Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36#include "cgroup.h"
37
38#include <linux/ctype.h>
39#include <symbol/kallsyms.h>
40#include <linux/mman.h>
41#include <linux/string.h>
42#include <linux/zalloc.h>
43
44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48 return machine->vmlinux_map->dso;
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56}
57
58static void machine__threads_init(struct machine *machine)
59{
60 int i;
61
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
69 }
70}
71
72static int machine__set_mmap_name(struct machine *machine)
73{
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
81
82 return machine->mmap_name ? 0 : -ENOMEM;
83}
84
85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86{
87 int err = -ENOMEM;
88
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
93
94 machine__threads_init(machine);
95
96 machine->vdso_info = NULL;
97 machine->env = NULL;
98
99 machine->pid = pid;
100
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
106
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
110
111 if (machine__set_mmap_name(machine))
112 goto out;
113
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
118
119 if (thread == NULL)
120 goto out;
121
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
125 }
126
127 machine->current_tid = NULL;
128 err = 0;
129
130out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
134 }
135 return 0;
136}
137
138struct machine *machine__new_host(void)
139{
140 struct machine *machine = malloc(sizeof(*machine));
141
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
144
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
147 }
148
149 return machine;
150out_delete:
151 free(machine);
152 return NULL;
153}
154
155struct machine *machine__new_kallsyms(void)
156{
157 struct machine *machine = machine__new_host();
158 /*
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
163 */
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
167 }
168
169 return machine;
170}
171
172static void dsos__purge(struct dsos *dsos)
173{
174 struct dso *pos, *n;
175
176 down_write(&dsos->lock);
177
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
183 }
184
185 up_write(&dsos->lock);
186}
187
188static void dsos__exit(struct dsos *dsos)
189{
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
192}
193
194void machine__delete_threads(struct machine *machine)
195{
196 struct rb_node *nd;
197 int i;
198
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
208 }
209 up_write(&threads->lock);
210 }
211}
212
213void machine__exit(struct machine *machine)
214{
215 int i;
216
217 if (machine == NULL)
218 return;
219
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
231 /*
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
238 */
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
241
242 exit_rwsem(&threads->lock);
243 }
244}
245
246void machine__delete(struct machine *machine)
247{
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
251 }
252}
253
254void machines__init(struct machines *machines)
255{
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
258}
259
260void machines__exit(struct machines *machines)
261{
262 machine__exit(&machines->host);
263 /* XXX exit guest */
264}
265
266struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
268{
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
273
274 if (machine == NULL)
275 return NULL;
276
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
280 }
281
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
290 }
291 }
292
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296 return machine;
297}
298
299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300{
301 struct rb_node *nd;
302
303 machines->host.comm_exec = comm_exec;
304
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308 machine->comm_exec = comm_exec;
309 }
310}
311
312struct machine *machines__find(struct machines *machines, pid_t pid)
313{
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
318
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
321
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
333 }
334
335 return default_machine;
336}
337
338struct machine *machines__findnew(struct machines *machines, pid_t pid)
339{
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
343
344 if (machine && (machine->pid == pid))
345 goto out;
346
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
353
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
356
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
360 }
361 machine = NULL;
362 goto out;
363 }
364 root_dir = path;
365 }
366
367 machine = machines__add(machines, pid, root_dir);
368out:
369 return machine;
370}
371
372void machines__process_guests(struct machines *machines,
373 machine__process_t process, void *data)
374{
375 struct rb_node *nd;
376
377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 process(pos, data);
380 }
381}
382
383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384{
385 struct rb_node *node;
386 struct machine *machine;
387
388 machines->host.id_hdr_size = id_hdr_size;
389
390 for (node = rb_first_cached(&machines->guests); node;
391 node = rb_next(node)) {
392 machine = rb_entry(node, struct machine, rb_node);
393 machine->id_hdr_size = id_hdr_size;
394 }
395
396 return;
397}
398
399static void machine__update_thread_pid(struct machine *machine,
400 struct thread *th, pid_t pid)
401{
402 struct thread *leader;
403
404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 return;
406
407 th->pid_ = pid;
408
409 if (th->pid_ == th->tid)
410 return;
411
412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 if (!leader)
414 goto out_err;
415
416 if (!leader->maps)
417 leader->maps = maps__new(machine);
418
419 if (!leader->maps)
420 goto out_err;
421
422 if (th->maps == leader->maps)
423 return;
424
425 if (th->maps) {
426 /*
427 * Maps are created from MMAP events which provide the pid and
428 * tid. Consequently there never should be any maps on a thread
429 * with an unknown pid. Just print an error if there are.
430 */
431 if (!maps__empty(th->maps))
432 pr_err("Discarding thread maps for %d:%d\n",
433 th->pid_, th->tid);
434 maps__put(th->maps);
435 }
436
437 th->maps = maps__get(leader->maps);
438out_put:
439 thread__put(leader);
440 return;
441out_err:
442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 goto out_put;
444}
445
446/*
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
450 */
451static struct thread*
452__threads__get_last_match(struct threads *threads, struct machine *machine,
453 int pid, int tid)
454{
455 struct thread *th;
456
457 th = threads->last_match;
458 if (th != NULL) {
459 if (th->tid == tid) {
460 machine__update_thread_pid(machine, th, pid);
461 return thread__get(th);
462 }
463
464 threads->last_match = NULL;
465 }
466
467 return NULL;
468}
469
470static struct thread*
471threads__get_last_match(struct threads *threads, struct machine *machine,
472 int pid, int tid)
473{
474 struct thread *th = NULL;
475
476 if (perf_singlethreaded)
477 th = __threads__get_last_match(threads, machine, pid, tid);
478
479 return th;
480}
481
482static void
483__threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 threads->last_match = th;
486}
487
488static void
489threads__set_last_match(struct threads *threads, struct thread *th)
490{
491 if (perf_singlethreaded)
492 __threads__set_last_match(threads, th);
493}
494
495/*
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
498 */
499static struct thread *____machine__findnew_thread(struct machine *machine,
500 struct threads *threads,
501 pid_t pid, pid_t tid,
502 bool create)
503{
504 struct rb_node **p = &threads->entries.rb_root.rb_node;
505 struct rb_node *parent = NULL;
506 struct thread *th;
507 bool leftmost = true;
508
509 th = threads__get_last_match(threads, machine, pid, tid);
510 if (th)
511 return th;
512
513 while (*p != NULL) {
514 parent = *p;
515 th = rb_entry(parent, struct thread, rb_node);
516
517 if (th->tid == tid) {
518 threads__set_last_match(threads, th);
519 machine__update_thread_pid(machine, th, pid);
520 return thread__get(th);
521 }
522
523 if (tid < th->tid)
524 p = &(*p)->rb_left;
525 else {
526 p = &(*p)->rb_right;
527 leftmost = false;
528 }
529 }
530
531 if (!create)
532 return NULL;
533
534 th = thread__new(pid, tid);
535 if (th != NULL) {
536 rb_link_node(&th->rb_node, parent, p);
537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539 /*
540 * We have to initialize maps separately after rb tree is updated.
541 *
542 * The reason is that we call machine__findnew_thread
543 * within thread__init_maps to find the thread
544 * leader and that would screwed the rb tree.
545 */
546 if (thread__init_maps(th, machine)) {
547 rb_erase_cached(&th->rb_node, &threads->entries);
548 RB_CLEAR_NODE(&th->rb_node);
549 thread__put(th);
550 return NULL;
551 }
552 /*
553 * It is now in the rbtree, get a ref
554 */
555 thread__get(th);
556 threads__set_last_match(threads, th);
557 ++threads->nr;
558 }
559
560 return th;
561}
562
563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564{
565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566}
567
568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570{
571 struct threads *threads = machine__threads(machine, tid);
572 struct thread *th;
573
574 down_write(&threads->lock);
575 th = __machine__findnew_thread(machine, pid, tid);
576 up_write(&threads->lock);
577 return th;
578}
579
580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 pid_t tid)
582{
583 struct threads *threads = machine__threads(machine, tid);
584 struct thread *th;
585
586 down_read(&threads->lock);
587 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
588 up_read(&threads->lock);
589 return th;
590}
591
592struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594{
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599}
600
601int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603{
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625}
626
627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630{
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656}
657
658int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661{
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672}
673
674int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676{
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680}
681
682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684{
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 sample->id, event->lost_samples.lost);
687 return 0;
688}
689
690static struct dso *machine__findnew_module_dso(struct machine *machine,
691 struct kmod_path *m,
692 const char *filename)
693{
694 struct dso *dso;
695
696 down_write(&machine->dsos.lock);
697
698 dso = __dsos__find(&machine->dsos, m->name, true);
699 if (!dso) {
700 dso = __dsos__addnew(&machine->dsos, m->name);
701 if (dso == NULL)
702 goto out_unlock;
703
704 dso__set_module_info(dso, m, machine);
705 dso__set_long_name(dso, strdup(filename), true);
706 dso->kernel = DSO_TYPE_KERNEL;
707 }
708
709 dso__get(dso);
710out_unlock:
711 up_write(&machine->dsos.lock);
712 return dso;
713}
714
715int machine__process_aux_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717{
718 if (dump_trace)
719 perf_event__fprintf_aux(event, stdout);
720 return 0;
721}
722
723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 union perf_event *event)
725{
726 if (dump_trace)
727 perf_event__fprintf_itrace_start(event, stdout);
728 return 0;
729}
730
731int machine__process_switch_event(struct machine *machine __maybe_unused,
732 union perf_event *event)
733{
734 if (dump_trace)
735 perf_event__fprintf_switch(event, stdout);
736 return 0;
737}
738
739static int machine__process_ksymbol_register(struct machine *machine,
740 union perf_event *event,
741 struct perf_sample *sample __maybe_unused)
742{
743 struct symbol *sym;
744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746 if (!map) {
747 struct dso *dso = dso__new(event->ksymbol.name);
748
749 if (dso) {
750 dso->kernel = DSO_TYPE_KERNEL;
751 map = map__new2(0, dso);
752 }
753
754 if (!dso || !map) {
755 dso__put(dso);
756 return -ENOMEM;
757 }
758
759 map->start = event->ksymbol.addr;
760 map->end = map->start + event->ksymbol.len;
761 maps__insert(&machine->kmaps, map);
762 }
763
764 sym = symbol__new(map->map_ip(map, map->start),
765 event->ksymbol.len,
766 0, 0, event->ksymbol.name);
767 if (!sym)
768 return -ENOMEM;
769 dso__insert_symbol(map->dso, sym);
770 return 0;
771}
772
773static int machine__process_ksymbol_unregister(struct machine *machine,
774 union perf_event *event,
775 struct perf_sample *sample __maybe_unused)
776{
777 struct map *map;
778
779 map = maps__find(&machine->kmaps, event->ksymbol.addr);
780 if (map)
781 maps__remove(&machine->kmaps, map);
782
783 return 0;
784}
785
786int machine__process_ksymbol(struct machine *machine __maybe_unused,
787 union perf_event *event,
788 struct perf_sample *sample)
789{
790 if (dump_trace)
791 perf_event__fprintf_ksymbol(event, stdout);
792
793 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
794 return machine__process_ksymbol_unregister(machine, event,
795 sample);
796 return machine__process_ksymbol_register(machine, event, sample);
797}
798
799static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
800 const char *filename)
801{
802 struct map *map = NULL;
803 struct kmod_path m;
804 struct dso *dso;
805
806 if (kmod_path__parse_name(&m, filename))
807 return NULL;
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 maps__insert(&machine->kmaps, map);
818
819 /* Put the map here because maps__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_dso(machine);
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1002
1003 maps__insert(&machine->kmaps, map);
1004
1005 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1006 kmap->name, map->start, map->end);
1007
1008 map__put(map);
1009
1010 return 0;
1011}
1012
1013static u64 find_entry_trampoline(struct dso *dso)
1014{
1015 /* Duplicates are removed so lookup all aliases */
1016 const char *syms[] = {
1017 "_entry_trampoline",
1018 "__entry_trampoline_start",
1019 "entry_SYSCALL_64_trampoline",
1020 };
1021 struct symbol *sym = dso__first_symbol(dso);
1022 unsigned int i;
1023
1024 for (; sym; sym = dso__next_symbol(sym)) {
1025 if (sym->binding != STB_GLOBAL)
1026 continue;
1027 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1028 if (!strcmp(sym->name, syms[i]))
1029 return sym->start;
1030 }
1031 }
1032
1033 return 0;
1034}
1035
1036/*
1037 * These values can be used for kernels that do not have symbols for the entry
1038 * trampolines in kallsyms.
1039 */
1040#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1041#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1042#define X86_64_ENTRY_TRAMPOLINE 0x6000
1043
1044/* Map x86_64 PTI entry trampolines */
1045int machine__map_x86_64_entry_trampolines(struct machine *machine,
1046 struct dso *kernel)
1047{
1048 struct maps *kmaps = &machine->kmaps;
1049 int nr_cpus_avail, cpu;
1050 bool found = false;
1051 struct map *map;
1052 u64 pgoff;
1053
1054 /*
1055 * In the vmlinux case, pgoff is a virtual address which must now be
1056 * mapped to a vmlinux offset.
1057 */
1058 maps__for_each_entry(kmaps, map) {
1059 struct kmap *kmap = __map__kmap(map);
1060 struct map *dest_map;
1061
1062 if (!kmap || !is_entry_trampoline(kmap->name))
1063 continue;
1064
1065 dest_map = maps__find(kmaps, map->pgoff);
1066 if (dest_map != map)
1067 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1068 found = true;
1069 }
1070 if (found || machine->trampolines_mapped)
1071 return 0;
1072
1073 pgoff = find_entry_trampoline(kernel);
1074 if (!pgoff)
1075 return 0;
1076
1077 nr_cpus_avail = machine__nr_cpus_avail(machine);
1078
1079 /* Add a 1 page map for each CPU's entry trampoline */
1080 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1081 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1082 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1083 X86_64_ENTRY_TRAMPOLINE;
1084 struct extra_kernel_map xm = {
1085 .start = va,
1086 .end = va + page_size,
1087 .pgoff = pgoff,
1088 };
1089
1090 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1091
1092 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1093 return -1;
1094 }
1095
1096 machine->trampolines_mapped = nr_cpus_avail;
1097
1098 return 0;
1099}
1100
1101int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1102 struct dso *kernel __maybe_unused)
1103{
1104 return 0;
1105}
1106
1107static int
1108__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1109{
1110 /* In case of renewal the kernel map, destroy previous one */
1111 machine__destroy_kernel_maps(machine);
1112
1113 machine->vmlinux_map = map__new2(0, kernel);
1114 if (machine->vmlinux_map == NULL)
1115 return -1;
1116
1117 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1118 maps__insert(&machine->kmaps, machine->vmlinux_map);
1119 return 0;
1120}
1121
1122void machine__destroy_kernel_maps(struct machine *machine)
1123{
1124 struct kmap *kmap;
1125 struct map *map = machine__kernel_map(machine);
1126
1127 if (map == NULL)
1128 return;
1129
1130 kmap = map__kmap(map);
1131 maps__remove(&machine->kmaps, map);
1132 if (kmap && kmap->ref_reloc_sym) {
1133 zfree((char **)&kmap->ref_reloc_sym->name);
1134 zfree(&kmap->ref_reloc_sym);
1135 }
1136
1137 map__zput(machine->vmlinux_map);
1138}
1139
1140int machines__create_guest_kernel_maps(struct machines *machines)
1141{
1142 int ret = 0;
1143 struct dirent **namelist = NULL;
1144 int i, items = 0;
1145 char path[PATH_MAX];
1146 pid_t pid;
1147 char *endp;
1148
1149 if (symbol_conf.default_guest_vmlinux_name ||
1150 symbol_conf.default_guest_modules ||
1151 symbol_conf.default_guest_kallsyms) {
1152 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1153 }
1154
1155 if (symbol_conf.guestmount) {
1156 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1157 if (items <= 0)
1158 return -ENOENT;
1159 for (i = 0; i < items; i++) {
1160 if (!isdigit(namelist[i]->d_name[0])) {
1161 /* Filter out . and .. */
1162 continue;
1163 }
1164 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1165 if ((*endp != '\0') ||
1166 (endp == namelist[i]->d_name) ||
1167 (errno == ERANGE)) {
1168 pr_debug("invalid directory (%s). Skipping.\n",
1169 namelist[i]->d_name);
1170 continue;
1171 }
1172 sprintf(path, "%s/%s/proc/kallsyms",
1173 symbol_conf.guestmount,
1174 namelist[i]->d_name);
1175 ret = access(path, R_OK);
1176 if (ret) {
1177 pr_debug("Can't access file %s\n", path);
1178 goto failure;
1179 }
1180 machines__create_kernel_maps(machines, pid);
1181 }
1182failure:
1183 free(namelist);
1184 }
1185
1186 return ret;
1187}
1188
1189void machines__destroy_kernel_maps(struct machines *machines)
1190{
1191 struct rb_node *next = rb_first_cached(&machines->guests);
1192
1193 machine__destroy_kernel_maps(&machines->host);
1194
1195 while (next) {
1196 struct machine *pos = rb_entry(next, struct machine, rb_node);
1197
1198 next = rb_next(&pos->rb_node);
1199 rb_erase_cached(&pos->rb_node, &machines->guests);
1200 machine__delete(pos);
1201 }
1202}
1203
1204int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1205{
1206 struct machine *machine = machines__findnew(machines, pid);
1207
1208 if (machine == NULL)
1209 return -1;
1210
1211 return machine__create_kernel_maps(machine);
1212}
1213
1214int machine__load_kallsyms(struct machine *machine, const char *filename)
1215{
1216 struct map *map = machine__kernel_map(machine);
1217 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1218
1219 if (ret > 0) {
1220 dso__set_loaded(map->dso);
1221 /*
1222 * Since /proc/kallsyms will have multiple sessions for the
1223 * kernel, with modules between them, fixup the end of all
1224 * sections.
1225 */
1226 maps__fixup_end(&machine->kmaps);
1227 }
1228
1229 return ret;
1230}
1231
1232int machine__load_vmlinux_path(struct machine *machine)
1233{
1234 struct map *map = machine__kernel_map(machine);
1235 int ret = dso__load_vmlinux_path(map->dso, map);
1236
1237 if (ret > 0)
1238 dso__set_loaded(map->dso);
1239
1240 return ret;
1241}
1242
1243static char *get_kernel_version(const char *root_dir)
1244{
1245 char version[PATH_MAX];
1246 FILE *file;
1247 char *name, *tmp;
1248 const char *prefix = "Linux version ";
1249
1250 sprintf(version, "%s/proc/version", root_dir);
1251 file = fopen(version, "r");
1252 if (!file)
1253 return NULL;
1254
1255 tmp = fgets(version, sizeof(version), file);
1256 fclose(file);
1257 if (!tmp)
1258 return NULL;
1259
1260 name = strstr(version, prefix);
1261 if (!name)
1262 return NULL;
1263 name += strlen(prefix);
1264 tmp = strchr(name, ' ');
1265 if (tmp)
1266 *tmp = '\0';
1267
1268 return strdup(name);
1269}
1270
1271static bool is_kmod_dso(struct dso *dso)
1272{
1273 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1274 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1275}
1276
1277static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1278{
1279 char *long_name;
1280 struct map *map = maps__find_by_name(maps, m->name);
1281
1282 if (map == NULL)
1283 return 0;
1284
1285 long_name = strdup(path);
1286 if (long_name == NULL)
1287 return -ENOMEM;
1288
1289 dso__set_long_name(map->dso, long_name, true);
1290 dso__kernel_module_get_build_id(map->dso, "");
1291
1292 /*
1293 * Full name could reveal us kmod compression, so
1294 * we need to update the symtab_type if needed.
1295 */
1296 if (m->comp && is_kmod_dso(map->dso)) {
1297 map->dso->symtab_type++;
1298 map->dso->comp = m->comp;
1299 }
1300
1301 return 0;
1302}
1303
1304static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1305{
1306 struct dirent *dent;
1307 DIR *dir = opendir(dir_name);
1308 int ret = 0;
1309
1310 if (!dir) {
1311 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1312 return -1;
1313 }
1314
1315 while ((dent = readdir(dir)) != NULL) {
1316 char path[PATH_MAX];
1317 struct stat st;
1318
1319 /*sshfs might return bad dent->d_type, so we have to stat*/
1320 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1321 if (stat(path, &st))
1322 continue;
1323
1324 if (S_ISDIR(st.st_mode)) {
1325 if (!strcmp(dent->d_name, ".") ||
1326 !strcmp(dent->d_name, ".."))
1327 continue;
1328
1329 /* Do not follow top-level source and build symlinks */
1330 if (depth == 0) {
1331 if (!strcmp(dent->d_name, "source") ||
1332 !strcmp(dent->d_name, "build"))
1333 continue;
1334 }
1335
1336 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1337 if (ret < 0)
1338 goto out;
1339 } else {
1340 struct kmod_path m;
1341
1342 ret = kmod_path__parse_name(&m, dent->d_name);
1343 if (ret)
1344 goto out;
1345
1346 if (m.kmod)
1347 ret = maps__set_module_path(maps, path, &m);
1348
1349 zfree(&m.name);
1350
1351 if (ret)
1352 goto out;
1353 }
1354 }
1355
1356out:
1357 closedir(dir);
1358 return ret;
1359}
1360
1361static int machine__set_modules_path(struct machine *machine)
1362{
1363 char *version;
1364 char modules_path[PATH_MAX];
1365
1366 version = get_kernel_version(machine->root_dir);
1367 if (!version)
1368 return -1;
1369
1370 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1371 machine->root_dir, version);
1372 free(version);
1373
1374 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1375}
1376int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1377 u64 *size __maybe_unused,
1378 const char *name __maybe_unused)
1379{
1380 return 0;
1381}
1382
1383static int machine__create_module(void *arg, const char *name, u64 start,
1384 u64 size)
1385{
1386 struct machine *machine = arg;
1387 struct map *map;
1388
1389 if (arch__fix_module_text_start(&start, &size, name) < 0)
1390 return -1;
1391
1392 map = machine__addnew_module_map(machine, start, name);
1393 if (map == NULL)
1394 return -1;
1395 map->end = start + size;
1396
1397 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1398
1399 return 0;
1400}
1401
1402static int machine__create_modules(struct machine *machine)
1403{
1404 const char *modules;
1405 char path[PATH_MAX];
1406
1407 if (machine__is_default_guest(machine)) {
1408 modules = symbol_conf.default_guest_modules;
1409 } else {
1410 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1411 modules = path;
1412 }
1413
1414 if (symbol__restricted_filename(modules, "/proc/modules"))
1415 return -1;
1416
1417 if (modules__parse(modules, machine, machine__create_module))
1418 return -1;
1419
1420 if (!machine__set_modules_path(machine))
1421 return 0;
1422
1423 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1424
1425 return 0;
1426}
1427
1428static void machine__set_kernel_mmap(struct machine *machine,
1429 u64 start, u64 end)
1430{
1431 machine->vmlinux_map->start = start;
1432 machine->vmlinux_map->end = end;
1433 /*
1434 * Be a bit paranoid here, some perf.data file came with
1435 * a zero sized synthesized MMAP event for the kernel.
1436 */
1437 if (start == 0 && end == 0)
1438 machine->vmlinux_map->end = ~0ULL;
1439}
1440
1441static void machine__update_kernel_mmap(struct machine *machine,
1442 u64 start, u64 end)
1443{
1444 struct map *map = machine__kernel_map(machine);
1445
1446 map__get(map);
1447 maps__remove(&machine->kmaps, map);
1448
1449 machine__set_kernel_mmap(machine, start, end);
1450
1451 maps__insert(&machine->kmaps, map);
1452 map__put(map);
1453}
1454
1455int machine__create_kernel_maps(struct machine *machine)
1456{
1457 struct dso *kernel = machine__get_kernel(machine);
1458 const char *name = NULL;
1459 struct map *map;
1460 u64 start = 0, end = ~0ULL;
1461 int ret;
1462
1463 if (kernel == NULL)
1464 return -1;
1465
1466 ret = __machine__create_kernel_maps(machine, kernel);
1467 if (ret < 0)
1468 goto out_put;
1469
1470 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1471 if (machine__is_host(machine))
1472 pr_debug("Problems creating module maps, "
1473 "continuing anyway...\n");
1474 else
1475 pr_debug("Problems creating module maps for guest %d, "
1476 "continuing anyway...\n", machine->pid);
1477 }
1478
1479 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1480 if (name &&
1481 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1482 machine__destroy_kernel_maps(machine);
1483 ret = -1;
1484 goto out_put;
1485 }
1486
1487 /*
1488 * we have a real start address now, so re-order the kmaps
1489 * assume it's the last in the kmaps
1490 */
1491 machine__update_kernel_mmap(machine, start, end);
1492 }
1493
1494 if (machine__create_extra_kernel_maps(machine, kernel))
1495 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1496
1497 if (end == ~0ULL) {
1498 /* update end address of the kernel map using adjacent module address */
1499 map = map__next(machine__kernel_map(machine));
1500 if (map)
1501 machine__set_kernel_mmap(machine, start, map->start);
1502 }
1503
1504out_put:
1505 dso__put(kernel);
1506 return ret;
1507}
1508
1509static bool machine__uses_kcore(struct machine *machine)
1510{
1511 struct dso *dso;
1512
1513 list_for_each_entry(dso, &machine->dsos.head, node) {
1514 if (dso__is_kcore(dso))
1515 return true;
1516 }
1517
1518 return false;
1519}
1520
1521static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1522 union perf_event *event)
1523{
1524 return machine__is(machine, "x86_64") &&
1525 is_entry_trampoline(event->mmap.filename);
1526}
1527
1528static int machine__process_extra_kernel_map(struct machine *machine,
1529 union perf_event *event)
1530{
1531 struct dso *kernel = machine__kernel_dso(machine);
1532 struct extra_kernel_map xm = {
1533 .start = event->mmap.start,
1534 .end = event->mmap.start + event->mmap.len,
1535 .pgoff = event->mmap.pgoff,
1536 };
1537
1538 if (kernel == NULL)
1539 return -1;
1540
1541 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1542
1543 return machine__create_extra_kernel_map(machine, kernel, &xm);
1544}
1545
1546static int machine__process_kernel_mmap_event(struct machine *machine,
1547 union perf_event *event)
1548{
1549 struct map *map;
1550 enum dso_kernel_type kernel_type;
1551 bool is_kernel_mmap;
1552
1553 /* If we have maps from kcore then we do not need or want any others */
1554 if (machine__uses_kcore(machine))
1555 return 0;
1556
1557 if (machine__is_host(machine))
1558 kernel_type = DSO_TYPE_KERNEL;
1559 else
1560 kernel_type = DSO_TYPE_GUEST_KERNEL;
1561
1562 is_kernel_mmap = memcmp(event->mmap.filename,
1563 machine->mmap_name,
1564 strlen(machine->mmap_name) - 1) == 0;
1565 if (event->mmap.filename[0] == '/' ||
1566 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1567 map = machine__addnew_module_map(machine, event->mmap.start,
1568 event->mmap.filename);
1569 if (map == NULL)
1570 goto out_problem;
1571
1572 map->end = map->start + event->mmap.len;
1573 } else if (is_kernel_mmap) {
1574 const char *symbol_name = (event->mmap.filename +
1575 strlen(machine->mmap_name));
1576 /*
1577 * Should be there already, from the build-id table in
1578 * the header.
1579 */
1580 struct dso *kernel = NULL;
1581 struct dso *dso;
1582
1583 down_read(&machine->dsos.lock);
1584
1585 list_for_each_entry(dso, &machine->dsos.head, node) {
1586
1587 /*
1588 * The cpumode passed to is_kernel_module is not the
1589 * cpumode of *this* event. If we insist on passing
1590 * correct cpumode to is_kernel_module, we should
1591 * record the cpumode when we adding this dso to the
1592 * linked list.
1593 *
1594 * However we don't really need passing correct
1595 * cpumode. We know the correct cpumode must be kernel
1596 * mode (if not, we should not link it onto kernel_dsos
1597 * list).
1598 *
1599 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1600 * is_kernel_module() treats it as a kernel cpumode.
1601 */
1602
1603 if (!dso->kernel ||
1604 is_kernel_module(dso->long_name,
1605 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1606 continue;
1607
1608
1609 kernel = dso;
1610 break;
1611 }
1612
1613 up_read(&machine->dsos.lock);
1614
1615 if (kernel == NULL)
1616 kernel = machine__findnew_dso(machine, machine->mmap_name);
1617 if (kernel == NULL)
1618 goto out_problem;
1619
1620 kernel->kernel = kernel_type;
1621 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1622 dso__put(kernel);
1623 goto out_problem;
1624 }
1625
1626 if (strstr(kernel->long_name, "vmlinux"))
1627 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1628
1629 machine__update_kernel_mmap(machine, event->mmap.start,
1630 event->mmap.start + event->mmap.len);
1631
1632 /*
1633 * Avoid using a zero address (kptr_restrict) for the ref reloc
1634 * symbol. Effectively having zero here means that at record
1635 * time /proc/sys/kernel/kptr_restrict was non zero.
1636 */
1637 if (event->mmap.pgoff != 0) {
1638 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1639 symbol_name,
1640 event->mmap.pgoff);
1641 }
1642
1643 if (machine__is_default_guest(machine)) {
1644 /*
1645 * preload dso of guest kernel and modules
1646 */
1647 dso__load(kernel, machine__kernel_map(machine));
1648 }
1649 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1650 return machine__process_extra_kernel_map(machine, event);
1651 }
1652 return 0;
1653out_problem:
1654 return -1;
1655}
1656
1657int machine__process_mmap2_event(struct machine *machine,
1658 union perf_event *event,
1659 struct perf_sample *sample)
1660{
1661 struct thread *thread;
1662 struct map *map;
1663 struct dso_id dso_id = {
1664 .maj = event->mmap2.maj,
1665 .min = event->mmap2.min,
1666 .ino = event->mmap2.ino,
1667 .ino_generation = event->mmap2.ino_generation,
1668 };
1669 int ret = 0;
1670
1671 if (dump_trace)
1672 perf_event__fprintf_mmap2(event, stdout);
1673
1674 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1675 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1676 ret = machine__process_kernel_mmap_event(machine, event);
1677 if (ret < 0)
1678 goto out_problem;
1679 return 0;
1680 }
1681
1682 thread = machine__findnew_thread(machine, event->mmap2.pid,
1683 event->mmap2.tid);
1684 if (thread == NULL)
1685 goto out_problem;
1686
1687 map = map__new(machine, event->mmap2.start,
1688 event->mmap2.len, event->mmap2.pgoff,
1689 &dso_id, event->mmap2.prot,
1690 event->mmap2.flags,
1691 event->mmap2.filename, thread);
1692
1693 if (map == NULL)
1694 goto out_problem_map;
1695
1696 ret = thread__insert_map(thread, map);
1697 if (ret)
1698 goto out_problem_insert;
1699
1700 thread__put(thread);
1701 map__put(map);
1702 return 0;
1703
1704out_problem_insert:
1705 map__put(map);
1706out_problem_map:
1707 thread__put(thread);
1708out_problem:
1709 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1710 return 0;
1711}
1712
1713int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1714 struct perf_sample *sample)
1715{
1716 struct thread *thread;
1717 struct map *map;
1718 u32 prot = 0;
1719 int ret = 0;
1720
1721 if (dump_trace)
1722 perf_event__fprintf_mmap(event, stdout);
1723
1724 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1725 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1726 ret = machine__process_kernel_mmap_event(machine, event);
1727 if (ret < 0)
1728 goto out_problem;
1729 return 0;
1730 }
1731
1732 thread = machine__findnew_thread(machine, event->mmap.pid,
1733 event->mmap.tid);
1734 if (thread == NULL)
1735 goto out_problem;
1736
1737 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1738 prot = PROT_EXEC;
1739
1740 map = map__new(machine, event->mmap.start,
1741 event->mmap.len, event->mmap.pgoff,
1742 NULL, prot, 0, event->mmap.filename, thread);
1743
1744 if (map == NULL)
1745 goto out_problem_map;
1746
1747 ret = thread__insert_map(thread, map);
1748 if (ret)
1749 goto out_problem_insert;
1750
1751 thread__put(thread);
1752 map__put(map);
1753 return 0;
1754
1755out_problem_insert:
1756 map__put(map);
1757out_problem_map:
1758 thread__put(thread);
1759out_problem:
1760 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1761 return 0;
1762}
1763
1764static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1765{
1766 struct threads *threads = machine__threads(machine, th->tid);
1767
1768 if (threads->last_match == th)
1769 threads__set_last_match(threads, NULL);
1770
1771 if (lock)
1772 down_write(&threads->lock);
1773
1774 BUG_ON(refcount_read(&th->refcnt) == 0);
1775
1776 rb_erase_cached(&th->rb_node, &threads->entries);
1777 RB_CLEAR_NODE(&th->rb_node);
1778 --threads->nr;
1779 /*
1780 * Move it first to the dead_threads list, then drop the reference,
1781 * if this is the last reference, then the thread__delete destructor
1782 * will be called and we will remove it from the dead_threads list.
1783 */
1784 list_add_tail(&th->node, &threads->dead);
1785
1786 /*
1787 * We need to do the put here because if this is the last refcount,
1788 * then we will be touching the threads->dead head when removing the
1789 * thread.
1790 */
1791 thread__put(th);
1792
1793 if (lock)
1794 up_write(&threads->lock);
1795}
1796
1797void machine__remove_thread(struct machine *machine, struct thread *th)
1798{
1799 return __machine__remove_thread(machine, th, true);
1800}
1801
1802int machine__process_fork_event(struct machine *machine, union perf_event *event,
1803 struct perf_sample *sample)
1804{
1805 struct thread *thread = machine__find_thread(machine,
1806 event->fork.pid,
1807 event->fork.tid);
1808 struct thread *parent = machine__findnew_thread(machine,
1809 event->fork.ppid,
1810 event->fork.ptid);
1811 bool do_maps_clone = true;
1812 int err = 0;
1813
1814 if (dump_trace)
1815 perf_event__fprintf_task(event, stdout);
1816
1817 /*
1818 * There may be an existing thread that is not actually the parent,
1819 * either because we are processing events out of order, or because the
1820 * (fork) event that would have removed the thread was lost. Assume the
1821 * latter case and continue on as best we can.
1822 */
1823 if (parent->pid_ != (pid_t)event->fork.ppid) {
1824 dump_printf("removing erroneous parent thread %d/%d\n",
1825 parent->pid_, parent->tid);
1826 machine__remove_thread(machine, parent);
1827 thread__put(parent);
1828 parent = machine__findnew_thread(machine, event->fork.ppid,
1829 event->fork.ptid);
1830 }
1831
1832 /* if a thread currently exists for the thread id remove it */
1833 if (thread != NULL) {
1834 machine__remove_thread(machine, thread);
1835 thread__put(thread);
1836 }
1837
1838 thread = machine__findnew_thread(machine, event->fork.pid,
1839 event->fork.tid);
1840 /*
1841 * When synthesizing FORK events, we are trying to create thread
1842 * objects for the already running tasks on the machine.
1843 *
1844 * Normally, for a kernel FORK event, we want to clone the parent's
1845 * maps because that is what the kernel just did.
1846 *
1847 * But when synthesizing, this should not be done. If we do, we end up
1848 * with overlapping maps as we process the sythesized MMAP2 events that
1849 * get delivered shortly thereafter.
1850 *
1851 * Use the FORK event misc flags in an internal way to signal this
1852 * situation, so we can elide the map clone when appropriate.
1853 */
1854 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1855 do_maps_clone = false;
1856
1857 if (thread == NULL || parent == NULL ||
1858 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1859 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1860 err = -1;
1861 }
1862 thread__put(thread);
1863 thread__put(parent);
1864
1865 return err;
1866}
1867
1868int machine__process_exit_event(struct machine *machine, union perf_event *event,
1869 struct perf_sample *sample __maybe_unused)
1870{
1871 struct thread *thread = machine__find_thread(machine,
1872 event->fork.pid,
1873 event->fork.tid);
1874
1875 if (dump_trace)
1876 perf_event__fprintf_task(event, stdout);
1877
1878 if (thread != NULL) {
1879 thread__exited(thread);
1880 thread__put(thread);
1881 }
1882
1883 return 0;
1884}
1885
1886int machine__process_event(struct machine *machine, union perf_event *event,
1887 struct perf_sample *sample)
1888{
1889 int ret;
1890
1891 switch (event->header.type) {
1892 case PERF_RECORD_COMM:
1893 ret = machine__process_comm_event(machine, event, sample); break;
1894 case PERF_RECORD_MMAP:
1895 ret = machine__process_mmap_event(machine, event, sample); break;
1896 case PERF_RECORD_NAMESPACES:
1897 ret = machine__process_namespaces_event(machine, event, sample); break;
1898 case PERF_RECORD_CGROUP:
1899 ret = machine__process_cgroup_event(machine, event, sample); break;
1900 case PERF_RECORD_MMAP2:
1901 ret = machine__process_mmap2_event(machine, event, sample); break;
1902 case PERF_RECORD_FORK:
1903 ret = machine__process_fork_event(machine, event, sample); break;
1904 case PERF_RECORD_EXIT:
1905 ret = machine__process_exit_event(machine, event, sample); break;
1906 case PERF_RECORD_LOST:
1907 ret = machine__process_lost_event(machine, event, sample); break;
1908 case PERF_RECORD_AUX:
1909 ret = machine__process_aux_event(machine, event); break;
1910 case PERF_RECORD_ITRACE_START:
1911 ret = machine__process_itrace_start_event(machine, event); break;
1912 case PERF_RECORD_LOST_SAMPLES:
1913 ret = machine__process_lost_samples_event(machine, event, sample); break;
1914 case PERF_RECORD_SWITCH:
1915 case PERF_RECORD_SWITCH_CPU_WIDE:
1916 ret = machine__process_switch_event(machine, event); break;
1917 case PERF_RECORD_KSYMBOL:
1918 ret = machine__process_ksymbol(machine, event, sample); break;
1919 case PERF_RECORD_BPF_EVENT:
1920 ret = machine__process_bpf(machine, event, sample); break;
1921 default:
1922 ret = -1;
1923 break;
1924 }
1925
1926 return ret;
1927}
1928
1929static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1930{
1931 if (!regexec(regex, sym->name, 0, NULL, 0))
1932 return 1;
1933 return 0;
1934}
1935
1936static void ip__resolve_ams(struct thread *thread,
1937 struct addr_map_symbol *ams,
1938 u64 ip)
1939{
1940 struct addr_location al;
1941
1942 memset(&al, 0, sizeof(al));
1943 /*
1944 * We cannot use the header.misc hint to determine whether a
1945 * branch stack address is user, kernel, guest, hypervisor.
1946 * Branches may straddle the kernel/user/hypervisor boundaries.
1947 * Thus, we have to try consecutively until we find a match
1948 * or else, the symbol is unknown
1949 */
1950 thread__find_cpumode_addr_location(thread, ip, &al);
1951
1952 ams->addr = ip;
1953 ams->al_addr = al.addr;
1954 ams->ms.maps = al.maps;
1955 ams->ms.sym = al.sym;
1956 ams->ms.map = al.map;
1957 ams->phys_addr = 0;
1958}
1959
1960static void ip__resolve_data(struct thread *thread,
1961 u8 m, struct addr_map_symbol *ams,
1962 u64 addr, u64 phys_addr)
1963{
1964 struct addr_location al;
1965
1966 memset(&al, 0, sizeof(al));
1967
1968 thread__find_symbol(thread, m, addr, &al);
1969
1970 ams->addr = addr;
1971 ams->al_addr = al.addr;
1972 ams->ms.maps = al.maps;
1973 ams->ms.sym = al.sym;
1974 ams->ms.map = al.map;
1975 ams->phys_addr = phys_addr;
1976}
1977
1978struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1979 struct addr_location *al)
1980{
1981 struct mem_info *mi = mem_info__new();
1982
1983 if (!mi)
1984 return NULL;
1985
1986 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1987 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1988 sample->addr, sample->phys_addr);
1989 mi->data_src.val = sample->data_src;
1990
1991 return mi;
1992}
1993
1994static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1995{
1996 struct map *map = ms->map;
1997 char *srcline = NULL;
1998
1999 if (!map || callchain_param.key == CCKEY_FUNCTION)
2000 return srcline;
2001
2002 srcline = srcline__tree_find(&map->dso->srclines, ip);
2003 if (!srcline) {
2004 bool show_sym = false;
2005 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2006
2007 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2008 ms->sym, show_sym, show_addr, ip);
2009 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2010 }
2011
2012 return srcline;
2013}
2014
2015struct iterations {
2016 int nr_loop_iter;
2017 u64 cycles;
2018};
2019
2020static int add_callchain_ip(struct thread *thread,
2021 struct callchain_cursor *cursor,
2022 struct symbol **parent,
2023 struct addr_location *root_al,
2024 u8 *cpumode,
2025 u64 ip,
2026 bool branch,
2027 struct branch_flags *flags,
2028 struct iterations *iter,
2029 u64 branch_from)
2030{
2031 struct map_symbol ms;
2032 struct addr_location al;
2033 int nr_loop_iter = 0;
2034 u64 iter_cycles = 0;
2035 const char *srcline = NULL;
2036
2037 al.filtered = 0;
2038 al.sym = NULL;
2039 if (!cpumode) {
2040 thread__find_cpumode_addr_location(thread, ip, &al);
2041 } else {
2042 if (ip >= PERF_CONTEXT_MAX) {
2043 switch (ip) {
2044 case PERF_CONTEXT_HV:
2045 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2046 break;
2047 case PERF_CONTEXT_KERNEL:
2048 *cpumode = PERF_RECORD_MISC_KERNEL;
2049 break;
2050 case PERF_CONTEXT_USER:
2051 *cpumode = PERF_RECORD_MISC_USER;
2052 break;
2053 default:
2054 pr_debug("invalid callchain context: "
2055 "%"PRId64"\n", (s64) ip);
2056 /*
2057 * It seems the callchain is corrupted.
2058 * Discard all.
2059 */
2060 callchain_cursor_reset(cursor);
2061 return 1;
2062 }
2063 return 0;
2064 }
2065 thread__find_symbol(thread, *cpumode, ip, &al);
2066 }
2067
2068 if (al.sym != NULL) {
2069 if (perf_hpp_list.parent && !*parent &&
2070 symbol__match_regex(al.sym, &parent_regex))
2071 *parent = al.sym;
2072 else if (have_ignore_callees && root_al &&
2073 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2074 /* Treat this symbol as the root,
2075 forgetting its callees. */
2076 *root_al = al;
2077 callchain_cursor_reset(cursor);
2078 }
2079 }
2080
2081 if (symbol_conf.hide_unresolved && al.sym == NULL)
2082 return 0;
2083
2084 if (iter) {
2085 nr_loop_iter = iter->nr_loop_iter;
2086 iter_cycles = iter->cycles;
2087 }
2088
2089 ms.maps = al.maps;
2090 ms.map = al.map;
2091 ms.sym = al.sym;
2092 srcline = callchain_srcline(&ms, al.addr);
2093 return callchain_cursor_append(cursor, ip, &ms,
2094 branch, flags, nr_loop_iter,
2095 iter_cycles, branch_from, srcline);
2096}
2097
2098struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2099 struct addr_location *al)
2100{
2101 unsigned int i;
2102 const struct branch_stack *bs = sample->branch_stack;
2103 struct branch_entry *entries = perf_sample__branch_entries(sample);
2104 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2105
2106 if (!bi)
2107 return NULL;
2108
2109 for (i = 0; i < bs->nr; i++) {
2110 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2111 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2112 bi[i].flags = entries[i].flags;
2113 }
2114 return bi;
2115}
2116
2117static void save_iterations(struct iterations *iter,
2118 struct branch_entry *be, int nr)
2119{
2120 int i;
2121
2122 iter->nr_loop_iter++;
2123 iter->cycles = 0;
2124
2125 for (i = 0; i < nr; i++)
2126 iter->cycles += be[i].flags.cycles;
2127}
2128
2129#define CHASHSZ 127
2130#define CHASHBITS 7
2131#define NO_ENTRY 0xff
2132
2133#define PERF_MAX_BRANCH_DEPTH 127
2134
2135/* Remove loops. */
2136static int remove_loops(struct branch_entry *l, int nr,
2137 struct iterations *iter)
2138{
2139 int i, j, off;
2140 unsigned char chash[CHASHSZ];
2141
2142 memset(chash, NO_ENTRY, sizeof(chash));
2143
2144 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2145
2146 for (i = 0; i < nr; i++) {
2147 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2148
2149 /* no collision handling for now */
2150 if (chash[h] == NO_ENTRY) {
2151 chash[h] = i;
2152 } else if (l[chash[h]].from == l[i].from) {
2153 bool is_loop = true;
2154 /* check if it is a real loop */
2155 off = 0;
2156 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2157 if (l[j].from != l[i + off].from) {
2158 is_loop = false;
2159 break;
2160 }
2161 if (is_loop) {
2162 j = nr - (i + off);
2163 if (j > 0) {
2164 save_iterations(iter + i + off,
2165 l + i, off);
2166
2167 memmove(iter + i, iter + i + off,
2168 j * sizeof(*iter));
2169
2170 memmove(l + i, l + i + off,
2171 j * sizeof(*l));
2172 }
2173
2174 nr -= off;
2175 }
2176 }
2177 }
2178 return nr;
2179}
2180
2181/*
2182 * Recolve LBR callstack chain sample
2183 * Return:
2184 * 1 on success get LBR callchain information
2185 * 0 no available LBR callchain information, should try fp
2186 * negative error code on other errors.
2187 */
2188static int resolve_lbr_callchain_sample(struct thread *thread,
2189 struct callchain_cursor *cursor,
2190 struct perf_sample *sample,
2191 struct symbol **parent,
2192 struct addr_location *root_al,
2193 int max_stack)
2194{
2195 struct ip_callchain *chain = sample->callchain;
2196 int chain_nr = min(max_stack, (int)chain->nr), i;
2197 u8 cpumode = PERF_RECORD_MISC_USER;
2198 u64 ip, branch_from = 0;
2199
2200 for (i = 0; i < chain_nr; i++) {
2201 if (chain->ips[i] == PERF_CONTEXT_USER)
2202 break;
2203 }
2204
2205 /* LBR only affects the user callchain */
2206 if (i != chain_nr) {
2207 struct branch_stack *lbr_stack = sample->branch_stack;
2208 struct branch_entry *entries = perf_sample__branch_entries(sample);
2209 int lbr_nr = lbr_stack->nr, j, k;
2210 bool branch;
2211 struct branch_flags *flags;
2212 /*
2213 * LBR callstack can only get user call chain.
2214 * The mix_chain_nr is kernel call chain
2215 * number plus LBR user call chain number.
2216 * i is kernel call chain number,
2217 * 1 is PERF_CONTEXT_USER,
2218 * lbr_nr + 1 is the user call chain number.
2219 * For details, please refer to the comments
2220 * in callchain__printf
2221 */
2222 int mix_chain_nr = i + 1 + lbr_nr + 1;
2223
2224 for (j = 0; j < mix_chain_nr; j++) {
2225 int err;
2226 branch = false;
2227 flags = NULL;
2228
2229 if (callchain_param.order == ORDER_CALLEE) {
2230 if (j < i + 1)
2231 ip = chain->ips[j];
2232 else if (j > i + 1) {
2233 k = j - i - 2;
2234 ip = entries[k].from;
2235 branch = true;
2236 flags = &entries[k].flags;
2237 } else {
2238 ip = entries[0].to;
2239 branch = true;
2240 flags = &entries[0].flags;
2241 branch_from = entries[0].from;
2242 }
2243 } else {
2244 if (j < lbr_nr) {
2245 k = lbr_nr - j - 1;
2246 ip = entries[k].from;
2247 branch = true;
2248 flags = &entries[k].flags;
2249 }
2250 else if (j > lbr_nr)
2251 ip = chain->ips[i + 1 - (j - lbr_nr)];
2252 else {
2253 ip = entries[0].to;
2254 branch = true;
2255 flags = &entries[0].flags;
2256 branch_from = entries[0].from;
2257 }
2258 }
2259
2260 err = add_callchain_ip(thread, cursor, parent,
2261 root_al, &cpumode, ip,
2262 branch, flags, NULL,
2263 branch_from);
2264 if (err)
2265 return (err < 0) ? err : 0;
2266 }
2267 return 1;
2268 }
2269
2270 return 0;
2271}
2272
2273static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2274 struct callchain_cursor *cursor,
2275 struct symbol **parent,
2276 struct addr_location *root_al,
2277 u8 *cpumode, int ent)
2278{
2279 int err = 0;
2280
2281 while (--ent >= 0) {
2282 u64 ip = chain->ips[ent];
2283
2284 if (ip >= PERF_CONTEXT_MAX) {
2285 err = add_callchain_ip(thread, cursor, parent,
2286 root_al, cpumode, ip,
2287 false, NULL, NULL, 0);
2288 break;
2289 }
2290 }
2291 return err;
2292}
2293
2294static int thread__resolve_callchain_sample(struct thread *thread,
2295 struct callchain_cursor *cursor,
2296 struct evsel *evsel,
2297 struct perf_sample *sample,
2298 struct symbol **parent,
2299 struct addr_location *root_al,
2300 int max_stack)
2301{
2302 struct branch_stack *branch = sample->branch_stack;
2303 struct branch_entry *entries = perf_sample__branch_entries(sample);
2304 struct ip_callchain *chain = sample->callchain;
2305 int chain_nr = 0;
2306 u8 cpumode = PERF_RECORD_MISC_USER;
2307 int i, j, err, nr_entries;
2308 int skip_idx = -1;
2309 int first_call = 0;
2310
2311 if (chain)
2312 chain_nr = chain->nr;
2313
2314 if (perf_evsel__has_branch_callstack(evsel)) {
2315 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2316 root_al, max_stack);
2317 if (err)
2318 return (err < 0) ? err : 0;
2319 }
2320
2321 /*
2322 * Based on DWARF debug information, some architectures skip
2323 * a callchain entry saved by the kernel.
2324 */
2325 skip_idx = arch_skip_callchain_idx(thread, chain);
2326
2327 /*
2328 * Add branches to call stack for easier browsing. This gives
2329 * more context for a sample than just the callers.
2330 *
2331 * This uses individual histograms of paths compared to the
2332 * aggregated histograms the normal LBR mode uses.
2333 *
2334 * Limitations for now:
2335 * - No extra filters
2336 * - No annotations (should annotate somehow)
2337 */
2338
2339 if (branch && callchain_param.branch_callstack) {
2340 int nr = min(max_stack, (int)branch->nr);
2341 struct branch_entry be[nr];
2342 struct iterations iter[nr];
2343
2344 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2345 pr_warning("corrupted branch chain. skipping...\n");
2346 goto check_calls;
2347 }
2348
2349 for (i = 0; i < nr; i++) {
2350 if (callchain_param.order == ORDER_CALLEE) {
2351 be[i] = entries[i];
2352
2353 if (chain == NULL)
2354 continue;
2355
2356 /*
2357 * Check for overlap into the callchain.
2358 * The return address is one off compared to
2359 * the branch entry. To adjust for this
2360 * assume the calling instruction is not longer
2361 * than 8 bytes.
2362 */
2363 if (i == skip_idx ||
2364 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2365 first_call++;
2366 else if (be[i].from < chain->ips[first_call] &&
2367 be[i].from >= chain->ips[first_call] - 8)
2368 first_call++;
2369 } else
2370 be[i] = entries[branch->nr - i - 1];
2371 }
2372
2373 memset(iter, 0, sizeof(struct iterations) * nr);
2374 nr = remove_loops(be, nr, iter);
2375
2376 for (i = 0; i < nr; i++) {
2377 err = add_callchain_ip(thread, cursor, parent,
2378 root_al,
2379 NULL, be[i].to,
2380 true, &be[i].flags,
2381 NULL, be[i].from);
2382
2383 if (!err)
2384 err = add_callchain_ip(thread, cursor, parent, root_al,
2385 NULL, be[i].from,
2386 true, &be[i].flags,
2387 &iter[i], 0);
2388 if (err == -EINVAL)
2389 break;
2390 if (err)
2391 return err;
2392 }
2393
2394 if (chain_nr == 0)
2395 return 0;
2396
2397 chain_nr -= nr;
2398 }
2399
2400check_calls:
2401 if (chain && callchain_param.order != ORDER_CALLEE) {
2402 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2403 &cpumode, chain->nr - first_call);
2404 if (err)
2405 return (err < 0) ? err : 0;
2406 }
2407 for (i = first_call, nr_entries = 0;
2408 i < chain_nr && nr_entries < max_stack; i++) {
2409 u64 ip;
2410
2411 if (callchain_param.order == ORDER_CALLEE)
2412 j = i;
2413 else
2414 j = chain->nr - i - 1;
2415
2416#ifdef HAVE_SKIP_CALLCHAIN_IDX
2417 if (j == skip_idx)
2418 continue;
2419#endif
2420 ip = chain->ips[j];
2421 if (ip < PERF_CONTEXT_MAX)
2422 ++nr_entries;
2423 else if (callchain_param.order != ORDER_CALLEE) {
2424 err = find_prev_cpumode(chain, thread, cursor, parent,
2425 root_al, &cpumode, j);
2426 if (err)
2427 return (err < 0) ? err : 0;
2428 continue;
2429 }
2430
2431 err = add_callchain_ip(thread, cursor, parent,
2432 root_al, &cpumode, ip,
2433 false, NULL, NULL, 0);
2434
2435 if (err)
2436 return (err < 0) ? err : 0;
2437 }
2438
2439 return 0;
2440}
2441
2442static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2443{
2444 struct symbol *sym = ms->sym;
2445 struct map *map = ms->map;
2446 struct inline_node *inline_node;
2447 struct inline_list *ilist;
2448 u64 addr;
2449 int ret = 1;
2450
2451 if (!symbol_conf.inline_name || !map || !sym)
2452 return ret;
2453
2454 addr = map__map_ip(map, ip);
2455 addr = map__rip_2objdump(map, addr);
2456
2457 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2458 if (!inline_node) {
2459 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2460 if (!inline_node)
2461 return ret;
2462 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2463 }
2464
2465 list_for_each_entry(ilist, &inline_node->val, list) {
2466 struct map_symbol ilist_ms = {
2467 .maps = ms->maps,
2468 .map = map,
2469 .sym = ilist->symbol,
2470 };
2471 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->ms.map)
2498 addr = map__map_ip(entry->ms.map, entry->ip);
2499
2500 srcline = callchain_srcline(&entry->ms, addr);
2501 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2502 false, NULL, 0, 0, 0, srcline);
2503}
2504
2505static int thread__resolve_callchain_unwind(struct thread *thread,
2506 struct callchain_cursor *cursor,
2507 struct evsel *evsel,
2508 struct perf_sample *sample,
2509 int max_stack)
2510{
2511 /* Can we do dwarf post unwind? */
2512 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2513 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2514 return 0;
2515
2516 /* Bail out if nothing was captured. */
2517 if ((!sample->user_regs.regs) ||
2518 (!sample->user_stack.size))
2519 return 0;
2520
2521 return unwind__get_entries(unwind_entry, cursor,
2522 thread, sample, max_stack);
2523}
2524
2525int thread__resolve_callchain(struct thread *thread,
2526 struct callchain_cursor *cursor,
2527 struct evsel *evsel,
2528 struct perf_sample *sample,
2529 struct symbol **parent,
2530 struct addr_location *root_al,
2531 int max_stack)
2532{
2533 int ret = 0;
2534
2535 callchain_cursor_reset(cursor);
2536
2537 if (callchain_param.order == ORDER_CALLEE) {
2538 ret = thread__resolve_callchain_sample(thread, cursor,
2539 evsel, sample,
2540 parent, root_al,
2541 max_stack);
2542 if (ret)
2543 return ret;
2544 ret = thread__resolve_callchain_unwind(thread, cursor,
2545 evsel, sample,
2546 max_stack);
2547 } else {
2548 ret = thread__resolve_callchain_unwind(thread, cursor,
2549 evsel, sample,
2550 max_stack);
2551 if (ret)
2552 return ret;
2553 ret = thread__resolve_callchain_sample(thread, cursor,
2554 evsel, sample,
2555 parent, root_al,
2556 max_stack);
2557 }
2558
2559 return ret;
2560}
2561
2562int machine__for_each_thread(struct machine *machine,
2563 int (*fn)(struct thread *thread, void *p),
2564 void *priv)
2565{
2566 struct threads *threads;
2567 struct rb_node *nd;
2568 struct thread *thread;
2569 int rc = 0;
2570 int i;
2571
2572 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2573 threads = &machine->threads[i];
2574 for (nd = rb_first_cached(&threads->entries); nd;
2575 nd = rb_next(nd)) {
2576 thread = rb_entry(nd, struct thread, rb_node);
2577 rc = fn(thread, priv);
2578 if (rc != 0)
2579 return rc;
2580 }
2581
2582 list_for_each_entry(thread, &threads->dead, node) {
2583 rc = fn(thread, priv);
2584 if (rc != 0)
2585 return rc;
2586 }
2587 }
2588 return rc;
2589}
2590
2591int machines__for_each_thread(struct machines *machines,
2592 int (*fn)(struct thread *thread, void *p),
2593 void *priv)
2594{
2595 struct rb_node *nd;
2596 int rc = 0;
2597
2598 rc = machine__for_each_thread(&machines->host, fn, priv);
2599 if (rc != 0)
2600 return rc;
2601
2602 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2603 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2604
2605 rc = machine__for_each_thread(machine, fn, priv);
2606 if (rc != 0)
2607 return rc;
2608 }
2609 return rc;
2610}
2611
2612pid_t machine__get_current_tid(struct machine *machine, int cpu)
2613{
2614 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2615
2616 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2617 return -1;
2618
2619 return machine->current_tid[cpu];
2620}
2621
2622int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2623 pid_t tid)
2624{
2625 struct thread *thread;
2626 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2627
2628 if (cpu < 0)
2629 return -EINVAL;
2630
2631 if (!machine->current_tid) {
2632 int i;
2633
2634 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2635 if (!machine->current_tid)
2636 return -ENOMEM;
2637 for (i = 0; i < nr_cpus; i++)
2638 machine->current_tid[i] = -1;
2639 }
2640
2641 if (cpu >= nr_cpus) {
2642 pr_err("Requested CPU %d too large. ", cpu);
2643 pr_err("Consider raising MAX_NR_CPUS\n");
2644 return -EINVAL;
2645 }
2646
2647 machine->current_tid[cpu] = tid;
2648
2649 thread = machine__findnew_thread(machine, pid, tid);
2650 if (!thread)
2651 return -ENOMEM;
2652
2653 thread->cpu = cpu;
2654 thread__put(thread);
2655
2656 return 0;
2657}
2658
2659/*
2660 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2661 * normalized arch is needed.
2662 */
2663bool machine__is(struct machine *machine, const char *arch)
2664{
2665 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2666}
2667
2668int machine__nr_cpus_avail(struct machine *machine)
2669{
2670 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2671}
2672
2673int machine__get_kernel_start(struct machine *machine)
2674{
2675 struct map *map = machine__kernel_map(machine);
2676 int err = 0;
2677
2678 /*
2679 * The only addresses above 2^63 are kernel addresses of a 64-bit
2680 * kernel. Note that addresses are unsigned so that on a 32-bit system
2681 * all addresses including kernel addresses are less than 2^32. In
2682 * that case (32-bit system), if the kernel mapping is unknown, all
2683 * addresses will be assumed to be in user space - see
2684 * machine__kernel_ip().
2685 */
2686 machine->kernel_start = 1ULL << 63;
2687 if (map) {
2688 err = map__load(map);
2689 /*
2690 * On x86_64, PTI entry trampolines are less than the
2691 * start of kernel text, but still above 2^63. So leave
2692 * kernel_start = 1ULL << 63 for x86_64.
2693 */
2694 if (!err && !machine__is(machine, "x86_64"))
2695 machine->kernel_start = map->start;
2696 }
2697 return err;
2698}
2699
2700u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2701{
2702 u8 addr_cpumode = cpumode;
2703 bool kernel_ip;
2704
2705 if (!machine->single_address_space)
2706 goto out;
2707
2708 kernel_ip = machine__kernel_ip(machine, addr);
2709 switch (cpumode) {
2710 case PERF_RECORD_MISC_KERNEL:
2711 case PERF_RECORD_MISC_USER:
2712 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2713 PERF_RECORD_MISC_USER;
2714 break;
2715 case PERF_RECORD_MISC_GUEST_KERNEL:
2716 case PERF_RECORD_MISC_GUEST_USER:
2717 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2718 PERF_RECORD_MISC_GUEST_USER;
2719 break;
2720 default:
2721 break;
2722 }
2723out:
2724 return addr_cpumode;
2725}
2726
2727struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2728{
2729 return dsos__findnew_id(&machine->dsos, filename, id);
2730}
2731
2732struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2733{
2734 return machine__findnew_dso_id(machine, filename, NULL);
2735}
2736
2737char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2738{
2739 struct machine *machine = vmachine;
2740 struct map *map;
2741 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2742
2743 if (sym == NULL)
2744 return NULL;
2745
2746 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2747 *addrp = map->unmap_ip(map, sym->start);
2748 return sym->name;
2749}