Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# IP configuration
4#
5config IP_MULTICAST
6 bool "IP: multicasting"
7 help
8 This is code for addressing several networked computers at once,
9 enlarging your kernel by about 2 KB. You need multicasting if you
10 intend to participate in the MBONE, a high bandwidth network on top
11 of the Internet which carries audio and video broadcasts. More
12 information about the MBONE is on the WWW at
13 <http://www.savetz.com/mbone/>. For most people, it's safe to say N.
14
15config IP_ADVANCED_ROUTER
16 bool "IP: advanced router"
17 ---help---
18 If you intend to run your Linux box mostly as a router, i.e. as a
19 computer that forwards and redistributes network packets, say Y; you
20 will then be presented with several options that allow more precise
21 control about the routing process.
22
23 The answer to this question won't directly affect the kernel:
24 answering N will just cause the configurator to skip all the
25 questions about advanced routing.
26
27 Note that your box can only act as a router if you enable IP
28 forwarding in your kernel; you can do that by saying Y to "/proc
29 file system support" and "Sysctl support" below and executing the
30 line
31
32 echo "1" > /proc/sys/net/ipv4/ip_forward
33
34 at boot time after the /proc file system has been mounted.
35
36 If you turn on IP forwarding, you should consider the rp_filter, which
37 automatically rejects incoming packets if the routing table entry
38 for their source address doesn't match the network interface they're
39 arriving on. This has security advantages because it prevents the
40 so-called IP spoofing, however it can pose problems if you use
41 asymmetric routing (packets from you to a host take a different path
42 than packets from that host to you) or if you operate a non-routing
43 host which has several IP addresses on different interfaces. To turn
44 rp_filter on use:
45
46 echo 1 > /proc/sys/net/ipv4/conf/<device>/rp_filter
47 or
48 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
49
50 Note that some distributions enable it in startup scripts.
51 For details about rp_filter strict and loose mode read
52 <file:Documentation/networking/ip-sysctl.txt>.
53
54 If unsure, say N here.
55
56config IP_FIB_TRIE_STATS
57 bool "FIB TRIE statistics"
58 depends on IP_ADVANCED_ROUTER
59 ---help---
60 Keep track of statistics on structure of FIB TRIE table.
61 Useful for testing and measuring TRIE performance.
62
63config IP_MULTIPLE_TABLES
64 bool "IP: policy routing"
65 depends on IP_ADVANCED_ROUTER
66 select FIB_RULES
67 ---help---
68 Normally, a router decides what to do with a received packet based
69 solely on the packet's final destination address. If you say Y here,
70 the Linux router will also be able to take the packet's source
71 address into account. Furthermore, the TOS (Type-Of-Service) field
72 of the packet can be used for routing decisions as well.
73
74 If you need more information, see the Linux Advanced
75 Routing and Traffic Control documentation at
76 <http://lartc.org/howto/lartc.rpdb.html>
77
78 If unsure, say N.
79
80config IP_ROUTE_MULTIPATH
81 bool "IP: equal cost multipath"
82 depends on IP_ADVANCED_ROUTER
83 help
84 Normally, the routing tables specify a single action to be taken in
85 a deterministic manner for a given packet. If you say Y here
86 however, it becomes possible to attach several actions to a packet
87 pattern, in effect specifying several alternative paths to travel
88 for those packets. The router considers all these paths to be of
89 equal "cost" and chooses one of them in a non-deterministic fashion
90 if a matching packet arrives.
91
92config IP_ROUTE_VERBOSE
93 bool "IP: verbose route monitoring"
94 depends on IP_ADVANCED_ROUTER
95 help
96 If you say Y here, which is recommended, then the kernel will print
97 verbose messages regarding the routing, for example warnings about
98 received packets which look strange and could be evidence of an
99 attack or a misconfigured system somewhere. The information is
100 handled by the klogd daemon which is responsible for kernel messages
101 ("man klogd").
102
103config IP_ROUTE_CLASSID
104 bool
105
106config IP_PNP
107 bool "IP: kernel level autoconfiguration"
108 help
109 This enables automatic configuration of IP addresses of devices and
110 of the routing table during kernel boot, based on either information
111 supplied on the kernel command line or by BOOTP or RARP protocols.
112 You need to say Y only for diskless machines requiring network
113 access to boot (in which case you want to say Y to "Root file system
114 on NFS" as well), because all other machines configure the network
115 in their startup scripts.
116
117config IP_PNP_DHCP
118 bool "IP: DHCP support"
119 depends on IP_PNP
120 ---help---
121 If you want your Linux box to mount its whole root file system (the
122 one containing the directory /) from some other computer over the
123 net via NFS and you want the IP address of your computer to be
124 discovered automatically at boot time using the DHCP protocol (a
125 special protocol designed for doing this job), say Y here. In case
126 the boot ROM of your network card was designed for booting Linux and
127 does DHCP itself, providing all necessary information on the kernel
128 command line, you can say N here.
129
130 If unsure, say Y. Note that if you want to use DHCP, a DHCP server
131 must be operating on your network. Read
132 <file:Documentation/admin-guide/nfs/nfsroot.rst> for details.
133
134config IP_PNP_BOOTP
135 bool "IP: BOOTP support"
136 depends on IP_PNP
137 ---help---
138 If you want your Linux box to mount its whole root file system (the
139 one containing the directory /) from some other computer over the
140 net via NFS and you want the IP address of your computer to be
141 discovered automatically at boot time using the BOOTP protocol (a
142 special protocol designed for doing this job), say Y here. In case
143 the boot ROM of your network card was designed for booting Linux and
144 does BOOTP itself, providing all necessary information on the kernel
145 command line, you can say N here. If unsure, say Y. Note that if you
146 want to use BOOTP, a BOOTP server must be operating on your network.
147 Read <file:Documentation/admin-guide/nfs/nfsroot.rst> for details.
148
149config IP_PNP_RARP
150 bool "IP: RARP support"
151 depends on IP_PNP
152 help
153 If you want your Linux box to mount its whole root file system (the
154 one containing the directory /) from some other computer over the
155 net via NFS and you want the IP address of your computer to be
156 discovered automatically at boot time using the RARP protocol (an
157 older protocol which is being obsoleted by BOOTP and DHCP), say Y
158 here. Note that if you want to use RARP, a RARP server must be
159 operating on your network. Read
160 <file:Documentation/admin-guide/nfs/nfsroot.rst> for details.
161
162config NET_IPIP
163 tristate "IP: tunneling"
164 select INET_TUNNEL
165 select NET_IP_TUNNEL
166 ---help---
167 Tunneling means encapsulating data of one protocol type within
168 another protocol and sending it over a channel that understands the
169 encapsulating protocol. This particular tunneling driver implements
170 encapsulation of IP within IP, which sounds kind of pointless, but
171 can be useful if you want to make your (or some other) machine
172 appear on a different network than it physically is, or to use
173 mobile-IP facilities (allowing laptops to seamlessly move between
174 networks without changing their IP addresses).
175
176 Saying Y to this option will produce two modules ( = code which can
177 be inserted in and removed from the running kernel whenever you
178 want). Most people won't need this and can say N.
179
180config NET_IPGRE_DEMUX
181 tristate "IP: GRE demultiplexer"
182 help
183 This is helper module to demultiplex GRE packets on GRE version field criteria.
184 Required by ip_gre and pptp modules.
185
186config NET_IP_TUNNEL
187 tristate
188 select DST_CACHE
189 select GRO_CELLS
190 default n
191
192config NET_IPGRE
193 tristate "IP: GRE tunnels over IP"
194 depends on (IPV6 || IPV6=n) && NET_IPGRE_DEMUX
195 select NET_IP_TUNNEL
196 help
197 Tunneling means encapsulating data of one protocol type within
198 another protocol and sending it over a channel that understands the
199 encapsulating protocol. This particular tunneling driver implements
200 GRE (Generic Routing Encapsulation) and at this time allows
201 encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure.
202 This driver is useful if the other endpoint is a Cisco router: Cisco
203 likes GRE much better than the other Linux tunneling driver ("IP
204 tunneling" above). In addition, GRE allows multicast redistribution
205 through the tunnel.
206
207config NET_IPGRE_BROADCAST
208 bool "IP: broadcast GRE over IP"
209 depends on IP_MULTICAST && NET_IPGRE
210 help
211 One application of GRE/IP is to construct a broadcast WAN (Wide Area
212 Network), which looks like a normal Ethernet LAN (Local Area
213 Network), but can be distributed all over the Internet. If you want
214 to do that, say Y here and to "IP multicast routing" below.
215
216config IP_MROUTE_COMMON
217 bool
218 depends on IP_MROUTE || IPV6_MROUTE
219
220config IP_MROUTE
221 bool "IP: multicast routing"
222 depends on IP_MULTICAST
223 select IP_MROUTE_COMMON
224 help
225 This is used if you want your machine to act as a router for IP
226 packets that have several destination addresses. It is needed on the
227 MBONE, a high bandwidth network on top of the Internet which carries
228 audio and video broadcasts. In order to do that, you would most
229 likely run the program mrouted. If you haven't heard about it, you
230 don't need it.
231
232config IP_MROUTE_MULTIPLE_TABLES
233 bool "IP: multicast policy routing"
234 depends on IP_MROUTE && IP_ADVANCED_ROUTER
235 select FIB_RULES
236 help
237 Normally, a multicast router runs a userspace daemon and decides
238 what to do with a multicast packet based on the source and
239 destination addresses. If you say Y here, the multicast router
240 will also be able to take interfaces and packet marks into
241 account and run multiple instances of userspace daemons
242 simultaneously, each one handling a single table.
243
244 If unsure, say N.
245
246config IP_PIMSM_V1
247 bool "IP: PIM-SM version 1 support"
248 depends on IP_MROUTE
249 help
250 Kernel side support for Sparse Mode PIM (Protocol Independent
251 Multicast) version 1. This multicast routing protocol is used widely
252 because Cisco supports it. You need special software to use it
253 (pimd-v1). Please see <http://netweb.usc.edu/pim/> for more
254 information about PIM.
255
256 Say Y if you want to use PIM-SM v1. Note that you can say N here if
257 you just want to use Dense Mode PIM.
258
259config IP_PIMSM_V2
260 bool "IP: PIM-SM version 2 support"
261 depends on IP_MROUTE
262 help
263 Kernel side support for Sparse Mode PIM version 2. In order to use
264 this, you need an experimental routing daemon supporting it (pimd or
265 gated-5). This routing protocol is not used widely, so say N unless
266 you want to play with it.
267
268config SYN_COOKIES
269 bool "IP: TCP syncookie support"
270 ---help---
271 Normal TCP/IP networking is open to an attack known as "SYN
272 flooding". This denial-of-service attack prevents legitimate remote
273 users from being able to connect to your computer during an ongoing
274 attack and requires very little work from the attacker, who can
275 operate from anywhere on the Internet.
276
277 SYN cookies provide protection against this type of attack. If you
278 say Y here, the TCP/IP stack will use a cryptographic challenge
279 protocol known as "SYN cookies" to enable legitimate users to
280 continue to connect, even when your machine is under attack. There
281 is no need for the legitimate users to change their TCP/IP software;
282 SYN cookies work transparently to them. For technical information
283 about SYN cookies, check out <http://cr.yp.to/syncookies.html>.
284
285 If you are SYN flooded, the source address reported by the kernel is
286 likely to have been forged by the attacker; it is only reported as
287 an aid in tracing the packets to their actual source and should not
288 be taken as absolute truth.
289
290 SYN cookies may prevent correct error reporting on clients when the
291 server is really overloaded. If this happens frequently better turn
292 them off.
293
294 If you say Y here, you can disable SYN cookies at run time by
295 saying Y to "/proc file system support" and
296 "Sysctl support" below and executing the command
297
298 echo 0 > /proc/sys/net/ipv4/tcp_syncookies
299
300 after the /proc file system has been mounted.
301
302 If unsure, say N.
303
304config NET_IPVTI
305 tristate "Virtual (secure) IP: tunneling"
306 depends on IPV6 || IPV6=n
307 select INET_TUNNEL
308 select NET_IP_TUNNEL
309 select XFRM
310 ---help---
311 Tunneling means encapsulating data of one protocol type within
312 another protocol and sending it over a channel that understands the
313 encapsulating protocol. This can be used with xfrm mode tunnel to give
314 the notion of a secure tunnel for IPSEC and then use routing protocol
315 on top.
316
317config NET_UDP_TUNNEL
318 tristate
319 select NET_IP_TUNNEL
320 default n
321
322config NET_FOU
323 tristate "IP: Foo (IP protocols) over UDP"
324 select XFRM
325 select NET_UDP_TUNNEL
326 ---help---
327 Foo over UDP allows any IP protocol to be directly encapsulated
328 over UDP include tunnels (IPIP, GRE, SIT). By encapsulating in UDP
329 network mechanisms and optimizations for UDP (such as ECMP
330 and RSS) can be leveraged to provide better service.
331
332config NET_FOU_IP_TUNNELS
333 bool "IP: FOU encapsulation of IP tunnels"
334 depends on NET_IPIP || NET_IPGRE || IPV6_SIT
335 select NET_FOU
336 ---help---
337 Allow configuration of FOU or GUE encapsulation for IP tunnels.
338 When this option is enabled IP tunnels can be configured to use
339 FOU or GUE encapsulation.
340
341config INET_AH
342 tristate "IP: AH transformation"
343 select XFRM_ALGO
344 select CRYPTO
345 select CRYPTO_HMAC
346 select CRYPTO_MD5
347 select CRYPTO_SHA1
348 ---help---
349 Support for IPsec AH.
350
351 If unsure, say Y.
352
353config INET_ESP
354 tristate "IP: ESP transformation"
355 select XFRM_ALGO
356 select CRYPTO
357 select CRYPTO_AUTHENC
358 select CRYPTO_HMAC
359 select CRYPTO_MD5
360 select CRYPTO_CBC
361 select CRYPTO_SHA1
362 select CRYPTO_DES
363 select CRYPTO_ECHAINIV
364 ---help---
365 Support for IPsec ESP.
366
367 If unsure, say Y.
368
369config INET_ESP_OFFLOAD
370 tristate "IP: ESP transformation offload"
371 depends on INET_ESP
372 select XFRM_OFFLOAD
373 default n
374 ---help---
375 Support for ESP transformation offload. This makes sense
376 only if this system really does IPsec and want to do it
377 with high throughput. A typical desktop system does not
378 need it, even if it does IPsec.
379
380 If unsure, say N.
381
382config INET_ESPINTCP
383 bool "IP: ESP in TCP encapsulation (RFC 8229)"
384 depends on XFRM && INET_ESP
385 select STREAM_PARSER
386 select NET_SOCK_MSG
387 help
388 Support for RFC 8229 encapsulation of ESP and IKE over
389 TCP/IPv4 sockets.
390
391 If unsure, say N.
392
393config INET_IPCOMP
394 tristate "IP: IPComp transformation"
395 select INET_XFRM_TUNNEL
396 select XFRM_IPCOMP
397 ---help---
398 Support for IP Payload Compression Protocol (IPComp) (RFC3173),
399 typically needed for IPsec.
400
401 If unsure, say Y.
402
403config INET_XFRM_TUNNEL
404 tristate
405 select INET_TUNNEL
406 default n
407
408config INET_TUNNEL
409 tristate
410 default n
411
412config INET_DIAG
413 tristate "INET: socket monitoring interface"
414 default y
415 ---help---
416 Support for INET (TCP, DCCP, etc) socket monitoring interface used by
417 native Linux tools such as ss. ss is included in iproute2, currently
418 downloadable at:
419
420 http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
421
422 If unsure, say Y.
423
424config INET_TCP_DIAG
425 depends on INET_DIAG
426 def_tristate INET_DIAG
427
428config INET_UDP_DIAG
429 tristate "UDP: socket monitoring interface"
430 depends on INET_DIAG && (IPV6 || IPV6=n)
431 default n
432 ---help---
433 Support for UDP socket monitoring interface used by the ss tool.
434 If unsure, say Y.
435
436config INET_RAW_DIAG
437 tristate "RAW: socket monitoring interface"
438 depends on INET_DIAG && (IPV6 || IPV6=n)
439 default n
440 ---help---
441 Support for RAW socket monitoring interface used by the ss tool.
442 If unsure, say Y.
443
444config INET_DIAG_DESTROY
445 bool "INET: allow privileged process to administratively close sockets"
446 depends on INET_DIAG
447 default n
448 ---help---
449 Provides a SOCK_DESTROY operation that allows privileged processes
450 (e.g., a connection manager or a network administration tool such as
451 ss) to close sockets opened by other processes. Closing a socket in
452 this way interrupts any blocking read/write/connect operations on
453 the socket and causes future socket calls to behave as if the socket
454 had been disconnected.
455 If unsure, say N.
456
457menuconfig TCP_CONG_ADVANCED
458 bool "TCP: advanced congestion control"
459 ---help---
460 Support for selection of various TCP congestion control
461 modules.
462
463 Nearly all users can safely say no here, and a safe default
464 selection will be made (CUBIC with new Reno as a fallback).
465
466 If unsure, say N.
467
468if TCP_CONG_ADVANCED
469
470config TCP_CONG_BIC
471 tristate "Binary Increase Congestion (BIC) control"
472 default m
473 ---help---
474 BIC-TCP is a sender-side only change that ensures a linear RTT
475 fairness under large windows while offering both scalability and
476 bounded TCP-friendliness. The protocol combines two schemes
477 called additive increase and binary search increase. When the
478 congestion window is large, additive increase with a large
479 increment ensures linear RTT fairness as well as good
480 scalability. Under small congestion windows, binary search
481 increase provides TCP friendliness.
482 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
483
484config TCP_CONG_CUBIC
485 tristate "CUBIC TCP"
486 default y
487 ---help---
488 This is version 2.0 of BIC-TCP which uses a cubic growth function
489 among other techniques.
490 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
491
492config TCP_CONG_WESTWOOD
493 tristate "TCP Westwood+"
494 default m
495 ---help---
496 TCP Westwood+ is a sender-side only modification of the TCP Reno
497 protocol stack that optimizes the performance of TCP congestion
498 control. It is based on end-to-end bandwidth estimation to set
499 congestion window and slow start threshold after a congestion
500 episode. Using this estimation, TCP Westwood+ adaptively sets a
501 slow start threshold and a congestion window which takes into
502 account the bandwidth used at the time congestion is experienced.
503 TCP Westwood+ significantly increases fairness wrt TCP Reno in
504 wired networks and throughput over wireless links.
505
506config TCP_CONG_HTCP
507 tristate "H-TCP"
508 default m
509 ---help---
510 H-TCP is a send-side only modifications of the TCP Reno
511 protocol stack that optimizes the performance of TCP
512 congestion control for high speed network links. It uses a
513 modeswitch to change the alpha and beta parameters of TCP Reno
514 based on network conditions and in a way so as to be fair with
515 other Reno and H-TCP flows.
516
517config TCP_CONG_HSTCP
518 tristate "High Speed TCP"
519 default n
520 ---help---
521 Sally Floyd's High Speed TCP (RFC 3649) congestion control.
522 A modification to TCP's congestion control mechanism for use
523 with large congestion windows. A table indicates how much to
524 increase the congestion window by when an ACK is received.
525 For more detail see http://www.icir.org/floyd/hstcp.html
526
527config TCP_CONG_HYBLA
528 tristate "TCP-Hybla congestion control algorithm"
529 default n
530 ---help---
531 TCP-Hybla is a sender-side only change that eliminates penalization of
532 long-RTT, large-bandwidth connections, like when satellite legs are
533 involved, especially when sharing a common bottleneck with normal
534 terrestrial connections.
535
536config TCP_CONG_VEGAS
537 tristate "TCP Vegas"
538 default n
539 ---help---
540 TCP Vegas is a sender-side only change to TCP that anticipates
541 the onset of congestion by estimating the bandwidth. TCP Vegas
542 adjusts the sending rate by modifying the congestion
543 window. TCP Vegas should provide less packet loss, but it is
544 not as aggressive as TCP Reno.
545
546config TCP_CONG_NV
547 tristate "TCP NV"
548 default n
549 ---help---
550 TCP NV is a follow up to TCP Vegas. It has been modified to deal with
551 10G networks, measurement noise introduced by LRO, GRO and interrupt
552 coalescence. In addition, it will decrease its cwnd multiplicatively
553 instead of linearly.
554
555 Note that in general congestion avoidance (cwnd decreased when # packets
556 queued grows) cannot coexist with congestion control (cwnd decreased only
557 when there is packet loss) due to fairness issues. One scenario when they
558 can coexist safely is when the CA flows have RTTs << CC flows RTTs.
559
560 For further details see http://www.brakmo.org/networking/tcp-nv/
561
562config TCP_CONG_SCALABLE
563 tristate "Scalable TCP"
564 default n
565 ---help---
566 Scalable TCP is a sender-side only change to TCP which uses a
567 MIMD congestion control algorithm which has some nice scaling
568 properties, though is known to have fairness issues.
569 See http://www.deneholme.net/tom/scalable/
570
571config TCP_CONG_LP
572 tristate "TCP Low Priority"
573 default n
574 ---help---
575 TCP Low Priority (TCP-LP), a distributed algorithm whose goal is
576 to utilize only the excess network bandwidth as compared to the
577 ``fair share`` of bandwidth as targeted by TCP.
578 See http://www-ece.rice.edu/networks/TCP-LP/
579
580config TCP_CONG_VENO
581 tristate "TCP Veno"
582 default n
583 ---help---
584 TCP Veno is a sender-side only enhancement of TCP to obtain better
585 throughput over wireless networks. TCP Veno makes use of state
586 distinguishing to circumvent the difficult judgment of the packet loss
587 type. TCP Veno cuts down less congestion window in response to random
588 loss packets.
589 See <http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1177186>
590
591config TCP_CONG_YEAH
592 tristate "YeAH TCP"
593 select TCP_CONG_VEGAS
594 default n
595 ---help---
596 YeAH-TCP is a sender-side high-speed enabled TCP congestion control
597 algorithm, which uses a mixed loss/delay approach to compute the
598 congestion window. It's design goals target high efficiency,
599 internal, RTT and Reno fairness, resilience to link loss while
600 keeping network elements load as low as possible.
601
602 For further details look here:
603 http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
604
605config TCP_CONG_ILLINOIS
606 tristate "TCP Illinois"
607 default n
608 ---help---
609 TCP-Illinois is a sender-side modification of TCP Reno for
610 high speed long delay links. It uses round-trip-time to
611 adjust the alpha and beta parameters to achieve a higher average
612 throughput and maintain fairness.
613
614 For further details see:
615 http://www.ews.uiuc.edu/~shaoliu/tcpillinois/index.html
616
617config TCP_CONG_DCTCP
618 tristate "DataCenter TCP (DCTCP)"
619 default n
620 ---help---
621 DCTCP leverages Explicit Congestion Notification (ECN) in the network to
622 provide multi-bit feedback to the end hosts. It is designed to provide:
623
624 - High burst tolerance (incast due to partition/aggregate),
625 - Low latency (short flows, queries),
626 - High throughput (continuous data updates, large file transfers) with
627 commodity, shallow-buffered switches.
628
629 All switches in the data center network running DCTCP must support
630 ECN marking and be configured for marking when reaching defined switch
631 buffer thresholds. The default ECN marking threshold heuristic for
632 DCTCP on switches is 20 packets (30KB) at 1Gbps, and 65 packets
633 (~100KB) at 10Gbps, but might need further careful tweaking.
634
635 For further details see:
636 http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
637
638config TCP_CONG_CDG
639 tristate "CAIA Delay-Gradient (CDG)"
640 default n
641 ---help---
642 CAIA Delay-Gradient (CDG) is a TCP congestion control that modifies
643 the TCP sender in order to:
644
645 o Use the delay gradient as a congestion signal.
646 o Back off with an average probability that is independent of the RTT.
647 o Coexist with flows that use loss-based congestion control.
648 o Tolerate packet loss unrelated to congestion.
649
650 For further details see:
651 D.A. Hayes and G. Armitage. "Revisiting TCP congestion control using
652 delay gradients." In Networking 2011. Preprint: http://goo.gl/No3vdg
653
654config TCP_CONG_BBR
655 tristate "BBR TCP"
656 default n
657 ---help---
658
659 BBR (Bottleneck Bandwidth and RTT) TCP congestion control aims to
660 maximize network utilization and minimize queues. It builds an explicit
661 model of the the bottleneck delivery rate and path round-trip
662 propagation delay. It tolerates packet loss and delay unrelated to
663 congestion. It can operate over LAN, WAN, cellular, wifi, or cable
664 modem links. It can coexist with flows that use loss-based congestion
665 control, and can operate with shallow buffers, deep buffers,
666 bufferbloat, policers, or AQM schemes that do not provide a delay
667 signal. It requires the fq ("Fair Queue") pacing packet scheduler.
668
669choice
670 prompt "Default TCP congestion control"
671 default DEFAULT_CUBIC
672 help
673 Select the TCP congestion control that will be used by default
674 for all connections.
675
676 config DEFAULT_BIC
677 bool "Bic" if TCP_CONG_BIC=y
678
679 config DEFAULT_CUBIC
680 bool "Cubic" if TCP_CONG_CUBIC=y
681
682 config DEFAULT_HTCP
683 bool "Htcp" if TCP_CONG_HTCP=y
684
685 config DEFAULT_HYBLA
686 bool "Hybla" if TCP_CONG_HYBLA=y
687
688 config DEFAULT_VEGAS
689 bool "Vegas" if TCP_CONG_VEGAS=y
690
691 config DEFAULT_VENO
692 bool "Veno" if TCP_CONG_VENO=y
693
694 config DEFAULT_WESTWOOD
695 bool "Westwood" if TCP_CONG_WESTWOOD=y
696
697 config DEFAULT_DCTCP
698 bool "DCTCP" if TCP_CONG_DCTCP=y
699
700 config DEFAULT_CDG
701 bool "CDG" if TCP_CONG_CDG=y
702
703 config DEFAULT_BBR
704 bool "BBR" if TCP_CONG_BBR=y
705
706 config DEFAULT_RENO
707 bool "Reno"
708endchoice
709
710endif
711
712config TCP_CONG_CUBIC
713 tristate
714 depends on !TCP_CONG_ADVANCED
715 default y
716
717config DEFAULT_TCP_CONG
718 string
719 default "bic" if DEFAULT_BIC
720 default "cubic" if DEFAULT_CUBIC
721 default "htcp" if DEFAULT_HTCP
722 default "hybla" if DEFAULT_HYBLA
723 default "vegas" if DEFAULT_VEGAS
724 default "westwood" if DEFAULT_WESTWOOD
725 default "veno" if DEFAULT_VENO
726 default "reno" if DEFAULT_RENO
727 default "dctcp" if DEFAULT_DCTCP
728 default "cdg" if DEFAULT_CDG
729 default "bbr" if DEFAULT_BBR
730 default "cubic"
731
732config TCP_MD5SIG
733 bool "TCP: MD5 Signature Option support (RFC2385)"
734 select CRYPTO
735 select CRYPTO_MD5
736 ---help---
737 RFC2385 specifies a method of giving MD5 protection to TCP sessions.
738 Its main (only?) use is to protect BGP sessions between core routers
739 on the Internet.
740
741 If unsure, say N.