 */
1457void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1458{
1459 struct pinctrl_maps *maps_node;
1460
1461 mutex_lock(&pinctrl_maps_mutex);
1462 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1463 if (maps_node->maps == map) {
1464 list_del(&maps_node->node);
1465 kfree(maps_node);
1466 mutex_unlock(&pinctrl_maps_mutex);
1467 return;
1468 }
1469 }
1470 mutex_unlock(&pinctrl_maps_mutex);
1471}
1472EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1473
1474/**
1475 * pinctrl_force_sleep() - turn a given controller device into sleep state
1476 * @pctldev: pin controller device
1477 */
1478int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1479{
1480 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1481 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1482 return 0;
1483}
1484EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1485
1486/**
1487 * pinctrl_force_default() - turn a given controller device into default state
1488 * @pctldev: pin controller device
1489 */
1490int pinctrl_force_default(struct pinctrl_dev *pctldev)
1491{
1492 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1493 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1494 return 0;
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_force_default);
1497
1498/**
1499 * pinctrl_init_done() - tell pinctrl probe is done
1500 *
1501 * We'll use this time to switch the pins from "init" to "default" unless the
1502 * driver selected some other state.
1503 *
1504 * @dev: device to that's done probing
1505 */
1506int pinctrl_init_done(struct device *dev)
1507{
1508 struct dev_pin_info *pins = dev->pins;
1509 int ret;
1510
1511 if (!pins)
1512 return 0;
1513
1514 if (IS_ERR(pins->init_state))
1515 return 0; /* No such state */
1516
1517 if (pins->p->state != pins->init_state)
1518 return 0; /* Not at init anyway */
1519
1520 if (IS_ERR(pins->default_state))
1521 return 0; /* No default state */
1522
1523 ret = pinctrl_select_state(pins->p, pins->default_state);
1524 if (ret)
1525 dev_err(dev, "failed to activate default pinctrl state\n");
1526
1527 return ret;
1528}
1529
1530static int pinctrl_select_bound_state(struct device *dev,
1531 struct pinctrl_state *state)
1532{
1533 struct dev_pin_info *pins = dev->pins;
1534 int ret;
1535
1536 if (IS_ERR(state))
1537 return 0; /* No such state */
1538 ret = pinctrl_select_state(pins->p, state);
1539 if (ret)
1540 dev_err(dev, "failed to activate pinctrl state %s\n",
1541 state->name);
1542 return ret;
1543}
1544
1545/**
1546 * pinctrl_select_default_state() - select default pinctrl state
1547 * @dev: device to select default state for
1548 */
1549int pinctrl_select_default_state(struct device *dev)
1550{
1551 if (!dev->pins)
1552 return 0;
1553
1554 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1555}
1556EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1557
1558#ifdef CONFIG_PM
1559
1560/**
1561 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1562 * @dev: device to select default state for
1563 */
1564int pinctrl_pm_select_default_state(struct device *dev)
1565{
1566 return pinctrl_select_default_state(dev);
1567}
1568EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1569
1570/**
1571 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1572 * @dev: device to select sleep state for
1573 */
1574int pinctrl_pm_select_sleep_state(struct device *dev)
1575{
1576 if (!dev->pins)
1577 return 0;
1578
1579 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1580}
1581EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1582
1583/**
1584 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1585 * @dev: device to select idle state for
1586 */
1587int pinctrl_pm_select_idle_state(struct device *dev)
1588{
1589 if (!dev->pins)
1590 return 0;
1591
1592 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1593}
1594EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1595#endif
1596
1597#ifdef CONFIG_DEBUG_FS
1598
1599static int pinctrl_pins_show(struct seq_file *s, void *what)
1600{
1601 struct pinctrl_dev *pctldev = s->private;
1602 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1603 unsigned i, pin;
1604
1605 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1606
1607 mutex_lock(&pctldev->mutex);
1608
1609 /* The pin number can be retrived from the pin controller descriptor */
1610 for (i = 0; i < pctldev->desc->npins; i++) {
1611 struct pin_desc *desc;
1612
1613 pin = pctldev->desc->pins[i].number;
1614 desc = pin_desc_get(pctldev, pin);
1615 /* Pin space may be sparse */
1616 if (!desc)
1617 continue;
1618
1619 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1620
1621 /* Driver-specific info per pin */
1622 if (ops->pin_dbg_show)
1623 ops->pin_dbg_show(pctldev, s, pin);
1624
1625 seq_puts(s, "\n");
1626 }
1627
1628 mutex_unlock(&pctldev->mutex);
1629
1630 return 0;
1631}
1632DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1633
1634static int pinctrl_groups_show(struct seq_file *s, void *what)
1635{
1636 struct pinctrl_dev *pctldev = s->private;
1637 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1638 unsigned ngroups, selector = 0;
1639
1640 mutex_lock(&pctldev->mutex);
1641
1642 ngroups = ops->get_groups_count(pctldev);
1643
1644 seq_puts(s, "registered pin groups:\n");
1645 while (selector < ngroups) {
1646 const unsigned *pins = NULL;
1647 unsigned num_pins = 0;
1648 const char *gname = ops->get_group_name(pctldev, selector);
1649 const char *pname;
1650 int ret = 0;
1651 int i;
1652
1653 if (ops->get_group_pins)
1654 ret = ops->get_group_pins(pctldev, selector,
1655 &pins, &num_pins);
1656 if (ret)
1657 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1658 gname);
1659 else {
1660 seq_printf(s, "group: %s\n", gname);
1661 for (i = 0; i < num_pins; i++) {
1662 pname = pin_get_name(pctldev, pins[i]);
1663 if (WARN_ON(!pname)) {
1664 mutex_unlock(&pctldev->mutex);
1665 return -EINVAL;
1666 }
1667 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1668 }
1669 seq_puts(s, "\n");
1670 }
1671 selector++;
1672 }
1673
1674 mutex_unlock(&pctldev->mutex);
1675
1676 return 0;
1677}
1678DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1679
1680static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1681{
1682 struct pinctrl_dev *pctldev = s->private;
1683 struct pinctrl_gpio_range *range;
1684
1685 seq_puts(s, "GPIO ranges handled:\n");
1686
1687 mutex_lock(&pctldev->mutex);
1688
1689 /* Loop over the ranges */
1690 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1691 if (range->pins) {
1692 int a;
1693 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1694 range->id, range->name,
1695 range->base, (range->base + range->npins - 1));
1696 for (a = 0; a < range->npins - 1; a++)
1697 seq_printf(s, "%u, ", range->pins[a]);
1698 seq_printf(s, "%u}\n", range->pins[a]);
1699 }
1700 else
1701 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1702 range->id, range->name,
1703 range->base, (range->base + range->npins - 1),
1704 range->pin_base,
1705 (range->pin_base + range->npins - 1));
1706 }
1707
1708 mutex_unlock(&pctldev->mutex);
1709
1710 return 0;
1711}
1712DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1713
1714static int pinctrl_devices_show(struct seq_file *s, void *what)
1715{
1716 struct pinctrl_dev *pctldev;
1717
1718 seq_puts(s, "name [pinmux] [pinconf]\n");
1719
1720 mutex_lock(&pinctrldev_list_mutex);
1721
1722 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1723 seq_printf(s, "%s ", pctldev->desc->name);
1724 if (pctldev->desc->pmxops)
1725 seq_puts(s, "yes ");
1726 else
1727 seq_puts(s, "no ");
1728 if (pctldev->desc->confops)
1729 seq_puts(s, "yes");
1730 else
1731 seq_puts(s, "no");
1732 seq_puts(s, "\n");
1733 }
1734
1735 mutex_unlock(&pinctrldev_list_mutex);
1736
1737 return 0;
1738}
1739DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1740
1741static inline const char *map_type(enum pinctrl_map_type type)
1742{
1743 static const char * const names[] = {
1744 "INVALID",
1745 "DUMMY_STATE",
1746 "MUX_GROUP",
1747 "CONFIGS_PIN",
1748 "CONFIGS_GROUP",
1749 };
1750
1751 if (type >= ARRAY_SIZE(names))
1752 return "UNKNOWN";
1753
1754 return names[type];
1755}
1756
1757static int pinctrl_maps_show(struct seq_file *s, void *what)
1758{
1759 struct pinctrl_maps *maps_node;
1760 int i;
1761 const struct pinctrl_map *map;
1762
1763 seq_puts(s, "Pinctrl maps:\n");
1764
1765 mutex_lock(&pinctrl_maps_mutex);
1766 for_each_maps(maps_node, i, map) {
1767 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1768 map->dev_name, map->name, map_type(map->type),
1769 map->type);
1770
1771 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1772 seq_printf(s, "controlling device %s\n",
1773 map->ctrl_dev_name);
1774
1775 switch (map->type) {
1776 case PIN_MAP_TYPE_MUX_GROUP:
1777 pinmux_show_map(s, map);
1778 break;
1779 case PIN_MAP_TYPE_CONFIGS_PIN:
1780 case PIN_MAP_TYPE_CONFIGS_GROUP:
1781 pinconf_show_map(s, map);
1782 break;
1783 default:
1784 break;
1785 }
1786
1787 seq_putc(s, '\n');
1788 }
1789 mutex_unlock(&pinctrl_maps_mutex);
1790
1791 return 0;
1792}
1793DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1794
1795static int pinctrl_show(struct seq_file *s, void *what)
1796{
1797 struct pinctrl *p;
1798 struct pinctrl_state *state;
1799 struct pinctrl_setting *setting;
1800
1801 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1802
1803 mutex_lock(&pinctrl_list_mutex);
1804
1805 list_for_each_entry(p, &pinctrl_list, node) {
1806 seq_printf(s, "device: %s current state: %s\n",
1807 dev_name(p->dev),
1808 p->state ? p->state->name : "none");
1809
1810 list_for_each_entry(state, &p->states, node) {
1811 seq_printf(s, " state: %s\n", state->name);
1812
1813 list_for_each_entry(setting, &state->settings, node) {
1814 struct pinctrl_dev *pctldev = setting->pctldev;
1815
1816 seq_printf(s, " type: %s controller %s ",
1817 map_type(setting->type),
1818 pinctrl_dev_get_name(pctldev));
1819
1820 switch (setting->type) {
1821 case PIN_MAP_TYPE_MUX_GROUP:
1822 pinmux_show_setting(s, setting);
1823 break;
1824 case PIN_MAP_TYPE_CONFIGS_PIN:
1825 case PIN_MAP_TYPE_CONFIGS_GROUP:
1826 pinconf_show_setting(s, setting);
1827 break;
1828 default:
1829 break;
1830 }
1831 }
1832 }
1833 }
1834
1835 mutex_unlock(&pinctrl_list_mutex);
1836
1837 return 0;
1838}
1839DEFINE_SHOW_ATTRIBUTE(pinctrl);
1840
1841static struct dentry *debugfs_root;
1842
1843static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1844{
1845 struct dentry *device_root;
1846 const char *debugfs_name;
1847
1848 if (pctldev->desc->name &&
1849 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1850 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1851 "%s-%s", dev_name(pctldev->dev),
1852 pctldev->desc->name);
1853 if (!debugfs_name) {
1854 pr_warn("failed to determine debugfs dir name for %s\n",
1855 dev_name(pctldev->dev));
1856 return;
1857 }
1858 } else {
1859 debugfs_name = dev_name(pctldev->dev);
1860 }
1861
1862 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1863 pctldev->device_root = device_root;
1864
1865 if (IS_ERR(device_root) || !device_root) {
1866 pr_warn("failed to create debugfs directory for %s\n",
1867 dev_name(pctldev->dev));
1868 return;
1869 }
1870 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1871 device_root, pctldev, &pinctrl_pins_fops);
1872 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1873 device_root, pctldev, &pinctrl_groups_fops);
1874 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1875 device_root, pctldev, &pinctrl_gpioranges_fops);
1876 if (pctldev->desc->pmxops)
1877 pinmux_init_device_debugfs(device_root, pctldev);
1878 if (pctldev->desc->confops)
1879 pinconf_init_device_debugfs(device_root, pctldev);
1880}
1881
1882static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1883{
1884 debugfs_remove_recursive(pctldev->device_root);
1885}
1886
1887static void pinctrl_init_debugfs(void)
1888{
1889 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1890 if (IS_ERR(debugfs_root) || !debugfs_root) {
1891 pr_warn("failed to create debugfs directory\n");
1892 debugfs_root = NULL;
1893 return;
1894 }
1895
1896 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1897 debugfs_root, NULL, &pinctrl_devices_fops);
1898 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1899 debugfs_root, NULL, &pinctrl_maps_fops);
1900 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1901 debugfs_root, NULL, &pinctrl_fops);
1902}
1903
1904#else /* CONFIG_DEBUG_FS */
1905
1906static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1907{
1908}
1909
1910static void pinctrl_init_debugfs(void)
1911{
1912}
1913
1914static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1915{
1916}
1917
1918#endif
1919
1920static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1921{
1922 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1923
1924 if (!ops ||
1925 !ops->get_groups_count ||
1926 !ops->get_group_name)
1927 return -EINVAL;
1928
1929 return 0;
1930}
1931
1932/**
1933 * pinctrl_init_controller() - init a pin controller device
1934 * @pctldesc: descriptor for this pin controller
1935 * @dev: parent device for this pin controller
1936 * @driver_data: private pin controller data for this pin controller
1937 */
1938static struct pinctrl_dev *
1939pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1940 void *driver_data)
1941{
1942 struct pinctrl_dev *pctldev;
1943 int ret;
1944
1945 if (!pctldesc)
1946 return ERR_PTR(-EINVAL);
1947 if (!pctldesc->name)
1948 return ERR_PTR(-EINVAL);
1949
1950 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1951 if (!pctldev)
1952 return ERR_PTR(-ENOMEM);
1953
1954 /* Initialize pin control device struct */
1955 pctldev->owner = pctldesc->owner;
1956 pctldev->desc = pctldesc;
1957 pctldev->driver_data = driver_data;
1958 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1959#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1960 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1961#endif
1962#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1963 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1964#endif
1965 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1966 INIT_LIST_HEAD(&pctldev->node);
1967 pctldev->dev = dev;
1968 mutex_init(&pctldev->mutex);
1969
1970 /* check core ops for sanity */
1971 ret = pinctrl_check_ops(pctldev);
1972 if (ret) {
1973 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1974 goto out_err;
1975 }
1976
1977 /* If we're implementing pinmuxing, check the ops for sanity */
1978 if (pctldesc->pmxops) {
1979 ret = pinmux_check_ops(pctldev);
1980 if (ret)
1981 goto out_err;
1982 }
1983
1984 /* If we're implementing pinconfig, check the ops for sanity */
1985 if (pctldesc->confops) {
1986 ret = pinconf_check_ops(pctldev);
1987 if (ret)
1988 goto out_err;
1989 }
1990
1991 /* Register all the pins */
1992 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1993 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1994 if (ret) {
1995 dev_err(dev, "error during pin registration\n");
1996 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1997 pctldesc->npins);
1998 goto out_err;
1999 }
2000
2001 return pctldev;
2002
2003out_err:
2004 mutex_destroy(&pctldev->mutex);
2005 kfree(pctldev);
2006 return ERR_PTR(ret);
2007}
2008
2009static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2010{
2011 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2012 if (PTR_ERR(pctldev->p) == -ENODEV) {
2013 dev_dbg(pctldev->dev, "no hogs found\n");
2014
2015 return 0;
2016 }
2017
2018 if (IS_ERR(pctldev->p)) {
2019 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2020 PTR_ERR(pctldev->p));
2021
2022 return PTR_ERR(pctldev->p);
2023 }
2024
2025 pctldev->hog_default =
2026 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2027 if (IS_ERR(pctldev->hog_default)) {
2028 dev_dbg(pctldev->dev,
2029 "failed to lookup the default state\n");
2030 } else {
2031 if (pinctrl_select_state(pctldev->p,
2032 pctldev->hog_default))
2033 dev_err(pctldev->dev,
2034 "failed to select default state\n");
2035 }
2036
2037 pctldev->hog_sleep =
2038 pinctrl_lookup_state(pctldev->p,
2039 PINCTRL_STATE_SLEEP);
2040 if (IS_ERR(pctldev->hog_sleep))
2041 dev_dbg(pctldev->dev,
2042 "failed to lookup the sleep state\n");
2043
2044 return 0;
2045}
2046
2047int pinctrl_enable(struct pinctrl_dev *pctldev)
2048{
2049 int error;
2050
2051 error = pinctrl_claim_hogs(pctldev);
2052 if (error) {
2053 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2054 error);
2055 mutex_destroy(&pctldev->mutex);
2056 kfree(pctldev);
2057
2058 return error;
2059 }
2060
2061 mutex_lock(&pinctrldev_list_mutex);
2062 list_add_tail(&pctldev->node, &pinctrldev_list);
2063 mutex_unlock(&pinctrldev_list_mutex);
2064
2065 pinctrl_init_device_debugfs(pctldev);
2066
2067 return 0;
2068}
2069EXPORT_SYMBOL_GPL(pinctrl_enable);
2070
2071/**
2072 * pinctrl_register() - register a pin controller device
2073 * @pctldesc: descriptor for this pin controller
2074 * @dev: parent device for this pin controller
2075 * @driver_data: private pin controller data for this pin controller
2076 *
2077 * Note that pinctrl_register() is known to have problems as the pin
2078 * controller driver functions are called before the driver has a
2079 * struct pinctrl_dev handle. To avoid issues later on, please use the
2080 * new pinctrl_register_and_init() below instead.
2081 */
2082struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2083 struct device *dev, void *driver_data)
2084{
2085 struct pinctrl_dev *pctldev;
2086 int error;
2087
2088 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2089 if (IS_ERR(pctldev))
2090 return pctldev;
2091
2092 error = pinctrl_enable(pctldev);
2093 if (error)
2094 return ERR_PTR(error);
2095
2096 return pctldev;
2097
2098}
2099EXPORT_SYMBOL_GPL(pinctrl_register);
2100
2101/**
2102 * pinctrl_register_and_init() - register and init pin controller device
2103 * @pctldesc: descriptor for this pin controller
2104 * @dev: parent device for this pin controller
2105 * @driver_data: private pin controller data for this pin controller
2106 * @pctldev: pin controller device
2107 *
2108 * Note that pinctrl_enable() still needs to be manually called after
2109 * this once the driver is ready.
2110 */
2111int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2112 struct device *dev, void *driver_data,
2113 struct pinctrl_dev **pctldev)
2114{
2115 struct pinctrl_dev *p;
2116
2117 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2118 if (IS_ERR(p))
2119 return PTR_ERR(p);
2120
2121 /*
2122 * We have pinctrl_start() call functions in the pin controller
2123 * driver with create_pinctrl() for at least dt_node_to_map(). So
2124 * let's make sure pctldev is properly initialized for the
2125 * pin controller driver before we do anything.
2126 */
2127 *pctldev = p;
2128
2129 return 0;
2130}
2131EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2132
2133/**
2134 * pinctrl_unregister() - unregister pinmux
2135 * @pctldev: pin controller to unregister
2136 *
2137 * Called by pinmux drivers to unregister a pinmux.
2138 */
2139void pinctrl_unregister(struct pinctrl_dev *pctldev)
2140{
2141 struct pinctrl_gpio_range *range, *n;
2142
2143 if (!pctldev)
2144 return;
2145
2146 mutex_lock(&pctldev->mutex);
2147 pinctrl_remove_device_debugfs(pctldev);
2148 mutex_unlock(&pctldev->mutex);
2149
2150 if (!IS_ERR_OR_NULL(pctldev->p))
2151 pinctrl_put(pctldev->p);
2152
2153 mutex_lock(&pinctrldev_list_mutex);
2154 mutex_lock(&pctldev->mutex);
2155 /* TODO: check that no pinmuxes are still active? */
2156 list_del(&pctldev->node);
2157 pinmux_generic_free_functions(pctldev);
2158 pinctrl_generic_free_groups(pctldev);
2159 /* Destroy descriptor tree */
2160 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2161 pctldev->desc->npins);
2162 /* remove gpio ranges map */
2163 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2164 list_del(&range->node);
2165
2166 mutex_unlock(&pctldev->mutex);
2167 mutex_destroy(&pctldev->mutex);
2168 kfree(pctldev);
2169 mutex_unlock(&pinctrldev_list_mutex);
2170}
2171EXPORT_SYMBOL_GPL(pinctrl_unregister);
2172
2173static void devm_pinctrl_dev_release(struct device *dev, void *res)
2174{
2175 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2176
2177 pinctrl_unregister(pctldev);
2178}
2179
2180static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2181{
2182 struct pctldev **r = res;
2183
2184 if (WARN_ON(!r || !*r))
2185 return 0;
2186
2187 return *r == data;
2188}
2189
2190/**
2191 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2192 * @dev: parent device for this pin controller
2193 * @pctldesc: descriptor for this pin controller
2194 * @driver_data: private pin controller data for this pin controller
2195 *
2196 * Returns an error pointer if pincontrol register failed. Otherwise
2197 * it returns valid pinctrl handle.
2198 *
2199 * The pinctrl device will be automatically released when the device is unbound.
2200 */
2201struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2202 struct pinctrl_desc *pctldesc,
2203 void *driver_data)
2204{
2205 struct pinctrl_dev **ptr, *pctldev;
2206
2207 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2208 if (!ptr)
2209 return ERR_PTR(-ENOMEM);
2210
2211 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2212 if (IS_ERR(pctldev)) {
2213 devres_free(ptr);
2214 return pctldev;
2215 }
2216
2217 *ptr = pctldev;
2218 devres_add(dev, ptr);
2219
2220 return pctldev;
2221}
2222EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2223
2224/**
2225 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2226 * @dev: parent device for this pin controller
2227 * @pctldesc: descriptor for this pin controller
2228 * @driver_data: private pin controller data for this pin controller
2229 *
2230 * Returns an error pointer if pincontrol register failed. Otherwise
2231 * it returns valid pinctrl handle.
2232 *
2233 * The pinctrl device will be automatically released when the device is unbound.
2234 */
2235int devm_pinctrl_register_and_init(struct device *dev,
2236 struct pinctrl_desc *pctldesc,
2237 void *driver_data,
2238 struct pinctrl_dev **pctldev)
2239{
2240 struct pinctrl_dev **ptr;
2241 int error;
2242
2243 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2244 if (!ptr)
2245 return -ENOMEM;
2246
2247 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2248 if (error) {
2249 devres_free(ptr);
2250 return error;
2251 }
2252
2253 *ptr = *pctldev;
2254 devres_add(dev, ptr);
2255
2256 return 0;
2257}
2258EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2259
2260/**
2261 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2262 * @dev: device for which which resource was allocated
2263 * @pctldev: the pinctrl device to unregister.
2264 */
2265void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2266{
2267 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2268 devm_pinctrl_dev_match, pctldev));
2269}
2270EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2271
2272static int __init pinctrl_init(void)
2273{
2274 pr_info("initialized pinctrl subsystem\n");
2275 pinctrl_init_debugfs();
2276 return 0;
2277}
2278
2279/* init early since many drivers really need to initialized pinmux early */
2280core_initcall(pinctrl_init);