Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56struct macsec_context;
57struct macsec_ops;
58
59struct sfp_bus;
60/* 802.11 specific */
61struct wireless_dev;
62/* 802.15.4 specific */
63struct wpan_dev;
64struct mpls_dev;
65/* UDP Tunnel offloads */
66struct udp_tunnel_info;
67struct bpf_prog;
68struct xdp_buff;
69
70void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77#define MAX_NEST_DEV 8
78
79/*
80 * Transmit return codes: transmit return codes originate from three different
81 * namespaces:
82 *
83 * - qdisc return codes
84 * - driver transmit return codes
85 * - errno values
86 *
87 * Drivers are allowed to return any one of those in their hard_start_xmit()
88 * function. Real network devices commonly used with qdiscs should only return
89 * the driver transmit return codes though - when qdiscs are used, the actual
90 * transmission happens asynchronously, so the value is not propagated to
91 * higher layers. Virtual network devices transmit synchronously; in this case
92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93 * others are propagated to higher layers.
94 */
95
96/* qdisc ->enqueue() return codes. */
97#define NET_XMIT_SUCCESS 0x00
98#define NET_XMIT_DROP 0x01 /* skb dropped */
99#define NET_XMIT_CN 0x02 /* congestion notification */
100#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108/* Driver transmit return codes */
109#define NETDEV_TX_MASK 0xf0
110
111enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136/*
137 * Compute the worst-case header length according to the protocols
138 * used.
139 */
140
141#if defined(CONFIG_HYPERV_NET)
142# define LL_MAX_HEADER 128
143#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144# if defined(CONFIG_MAC80211_MESH)
145# define LL_MAX_HEADER 128
146# else
147# define LL_MAX_HEADER 96
148# endif
149#else
150# define LL_MAX_HEADER 32
151#endif
152
153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155#define MAX_HEADER LL_MAX_HEADER
156#else
157#define MAX_HEADER (LL_MAX_HEADER + 48)
158#endif
159
160/*
161 * Old network device statistics. Fields are native words
162 * (unsigned long) so they can be read and written atomically.
163 */
164
165struct net_device_stats {
166 unsigned long rx_packets;
167 unsigned long tx_packets;
168 unsigned long rx_bytes;
169 unsigned long tx_bytes;
170 unsigned long rx_errors;
171 unsigned long tx_errors;
172 unsigned long rx_dropped;
173 unsigned long tx_dropped;
174 unsigned long multicast;
175 unsigned long collisions;
176 unsigned long rx_length_errors;
177 unsigned long rx_over_errors;
178 unsigned long rx_crc_errors;
179 unsigned long rx_frame_errors;
180 unsigned long rx_fifo_errors;
181 unsigned long rx_missed_errors;
182 unsigned long tx_aborted_errors;
183 unsigned long tx_carrier_errors;
184 unsigned long tx_fifo_errors;
185 unsigned long tx_heartbeat_errors;
186 unsigned long tx_window_errors;
187 unsigned long rx_compressed;
188 unsigned long tx_compressed;
189};
190
191
192#include <linux/cache.h>
193#include <linux/skbuff.h>
194
195#ifdef CONFIG_RPS
196#include <linux/static_key.h>
197extern struct static_key_false rps_needed;
198extern struct static_key_false rfs_needed;
199#endif
200
201struct neighbour;
202struct neigh_parms;
203struct sk_buff;
204
205struct netdev_hw_addr {
206 struct list_head list;
207 unsigned char addr[MAX_ADDR_LEN];
208 unsigned char type;
209#define NETDEV_HW_ADDR_T_LAN 1
210#define NETDEV_HW_ADDR_T_SAN 2
211#define NETDEV_HW_ADDR_T_SLAVE 3
212#define NETDEV_HW_ADDR_T_UNICAST 4
213#define NETDEV_HW_ADDR_T_MULTICAST 5
214 bool global_use;
215 int sync_cnt;
216 int refcount;
217 int synced;
218 struct rcu_head rcu_head;
219};
220
221struct netdev_hw_addr_list {
222 struct list_head list;
223 int count;
224};
225
226#define netdev_hw_addr_list_count(l) ((l)->count)
227#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228#define netdev_hw_addr_list_for_each(ha, l) \
229 list_for_each_entry(ha, &(l)->list, list)
230
231#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233#define netdev_for_each_uc_addr(ha, dev) \
234 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235
236#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238#define netdev_for_each_mc_addr(ha, dev) \
239 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240
241struct hh_cache {
242 unsigned int hh_len;
243 seqlock_t hh_lock;
244
245 /* cached hardware header; allow for machine alignment needs. */
246#define HH_DATA_MOD 16
247#define HH_DATA_OFF(__len) \
248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249#define HH_DATA_ALIGN(__len) \
250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252};
253
254/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255 * Alternative is:
256 * dev->hard_header_len ? (dev->hard_header_len +
257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258 *
259 * We could use other alignment values, but we must maintain the
260 * relationship HH alignment <= LL alignment.
261 */
262#define LL_RESERVED_SPACE(dev) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266
267struct header_ops {
268 int (*create) (struct sk_buff *skb, struct net_device *dev,
269 unsigned short type, const void *daddr,
270 const void *saddr, unsigned int len);
271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 void (*cache_update)(struct hh_cache *hh,
274 const struct net_device *dev,
275 const unsigned char *haddr);
276 bool (*validate)(const char *ll_header, unsigned int len);
277 __be16 (*parse_protocol)(const struct sk_buff *skb);
278};
279
280/* These flag bits are private to the generic network queueing
281 * layer; they may not be explicitly referenced by any other
282 * code.
283 */
284
285enum netdev_state_t {
286 __LINK_STATE_START,
287 __LINK_STATE_PRESENT,
288 __LINK_STATE_NOCARRIER,
289 __LINK_STATE_LINKWATCH_PENDING,
290 __LINK_STATE_DORMANT,
291};
292
293
294/*
295 * This structure holds boot-time configured netdevice settings. They
296 * are then used in the device probing.
297 */
298struct netdev_boot_setup {
299 char name[IFNAMSIZ];
300 struct ifmap map;
301};
302#define NETDEV_BOOT_SETUP_MAX 8
303
304int __init netdev_boot_setup(char *str);
305
306struct gro_list {
307 struct list_head list;
308 int count;
309};
310
311/*
312 * size of gro hash buckets, must less than bit number of
313 * napi_struct::gro_bitmask
314 */
315#define GRO_HASH_BUCKETS 8
316
317/*
318 * Structure for NAPI scheduling similar to tasklet but with weighting
319 */
320struct napi_struct {
321 /* The poll_list must only be managed by the entity which
322 * changes the state of the NAPI_STATE_SCHED bit. This means
323 * whoever atomically sets that bit can add this napi_struct
324 * to the per-CPU poll_list, and whoever clears that bit
325 * can remove from the list right before clearing the bit.
326 */
327 struct list_head poll_list;
328
329 unsigned long state;
330 int weight;
331 unsigned long gro_bitmask;
332 int (*poll)(struct napi_struct *, int);
333#ifdef CONFIG_NETPOLL
334 int poll_owner;
335#endif
336 struct net_device *dev;
337 struct gro_list gro_hash[GRO_HASH_BUCKETS];
338 struct sk_buff *skb;
339 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
340 int rx_count; /* length of rx_list */
341 struct hrtimer timer;
342 struct list_head dev_list;
343 struct hlist_node napi_hash_node;
344 unsigned int napi_id;
345};
346
347enum {
348 NAPI_STATE_SCHED, /* Poll is scheduled */
349 NAPI_STATE_MISSED, /* reschedule a napi */
350 NAPI_STATE_DISABLE, /* Disable pending */
351 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
352 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
353 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
354 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
355};
356
357enum {
358 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
359 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
360 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
361 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
362 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
363 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
364 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
365};
366
367enum gro_result {
368 GRO_MERGED,
369 GRO_MERGED_FREE,
370 GRO_HELD,
371 GRO_NORMAL,
372 GRO_DROP,
373 GRO_CONSUMED,
374};
375typedef enum gro_result gro_result_t;
376
377/*
378 * enum rx_handler_result - Possible return values for rx_handlers.
379 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
380 * further.
381 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
382 * case skb->dev was changed by rx_handler.
383 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
384 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
385 *
386 * rx_handlers are functions called from inside __netif_receive_skb(), to do
387 * special processing of the skb, prior to delivery to protocol handlers.
388 *
389 * Currently, a net_device can only have a single rx_handler registered. Trying
390 * to register a second rx_handler will return -EBUSY.
391 *
392 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
393 * To unregister a rx_handler on a net_device, use
394 * netdev_rx_handler_unregister().
395 *
396 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
397 * do with the skb.
398 *
399 * If the rx_handler consumed the skb in some way, it should return
400 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
401 * the skb to be delivered in some other way.
402 *
403 * If the rx_handler changed skb->dev, to divert the skb to another
404 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
405 * new device will be called if it exists.
406 *
407 * If the rx_handler decides the skb should be ignored, it should return
408 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
409 * are registered on exact device (ptype->dev == skb->dev).
410 *
411 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
412 * delivered, it should return RX_HANDLER_PASS.
413 *
414 * A device without a registered rx_handler will behave as if rx_handler
415 * returned RX_HANDLER_PASS.
416 */
417
418enum rx_handler_result {
419 RX_HANDLER_CONSUMED,
420 RX_HANDLER_ANOTHER,
421 RX_HANDLER_EXACT,
422 RX_HANDLER_PASS,
423};
424typedef enum rx_handler_result rx_handler_result_t;
425typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
426
427void __napi_schedule(struct napi_struct *n);
428void __napi_schedule_irqoff(struct napi_struct *n);
429
430static inline bool napi_disable_pending(struct napi_struct *n)
431{
432 return test_bit(NAPI_STATE_DISABLE, &n->state);
433}
434
435bool napi_schedule_prep(struct napi_struct *n);
436
437/**
438 * napi_schedule - schedule NAPI poll
439 * @n: NAPI context
440 *
441 * Schedule NAPI poll routine to be called if it is not already
442 * running.
443 */
444static inline void napi_schedule(struct napi_struct *n)
445{
446 if (napi_schedule_prep(n))
447 __napi_schedule(n);
448}
449
450/**
451 * napi_schedule_irqoff - schedule NAPI poll
452 * @n: NAPI context
453 *
454 * Variant of napi_schedule(), assuming hard irqs are masked.
455 */
456static inline void napi_schedule_irqoff(struct napi_struct *n)
457{
458 if (napi_schedule_prep(n))
459 __napi_schedule_irqoff(n);
460}
461
462/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
463static inline bool napi_reschedule(struct napi_struct *napi)
464{
465 if (napi_schedule_prep(napi)) {
466 __napi_schedule(napi);
467 return true;
468 }
469 return false;
470}
471
472bool napi_complete_done(struct napi_struct *n, int work_done);
473/**
474 * napi_complete - NAPI processing complete
475 * @n: NAPI context
476 *
477 * Mark NAPI processing as complete.
478 * Consider using napi_complete_done() instead.
479 * Return false if device should avoid rearming interrupts.
480 */
481static inline bool napi_complete(struct napi_struct *n)
482{
483 return napi_complete_done(n, 0);
484}
485
486/**
487 * napi_hash_del - remove a NAPI from global table
488 * @napi: NAPI context
489 *
490 * Warning: caller must observe RCU grace period
491 * before freeing memory containing @napi, if
492 * this function returns true.
493 * Note: core networking stack automatically calls it
494 * from netif_napi_del().
495 * Drivers might want to call this helper to combine all
496 * the needed RCU grace periods into a single one.
497 */
498bool napi_hash_del(struct napi_struct *napi);
499
500/**
501 * napi_disable - prevent NAPI from scheduling
502 * @n: NAPI context
503 *
504 * Stop NAPI from being scheduled on this context.
505 * Waits till any outstanding processing completes.
506 */
507void napi_disable(struct napi_struct *n);
508
509/**
510 * napi_enable - enable NAPI scheduling
511 * @n: NAPI context
512 *
513 * Resume NAPI from being scheduled on this context.
514 * Must be paired with napi_disable.
515 */
516static inline void napi_enable(struct napi_struct *n)
517{
518 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 smp_mb__before_atomic();
520 clear_bit(NAPI_STATE_SCHED, &n->state);
521 clear_bit(NAPI_STATE_NPSVC, &n->state);
522}
523
524/**
525 * napi_synchronize - wait until NAPI is not running
526 * @n: NAPI context
527 *
528 * Wait until NAPI is done being scheduled on this context.
529 * Waits till any outstanding processing completes but
530 * does not disable future activations.
531 */
532static inline void napi_synchronize(const struct napi_struct *n)
533{
534 if (IS_ENABLED(CONFIG_SMP))
535 while (test_bit(NAPI_STATE_SCHED, &n->state))
536 msleep(1);
537 else
538 barrier();
539}
540
541/**
542 * napi_if_scheduled_mark_missed - if napi is running, set the
543 * NAPIF_STATE_MISSED
544 * @n: NAPI context
545 *
546 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547 * NAPI is scheduled.
548 **/
549static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550{
551 unsigned long val, new;
552
553 do {
554 val = READ_ONCE(n->state);
555 if (val & NAPIF_STATE_DISABLE)
556 return true;
557
558 if (!(val & NAPIF_STATE_SCHED))
559 return false;
560
561 new = val | NAPIF_STATE_MISSED;
562 } while (cmpxchg(&n->state, val, new) != val);
563
564 return true;
565}
566
567enum netdev_queue_state_t {
568 __QUEUE_STATE_DRV_XOFF,
569 __QUEUE_STATE_STACK_XOFF,
570 __QUEUE_STATE_FROZEN,
571};
572
573#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
574#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
575#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
576
577#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 QUEUE_STATE_FROZEN)
580#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 QUEUE_STATE_FROZEN)
582
583/*
584 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
585 * netif_tx_* functions below are used to manipulate this flag. The
586 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587 * queue independently. The netif_xmit_*stopped functions below are called
588 * to check if the queue has been stopped by the driver or stack (either
589 * of the XOFF bits are set in the state). Drivers should not need to call
590 * netif_xmit*stopped functions, they should only be using netif_tx_*.
591 */
592
593struct netdev_queue {
594/*
595 * read-mostly part
596 */
597 struct net_device *dev;
598 struct Qdisc __rcu *qdisc;
599 struct Qdisc *qdisc_sleeping;
600#ifdef CONFIG_SYSFS
601 struct kobject kobj;
602#endif
603#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 int numa_node;
605#endif
606 unsigned long tx_maxrate;
607 /*
608 * Number of TX timeouts for this queue
609 * (/sys/class/net/DEV/Q/trans_timeout)
610 */
611 unsigned long trans_timeout;
612
613 /* Subordinate device that the queue has been assigned to */
614 struct net_device *sb_dev;
615#ifdef CONFIG_XDP_SOCKETS
616 struct xdp_umem *umem;
617#endif
618/*
619 * write-mostly part
620 */
621 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
622 int xmit_lock_owner;
623 /*
624 * Time (in jiffies) of last Tx
625 */
626 unsigned long trans_start;
627
628 unsigned long state;
629
630#ifdef CONFIG_BQL
631 struct dql dql;
632#endif
633} ____cacheline_aligned_in_smp;
634
635extern int sysctl_fb_tunnels_only_for_init_net;
636extern int sysctl_devconf_inherit_init_net;
637
638static inline bool net_has_fallback_tunnels(const struct net *net)
639{
640 return net == &init_net ||
641 !IS_ENABLED(CONFIG_SYSCTL) ||
642 !sysctl_fb_tunnels_only_for_init_net;
643}
644
645static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
646{
647#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 return q->numa_node;
649#else
650 return NUMA_NO_NODE;
651#endif
652}
653
654static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
655{
656#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
657 q->numa_node = node;
658#endif
659}
660
661#ifdef CONFIG_RPS
662/*
663 * This structure holds an RPS map which can be of variable length. The
664 * map is an array of CPUs.
665 */
666struct rps_map {
667 unsigned int len;
668 struct rcu_head rcu;
669 u16 cpus[];
670};
671#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
672
673/*
674 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
675 * tail pointer for that CPU's input queue at the time of last enqueue, and
676 * a hardware filter index.
677 */
678struct rps_dev_flow {
679 u16 cpu;
680 u16 filter;
681 unsigned int last_qtail;
682};
683#define RPS_NO_FILTER 0xffff
684
685/*
686 * The rps_dev_flow_table structure contains a table of flow mappings.
687 */
688struct rps_dev_flow_table {
689 unsigned int mask;
690 struct rcu_head rcu;
691 struct rps_dev_flow flows[];
692};
693#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
694 ((_num) * sizeof(struct rps_dev_flow)))
695
696/*
697 * The rps_sock_flow_table contains mappings of flows to the last CPU
698 * on which they were processed by the application (set in recvmsg).
699 * Each entry is a 32bit value. Upper part is the high-order bits
700 * of flow hash, lower part is CPU number.
701 * rps_cpu_mask is used to partition the space, depending on number of
702 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
703 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
704 * meaning we use 32-6=26 bits for the hash.
705 */
706struct rps_sock_flow_table {
707 u32 mask;
708
709 u32 ents[] ____cacheline_aligned_in_smp;
710};
711#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
712
713#define RPS_NO_CPU 0xffff
714
715extern u32 rps_cpu_mask;
716extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
717
718static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
719 u32 hash)
720{
721 if (table && hash) {
722 unsigned int index = hash & table->mask;
723 u32 val = hash & ~rps_cpu_mask;
724
725 /* We only give a hint, preemption can change CPU under us */
726 val |= raw_smp_processor_id();
727
728 if (table->ents[index] != val)
729 table->ents[index] = val;
730 }
731}
732
733#ifdef CONFIG_RFS_ACCEL
734bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
735 u16 filter_id);
736#endif
737#endif /* CONFIG_RPS */
738
739/* This structure contains an instance of an RX queue. */
740struct netdev_rx_queue {
741#ifdef CONFIG_RPS
742 struct rps_map __rcu *rps_map;
743 struct rps_dev_flow_table __rcu *rps_flow_table;
744#endif
745 struct kobject kobj;
746 struct net_device *dev;
747 struct xdp_rxq_info xdp_rxq;
748#ifdef CONFIG_XDP_SOCKETS
749 struct xdp_umem *umem;
750#endif
751} ____cacheline_aligned_in_smp;
752
753/*
754 * RX queue sysfs structures and functions.
755 */
756struct rx_queue_attribute {
757 struct attribute attr;
758 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
759 ssize_t (*store)(struct netdev_rx_queue *queue,
760 const char *buf, size_t len);
761};
762
763#ifdef CONFIG_XPS
764/*
765 * This structure holds an XPS map which can be of variable length. The
766 * map is an array of queues.
767 */
768struct xps_map {
769 unsigned int len;
770 unsigned int alloc_len;
771 struct rcu_head rcu;
772 u16 queues[];
773};
774#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776 - sizeof(struct xps_map)) / sizeof(u16))
777
778/*
779 * This structure holds all XPS maps for device. Maps are indexed by CPU.
780 */
781struct xps_dev_maps {
782 struct rcu_head rcu;
783 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
784};
785
786#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
787 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
788
789#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
790 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
791
792#endif /* CONFIG_XPS */
793
794#define TC_MAX_QUEUE 16
795#define TC_BITMASK 15
796/* HW offloaded queuing disciplines txq count and offset maps */
797struct netdev_tc_txq {
798 u16 count;
799 u16 offset;
800};
801
802#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
803/*
804 * This structure is to hold information about the device
805 * configured to run FCoE protocol stack.
806 */
807struct netdev_fcoe_hbainfo {
808 char manufacturer[64];
809 char serial_number[64];
810 char hardware_version[64];
811 char driver_version[64];
812 char optionrom_version[64];
813 char firmware_version[64];
814 char model[256];
815 char model_description[256];
816};
817#endif
818
819#define MAX_PHYS_ITEM_ID_LEN 32
820
821/* This structure holds a unique identifier to identify some
822 * physical item (port for example) used by a netdevice.
823 */
824struct netdev_phys_item_id {
825 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
826 unsigned char id_len;
827};
828
829static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
830 struct netdev_phys_item_id *b)
831{
832 return a->id_len == b->id_len &&
833 memcmp(a->id, b->id, a->id_len) == 0;
834}
835
836typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
837 struct sk_buff *skb,
838 struct net_device *sb_dev);
839
840enum tc_setup_type {
841 TC_SETUP_QDISC_MQPRIO,
842 TC_SETUP_CLSU32,
843 TC_SETUP_CLSFLOWER,
844 TC_SETUP_CLSMATCHALL,
845 TC_SETUP_CLSBPF,
846 TC_SETUP_BLOCK,
847 TC_SETUP_QDISC_CBS,
848 TC_SETUP_QDISC_RED,
849 TC_SETUP_QDISC_PRIO,
850 TC_SETUP_QDISC_MQ,
851 TC_SETUP_QDISC_ETF,
852 TC_SETUP_ROOT_QDISC,
853 TC_SETUP_QDISC_GRED,
854 TC_SETUP_QDISC_TAPRIO,
855 TC_SETUP_FT,
856 TC_SETUP_QDISC_ETS,
857 TC_SETUP_QDISC_TBF,
858 TC_SETUP_QDISC_FIFO,
859};
860
861/* These structures hold the attributes of bpf state that are being passed
862 * to the netdevice through the bpf op.
863 */
864enum bpf_netdev_command {
865 /* Set or clear a bpf program used in the earliest stages of packet
866 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
867 * is responsible for calling bpf_prog_put on any old progs that are
868 * stored. In case of error, the callee need not release the new prog
869 * reference, but on success it takes ownership and must bpf_prog_put
870 * when it is no longer used.
871 */
872 XDP_SETUP_PROG,
873 XDP_SETUP_PROG_HW,
874 XDP_QUERY_PROG,
875 XDP_QUERY_PROG_HW,
876 /* BPF program for offload callbacks, invoked at program load time. */
877 BPF_OFFLOAD_MAP_ALLOC,
878 BPF_OFFLOAD_MAP_FREE,
879 XDP_SETUP_XSK_UMEM,
880};
881
882struct bpf_prog_offload_ops;
883struct netlink_ext_ack;
884struct xdp_umem;
885struct xdp_dev_bulk_queue;
886
887struct netdev_bpf {
888 enum bpf_netdev_command command;
889 union {
890 /* XDP_SETUP_PROG */
891 struct {
892 u32 flags;
893 struct bpf_prog *prog;
894 struct netlink_ext_ack *extack;
895 };
896 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
897 struct {
898 u32 prog_id;
899 /* flags with which program was installed */
900 u32 prog_flags;
901 };
902 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
903 struct {
904 struct bpf_offloaded_map *offmap;
905 };
906 /* XDP_SETUP_XSK_UMEM */
907 struct {
908 struct xdp_umem *umem;
909 u16 queue_id;
910 } xsk;
911 };
912};
913
914/* Flags for ndo_xsk_wakeup. */
915#define XDP_WAKEUP_RX (1 << 0)
916#define XDP_WAKEUP_TX (1 << 1)
917
918#ifdef CONFIG_XFRM_OFFLOAD
919struct xfrmdev_ops {
920 int (*xdo_dev_state_add) (struct xfrm_state *x);
921 void (*xdo_dev_state_delete) (struct xfrm_state *x);
922 void (*xdo_dev_state_free) (struct xfrm_state *x);
923 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
924 struct xfrm_state *x);
925 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
926};
927#endif
928
929struct dev_ifalias {
930 struct rcu_head rcuhead;
931 char ifalias[];
932};
933
934struct devlink;
935struct tlsdev_ops;
936
937struct netdev_name_node {
938 struct hlist_node hlist;
939 struct list_head list;
940 struct net_device *dev;
941 const char *name;
942};
943
944int netdev_name_node_alt_create(struct net_device *dev, const char *name);
945int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
946
947struct netdev_net_notifier {
948 struct list_head list;
949 struct notifier_block *nb;
950};
951
952/*
953 * This structure defines the management hooks for network devices.
954 * The following hooks can be defined; unless noted otherwise, they are
955 * optional and can be filled with a null pointer.
956 *
957 * int (*ndo_init)(struct net_device *dev);
958 * This function is called once when a network device is registered.
959 * The network device can use this for any late stage initialization
960 * or semantic validation. It can fail with an error code which will
961 * be propagated back to register_netdev.
962 *
963 * void (*ndo_uninit)(struct net_device *dev);
964 * This function is called when device is unregistered or when registration
965 * fails. It is not called if init fails.
966 *
967 * int (*ndo_open)(struct net_device *dev);
968 * This function is called when a network device transitions to the up
969 * state.
970 *
971 * int (*ndo_stop)(struct net_device *dev);
972 * This function is called when a network device transitions to the down
973 * state.
974 *
975 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
976 * struct net_device *dev);
977 * Called when a packet needs to be transmitted.
978 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
979 * the queue before that can happen; it's for obsolete devices and weird
980 * corner cases, but the stack really does a non-trivial amount
981 * of useless work if you return NETDEV_TX_BUSY.
982 * Required; cannot be NULL.
983 *
984 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
985 * struct net_device *dev
986 * netdev_features_t features);
987 * Called by core transmit path to determine if device is capable of
988 * performing offload operations on a given packet. This is to give
989 * the device an opportunity to implement any restrictions that cannot
990 * be otherwise expressed by feature flags. The check is called with
991 * the set of features that the stack has calculated and it returns
992 * those the driver believes to be appropriate.
993 *
994 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
995 * struct net_device *sb_dev);
996 * Called to decide which queue to use when device supports multiple
997 * transmit queues.
998 *
999 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1000 * This function is called to allow device receiver to make
1001 * changes to configuration when multicast or promiscuous is enabled.
1002 *
1003 * void (*ndo_set_rx_mode)(struct net_device *dev);
1004 * This function is called device changes address list filtering.
1005 * If driver handles unicast address filtering, it should set
1006 * IFF_UNICAST_FLT in its priv_flags.
1007 *
1008 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1009 * This function is called when the Media Access Control address
1010 * needs to be changed. If this interface is not defined, the
1011 * MAC address can not be changed.
1012 *
1013 * int (*ndo_validate_addr)(struct net_device *dev);
1014 * Test if Media Access Control address is valid for the device.
1015 *
1016 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1017 * Called when a user requests an ioctl which can't be handled by
1018 * the generic interface code. If not defined ioctls return
1019 * not supported error code.
1020 *
1021 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1022 * Used to set network devices bus interface parameters. This interface
1023 * is retained for legacy reasons; new devices should use the bus
1024 * interface (PCI) for low level management.
1025 *
1026 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1027 * Called when a user wants to change the Maximum Transfer Unit
1028 * of a device.
1029 *
1030 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1031 * Callback used when the transmitter has not made any progress
1032 * for dev->watchdog ticks.
1033 *
1034 * void (*ndo_get_stats64)(struct net_device *dev,
1035 * struct rtnl_link_stats64 *storage);
1036 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1037 * Called when a user wants to get the network device usage
1038 * statistics. Drivers must do one of the following:
1039 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1040 * rtnl_link_stats64 structure passed by the caller.
1041 * 2. Define @ndo_get_stats to update a net_device_stats structure
1042 * (which should normally be dev->stats) and return a pointer to
1043 * it. The structure may be changed asynchronously only if each
1044 * field is written atomically.
1045 * 3. Update dev->stats asynchronously and atomically, and define
1046 * neither operation.
1047 *
1048 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1049 * Return true if this device supports offload stats of this attr_id.
1050 *
1051 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1052 * void *attr_data)
1053 * Get statistics for offload operations by attr_id. Write it into the
1054 * attr_data pointer.
1055 *
1056 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057 * If device supports VLAN filtering this function is called when a
1058 * VLAN id is registered.
1059 *
1060 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1061 * If device supports VLAN filtering this function is called when a
1062 * VLAN id is unregistered.
1063 *
1064 * void (*ndo_poll_controller)(struct net_device *dev);
1065 *
1066 * SR-IOV management functions.
1067 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1068 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1069 * u8 qos, __be16 proto);
1070 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1071 * int max_tx_rate);
1072 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1073 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1074 * int (*ndo_get_vf_config)(struct net_device *dev,
1075 * int vf, struct ifla_vf_info *ivf);
1076 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1077 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1078 * struct nlattr *port[]);
1079 *
1080 * Enable or disable the VF ability to query its RSS Redirection Table and
1081 * Hash Key. This is needed since on some devices VF share this information
1082 * with PF and querying it may introduce a theoretical security risk.
1083 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1085 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1086 * void *type_data);
1087 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1088 * This is always called from the stack with the rtnl lock held and netif
1089 * tx queues stopped. This allows the netdevice to perform queue
1090 * management safely.
1091 *
1092 * Fiber Channel over Ethernet (FCoE) offload functions.
1093 * int (*ndo_fcoe_enable)(struct net_device *dev);
1094 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1095 * so the underlying device can perform whatever needed configuration or
1096 * initialization to support acceleration of FCoE traffic.
1097 *
1098 * int (*ndo_fcoe_disable)(struct net_device *dev);
1099 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1100 * so the underlying device can perform whatever needed clean-ups to
1101 * stop supporting acceleration of FCoE traffic.
1102 *
1103 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1104 * struct scatterlist *sgl, unsigned int sgc);
1105 * Called when the FCoE Initiator wants to initialize an I/O that
1106 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1107 * perform necessary setup and returns 1 to indicate the device is set up
1108 * successfully to perform DDP on this I/O, otherwise this returns 0.
1109 *
1110 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1111 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1112 * indicated by the FC exchange id 'xid', so the underlying device can
1113 * clean up and reuse resources for later DDP requests.
1114 *
1115 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1116 * struct scatterlist *sgl, unsigned int sgc);
1117 * Called when the FCoE Target wants to initialize an I/O that
1118 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1119 * perform necessary setup and returns 1 to indicate the device is set up
1120 * successfully to perform DDP on this I/O, otherwise this returns 0.
1121 *
1122 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123 * struct netdev_fcoe_hbainfo *hbainfo);
1124 * Called when the FCoE Protocol stack wants information on the underlying
1125 * device. This information is utilized by the FCoE protocol stack to
1126 * register attributes with Fiber Channel management service as per the
1127 * FC-GS Fabric Device Management Information(FDMI) specification.
1128 *
1129 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1130 * Called when the underlying device wants to override default World Wide
1131 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1132 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1133 * protocol stack to use.
1134 *
1135 * RFS acceleration.
1136 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1137 * u16 rxq_index, u32 flow_id);
1138 * Set hardware filter for RFS. rxq_index is the target queue index;
1139 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1140 * Return the filter ID on success, or a negative error code.
1141 *
1142 * Slave management functions (for bridge, bonding, etc).
1143 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1144 * Called to make another netdev an underling.
1145 *
1146 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1147 * Called to release previously enslaved netdev.
1148 *
1149 * Feature/offload setting functions.
1150 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1151 * netdev_features_t features);
1152 * Adjusts the requested feature flags according to device-specific
1153 * constraints, and returns the resulting flags. Must not modify
1154 * the device state.
1155 *
1156 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1157 * Called to update device configuration to new features. Passed
1158 * feature set might be less than what was returned by ndo_fix_features()).
1159 * Must return >0 or -errno if it changed dev->features itself.
1160 *
1161 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1162 * struct net_device *dev,
1163 * const unsigned char *addr, u16 vid, u16 flags,
1164 * struct netlink_ext_ack *extack);
1165 * Adds an FDB entry to dev for addr.
1166 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1167 * struct net_device *dev,
1168 * const unsigned char *addr, u16 vid)
1169 * Deletes the FDB entry from dev coresponding to addr.
1170 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1171 * struct net_device *dev, struct net_device *filter_dev,
1172 * int *idx)
1173 * Used to add FDB entries to dump requests. Implementers should add
1174 * entries to skb and update idx with the number of entries.
1175 *
1176 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1177 * u16 flags, struct netlink_ext_ack *extack)
1178 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1179 * struct net_device *dev, u32 filter_mask,
1180 * int nlflags)
1181 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1182 * u16 flags);
1183 *
1184 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1185 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1186 * which do not represent real hardware may define this to allow their
1187 * userspace components to manage their virtual carrier state. Devices
1188 * that determine carrier state from physical hardware properties (eg
1189 * network cables) or protocol-dependent mechanisms (eg
1190 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1191 *
1192 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1193 * struct netdev_phys_item_id *ppid);
1194 * Called to get ID of physical port of this device. If driver does
1195 * not implement this, it is assumed that the hw is not able to have
1196 * multiple net devices on single physical port.
1197 *
1198 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1199 * struct netdev_phys_item_id *ppid)
1200 * Called to get the parent ID of the physical port of this device.
1201 *
1202 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1203 * struct udp_tunnel_info *ti);
1204 * Called by UDP tunnel to notify a driver about the UDP port and socket
1205 * address family that a UDP tunnel is listnening to. It is called only
1206 * when a new port starts listening. The operation is protected by the
1207 * RTNL.
1208 *
1209 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1210 * struct udp_tunnel_info *ti);
1211 * Called by UDP tunnel to notify the driver about a UDP port and socket
1212 * address family that the UDP tunnel is not listening to anymore. The
1213 * operation is protected by the RTNL.
1214 *
1215 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1216 * struct net_device *dev)
1217 * Called by upper layer devices to accelerate switching or other
1218 * station functionality into hardware. 'pdev is the lowerdev
1219 * to use for the offload and 'dev' is the net device that will
1220 * back the offload. Returns a pointer to the private structure
1221 * the upper layer will maintain.
1222 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1223 * Called by upper layer device to delete the station created
1224 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1225 * the station and priv is the structure returned by the add
1226 * operation.
1227 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1228 * int queue_index, u32 maxrate);
1229 * Called when a user wants to set a max-rate limitation of specific
1230 * TX queue.
1231 * int (*ndo_get_iflink)(const struct net_device *dev);
1232 * Called to get the iflink value of this device.
1233 * void (*ndo_change_proto_down)(struct net_device *dev,
1234 * bool proto_down);
1235 * This function is used to pass protocol port error state information
1236 * to the switch driver. The switch driver can react to the proto_down
1237 * by doing a phys down on the associated switch port.
1238 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1239 * This function is used to get egress tunnel information for given skb.
1240 * This is useful for retrieving outer tunnel header parameters while
1241 * sampling packet.
1242 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1243 * This function is used to specify the headroom that the skb must
1244 * consider when allocation skb during packet reception. Setting
1245 * appropriate rx headroom value allows avoiding skb head copy on
1246 * forward. Setting a negative value resets the rx headroom to the
1247 * default value.
1248 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1249 * This function is used to set or query state related to XDP on the
1250 * netdevice and manage BPF offload. See definition of
1251 * enum bpf_netdev_command for details.
1252 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1253 * u32 flags);
1254 * This function is used to submit @n XDP packets for transmit on a
1255 * netdevice. Returns number of frames successfully transmitted, frames
1256 * that got dropped are freed/returned via xdp_return_frame().
1257 * Returns negative number, means general error invoking ndo, meaning
1258 * no frames were xmit'ed and core-caller will free all frames.
1259 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1260 * This function is used to wake up the softirq, ksoftirqd or kthread
1261 * responsible for sending and/or receiving packets on a specific
1262 * queue id bound to an AF_XDP socket. The flags field specifies if
1263 * only RX, only Tx, or both should be woken up using the flags
1264 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1265 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1266 * Get devlink port instance associated with a given netdev.
1267 * Called with a reference on the netdevice and devlink locks only,
1268 * rtnl_lock is not held.
1269 */
1270struct net_device_ops {
1271 int (*ndo_init)(struct net_device *dev);
1272 void (*ndo_uninit)(struct net_device *dev);
1273 int (*ndo_open)(struct net_device *dev);
1274 int (*ndo_stop)(struct net_device *dev);
1275 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1276 struct net_device *dev);
1277 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1278 struct net_device *dev,
1279 netdev_features_t features);
1280 u16 (*ndo_select_queue)(struct net_device *dev,
1281 struct sk_buff *skb,
1282 struct net_device *sb_dev);
1283 void (*ndo_change_rx_flags)(struct net_device *dev,
1284 int flags);
1285 void (*ndo_set_rx_mode)(struct net_device *dev);
1286 int (*ndo_set_mac_address)(struct net_device *dev,
1287 void *addr);
1288 int (*ndo_validate_addr)(struct net_device *dev);
1289 int (*ndo_do_ioctl)(struct net_device *dev,
1290 struct ifreq *ifr, int cmd);
1291 int (*ndo_set_config)(struct net_device *dev,
1292 struct ifmap *map);
1293 int (*ndo_change_mtu)(struct net_device *dev,
1294 int new_mtu);
1295 int (*ndo_neigh_setup)(struct net_device *dev,
1296 struct neigh_parms *);
1297 void (*ndo_tx_timeout) (struct net_device *dev,
1298 unsigned int txqueue);
1299
1300 void (*ndo_get_stats64)(struct net_device *dev,
1301 struct rtnl_link_stats64 *storage);
1302 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1303 int (*ndo_get_offload_stats)(int attr_id,
1304 const struct net_device *dev,
1305 void *attr_data);
1306 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1307
1308 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1309 __be16 proto, u16 vid);
1310 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1311 __be16 proto, u16 vid);
1312#ifdef CONFIG_NET_POLL_CONTROLLER
1313 void (*ndo_poll_controller)(struct net_device *dev);
1314 int (*ndo_netpoll_setup)(struct net_device *dev,
1315 struct netpoll_info *info);
1316 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1317#endif
1318 int (*ndo_set_vf_mac)(struct net_device *dev,
1319 int queue, u8 *mac);
1320 int (*ndo_set_vf_vlan)(struct net_device *dev,
1321 int queue, u16 vlan,
1322 u8 qos, __be16 proto);
1323 int (*ndo_set_vf_rate)(struct net_device *dev,
1324 int vf, int min_tx_rate,
1325 int max_tx_rate);
1326 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1327 int vf, bool setting);
1328 int (*ndo_set_vf_trust)(struct net_device *dev,
1329 int vf, bool setting);
1330 int (*ndo_get_vf_config)(struct net_device *dev,
1331 int vf,
1332 struct ifla_vf_info *ivf);
1333 int (*ndo_set_vf_link_state)(struct net_device *dev,
1334 int vf, int link_state);
1335 int (*ndo_get_vf_stats)(struct net_device *dev,
1336 int vf,
1337 struct ifla_vf_stats
1338 *vf_stats);
1339 int (*ndo_set_vf_port)(struct net_device *dev,
1340 int vf,
1341 struct nlattr *port[]);
1342 int (*ndo_get_vf_port)(struct net_device *dev,
1343 int vf, struct sk_buff *skb);
1344 int (*ndo_get_vf_guid)(struct net_device *dev,
1345 int vf,
1346 struct ifla_vf_guid *node_guid,
1347 struct ifla_vf_guid *port_guid);
1348 int (*ndo_set_vf_guid)(struct net_device *dev,
1349 int vf, u64 guid,
1350 int guid_type);
1351 int (*ndo_set_vf_rss_query_en)(
1352 struct net_device *dev,
1353 int vf, bool setting);
1354 int (*ndo_setup_tc)(struct net_device *dev,
1355 enum tc_setup_type type,
1356 void *type_data);
1357#if IS_ENABLED(CONFIG_FCOE)
1358 int (*ndo_fcoe_enable)(struct net_device *dev);
1359 int (*ndo_fcoe_disable)(struct net_device *dev);
1360 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1361 u16 xid,
1362 struct scatterlist *sgl,
1363 unsigned int sgc);
1364 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1365 u16 xid);
1366 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1367 u16 xid,
1368 struct scatterlist *sgl,
1369 unsigned int sgc);
1370 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1371 struct netdev_fcoe_hbainfo *hbainfo);
1372#endif
1373
1374#if IS_ENABLED(CONFIG_LIBFCOE)
1375#define NETDEV_FCOE_WWNN 0
1376#define NETDEV_FCOE_WWPN 1
1377 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1378 u64 *wwn, int type);
1379#endif
1380
1381#ifdef CONFIG_RFS_ACCEL
1382 int (*ndo_rx_flow_steer)(struct net_device *dev,
1383 const struct sk_buff *skb,
1384 u16 rxq_index,
1385 u32 flow_id);
1386#endif
1387 int (*ndo_add_slave)(struct net_device *dev,
1388 struct net_device *slave_dev,
1389 struct netlink_ext_ack *extack);
1390 int (*ndo_del_slave)(struct net_device *dev,
1391 struct net_device *slave_dev);
1392 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1393 netdev_features_t features);
1394 int (*ndo_set_features)(struct net_device *dev,
1395 netdev_features_t features);
1396 int (*ndo_neigh_construct)(struct net_device *dev,
1397 struct neighbour *n);
1398 void (*ndo_neigh_destroy)(struct net_device *dev,
1399 struct neighbour *n);
1400
1401 int (*ndo_fdb_add)(struct ndmsg *ndm,
1402 struct nlattr *tb[],
1403 struct net_device *dev,
1404 const unsigned char *addr,
1405 u16 vid,
1406 u16 flags,
1407 struct netlink_ext_ack *extack);
1408 int (*ndo_fdb_del)(struct ndmsg *ndm,
1409 struct nlattr *tb[],
1410 struct net_device *dev,
1411 const unsigned char *addr,
1412 u16 vid);
1413 int (*ndo_fdb_dump)(struct sk_buff *skb,
1414 struct netlink_callback *cb,
1415 struct net_device *dev,
1416 struct net_device *filter_dev,
1417 int *idx);
1418 int (*ndo_fdb_get)(struct sk_buff *skb,
1419 struct nlattr *tb[],
1420 struct net_device *dev,
1421 const unsigned char *addr,
1422 u16 vid, u32 portid, u32 seq,
1423 struct netlink_ext_ack *extack);
1424 int (*ndo_bridge_setlink)(struct net_device *dev,
1425 struct nlmsghdr *nlh,
1426 u16 flags,
1427 struct netlink_ext_ack *extack);
1428 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1429 u32 pid, u32 seq,
1430 struct net_device *dev,
1431 u32 filter_mask,
1432 int nlflags);
1433 int (*ndo_bridge_dellink)(struct net_device *dev,
1434 struct nlmsghdr *nlh,
1435 u16 flags);
1436 int (*ndo_change_carrier)(struct net_device *dev,
1437 bool new_carrier);
1438 int (*ndo_get_phys_port_id)(struct net_device *dev,
1439 struct netdev_phys_item_id *ppid);
1440 int (*ndo_get_port_parent_id)(struct net_device *dev,
1441 struct netdev_phys_item_id *ppid);
1442 int (*ndo_get_phys_port_name)(struct net_device *dev,
1443 char *name, size_t len);
1444 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1445 struct udp_tunnel_info *ti);
1446 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1447 struct udp_tunnel_info *ti);
1448 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1449 struct net_device *dev);
1450 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1451 void *priv);
1452
1453 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1454 int queue_index,
1455 u32 maxrate);
1456 int (*ndo_get_iflink)(const struct net_device *dev);
1457 int (*ndo_change_proto_down)(struct net_device *dev,
1458 bool proto_down);
1459 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1460 struct sk_buff *skb);
1461 void (*ndo_set_rx_headroom)(struct net_device *dev,
1462 int needed_headroom);
1463 int (*ndo_bpf)(struct net_device *dev,
1464 struct netdev_bpf *bpf);
1465 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1466 struct xdp_frame **xdp,
1467 u32 flags);
1468 int (*ndo_xsk_wakeup)(struct net_device *dev,
1469 u32 queue_id, u32 flags);
1470 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1471};
1472
1473/**
1474 * enum net_device_priv_flags - &struct net_device priv_flags
1475 *
1476 * These are the &struct net_device, they are only set internally
1477 * by drivers and used in the kernel. These flags are invisible to
1478 * userspace; this means that the order of these flags can change
1479 * during any kernel release.
1480 *
1481 * You should have a pretty good reason to be extending these flags.
1482 *
1483 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1484 * @IFF_EBRIDGE: Ethernet bridging device
1485 * @IFF_BONDING: bonding master or slave
1486 * @IFF_ISATAP: ISATAP interface (RFC4214)
1487 * @IFF_WAN_HDLC: WAN HDLC device
1488 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1489 * release skb->dst
1490 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1491 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1492 * @IFF_MACVLAN_PORT: device used as macvlan port
1493 * @IFF_BRIDGE_PORT: device used as bridge port
1494 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1495 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1496 * @IFF_UNICAST_FLT: Supports unicast filtering
1497 * @IFF_TEAM_PORT: device used as team port
1498 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1499 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1500 * change when it's running
1501 * @IFF_MACVLAN: Macvlan device
1502 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1503 * underlying stacked devices
1504 * @IFF_L3MDEV_MASTER: device is an L3 master device
1505 * @IFF_NO_QUEUE: device can run without qdisc attached
1506 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1507 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1508 * @IFF_TEAM: device is a team device
1509 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1510 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1511 * entity (i.e. the master device for bridged veth)
1512 * @IFF_MACSEC: device is a MACsec device
1513 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1514 * @IFF_FAILOVER: device is a failover master device
1515 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1516 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1517 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1518 */
1519enum netdev_priv_flags {
1520 IFF_802_1Q_VLAN = 1<<0,
1521 IFF_EBRIDGE = 1<<1,
1522 IFF_BONDING = 1<<2,
1523 IFF_ISATAP = 1<<3,
1524 IFF_WAN_HDLC = 1<<4,
1525 IFF_XMIT_DST_RELEASE = 1<<5,
1526 IFF_DONT_BRIDGE = 1<<6,
1527 IFF_DISABLE_NETPOLL = 1<<7,
1528 IFF_MACVLAN_PORT = 1<<8,
1529 IFF_BRIDGE_PORT = 1<<9,
1530 IFF_OVS_DATAPATH = 1<<10,
1531 IFF_TX_SKB_SHARING = 1<<11,
1532 IFF_UNICAST_FLT = 1<<12,
1533 IFF_TEAM_PORT = 1<<13,
1534 IFF_SUPP_NOFCS = 1<<14,
1535 IFF_LIVE_ADDR_CHANGE = 1<<15,
1536 IFF_MACVLAN = 1<<16,
1537 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1538 IFF_L3MDEV_MASTER = 1<<18,
1539 IFF_NO_QUEUE = 1<<19,
1540 IFF_OPENVSWITCH = 1<<20,
1541 IFF_L3MDEV_SLAVE = 1<<21,
1542 IFF_TEAM = 1<<22,
1543 IFF_RXFH_CONFIGURED = 1<<23,
1544 IFF_PHONY_HEADROOM = 1<<24,
1545 IFF_MACSEC = 1<<25,
1546 IFF_NO_RX_HANDLER = 1<<26,
1547 IFF_FAILOVER = 1<<27,
1548 IFF_FAILOVER_SLAVE = 1<<28,
1549 IFF_L3MDEV_RX_HANDLER = 1<<29,
1550 IFF_LIVE_RENAME_OK = 1<<30,
1551};
1552
1553#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1554#define IFF_EBRIDGE IFF_EBRIDGE
1555#define IFF_BONDING IFF_BONDING
1556#define IFF_ISATAP IFF_ISATAP
1557#define IFF_WAN_HDLC IFF_WAN_HDLC
1558#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1559#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1560#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1561#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1562#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1563#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1564#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1565#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1566#define IFF_TEAM_PORT IFF_TEAM_PORT
1567#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1568#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1569#define IFF_MACVLAN IFF_MACVLAN
1570#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1571#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1572#define IFF_NO_QUEUE IFF_NO_QUEUE
1573#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1574#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1575#define IFF_TEAM IFF_TEAM
1576#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1577#define IFF_MACSEC IFF_MACSEC
1578#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1579#define IFF_FAILOVER IFF_FAILOVER
1580#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1581#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1582#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1583
1584/**
1585 * struct net_device - The DEVICE structure.
1586 *
1587 * Actually, this whole structure is a big mistake. It mixes I/O
1588 * data with strictly "high-level" data, and it has to know about
1589 * almost every data structure used in the INET module.
1590 *
1591 * @name: This is the first field of the "visible" part of this structure
1592 * (i.e. as seen by users in the "Space.c" file). It is the name
1593 * of the interface.
1594 *
1595 * @name_node: Name hashlist node
1596 * @ifalias: SNMP alias
1597 * @mem_end: Shared memory end
1598 * @mem_start: Shared memory start
1599 * @base_addr: Device I/O address
1600 * @irq: Device IRQ number
1601 *
1602 * @state: Generic network queuing layer state, see netdev_state_t
1603 * @dev_list: The global list of network devices
1604 * @napi_list: List entry used for polling NAPI devices
1605 * @unreg_list: List entry when we are unregistering the
1606 * device; see the function unregister_netdev
1607 * @close_list: List entry used when we are closing the device
1608 * @ptype_all: Device-specific packet handlers for all protocols
1609 * @ptype_specific: Device-specific, protocol-specific packet handlers
1610 *
1611 * @adj_list: Directly linked devices, like slaves for bonding
1612 * @features: Currently active device features
1613 * @hw_features: User-changeable features
1614 *
1615 * @wanted_features: User-requested features
1616 * @vlan_features: Mask of features inheritable by VLAN devices
1617 *
1618 * @hw_enc_features: Mask of features inherited by encapsulating devices
1619 * This field indicates what encapsulation
1620 * offloads the hardware is capable of doing,
1621 * and drivers will need to set them appropriately.
1622 *
1623 * @mpls_features: Mask of features inheritable by MPLS
1624 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1625 *
1626 * @ifindex: interface index
1627 * @group: The group the device belongs to
1628 *
1629 * @stats: Statistics struct, which was left as a legacy, use
1630 * rtnl_link_stats64 instead
1631 *
1632 * @rx_dropped: Dropped packets by core network,
1633 * do not use this in drivers
1634 * @tx_dropped: Dropped packets by core network,
1635 * do not use this in drivers
1636 * @rx_nohandler: nohandler dropped packets by core network on
1637 * inactive devices, do not use this in drivers
1638 * @carrier_up_count: Number of times the carrier has been up
1639 * @carrier_down_count: Number of times the carrier has been down
1640 *
1641 * @wireless_handlers: List of functions to handle Wireless Extensions,
1642 * instead of ioctl,
1643 * see <net/iw_handler.h> for details.
1644 * @wireless_data: Instance data managed by the core of wireless extensions
1645 *
1646 * @netdev_ops: Includes several pointers to callbacks,
1647 * if one wants to override the ndo_*() functions
1648 * @ethtool_ops: Management operations
1649 * @l3mdev_ops: Layer 3 master device operations
1650 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1651 * discovery handling. Necessary for e.g. 6LoWPAN.
1652 * @xfrmdev_ops: Transformation offload operations
1653 * @tlsdev_ops: Transport Layer Security offload operations
1654 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1655 * of Layer 2 headers.
1656 *
1657 * @flags: Interface flags (a la BSD)
1658 * @priv_flags: Like 'flags' but invisible to userspace,
1659 * see if.h for the definitions
1660 * @gflags: Global flags ( kept as legacy )
1661 * @padded: How much padding added by alloc_netdev()
1662 * @operstate: RFC2863 operstate
1663 * @link_mode: Mapping policy to operstate
1664 * @if_port: Selectable AUI, TP, ...
1665 * @dma: DMA channel
1666 * @mtu: Interface MTU value
1667 * @min_mtu: Interface Minimum MTU value
1668 * @max_mtu: Interface Maximum MTU value
1669 * @type: Interface hardware type
1670 * @hard_header_len: Maximum hardware header length.
1671 * @min_header_len: Minimum hardware header length
1672 *
1673 * @needed_headroom: Extra headroom the hardware may need, but not in all
1674 * cases can this be guaranteed
1675 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1676 * cases can this be guaranteed. Some cases also use
1677 * LL_MAX_HEADER instead to allocate the skb
1678 *
1679 * interface address info:
1680 *
1681 * @perm_addr: Permanent hw address
1682 * @addr_assign_type: Hw address assignment type
1683 * @addr_len: Hardware address length
1684 * @upper_level: Maximum depth level of upper devices.
1685 * @lower_level: Maximum depth level of lower devices.
1686 * @neigh_priv_len: Used in neigh_alloc()
1687 * @dev_id: Used to differentiate devices that share
1688 * the same link layer address
1689 * @dev_port: Used to differentiate devices that share
1690 * the same function
1691 * @addr_list_lock: XXX: need comments on this one
1692 * @name_assign_type: network interface name assignment type
1693 * @uc_promisc: Counter that indicates promiscuous mode
1694 * has been enabled due to the need to listen to
1695 * additional unicast addresses in a device that
1696 * does not implement ndo_set_rx_mode()
1697 * @uc: unicast mac addresses
1698 * @mc: multicast mac addresses
1699 * @dev_addrs: list of device hw addresses
1700 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1701 * @promiscuity: Number of times the NIC is told to work in
1702 * promiscuous mode; if it becomes 0 the NIC will
1703 * exit promiscuous mode
1704 * @allmulti: Counter, enables or disables allmulticast mode
1705 *
1706 * @vlan_info: VLAN info
1707 * @dsa_ptr: dsa specific data
1708 * @tipc_ptr: TIPC specific data
1709 * @atalk_ptr: AppleTalk link
1710 * @ip_ptr: IPv4 specific data
1711 * @dn_ptr: DECnet specific data
1712 * @ip6_ptr: IPv6 specific data
1713 * @ax25_ptr: AX.25 specific data
1714 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1715 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1716 * device struct
1717 * @mpls_ptr: mpls_dev struct pointer
1718 *
1719 * @dev_addr: Hw address (before bcast,
1720 * because most packets are unicast)
1721 *
1722 * @_rx: Array of RX queues
1723 * @num_rx_queues: Number of RX queues
1724 * allocated at register_netdev() time
1725 * @real_num_rx_queues: Number of RX queues currently active in device
1726 * @xdp_prog: XDP sockets filter program pointer
1727 * @gro_flush_timeout: timeout for GRO layer in NAPI
1728 *
1729 * @rx_handler: handler for received packets
1730 * @rx_handler_data: XXX: need comments on this one
1731 * @miniq_ingress: ingress/clsact qdisc specific data for
1732 * ingress processing
1733 * @ingress_queue: XXX: need comments on this one
1734 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1735 * @broadcast: hw bcast address
1736 *
1737 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1738 * indexed by RX queue number. Assigned by driver.
1739 * This must only be set if the ndo_rx_flow_steer
1740 * operation is defined
1741 * @index_hlist: Device index hash chain
1742 *
1743 * @_tx: Array of TX queues
1744 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1745 * @real_num_tx_queues: Number of TX queues currently active in device
1746 * @qdisc: Root qdisc from userspace point of view
1747 * @tx_queue_len: Max frames per queue allowed
1748 * @tx_global_lock: XXX: need comments on this one
1749 * @xdp_bulkq: XDP device bulk queue
1750 * @xps_cpus_map: all CPUs map for XPS device
1751 * @xps_rxqs_map: all RXQs map for XPS device
1752 *
1753 * @xps_maps: XXX: need comments on this one
1754 * @miniq_egress: clsact qdisc specific data for
1755 * egress processing
1756 * @qdisc_hash: qdisc hash table
1757 * @watchdog_timeo: Represents the timeout that is used by
1758 * the watchdog (see dev_watchdog())
1759 * @watchdog_timer: List of timers
1760 *
1761 * @pcpu_refcnt: Number of references to this device
1762 * @todo_list: Delayed register/unregister
1763 * @link_watch_list: XXX: need comments on this one
1764 *
1765 * @reg_state: Register/unregister state machine
1766 * @dismantle: Device is going to be freed
1767 * @rtnl_link_state: This enum represents the phases of creating
1768 * a new link
1769 *
1770 * @needs_free_netdev: Should unregister perform free_netdev?
1771 * @priv_destructor: Called from unregister
1772 * @npinfo: XXX: need comments on this one
1773 * @nd_net: Network namespace this network device is inside
1774 *
1775 * @ml_priv: Mid-layer private
1776 * @lstats: Loopback statistics
1777 * @tstats: Tunnel statistics
1778 * @dstats: Dummy statistics
1779 * @vstats: Virtual ethernet statistics
1780 *
1781 * @garp_port: GARP
1782 * @mrp_port: MRP
1783 *
1784 * @dev: Class/net/name entry
1785 * @sysfs_groups: Space for optional device, statistics and wireless
1786 * sysfs groups
1787 *
1788 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1789 * @rtnl_link_ops: Rtnl_link_ops
1790 *
1791 * @gso_max_size: Maximum size of generic segmentation offload
1792 * @gso_max_segs: Maximum number of segments that can be passed to the
1793 * NIC for GSO
1794 *
1795 * @dcbnl_ops: Data Center Bridging netlink ops
1796 * @num_tc: Number of traffic classes in the net device
1797 * @tc_to_txq: XXX: need comments on this one
1798 * @prio_tc_map: XXX: need comments on this one
1799 *
1800 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1801 *
1802 * @priomap: XXX: need comments on this one
1803 * @phydev: Physical device may attach itself
1804 * for hardware timestamping
1805 * @sfp_bus: attached &struct sfp_bus structure.
1806 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1807 * spinlock
1808 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1809 * @qdisc_xmit_lock_key: lockdep class annotating
1810 * netdev_queue->_xmit_lock spinlock
1811 * @addr_list_lock_key: lockdep class annotating
1812 * net_device->addr_list_lock spinlock
1813 *
1814 * @proto_down: protocol port state information can be sent to the
1815 * switch driver and used to set the phys state of the
1816 * switch port.
1817 *
1818 * @wol_enabled: Wake-on-LAN is enabled
1819 *
1820 * @net_notifier_list: List of per-net netdev notifier block
1821 * that follow this device when it is moved
1822 * to another network namespace.
1823 *
1824 * @macsec_ops: MACsec offloading ops
1825 *
1826 * FIXME: cleanup struct net_device such that network protocol info
1827 * moves out.
1828 */
1829
1830struct net_device {
1831 char name[IFNAMSIZ];
1832 struct netdev_name_node *name_node;
1833 struct dev_ifalias __rcu *ifalias;
1834 /*
1835 * I/O specific fields
1836 * FIXME: Merge these and struct ifmap into one
1837 */
1838 unsigned long mem_end;
1839 unsigned long mem_start;
1840 unsigned long base_addr;
1841 int irq;
1842
1843 /*
1844 * Some hardware also needs these fields (state,dev_list,
1845 * napi_list,unreg_list,close_list) but they are not
1846 * part of the usual set specified in Space.c.
1847 */
1848
1849 unsigned long state;
1850
1851 struct list_head dev_list;
1852 struct list_head napi_list;
1853 struct list_head unreg_list;
1854 struct list_head close_list;
1855 struct list_head ptype_all;
1856 struct list_head ptype_specific;
1857
1858 struct {
1859 struct list_head upper;
1860 struct list_head lower;
1861 } adj_list;
1862
1863 netdev_features_t features;
1864 netdev_features_t hw_features;
1865 netdev_features_t wanted_features;
1866 netdev_features_t vlan_features;
1867 netdev_features_t hw_enc_features;
1868 netdev_features_t mpls_features;
1869 netdev_features_t gso_partial_features;
1870
1871 int ifindex;
1872 int group;
1873
1874 struct net_device_stats stats;
1875
1876 atomic_long_t rx_dropped;
1877 atomic_long_t tx_dropped;
1878 atomic_long_t rx_nohandler;
1879
1880 /* Stats to monitor link on/off, flapping */
1881 atomic_t carrier_up_count;
1882 atomic_t carrier_down_count;
1883
1884#ifdef CONFIG_WIRELESS_EXT
1885 const struct iw_handler_def *wireless_handlers;
1886 struct iw_public_data *wireless_data;
1887#endif
1888 const struct net_device_ops *netdev_ops;
1889 const struct ethtool_ops *ethtool_ops;
1890#ifdef CONFIG_NET_L3_MASTER_DEV
1891 const struct l3mdev_ops *l3mdev_ops;
1892#endif
1893#if IS_ENABLED(CONFIG_IPV6)
1894 const struct ndisc_ops *ndisc_ops;
1895#endif
1896
1897#ifdef CONFIG_XFRM_OFFLOAD
1898 const struct xfrmdev_ops *xfrmdev_ops;
1899#endif
1900
1901#if IS_ENABLED(CONFIG_TLS_DEVICE)
1902 const struct tlsdev_ops *tlsdev_ops;
1903#endif
1904
1905 const struct header_ops *header_ops;
1906
1907 unsigned int flags;
1908 unsigned int priv_flags;
1909
1910 unsigned short gflags;
1911 unsigned short padded;
1912
1913 unsigned char operstate;
1914 unsigned char link_mode;
1915
1916 unsigned char if_port;
1917 unsigned char dma;
1918
1919 /* Note : dev->mtu is often read without holding a lock.
1920 * Writers usually hold RTNL.
1921 * It is recommended to use READ_ONCE() to annotate the reads,
1922 * and to use WRITE_ONCE() to annotate the writes.
1923 */
1924 unsigned int mtu;
1925 unsigned int min_mtu;
1926 unsigned int max_mtu;
1927 unsigned short type;
1928 unsigned short hard_header_len;
1929 unsigned char min_header_len;
1930
1931 unsigned short needed_headroom;
1932 unsigned short needed_tailroom;
1933
1934 /* Interface address info. */
1935 unsigned char perm_addr[MAX_ADDR_LEN];
1936 unsigned char addr_assign_type;
1937 unsigned char addr_len;
1938 unsigned char upper_level;
1939 unsigned char lower_level;
1940 unsigned short neigh_priv_len;
1941 unsigned short dev_id;
1942 unsigned short dev_port;
1943 spinlock_t addr_list_lock;
1944 unsigned char name_assign_type;
1945 bool uc_promisc;
1946 struct netdev_hw_addr_list uc;
1947 struct netdev_hw_addr_list mc;
1948 struct netdev_hw_addr_list dev_addrs;
1949
1950#ifdef CONFIG_SYSFS
1951 struct kset *queues_kset;
1952#endif
1953 unsigned int promiscuity;
1954 unsigned int allmulti;
1955
1956
1957 /* Protocol-specific pointers */
1958
1959#if IS_ENABLED(CONFIG_VLAN_8021Q)
1960 struct vlan_info __rcu *vlan_info;
1961#endif
1962#if IS_ENABLED(CONFIG_NET_DSA)
1963 struct dsa_port *dsa_ptr;
1964#endif
1965#if IS_ENABLED(CONFIG_TIPC)
1966 struct tipc_bearer __rcu *tipc_ptr;
1967#endif
1968#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1969 void *atalk_ptr;
1970#endif
1971 struct in_device __rcu *ip_ptr;
1972#if IS_ENABLED(CONFIG_DECNET)
1973 struct dn_dev __rcu *dn_ptr;
1974#endif
1975 struct inet6_dev __rcu *ip6_ptr;
1976#if IS_ENABLED(CONFIG_AX25)
1977 void *ax25_ptr;
1978#endif
1979 struct wireless_dev *ieee80211_ptr;
1980 struct wpan_dev *ieee802154_ptr;
1981#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1982 struct mpls_dev __rcu *mpls_ptr;
1983#endif
1984
1985/*
1986 * Cache lines mostly used on receive path (including eth_type_trans())
1987 */
1988 /* Interface address info used in eth_type_trans() */
1989 unsigned char *dev_addr;
1990
1991 struct netdev_rx_queue *_rx;
1992 unsigned int num_rx_queues;
1993 unsigned int real_num_rx_queues;
1994
1995 struct bpf_prog __rcu *xdp_prog;
1996 unsigned long gro_flush_timeout;
1997 rx_handler_func_t __rcu *rx_handler;
1998 void __rcu *rx_handler_data;
1999
2000#ifdef CONFIG_NET_CLS_ACT
2001 struct mini_Qdisc __rcu *miniq_ingress;
2002#endif
2003 struct netdev_queue __rcu *ingress_queue;
2004#ifdef CONFIG_NETFILTER_INGRESS
2005 struct nf_hook_entries __rcu *nf_hooks_ingress;
2006#endif
2007
2008 unsigned char broadcast[MAX_ADDR_LEN];
2009#ifdef CONFIG_RFS_ACCEL
2010 struct cpu_rmap *rx_cpu_rmap;
2011#endif
2012 struct hlist_node index_hlist;
2013
2014/*
2015 * Cache lines mostly used on transmit path
2016 */
2017 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2018 unsigned int num_tx_queues;
2019 unsigned int real_num_tx_queues;
2020 struct Qdisc *qdisc;
2021 unsigned int tx_queue_len;
2022 spinlock_t tx_global_lock;
2023
2024 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2025
2026#ifdef CONFIG_XPS
2027 struct xps_dev_maps __rcu *xps_cpus_map;
2028 struct xps_dev_maps __rcu *xps_rxqs_map;
2029#endif
2030#ifdef CONFIG_NET_CLS_ACT
2031 struct mini_Qdisc __rcu *miniq_egress;
2032#endif
2033
2034#ifdef CONFIG_NET_SCHED
2035 DECLARE_HASHTABLE (qdisc_hash, 4);
2036#endif
2037 /* These may be needed for future network-power-down code. */
2038 struct timer_list watchdog_timer;
2039 int watchdog_timeo;
2040
2041 struct list_head todo_list;
2042 int __percpu *pcpu_refcnt;
2043
2044 struct list_head link_watch_list;
2045
2046 enum { NETREG_UNINITIALIZED=0,
2047 NETREG_REGISTERED, /* completed register_netdevice */
2048 NETREG_UNREGISTERING, /* called unregister_netdevice */
2049 NETREG_UNREGISTERED, /* completed unregister todo */
2050 NETREG_RELEASED, /* called free_netdev */
2051 NETREG_DUMMY, /* dummy device for NAPI poll */
2052 } reg_state:8;
2053
2054 bool dismantle;
2055
2056 enum {
2057 RTNL_LINK_INITIALIZED,
2058 RTNL_LINK_INITIALIZING,
2059 } rtnl_link_state:16;
2060
2061 bool needs_free_netdev;
2062 void (*priv_destructor)(struct net_device *dev);
2063
2064#ifdef CONFIG_NETPOLL
2065 struct netpoll_info __rcu *npinfo;
2066#endif
2067
2068 possible_net_t nd_net;
2069
2070 /* mid-layer private */
2071 union {
2072 void *ml_priv;
2073 struct pcpu_lstats __percpu *lstats;
2074 struct pcpu_sw_netstats __percpu *tstats;
2075 struct pcpu_dstats __percpu *dstats;
2076 };
2077
2078#if IS_ENABLED(CONFIG_GARP)
2079 struct garp_port __rcu *garp_port;
2080#endif
2081#if IS_ENABLED(CONFIG_MRP)
2082 struct mrp_port __rcu *mrp_port;
2083#endif
2084
2085 struct device dev;
2086 const struct attribute_group *sysfs_groups[4];
2087 const struct attribute_group *sysfs_rx_queue_group;
2088
2089 const struct rtnl_link_ops *rtnl_link_ops;
2090
2091 /* for setting kernel sock attribute on TCP connection setup */
2092#define GSO_MAX_SIZE 65536
2093 unsigned int gso_max_size;
2094#define GSO_MAX_SEGS 65535
2095 u16 gso_max_segs;
2096
2097#ifdef CONFIG_DCB
2098 const struct dcbnl_rtnl_ops *dcbnl_ops;
2099#endif
2100 s16 num_tc;
2101 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2102 u8 prio_tc_map[TC_BITMASK + 1];
2103
2104#if IS_ENABLED(CONFIG_FCOE)
2105 unsigned int fcoe_ddp_xid;
2106#endif
2107#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2108 struct netprio_map __rcu *priomap;
2109#endif
2110 struct phy_device *phydev;
2111 struct sfp_bus *sfp_bus;
2112 struct lock_class_key qdisc_tx_busylock_key;
2113 struct lock_class_key qdisc_running_key;
2114 struct lock_class_key qdisc_xmit_lock_key;
2115 struct lock_class_key addr_list_lock_key;
2116 bool proto_down;
2117 unsigned wol_enabled:1;
2118
2119 struct list_head net_notifier_list;
2120
2121#if IS_ENABLED(CONFIG_MACSEC)
2122 /* MACsec management functions */
2123 const struct macsec_ops *macsec_ops;
2124#endif
2125};
2126#define to_net_dev(d) container_of(d, struct net_device, dev)
2127
2128static inline bool netif_elide_gro(const struct net_device *dev)
2129{
2130 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2131 return true;
2132 return false;
2133}
2134
2135#define NETDEV_ALIGN 32
2136
2137static inline
2138int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2139{
2140 return dev->prio_tc_map[prio & TC_BITMASK];
2141}
2142
2143static inline
2144int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2145{
2146 if (tc >= dev->num_tc)
2147 return -EINVAL;
2148
2149 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2150 return 0;
2151}
2152
2153int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2154void netdev_reset_tc(struct net_device *dev);
2155int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2156int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2157
2158static inline
2159int netdev_get_num_tc(struct net_device *dev)
2160{
2161 return dev->num_tc;
2162}
2163
2164void netdev_unbind_sb_channel(struct net_device *dev,
2165 struct net_device *sb_dev);
2166int netdev_bind_sb_channel_queue(struct net_device *dev,
2167 struct net_device *sb_dev,
2168 u8 tc, u16 count, u16 offset);
2169int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2170static inline int netdev_get_sb_channel(struct net_device *dev)
2171{
2172 return max_t(int, -dev->num_tc, 0);
2173}
2174
2175static inline
2176struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2177 unsigned int index)
2178{
2179 return &dev->_tx[index];
2180}
2181
2182static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2183 const struct sk_buff *skb)
2184{
2185 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2186}
2187
2188static inline void netdev_for_each_tx_queue(struct net_device *dev,
2189 void (*f)(struct net_device *,
2190 struct netdev_queue *,
2191 void *),
2192 void *arg)
2193{
2194 unsigned int i;
2195
2196 for (i = 0; i < dev->num_tx_queues; i++)
2197 f(dev, &dev->_tx[i], arg);
2198}
2199
2200u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2201 struct net_device *sb_dev);
2202struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2203 struct sk_buff *skb,
2204 struct net_device *sb_dev);
2205
2206/* returns the headroom that the master device needs to take in account
2207 * when forwarding to this dev
2208 */
2209static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2210{
2211 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2212}
2213
2214static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2215{
2216 if (dev->netdev_ops->ndo_set_rx_headroom)
2217 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2218}
2219
2220/* set the device rx headroom to the dev's default */
2221static inline void netdev_reset_rx_headroom(struct net_device *dev)
2222{
2223 netdev_set_rx_headroom(dev, -1);
2224}
2225
2226/*
2227 * Net namespace inlines
2228 */
2229static inline
2230struct net *dev_net(const struct net_device *dev)
2231{
2232 return read_pnet(&dev->nd_net);
2233}
2234
2235static inline
2236void dev_net_set(struct net_device *dev, struct net *net)
2237{
2238 write_pnet(&dev->nd_net, net);
2239}
2240
2241/**
2242 * netdev_priv - access network device private data
2243 * @dev: network device
2244 *
2245 * Get network device private data
2246 */
2247static inline void *netdev_priv(const struct net_device *dev)
2248{
2249 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2250}
2251
2252/* Set the sysfs physical device reference for the network logical device
2253 * if set prior to registration will cause a symlink during initialization.
2254 */
2255#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2256
2257/* Set the sysfs device type for the network logical device to allow
2258 * fine-grained identification of different network device types. For
2259 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2260 */
2261#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2262
2263/* Default NAPI poll() weight
2264 * Device drivers are strongly advised to not use bigger value
2265 */
2266#define NAPI_POLL_WEIGHT 64
2267
2268/**
2269 * netif_napi_add - initialize a NAPI context
2270 * @dev: network device
2271 * @napi: NAPI context
2272 * @poll: polling function
2273 * @weight: default weight
2274 *
2275 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2276 * *any* of the other NAPI-related functions.
2277 */
2278void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2279 int (*poll)(struct napi_struct *, int), int weight);
2280
2281/**
2282 * netif_tx_napi_add - initialize a NAPI context
2283 * @dev: network device
2284 * @napi: NAPI context
2285 * @poll: polling function
2286 * @weight: default weight
2287 *
2288 * This variant of netif_napi_add() should be used from drivers using NAPI
2289 * to exclusively poll a TX queue.
2290 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2291 */
2292static inline void netif_tx_napi_add(struct net_device *dev,
2293 struct napi_struct *napi,
2294 int (*poll)(struct napi_struct *, int),
2295 int weight)
2296{
2297 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2298 netif_napi_add(dev, napi, poll, weight);
2299}
2300
2301/**
2302 * netif_napi_del - remove a NAPI context
2303 * @napi: NAPI context
2304 *
2305 * netif_napi_del() removes a NAPI context from the network device NAPI list
2306 */
2307void netif_napi_del(struct napi_struct *napi);
2308
2309struct napi_gro_cb {
2310 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2311 void *frag0;
2312
2313 /* Length of frag0. */
2314 unsigned int frag0_len;
2315
2316 /* This indicates where we are processing relative to skb->data. */
2317 int data_offset;
2318
2319 /* This is non-zero if the packet cannot be merged with the new skb. */
2320 u16 flush;
2321
2322 /* Save the IP ID here and check when we get to the transport layer */
2323 u16 flush_id;
2324
2325 /* Number of segments aggregated. */
2326 u16 count;
2327
2328 /* Start offset for remote checksum offload */
2329 u16 gro_remcsum_start;
2330
2331 /* jiffies when first packet was created/queued */
2332 unsigned long age;
2333
2334 /* Used in ipv6_gro_receive() and foo-over-udp */
2335 u16 proto;
2336
2337 /* This is non-zero if the packet may be of the same flow. */
2338 u8 same_flow:1;
2339
2340 /* Used in tunnel GRO receive */
2341 u8 encap_mark:1;
2342
2343 /* GRO checksum is valid */
2344 u8 csum_valid:1;
2345
2346 /* Number of checksums via CHECKSUM_UNNECESSARY */
2347 u8 csum_cnt:3;
2348
2349 /* Free the skb? */
2350 u8 free:2;
2351#define NAPI_GRO_FREE 1
2352#define NAPI_GRO_FREE_STOLEN_HEAD 2
2353
2354 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2355 u8 is_ipv6:1;
2356
2357 /* Used in GRE, set in fou/gue_gro_receive */
2358 u8 is_fou:1;
2359
2360 /* Used to determine if flush_id can be ignored */
2361 u8 is_atomic:1;
2362
2363 /* Number of gro_receive callbacks this packet already went through */
2364 u8 recursion_counter:4;
2365
2366 /* GRO is done by frag_list pointer chaining. */
2367 u8 is_flist:1;
2368
2369 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2370 __wsum csum;
2371
2372 /* used in skb_gro_receive() slow path */
2373 struct sk_buff *last;
2374};
2375
2376#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2377
2378#define GRO_RECURSION_LIMIT 15
2379static inline int gro_recursion_inc_test(struct sk_buff *skb)
2380{
2381 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2382}
2383
2384typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2385static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2386 struct list_head *head,
2387 struct sk_buff *skb)
2388{
2389 if (unlikely(gro_recursion_inc_test(skb))) {
2390 NAPI_GRO_CB(skb)->flush |= 1;
2391 return NULL;
2392 }
2393
2394 return cb(head, skb);
2395}
2396
2397typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2398 struct sk_buff *);
2399static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2400 struct sock *sk,
2401 struct list_head *head,
2402 struct sk_buff *skb)
2403{
2404 if (unlikely(gro_recursion_inc_test(skb))) {
2405 NAPI_GRO_CB(skb)->flush |= 1;
2406 return NULL;
2407 }
2408
2409 return cb(sk, head, skb);
2410}
2411
2412struct packet_type {
2413 __be16 type; /* This is really htons(ether_type). */
2414 bool ignore_outgoing;
2415 struct net_device *dev; /* NULL is wildcarded here */
2416 int (*func) (struct sk_buff *,
2417 struct net_device *,
2418 struct packet_type *,
2419 struct net_device *);
2420 void (*list_func) (struct list_head *,
2421 struct packet_type *,
2422 struct net_device *);
2423 bool (*id_match)(struct packet_type *ptype,
2424 struct sock *sk);
2425 void *af_packet_priv;
2426 struct list_head list;
2427};
2428
2429struct offload_callbacks {
2430 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2431 netdev_features_t features);
2432 struct sk_buff *(*gro_receive)(struct list_head *head,
2433 struct sk_buff *skb);
2434 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2435};
2436
2437struct packet_offload {
2438 __be16 type; /* This is really htons(ether_type). */
2439 u16 priority;
2440 struct offload_callbacks callbacks;
2441 struct list_head list;
2442};
2443
2444/* often modified stats are per-CPU, other are shared (netdev->stats) */
2445struct pcpu_sw_netstats {
2446 u64 rx_packets;
2447 u64 rx_bytes;
2448 u64 tx_packets;
2449 u64 tx_bytes;
2450 struct u64_stats_sync syncp;
2451} __aligned(4 * sizeof(u64));
2452
2453struct pcpu_lstats {
2454 u64_stats_t packets;
2455 u64_stats_t bytes;
2456 struct u64_stats_sync syncp;
2457} __aligned(2 * sizeof(u64));
2458
2459void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2460
2461static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2462{
2463 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2464
2465 u64_stats_update_begin(&lstats->syncp);
2466 u64_stats_add(&lstats->bytes, len);
2467 u64_stats_inc(&lstats->packets);
2468 u64_stats_update_end(&lstats->syncp);
2469}
2470
2471#define __netdev_alloc_pcpu_stats(type, gfp) \
2472({ \
2473 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2474 if (pcpu_stats) { \
2475 int __cpu; \
2476 for_each_possible_cpu(__cpu) { \
2477 typeof(type) *stat; \
2478 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2479 u64_stats_init(&stat->syncp); \
2480 } \
2481 } \
2482 pcpu_stats; \
2483})
2484
2485#define netdev_alloc_pcpu_stats(type) \
2486 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2487
2488enum netdev_lag_tx_type {
2489 NETDEV_LAG_TX_TYPE_UNKNOWN,
2490 NETDEV_LAG_TX_TYPE_RANDOM,
2491 NETDEV_LAG_TX_TYPE_BROADCAST,
2492 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2493 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2494 NETDEV_LAG_TX_TYPE_HASH,
2495};
2496
2497enum netdev_lag_hash {
2498 NETDEV_LAG_HASH_NONE,
2499 NETDEV_LAG_HASH_L2,
2500 NETDEV_LAG_HASH_L34,
2501 NETDEV_LAG_HASH_L23,
2502 NETDEV_LAG_HASH_E23,
2503 NETDEV_LAG_HASH_E34,
2504 NETDEV_LAG_HASH_UNKNOWN,
2505};
2506
2507struct netdev_lag_upper_info {
2508 enum netdev_lag_tx_type tx_type;
2509 enum netdev_lag_hash hash_type;
2510};
2511
2512struct netdev_lag_lower_state_info {
2513 u8 link_up : 1,
2514 tx_enabled : 1;
2515};
2516
2517#include <linux/notifier.h>
2518
2519/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2520 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2521 * adding new types.
2522 */
2523enum netdev_cmd {
2524 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2525 NETDEV_DOWN,
2526 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2527 detected a hardware crash and restarted
2528 - we can use this eg to kick tcp sessions
2529 once done */
2530 NETDEV_CHANGE, /* Notify device state change */
2531 NETDEV_REGISTER,
2532 NETDEV_UNREGISTER,
2533 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2534 NETDEV_CHANGEADDR, /* notify after the address change */
2535 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2536 NETDEV_GOING_DOWN,
2537 NETDEV_CHANGENAME,
2538 NETDEV_FEAT_CHANGE,
2539 NETDEV_BONDING_FAILOVER,
2540 NETDEV_PRE_UP,
2541 NETDEV_PRE_TYPE_CHANGE,
2542 NETDEV_POST_TYPE_CHANGE,
2543 NETDEV_POST_INIT,
2544 NETDEV_RELEASE,
2545 NETDEV_NOTIFY_PEERS,
2546 NETDEV_JOIN,
2547 NETDEV_CHANGEUPPER,
2548 NETDEV_RESEND_IGMP,
2549 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2550 NETDEV_CHANGEINFODATA,
2551 NETDEV_BONDING_INFO,
2552 NETDEV_PRECHANGEUPPER,
2553 NETDEV_CHANGELOWERSTATE,
2554 NETDEV_UDP_TUNNEL_PUSH_INFO,
2555 NETDEV_UDP_TUNNEL_DROP_INFO,
2556 NETDEV_CHANGE_TX_QUEUE_LEN,
2557 NETDEV_CVLAN_FILTER_PUSH_INFO,
2558 NETDEV_CVLAN_FILTER_DROP_INFO,
2559 NETDEV_SVLAN_FILTER_PUSH_INFO,
2560 NETDEV_SVLAN_FILTER_DROP_INFO,
2561};
2562const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2563
2564int register_netdevice_notifier(struct notifier_block *nb);
2565int unregister_netdevice_notifier(struct notifier_block *nb);
2566int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2567int unregister_netdevice_notifier_net(struct net *net,
2568 struct notifier_block *nb);
2569int register_netdevice_notifier_dev_net(struct net_device *dev,
2570 struct notifier_block *nb,
2571 struct netdev_net_notifier *nn);
2572int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2573 struct notifier_block *nb,
2574 struct netdev_net_notifier *nn);
2575
2576struct netdev_notifier_info {
2577 struct net_device *dev;
2578 struct netlink_ext_ack *extack;
2579};
2580
2581struct netdev_notifier_info_ext {
2582 struct netdev_notifier_info info; /* must be first */
2583 union {
2584 u32 mtu;
2585 } ext;
2586};
2587
2588struct netdev_notifier_change_info {
2589 struct netdev_notifier_info info; /* must be first */
2590 unsigned int flags_changed;
2591};
2592
2593struct netdev_notifier_changeupper_info {
2594 struct netdev_notifier_info info; /* must be first */
2595 struct net_device *upper_dev; /* new upper dev */
2596 bool master; /* is upper dev master */
2597 bool linking; /* is the notification for link or unlink */
2598 void *upper_info; /* upper dev info */
2599};
2600
2601struct netdev_notifier_changelowerstate_info {
2602 struct netdev_notifier_info info; /* must be first */
2603 void *lower_state_info; /* is lower dev state */
2604};
2605
2606struct netdev_notifier_pre_changeaddr_info {
2607 struct netdev_notifier_info info; /* must be first */
2608 const unsigned char *dev_addr;
2609};
2610
2611static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2612 struct net_device *dev)
2613{
2614 info->dev = dev;
2615 info->extack = NULL;
2616}
2617
2618static inline struct net_device *
2619netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2620{
2621 return info->dev;
2622}
2623
2624static inline struct netlink_ext_ack *
2625netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2626{
2627 return info->extack;
2628}
2629
2630int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2631
2632
2633extern rwlock_t dev_base_lock; /* Device list lock */
2634
2635#define for_each_netdev(net, d) \
2636 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2637#define for_each_netdev_reverse(net, d) \
2638 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2639#define for_each_netdev_rcu(net, d) \
2640 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2641#define for_each_netdev_safe(net, d, n) \
2642 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2643#define for_each_netdev_continue(net, d) \
2644 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2645#define for_each_netdev_continue_reverse(net, d) \
2646 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2647 dev_list)
2648#define for_each_netdev_continue_rcu(net, d) \
2649 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2650#define for_each_netdev_in_bond_rcu(bond, slave) \
2651 for_each_netdev_rcu(&init_net, slave) \
2652 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2653#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2654
2655static inline struct net_device *next_net_device(struct net_device *dev)
2656{
2657 struct list_head *lh;
2658 struct net *net;
2659
2660 net = dev_net(dev);
2661 lh = dev->dev_list.next;
2662 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2663}
2664
2665static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2666{
2667 struct list_head *lh;
2668 struct net *net;
2669
2670 net = dev_net(dev);
2671 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2672 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2673}
2674
2675static inline struct net_device *first_net_device(struct net *net)
2676{
2677 return list_empty(&net->dev_base_head) ? NULL :
2678 net_device_entry(net->dev_base_head.next);
2679}
2680
2681static inline struct net_device *first_net_device_rcu(struct net *net)
2682{
2683 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2684
2685 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2686}
2687
2688int netdev_boot_setup_check(struct net_device *dev);
2689unsigned long netdev_boot_base(const char *prefix, int unit);
2690struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2691 const char *hwaddr);
2692struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2693struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2694void dev_add_pack(struct packet_type *pt);
2695void dev_remove_pack(struct packet_type *pt);
2696void __dev_remove_pack(struct packet_type *pt);
2697void dev_add_offload(struct packet_offload *po);
2698void dev_remove_offload(struct packet_offload *po);
2699
2700int dev_get_iflink(const struct net_device *dev);
2701int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2702struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2703 unsigned short mask);
2704struct net_device *dev_get_by_name(struct net *net, const char *name);
2705struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2706struct net_device *__dev_get_by_name(struct net *net, const char *name);
2707int dev_alloc_name(struct net_device *dev, const char *name);
2708int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2709void dev_close(struct net_device *dev);
2710void dev_close_many(struct list_head *head, bool unlink);
2711void dev_disable_lro(struct net_device *dev);
2712int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2713u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2714 struct net_device *sb_dev);
2715u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2716 struct net_device *sb_dev);
2717int dev_queue_xmit(struct sk_buff *skb);
2718int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2719int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2720int register_netdevice(struct net_device *dev);
2721void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2722void unregister_netdevice_many(struct list_head *head);
2723static inline void unregister_netdevice(struct net_device *dev)
2724{
2725 unregister_netdevice_queue(dev, NULL);
2726}
2727
2728int netdev_refcnt_read(const struct net_device *dev);
2729void free_netdev(struct net_device *dev);
2730void netdev_freemem(struct net_device *dev);
2731void synchronize_net(void);
2732int init_dummy_netdev(struct net_device *dev);
2733
2734struct net_device *dev_get_by_index(struct net *net, int ifindex);
2735struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2736struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2737struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2738int netdev_get_name(struct net *net, char *name, int ifindex);
2739int dev_restart(struct net_device *dev);
2740int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2741int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2742
2743static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2744{
2745 return NAPI_GRO_CB(skb)->data_offset;
2746}
2747
2748static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2749{
2750 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2751}
2752
2753static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2754{
2755 NAPI_GRO_CB(skb)->data_offset += len;
2756}
2757
2758static inline void *skb_gro_header_fast(struct sk_buff *skb,
2759 unsigned int offset)
2760{
2761 return NAPI_GRO_CB(skb)->frag0 + offset;
2762}
2763
2764static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2765{
2766 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2767}
2768
2769static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2770{
2771 NAPI_GRO_CB(skb)->frag0 = NULL;
2772 NAPI_GRO_CB(skb)->frag0_len = 0;
2773}
2774
2775static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2776 unsigned int offset)
2777{
2778 if (!pskb_may_pull(skb, hlen))
2779 return NULL;
2780
2781 skb_gro_frag0_invalidate(skb);
2782 return skb->data + offset;
2783}
2784
2785static inline void *skb_gro_network_header(struct sk_buff *skb)
2786{
2787 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2788 skb_network_offset(skb);
2789}
2790
2791static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2792 const void *start, unsigned int len)
2793{
2794 if (NAPI_GRO_CB(skb)->csum_valid)
2795 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2796 csum_partial(start, len, 0));
2797}
2798
2799/* GRO checksum functions. These are logical equivalents of the normal
2800 * checksum functions (in skbuff.h) except that they operate on the GRO
2801 * offsets and fields in sk_buff.
2802 */
2803
2804__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2805
2806static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2807{
2808 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2809}
2810
2811static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2812 bool zero_okay,
2813 __sum16 check)
2814{
2815 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2816 skb_checksum_start_offset(skb) <
2817 skb_gro_offset(skb)) &&
2818 !skb_at_gro_remcsum_start(skb) &&
2819 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2820 (!zero_okay || check));
2821}
2822
2823static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2824 __wsum psum)
2825{
2826 if (NAPI_GRO_CB(skb)->csum_valid &&
2827 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2828 return 0;
2829
2830 NAPI_GRO_CB(skb)->csum = psum;
2831
2832 return __skb_gro_checksum_complete(skb);
2833}
2834
2835static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2836{
2837 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2838 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2839 NAPI_GRO_CB(skb)->csum_cnt--;
2840 } else {
2841 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2842 * verified a new top level checksum or an encapsulated one
2843 * during GRO. This saves work if we fallback to normal path.
2844 */
2845 __skb_incr_checksum_unnecessary(skb);
2846 }
2847}
2848
2849#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2850 compute_pseudo) \
2851({ \
2852 __sum16 __ret = 0; \
2853 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2854 __ret = __skb_gro_checksum_validate_complete(skb, \
2855 compute_pseudo(skb, proto)); \
2856 if (!__ret) \
2857 skb_gro_incr_csum_unnecessary(skb); \
2858 __ret; \
2859})
2860
2861#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2862 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2863
2864#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2865 compute_pseudo) \
2866 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2867
2868#define skb_gro_checksum_simple_validate(skb) \
2869 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2870
2871static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2872{
2873 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2874 !NAPI_GRO_CB(skb)->csum_valid);
2875}
2876
2877static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2878 __wsum pseudo)
2879{
2880 NAPI_GRO_CB(skb)->csum = ~pseudo;
2881 NAPI_GRO_CB(skb)->csum_valid = 1;
2882}
2883
2884#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2885do { \
2886 if (__skb_gro_checksum_convert_check(skb)) \
2887 __skb_gro_checksum_convert(skb, \
2888 compute_pseudo(skb, proto)); \
2889} while (0)
2890
2891struct gro_remcsum {
2892 int offset;
2893 __wsum delta;
2894};
2895
2896static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2897{
2898 grc->offset = 0;
2899 grc->delta = 0;
2900}
2901
2902static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2903 unsigned int off, size_t hdrlen,
2904 int start, int offset,
2905 struct gro_remcsum *grc,
2906 bool nopartial)
2907{
2908 __wsum delta;
2909 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2910
2911 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2912
2913 if (!nopartial) {
2914 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2915 return ptr;
2916 }
2917
2918 ptr = skb_gro_header_fast(skb, off);
2919 if (skb_gro_header_hard(skb, off + plen)) {
2920 ptr = skb_gro_header_slow(skb, off + plen, off);
2921 if (!ptr)
2922 return NULL;
2923 }
2924
2925 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2926 start, offset);
2927
2928 /* Adjust skb->csum since we changed the packet */
2929 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2930
2931 grc->offset = off + hdrlen + offset;
2932 grc->delta = delta;
2933
2934 return ptr;
2935}
2936
2937static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2938 struct gro_remcsum *grc)
2939{
2940 void *ptr;
2941 size_t plen = grc->offset + sizeof(u16);
2942
2943 if (!grc->delta)
2944 return;
2945
2946 ptr = skb_gro_header_fast(skb, grc->offset);
2947 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2948 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2949 if (!ptr)
2950 return;
2951 }
2952
2953 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2954}
2955
2956#ifdef CONFIG_XFRM_OFFLOAD
2957static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2958{
2959 if (PTR_ERR(pp) != -EINPROGRESS)
2960 NAPI_GRO_CB(skb)->flush |= flush;
2961}
2962static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2963 struct sk_buff *pp,
2964 int flush,
2965 struct gro_remcsum *grc)
2966{
2967 if (PTR_ERR(pp) != -EINPROGRESS) {
2968 NAPI_GRO_CB(skb)->flush |= flush;
2969 skb_gro_remcsum_cleanup(skb, grc);
2970 skb->remcsum_offload = 0;
2971 }
2972}
2973#else
2974static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2975{
2976 NAPI_GRO_CB(skb)->flush |= flush;
2977}
2978static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2979 struct sk_buff *pp,
2980 int flush,
2981 struct gro_remcsum *grc)
2982{
2983 NAPI_GRO_CB(skb)->flush |= flush;
2984 skb_gro_remcsum_cleanup(skb, grc);
2985 skb->remcsum_offload = 0;
2986}
2987#endif
2988
2989static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2990 unsigned short type,
2991 const void *daddr, const void *saddr,
2992 unsigned int len)
2993{
2994 if (!dev->header_ops || !dev->header_ops->create)
2995 return 0;
2996
2997 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2998}
2999
3000static inline int dev_parse_header(const struct sk_buff *skb,
3001 unsigned char *haddr)
3002{
3003 const struct net_device *dev = skb->dev;
3004
3005 if (!dev->header_ops || !dev->header_ops->parse)
3006 return 0;
3007 return dev->header_ops->parse(skb, haddr);
3008}
3009
3010static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3011{
3012 const struct net_device *dev = skb->dev;
3013
3014 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3015 return 0;
3016 return dev->header_ops->parse_protocol(skb);
3017}
3018
3019/* ll_header must have at least hard_header_len allocated */
3020static inline bool dev_validate_header(const struct net_device *dev,
3021 char *ll_header, int len)
3022{
3023 if (likely(len >= dev->hard_header_len))
3024 return true;
3025 if (len < dev->min_header_len)
3026 return false;
3027
3028 if (capable(CAP_SYS_RAWIO)) {
3029 memset(ll_header + len, 0, dev->hard_header_len - len);
3030 return true;
3031 }
3032
3033 if (dev->header_ops && dev->header_ops->validate)
3034 return dev->header_ops->validate(ll_header, len);
3035
3036 return false;
3037}
3038
3039typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3040 int len, int size);
3041int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3042static inline int unregister_gifconf(unsigned int family)
3043{
3044 return register_gifconf(family, NULL);
3045}
3046
3047#ifdef CONFIG_NET_FLOW_LIMIT
3048#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3049struct sd_flow_limit {
3050 u64 count;
3051 unsigned int num_buckets;
3052 unsigned int history_head;
3053 u16 history[FLOW_LIMIT_HISTORY];
3054 u8 buckets[];
3055};
3056
3057extern int netdev_flow_limit_table_len;
3058#endif /* CONFIG_NET_FLOW_LIMIT */
3059
3060/*
3061 * Incoming packets are placed on per-CPU queues
3062 */
3063struct softnet_data {
3064 struct list_head poll_list;
3065 struct sk_buff_head process_queue;
3066
3067 /* stats */
3068 unsigned int processed;
3069 unsigned int time_squeeze;
3070 unsigned int received_rps;
3071#ifdef CONFIG_RPS
3072 struct softnet_data *rps_ipi_list;
3073#endif
3074#ifdef CONFIG_NET_FLOW_LIMIT
3075 struct sd_flow_limit __rcu *flow_limit;
3076#endif
3077 struct Qdisc *output_queue;
3078 struct Qdisc **output_queue_tailp;
3079 struct sk_buff *completion_queue;
3080#ifdef CONFIG_XFRM_OFFLOAD
3081 struct sk_buff_head xfrm_backlog;
3082#endif
3083 /* written and read only by owning cpu: */
3084 struct {
3085 u16 recursion;
3086 u8 more;
3087 } xmit;
3088#ifdef CONFIG_RPS
3089 /* input_queue_head should be written by cpu owning this struct,
3090 * and only read by other cpus. Worth using a cache line.
3091 */
3092 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3093
3094 /* Elements below can be accessed between CPUs for RPS/RFS */
3095 call_single_data_t csd ____cacheline_aligned_in_smp;
3096 struct softnet_data *rps_ipi_next;
3097 unsigned int cpu;
3098 unsigned int input_queue_tail;
3099#endif
3100 unsigned int dropped;
3101 struct sk_buff_head input_pkt_queue;
3102 struct napi_struct backlog;
3103
3104};
3105
3106static inline void input_queue_head_incr(struct softnet_data *sd)
3107{
3108#ifdef CONFIG_RPS
3109 sd->input_queue_head++;
3110#endif
3111}
3112
3113static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3114 unsigned int *qtail)
3115{
3116#ifdef CONFIG_RPS
3117 *qtail = ++sd->input_queue_tail;
3118#endif
3119}
3120
3121DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3122
3123static inline int dev_recursion_level(void)
3124{
3125 return this_cpu_read(softnet_data.xmit.recursion);
3126}
3127
3128#define XMIT_RECURSION_LIMIT 10
3129static inline bool dev_xmit_recursion(void)
3130{
3131 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3132 XMIT_RECURSION_LIMIT);
3133}
3134
3135static inline void dev_xmit_recursion_inc(void)
3136{
3137 __this_cpu_inc(softnet_data.xmit.recursion);
3138}
3139
3140static inline void dev_xmit_recursion_dec(void)
3141{
3142 __this_cpu_dec(softnet_data.xmit.recursion);
3143}
3144
3145void __netif_schedule(struct Qdisc *q);
3146void netif_schedule_queue(struct netdev_queue *txq);
3147
3148static inline void netif_tx_schedule_all(struct net_device *dev)
3149{
3150 unsigned int i;
3151
3152 for (i = 0; i < dev->num_tx_queues; i++)
3153 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3154}
3155
3156static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3157{
3158 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3159}
3160
3161/**
3162 * netif_start_queue - allow transmit
3163 * @dev: network device
3164 *
3165 * Allow upper layers to call the device hard_start_xmit routine.
3166 */
3167static inline void netif_start_queue(struct net_device *dev)
3168{
3169 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3170}
3171
3172static inline void netif_tx_start_all_queues(struct net_device *dev)
3173{
3174 unsigned int i;
3175
3176 for (i = 0; i < dev->num_tx_queues; i++) {
3177 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3178 netif_tx_start_queue(txq);
3179 }
3180}
3181
3182void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3183
3184/**
3185 * netif_wake_queue - restart transmit
3186 * @dev: network device
3187 *
3188 * Allow upper layers to call the device hard_start_xmit routine.
3189 * Used for flow control when transmit resources are available.
3190 */
3191static inline void netif_wake_queue(struct net_device *dev)
3192{
3193 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3194}
3195
3196static inline void netif_tx_wake_all_queues(struct net_device *dev)
3197{
3198 unsigned int i;
3199
3200 for (i = 0; i < dev->num_tx_queues; i++) {
3201 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3202 netif_tx_wake_queue(txq);
3203 }
3204}
3205
3206static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3207{
3208 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3209}
3210
3211/**
3212 * netif_stop_queue - stop transmitted packets
3213 * @dev: network device
3214 *
3215 * Stop upper layers calling the device hard_start_xmit routine.
3216 * Used for flow control when transmit resources are unavailable.
3217 */
3218static inline void netif_stop_queue(struct net_device *dev)
3219{
3220 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3221}
3222
3223void netif_tx_stop_all_queues(struct net_device *dev);
3224void netdev_update_lockdep_key(struct net_device *dev);
3225
3226static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3227{
3228 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3229}
3230
3231/**
3232 * netif_queue_stopped - test if transmit queue is flowblocked
3233 * @dev: network device
3234 *
3235 * Test if transmit queue on device is currently unable to send.
3236 */
3237static inline bool netif_queue_stopped(const struct net_device *dev)
3238{
3239 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3240}
3241
3242static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3243{
3244 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3245}
3246
3247static inline bool
3248netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3249{
3250 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3251}
3252
3253static inline bool
3254netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3255{
3256 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3257}
3258
3259/**
3260 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3261 * @dev_queue: pointer to transmit queue
3262 *
3263 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3264 * to give appropriate hint to the CPU.
3265 */
3266static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3267{
3268#ifdef CONFIG_BQL
3269 prefetchw(&dev_queue->dql.num_queued);
3270#endif
3271}
3272
3273/**
3274 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3275 * @dev_queue: pointer to transmit queue
3276 *
3277 * BQL enabled drivers might use this helper in their TX completion path,
3278 * to give appropriate hint to the CPU.
3279 */
3280static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3281{
3282#ifdef CONFIG_BQL
3283 prefetchw(&dev_queue->dql.limit);
3284#endif
3285}
3286
3287static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3288 unsigned int bytes)
3289{
3290#ifdef CONFIG_BQL
3291 dql_queued(&dev_queue->dql, bytes);
3292
3293 if (likely(dql_avail(&dev_queue->dql) >= 0))
3294 return;
3295
3296 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3297
3298 /*
3299 * The XOFF flag must be set before checking the dql_avail below,
3300 * because in netdev_tx_completed_queue we update the dql_completed
3301 * before checking the XOFF flag.
3302 */
3303 smp_mb();
3304
3305 /* check again in case another CPU has just made room avail */
3306 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3307 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3308#endif
3309}
3310
3311/* Variant of netdev_tx_sent_queue() for drivers that are aware
3312 * that they should not test BQL status themselves.
3313 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3314 * skb of a batch.
3315 * Returns true if the doorbell must be used to kick the NIC.
3316 */
3317static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3318 unsigned int bytes,
3319 bool xmit_more)
3320{
3321 if (xmit_more) {
3322#ifdef CONFIG_BQL
3323 dql_queued(&dev_queue->dql, bytes);
3324#endif
3325 return netif_tx_queue_stopped(dev_queue);
3326 }
3327 netdev_tx_sent_queue(dev_queue, bytes);
3328 return true;
3329}
3330
3331/**
3332 * netdev_sent_queue - report the number of bytes queued to hardware
3333 * @dev: network device
3334 * @bytes: number of bytes queued to the hardware device queue
3335 *
3336 * Report the number of bytes queued for sending/completion to the network
3337 * device hardware queue. @bytes should be a good approximation and should
3338 * exactly match netdev_completed_queue() @bytes
3339 */
3340static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3341{
3342 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3343}
3344
3345static inline bool __netdev_sent_queue(struct net_device *dev,
3346 unsigned int bytes,
3347 bool xmit_more)
3348{
3349 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3350 xmit_more);
3351}
3352
3353static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3354 unsigned int pkts, unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357 if (unlikely(!bytes))
3358 return;
3359
3360 dql_completed(&dev_queue->dql, bytes);
3361
3362 /*
3363 * Without the memory barrier there is a small possiblity that
3364 * netdev_tx_sent_queue will miss the update and cause the queue to
3365 * be stopped forever
3366 */
3367 smp_mb();
3368
3369 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3370 return;
3371
3372 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3373 netif_schedule_queue(dev_queue);
3374#endif
3375}
3376
3377/**
3378 * netdev_completed_queue - report bytes and packets completed by device
3379 * @dev: network device
3380 * @pkts: actual number of packets sent over the medium
3381 * @bytes: actual number of bytes sent over the medium
3382 *
3383 * Report the number of bytes and packets transmitted by the network device
3384 * hardware queue over the physical medium, @bytes must exactly match the
3385 * @bytes amount passed to netdev_sent_queue()
3386 */
3387static inline void netdev_completed_queue(struct net_device *dev,
3388 unsigned int pkts, unsigned int bytes)
3389{
3390 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3391}
3392
3393static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3394{
3395#ifdef CONFIG_BQL
3396 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3397 dql_reset(&q->dql);
3398#endif
3399}
3400
3401/**
3402 * netdev_reset_queue - reset the packets and bytes count of a network device
3403 * @dev_queue: network device
3404 *
3405 * Reset the bytes and packet count of a network device and clear the
3406 * software flow control OFF bit for this network device
3407 */
3408static inline void netdev_reset_queue(struct net_device *dev_queue)
3409{
3410 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3411}
3412
3413/**
3414 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3415 * @dev: network device
3416 * @queue_index: given tx queue index
3417 *
3418 * Returns 0 if given tx queue index >= number of device tx queues,
3419 * otherwise returns the originally passed tx queue index.
3420 */
3421static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3422{
3423 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3424 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3425 dev->name, queue_index,
3426 dev->real_num_tx_queues);
3427 return 0;
3428 }
3429
3430 return queue_index;
3431}
3432
3433/**
3434 * netif_running - test if up
3435 * @dev: network device
3436 *
3437 * Test if the device has been brought up.
3438 */
3439static inline bool netif_running(const struct net_device *dev)
3440{
3441 return test_bit(__LINK_STATE_START, &dev->state);
3442}
3443
3444/*
3445 * Routines to manage the subqueues on a device. We only need start,
3446 * stop, and a check if it's stopped. All other device management is
3447 * done at the overall netdevice level.
3448 * Also test the device if we're multiqueue.
3449 */
3450
3451/**
3452 * netif_start_subqueue - allow sending packets on subqueue
3453 * @dev: network device
3454 * @queue_index: sub queue index
3455 *
3456 * Start individual transmit queue of a device with multiple transmit queues.
3457 */
3458static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3459{
3460 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3461
3462 netif_tx_start_queue(txq);
3463}
3464
3465/**
3466 * netif_stop_subqueue - stop sending packets on subqueue
3467 * @dev: network device
3468 * @queue_index: sub queue index
3469 *
3470 * Stop individual transmit queue of a device with multiple transmit queues.
3471 */
3472static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3473{
3474 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3475 netif_tx_stop_queue(txq);
3476}
3477
3478/**
3479 * netif_subqueue_stopped - test status of subqueue
3480 * @dev: network device
3481 * @queue_index: sub queue index
3482 *
3483 * Check individual transmit queue of a device with multiple transmit queues.
3484 */
3485static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3486 u16 queue_index)
3487{
3488 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3489
3490 return netif_tx_queue_stopped(txq);
3491}
3492
3493static inline bool netif_subqueue_stopped(const struct net_device *dev,
3494 struct sk_buff *skb)
3495{
3496 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3497}
3498
3499/**
3500 * netif_wake_subqueue - allow sending packets on subqueue
3501 * @dev: network device
3502 * @queue_index: sub queue index
3503 *
3504 * Resume individual transmit queue of a device with multiple transmit queues.
3505 */
3506static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3507{
3508 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3509
3510 netif_tx_wake_queue(txq);
3511}
3512
3513#ifdef CONFIG_XPS
3514int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3515 u16 index);
3516int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3517 u16 index, bool is_rxqs_map);
3518
3519/**
3520 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3521 * @j: CPU/Rx queue index
3522 * @mask: bitmask of all cpus/rx queues
3523 * @nr_bits: number of bits in the bitmask
3524 *
3525 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3526 */
3527static inline bool netif_attr_test_mask(unsigned long j,
3528 const unsigned long *mask,
3529 unsigned int nr_bits)
3530{
3531 cpu_max_bits_warn(j, nr_bits);
3532 return test_bit(j, mask);
3533}
3534
3535/**
3536 * netif_attr_test_online - Test for online CPU/Rx queue
3537 * @j: CPU/Rx queue index
3538 * @online_mask: bitmask for CPUs/Rx queues that are online
3539 * @nr_bits: number of bits in the bitmask
3540 *
3541 * Returns true if a CPU/Rx queue is online.
3542 */
3543static inline bool netif_attr_test_online(unsigned long j,
3544 const unsigned long *online_mask,
3545 unsigned int nr_bits)
3546{
3547 cpu_max_bits_warn(j, nr_bits);
3548
3549 if (online_mask)
3550 return test_bit(j, online_mask);
3551
3552 return (j < nr_bits);
3553}
3554
3555/**
3556 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3557 * @n: CPU/Rx queue index
3558 * @srcp: the cpumask/Rx queue mask pointer
3559 * @nr_bits: number of bits in the bitmask
3560 *
3561 * Returns >= nr_bits if no further CPUs/Rx queues set.
3562 */
3563static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3564 unsigned int nr_bits)
3565{
3566 /* -1 is a legal arg here. */
3567 if (n != -1)
3568 cpu_max_bits_warn(n, nr_bits);
3569
3570 if (srcp)
3571 return find_next_bit(srcp, nr_bits, n + 1);
3572
3573 return n + 1;
3574}
3575
3576/**
3577 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3578 * @n: CPU/Rx queue index
3579 * @src1p: the first CPUs/Rx queues mask pointer
3580 * @src2p: the second CPUs/Rx queues mask pointer
3581 * @nr_bits: number of bits in the bitmask
3582 *
3583 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3584 */
3585static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3586 const unsigned long *src2p,
3587 unsigned int nr_bits)
3588{
3589 /* -1 is a legal arg here. */
3590 if (n != -1)
3591 cpu_max_bits_warn(n, nr_bits);
3592
3593 if (src1p && src2p)
3594 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3595 else if (src1p)
3596 return find_next_bit(src1p, nr_bits, n + 1);
3597 else if (src2p)
3598 return find_next_bit(src2p, nr_bits, n + 1);
3599
3600 return n + 1;
3601}
3602#else
3603static inline int netif_set_xps_queue(struct net_device *dev,
3604 const struct cpumask *mask,
3605 u16 index)
3606{
3607 return 0;
3608}
3609
3610static inline int __netif_set_xps_queue(struct net_device *dev,
3611 const unsigned long *mask,
3612 u16 index, bool is_rxqs_map)
3613{
3614 return 0;
3615}
3616#endif
3617
3618/**
3619 * netif_is_multiqueue - test if device has multiple transmit queues
3620 * @dev: network device
3621 *
3622 * Check if device has multiple transmit queues
3623 */
3624static inline bool netif_is_multiqueue(const struct net_device *dev)
3625{
3626 return dev->num_tx_queues > 1;
3627}
3628
3629int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3630
3631#ifdef CONFIG_SYSFS
3632int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3633#else
3634static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3635 unsigned int rxqs)
3636{
3637 dev->real_num_rx_queues = rxqs;
3638 return 0;
3639}
3640#endif
3641
3642static inline struct netdev_rx_queue *
3643__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3644{
3645 return dev->_rx + rxq;
3646}
3647
3648#ifdef CONFIG_SYSFS
3649static inline unsigned int get_netdev_rx_queue_index(
3650 struct netdev_rx_queue *queue)
3651{
3652 struct net_device *dev = queue->dev;
3653 int index = queue - dev->_rx;
3654
3655 BUG_ON(index >= dev->num_rx_queues);
3656 return index;
3657}
3658#endif
3659
3660#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3661int netif_get_num_default_rss_queues(void);
3662
3663enum skb_free_reason {
3664 SKB_REASON_CONSUMED,
3665 SKB_REASON_DROPPED,
3666};
3667
3668void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3669void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3670
3671/*
3672 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3673 * interrupt context or with hardware interrupts being disabled.
3674 * (in_irq() || irqs_disabled())
3675 *
3676 * We provide four helpers that can be used in following contexts :
3677 *
3678 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3679 * replacing kfree_skb(skb)
3680 *
3681 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3682 * Typically used in place of consume_skb(skb) in TX completion path
3683 *
3684 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3685 * replacing kfree_skb(skb)
3686 *
3687 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3688 * and consumed a packet. Used in place of consume_skb(skb)
3689 */
3690static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3691{
3692 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3693}
3694
3695static inline void dev_consume_skb_irq(struct sk_buff *skb)
3696{
3697 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3698}
3699
3700static inline void dev_kfree_skb_any(struct sk_buff *skb)
3701{
3702 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3703}
3704
3705static inline void dev_consume_skb_any(struct sk_buff *skb)
3706{
3707 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3708}
3709
3710void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3711int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3712int netif_rx(struct sk_buff *skb);
3713int netif_rx_ni(struct sk_buff *skb);
3714int netif_receive_skb(struct sk_buff *skb);
3715int netif_receive_skb_core(struct sk_buff *skb);
3716void netif_receive_skb_list(struct list_head *head);
3717gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3718void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3719struct sk_buff *napi_get_frags(struct napi_struct *napi);
3720gro_result_t napi_gro_frags(struct napi_struct *napi);
3721struct packet_offload *gro_find_receive_by_type(__be16 type);
3722struct packet_offload *gro_find_complete_by_type(__be16 type);
3723
3724static inline void napi_free_frags(struct napi_struct *napi)
3725{
3726 kfree_skb(napi->skb);
3727 napi->skb = NULL;
3728}
3729
3730bool netdev_is_rx_handler_busy(struct net_device *dev);
3731int netdev_rx_handler_register(struct net_device *dev,
3732 rx_handler_func_t *rx_handler,
3733 void *rx_handler_data);
3734void netdev_rx_handler_unregister(struct net_device *dev);
3735
3736bool dev_valid_name(const char *name);
3737int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3738 bool *need_copyout);
3739int dev_ifconf(struct net *net, struct ifconf *, int);
3740int dev_ethtool(struct net *net, struct ifreq *);
3741unsigned int dev_get_flags(const struct net_device *);
3742int __dev_change_flags(struct net_device *dev, unsigned int flags,
3743 struct netlink_ext_ack *extack);
3744int dev_change_flags(struct net_device *dev, unsigned int flags,
3745 struct netlink_ext_ack *extack);
3746void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3747 unsigned int gchanges);
3748int dev_change_name(struct net_device *, const char *);
3749int dev_set_alias(struct net_device *, const char *, size_t);
3750int dev_get_alias(const struct net_device *, char *, size_t);
3751int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3752int __dev_set_mtu(struct net_device *, int);
3753int dev_validate_mtu(struct net_device *dev, int mtu,
3754 struct netlink_ext_ack *extack);
3755int dev_set_mtu_ext(struct net_device *dev, int mtu,
3756 struct netlink_ext_ack *extack);
3757int dev_set_mtu(struct net_device *, int);
3758int dev_change_tx_queue_len(struct net_device *, unsigned long);
3759void dev_set_group(struct net_device *, int);
3760int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3761 struct netlink_ext_ack *extack);
3762int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3763 struct netlink_ext_ack *extack);
3764int dev_change_carrier(struct net_device *, bool new_carrier);
3765int dev_get_phys_port_id(struct net_device *dev,
3766 struct netdev_phys_item_id *ppid);
3767int dev_get_phys_port_name(struct net_device *dev,
3768 char *name, size_t len);
3769int dev_get_port_parent_id(struct net_device *dev,
3770 struct netdev_phys_item_id *ppid, bool recurse);
3771bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3772int dev_change_proto_down(struct net_device *dev, bool proto_down);
3773int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3774struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3775struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3776 struct netdev_queue *txq, int *ret);
3777
3778typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3779int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3780 int fd, int expected_fd, u32 flags);
3781u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3782 enum bpf_netdev_command cmd);
3783int xdp_umem_query(struct net_device *dev, u16 queue_id);
3784
3785int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3786int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3787bool is_skb_forwardable(const struct net_device *dev,
3788 const struct sk_buff *skb);
3789
3790static __always_inline int ____dev_forward_skb(struct net_device *dev,
3791 struct sk_buff *skb)
3792{
3793 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3794 unlikely(!is_skb_forwardable(dev, skb))) {
3795 atomic_long_inc(&dev->rx_dropped);
3796 kfree_skb(skb);
3797 return NET_RX_DROP;
3798 }
3799
3800 skb_scrub_packet(skb, true);
3801 skb->priority = 0;
3802 return 0;
3803}
3804
3805bool dev_nit_active(struct net_device *dev);
3806void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3807
3808extern int netdev_budget;
3809extern unsigned int netdev_budget_usecs;
3810
3811/* Called by rtnetlink.c:rtnl_unlock() */
3812void netdev_run_todo(void);
3813
3814/**
3815 * dev_put - release reference to device
3816 * @dev: network device
3817 *
3818 * Release reference to device to allow it to be freed.
3819 */
3820static inline void dev_put(struct net_device *dev)
3821{
3822 this_cpu_dec(*dev->pcpu_refcnt);
3823}
3824
3825/**
3826 * dev_hold - get reference to device
3827 * @dev: network device
3828 *
3829 * Hold reference to device to keep it from being freed.
3830 */
3831static inline void dev_hold(struct net_device *dev)
3832{
3833 this_cpu_inc(*dev->pcpu_refcnt);
3834}
3835
3836/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3837 * and _off may be called from IRQ context, but it is caller
3838 * who is responsible for serialization of these calls.
3839 *
3840 * The name carrier is inappropriate, these functions should really be
3841 * called netif_lowerlayer_*() because they represent the state of any
3842 * kind of lower layer not just hardware media.
3843 */
3844
3845void linkwatch_init_dev(struct net_device *dev);
3846void linkwatch_fire_event(struct net_device *dev);
3847void linkwatch_forget_dev(struct net_device *dev);
3848
3849/**
3850 * netif_carrier_ok - test if carrier present
3851 * @dev: network device
3852 *
3853 * Check if carrier is present on device
3854 */
3855static inline bool netif_carrier_ok(const struct net_device *dev)
3856{
3857 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3858}
3859
3860unsigned long dev_trans_start(struct net_device *dev);
3861
3862void __netdev_watchdog_up(struct net_device *dev);
3863
3864void netif_carrier_on(struct net_device *dev);
3865
3866void netif_carrier_off(struct net_device *dev);
3867
3868/**
3869 * netif_dormant_on - mark device as dormant.
3870 * @dev: network device
3871 *
3872 * Mark device as dormant (as per RFC2863).
3873 *
3874 * The dormant state indicates that the relevant interface is not
3875 * actually in a condition to pass packets (i.e., it is not 'up') but is
3876 * in a "pending" state, waiting for some external event. For "on-
3877 * demand" interfaces, this new state identifies the situation where the
3878 * interface is waiting for events to place it in the up state.
3879 */
3880static inline void netif_dormant_on(struct net_device *dev)
3881{
3882 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3883 linkwatch_fire_event(dev);
3884}
3885
3886/**
3887 * netif_dormant_off - set device as not dormant.
3888 * @dev: network device
3889 *
3890 * Device is not in dormant state.
3891 */
3892static inline void netif_dormant_off(struct net_device *dev)
3893{
3894 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3895 linkwatch_fire_event(dev);
3896}
3897
3898/**
3899 * netif_dormant - test if device is dormant
3900 * @dev: network device
3901 *
3902 * Check if device is dormant.
3903 */
3904static inline bool netif_dormant(const struct net_device *dev)
3905{
3906 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3907}
3908
3909
3910/**
3911 * netif_oper_up - test if device is operational
3912 * @dev: network device
3913 *
3914 * Check if carrier is operational
3915 */
3916static inline bool netif_oper_up(const struct net_device *dev)
3917{
3918 return (dev->operstate == IF_OPER_UP ||
3919 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3920}
3921
3922/**
3923 * netif_device_present - is device available or removed
3924 * @dev: network device
3925 *
3926 * Check if device has not been removed from system.
3927 */
3928static inline bool netif_device_present(struct net_device *dev)
3929{
3930 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3931}
3932
3933void netif_device_detach(struct net_device *dev);
3934
3935void netif_device_attach(struct net_device *dev);
3936
3937/*
3938 * Network interface message level settings
3939 */
3940
3941enum {
3942 NETIF_MSG_DRV_BIT,
3943 NETIF_MSG_PROBE_BIT,
3944 NETIF_MSG_LINK_BIT,
3945 NETIF_MSG_TIMER_BIT,
3946 NETIF_MSG_IFDOWN_BIT,
3947 NETIF_MSG_IFUP_BIT,
3948 NETIF_MSG_RX_ERR_BIT,
3949 NETIF_MSG_TX_ERR_BIT,
3950 NETIF_MSG_TX_QUEUED_BIT,
3951 NETIF_MSG_INTR_BIT,
3952 NETIF_MSG_TX_DONE_BIT,
3953 NETIF_MSG_RX_STATUS_BIT,
3954 NETIF_MSG_PKTDATA_BIT,
3955 NETIF_MSG_HW_BIT,
3956 NETIF_MSG_WOL_BIT,
3957
3958 /* When you add a new bit above, update netif_msg_class_names array
3959 * in net/ethtool/common.c
3960 */
3961 NETIF_MSG_CLASS_COUNT,
3962};
3963/* Both ethtool_ops interface and internal driver implementation use u32 */
3964static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3965
3966#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
3967#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3968
3969#define NETIF_MSG_DRV __NETIF_MSG(DRV)
3970#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
3971#define NETIF_MSG_LINK __NETIF_MSG(LINK)
3972#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
3973#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
3974#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
3975#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
3976#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
3977#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
3978#define NETIF_MSG_INTR __NETIF_MSG(INTR)
3979#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
3980#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
3981#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
3982#define NETIF_MSG_HW __NETIF_MSG(HW)
3983#define NETIF_MSG_WOL __NETIF_MSG(WOL)
3984
3985#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3986#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3987#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3988#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3989#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3990#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3991#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3992#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3993#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3994#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3995#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3996#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3997#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3998#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3999#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4000
4001static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4002{
4003 /* use default */
4004 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4005 return default_msg_enable_bits;
4006 if (debug_value == 0) /* no output */
4007 return 0;
4008 /* set low N bits */
4009 return (1U << debug_value) - 1;
4010}
4011
4012static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4013{
4014 spin_lock(&txq->_xmit_lock);
4015 txq->xmit_lock_owner = cpu;
4016}
4017
4018static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4019{
4020 __acquire(&txq->_xmit_lock);
4021 return true;
4022}
4023
4024static inline void __netif_tx_release(struct netdev_queue *txq)
4025{
4026 __release(&txq->_xmit_lock);
4027}
4028
4029static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4030{
4031 spin_lock_bh(&txq->_xmit_lock);
4032 txq->xmit_lock_owner = smp_processor_id();
4033}
4034
4035static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4036{
4037 bool ok = spin_trylock(&txq->_xmit_lock);
4038 if (likely(ok))
4039 txq->xmit_lock_owner = smp_processor_id();
4040 return ok;
4041}
4042
4043static inline void __netif_tx_unlock(struct netdev_queue *txq)
4044{
4045 txq->xmit_lock_owner = -1;
4046 spin_unlock(&txq->_xmit_lock);
4047}
4048
4049static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4050{
4051 txq->xmit_lock_owner = -1;
4052 spin_unlock_bh(&txq->_xmit_lock);
4053}
4054
4055static inline void txq_trans_update(struct netdev_queue *txq)
4056{
4057 if (txq->xmit_lock_owner != -1)
4058 txq->trans_start = jiffies;
4059}
4060
4061/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4062static inline void netif_trans_update(struct net_device *dev)
4063{
4064 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4065
4066 if (txq->trans_start != jiffies)
4067 txq->trans_start = jiffies;
4068}
4069
4070/**
4071 * netif_tx_lock - grab network device transmit lock
4072 * @dev: network device
4073 *
4074 * Get network device transmit lock
4075 */
4076static inline void netif_tx_lock(struct net_device *dev)
4077{
4078 unsigned int i;
4079 int cpu;
4080
4081 spin_lock(&dev->tx_global_lock);
4082 cpu = smp_processor_id();
4083 for (i = 0; i < dev->num_tx_queues; i++) {
4084 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4085
4086 /* We are the only thread of execution doing a
4087 * freeze, but we have to grab the _xmit_lock in
4088 * order to synchronize with threads which are in
4089 * the ->hard_start_xmit() handler and already
4090 * checked the frozen bit.
4091 */
4092 __netif_tx_lock(txq, cpu);
4093 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4094 __netif_tx_unlock(txq);
4095 }
4096}
4097
4098static inline void netif_tx_lock_bh(struct net_device *dev)
4099{
4100 local_bh_disable();
4101 netif_tx_lock(dev);
4102}
4103
4104static inline void netif_tx_unlock(struct net_device *dev)
4105{
4106 unsigned int i;
4107
4108 for (i = 0; i < dev->num_tx_queues; i++) {
4109 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4110
4111 /* No need to grab the _xmit_lock here. If the
4112 * queue is not stopped for another reason, we
4113 * force a schedule.
4114 */
4115 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4116 netif_schedule_queue(txq);
4117 }
4118 spin_unlock(&dev->tx_global_lock);
4119}
4120
4121static inline void netif_tx_unlock_bh(struct net_device *dev)
4122{
4123 netif_tx_unlock(dev);
4124 local_bh_enable();
4125}
4126
4127#define HARD_TX_LOCK(dev, txq, cpu) { \
4128 if ((dev->features & NETIF_F_LLTX) == 0) { \
4129 __netif_tx_lock(txq, cpu); \
4130 } else { \
4131 __netif_tx_acquire(txq); \
4132 } \
4133}
4134
4135#define HARD_TX_TRYLOCK(dev, txq) \
4136 (((dev->features & NETIF_F_LLTX) == 0) ? \
4137 __netif_tx_trylock(txq) : \
4138 __netif_tx_acquire(txq))
4139
4140#define HARD_TX_UNLOCK(dev, txq) { \
4141 if ((dev->features & NETIF_F_LLTX) == 0) { \
4142 __netif_tx_unlock(txq); \
4143 } else { \
4144 __netif_tx_release(txq); \
4145 } \
4146}
4147
4148static inline void netif_tx_disable(struct net_device *dev)
4149{
4150 unsigned int i;
4151 int cpu;
4152
4153 local_bh_disable();
4154 cpu = smp_processor_id();
4155 for (i = 0; i < dev->num_tx_queues; i++) {
4156 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4157
4158 __netif_tx_lock(txq, cpu);
4159 netif_tx_stop_queue(txq);
4160 __netif_tx_unlock(txq);
4161 }
4162 local_bh_enable();
4163}
4164
4165static inline void netif_addr_lock(struct net_device *dev)
4166{
4167 spin_lock(&dev->addr_list_lock);
4168}
4169
4170static inline void netif_addr_lock_bh(struct net_device *dev)
4171{
4172 spin_lock_bh(&dev->addr_list_lock);
4173}
4174
4175static inline void netif_addr_unlock(struct net_device *dev)
4176{
4177 spin_unlock(&dev->addr_list_lock);
4178}
4179
4180static inline void netif_addr_unlock_bh(struct net_device *dev)
4181{
4182 spin_unlock_bh(&dev->addr_list_lock);
4183}
4184
4185/*
4186 * dev_addrs walker. Should be used only for read access. Call with
4187 * rcu_read_lock held.
4188 */
4189#define for_each_dev_addr(dev, ha) \
4190 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4191
4192/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4193
4194void ether_setup(struct net_device *dev);
4195
4196/* Support for loadable net-drivers */
4197struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4198 unsigned char name_assign_type,
4199 void (*setup)(struct net_device *),
4200 unsigned int txqs, unsigned int rxqs);
4201#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4202 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4203
4204#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4205 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4206 count)
4207
4208int register_netdev(struct net_device *dev);
4209void unregister_netdev(struct net_device *dev);
4210
4211/* General hardware address lists handling functions */
4212int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4213 struct netdev_hw_addr_list *from_list, int addr_len);
4214void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4215 struct netdev_hw_addr_list *from_list, int addr_len);
4216int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4217 struct net_device *dev,
4218 int (*sync)(struct net_device *, const unsigned char *),
4219 int (*unsync)(struct net_device *,
4220 const unsigned char *));
4221int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4222 struct net_device *dev,
4223 int (*sync)(struct net_device *,
4224 const unsigned char *, int),
4225 int (*unsync)(struct net_device *,
4226 const unsigned char *, int));
4227void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4228 struct net_device *dev,
4229 int (*unsync)(struct net_device *,
4230 const unsigned char *, int));
4231void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4232 struct net_device *dev,
4233 int (*unsync)(struct net_device *,
4234 const unsigned char *));
4235void __hw_addr_init(struct netdev_hw_addr_list *list);
4236
4237/* Functions used for device addresses handling */
4238int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4239 unsigned char addr_type);
4240int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4241 unsigned char addr_type);
4242void dev_addr_flush(struct net_device *dev);
4243int dev_addr_init(struct net_device *dev);
4244
4245/* Functions used for unicast addresses handling */
4246int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4247int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4248int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4249int dev_uc_sync(struct net_device *to, struct net_device *from);
4250int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4251void dev_uc_unsync(struct net_device *to, struct net_device *from);
4252void dev_uc_flush(struct net_device *dev);
4253void dev_uc_init(struct net_device *dev);
4254
4255/**
4256 * __dev_uc_sync - Synchonize device's unicast list
4257 * @dev: device to sync
4258 * @sync: function to call if address should be added
4259 * @unsync: function to call if address should be removed
4260 *
4261 * Add newly added addresses to the interface, and release
4262 * addresses that have been deleted.
4263 */
4264static inline int __dev_uc_sync(struct net_device *dev,
4265 int (*sync)(struct net_device *,
4266 const unsigned char *),
4267 int (*unsync)(struct net_device *,
4268 const unsigned char *))
4269{
4270 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4271}
4272
4273/**
4274 * __dev_uc_unsync - Remove synchronized addresses from device
4275 * @dev: device to sync
4276 * @unsync: function to call if address should be removed
4277 *
4278 * Remove all addresses that were added to the device by dev_uc_sync().
4279 */
4280static inline void __dev_uc_unsync(struct net_device *dev,
4281 int (*unsync)(struct net_device *,
4282 const unsigned char *))
4283{
4284 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4285}
4286
4287/* Functions used for multicast addresses handling */
4288int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4289int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4290int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4291int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4292int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4293int dev_mc_sync(struct net_device *to, struct net_device *from);
4294int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4295void dev_mc_unsync(struct net_device *to, struct net_device *from);
4296void dev_mc_flush(struct net_device *dev);
4297void dev_mc_init(struct net_device *dev);
4298
4299/**
4300 * __dev_mc_sync - Synchonize device's multicast list
4301 * @dev: device to sync
4302 * @sync: function to call if address should be added
4303 * @unsync: function to call if address should be removed
4304 *
4305 * Add newly added addresses to the interface, and release
4306 * addresses that have been deleted.
4307 */
4308static inline int __dev_mc_sync(struct net_device *dev,
4309 int (*sync)(struct net_device *,
4310 const unsigned char *),
4311 int (*unsync)(struct net_device *,
4312 const unsigned char *))
4313{
4314 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4315}
4316
4317/**
4318 * __dev_mc_unsync - Remove synchronized addresses from device
4319 * @dev: device to sync
4320 * @unsync: function to call if address should be removed
4321 *
4322 * Remove all addresses that were added to the device by dev_mc_sync().
4323 */
4324static inline void __dev_mc_unsync(struct net_device *dev,
4325 int (*unsync)(struct net_device *,
4326 const unsigned char *))
4327{
4328 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4329}
4330
4331/* Functions used for secondary unicast and multicast support */
4332void dev_set_rx_mode(struct net_device *dev);
4333void __dev_set_rx_mode(struct net_device *dev);
4334int dev_set_promiscuity(struct net_device *dev, int inc);
4335int dev_set_allmulti(struct net_device *dev, int inc);
4336void netdev_state_change(struct net_device *dev);
4337void netdev_notify_peers(struct net_device *dev);
4338void netdev_features_change(struct net_device *dev);
4339/* Load a device via the kmod */
4340void dev_load(struct net *net, const char *name);
4341struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4342 struct rtnl_link_stats64 *storage);
4343void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4344 const struct net_device_stats *netdev_stats);
4345
4346extern int netdev_max_backlog;
4347extern int netdev_tstamp_prequeue;
4348extern int weight_p;
4349extern int dev_weight_rx_bias;
4350extern int dev_weight_tx_bias;
4351extern int dev_rx_weight;
4352extern int dev_tx_weight;
4353extern int gro_normal_batch;
4354
4355bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4356struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4357 struct list_head **iter);
4358struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4359 struct list_head **iter);
4360
4361/* iterate through upper list, must be called under RCU read lock */
4362#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4363 for (iter = &(dev)->adj_list.upper, \
4364 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4365 updev; \
4366 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4367
4368int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4369 int (*fn)(struct net_device *upper_dev,
4370 void *data),
4371 void *data);
4372
4373bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4374 struct net_device *upper_dev);
4375
4376bool netdev_has_any_upper_dev(struct net_device *dev);
4377
4378void *netdev_lower_get_next_private(struct net_device *dev,
4379 struct list_head **iter);
4380void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4381 struct list_head **iter);
4382
4383#define netdev_for_each_lower_private(dev, priv, iter) \
4384 for (iter = (dev)->adj_list.lower.next, \
4385 priv = netdev_lower_get_next_private(dev, &(iter)); \
4386 priv; \
4387 priv = netdev_lower_get_next_private(dev, &(iter)))
4388
4389#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4390 for (iter = &(dev)->adj_list.lower, \
4391 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4392 priv; \
4393 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4394
4395void *netdev_lower_get_next(struct net_device *dev,
4396 struct list_head **iter);
4397
4398#define netdev_for_each_lower_dev(dev, ldev, iter) \
4399 for (iter = (dev)->adj_list.lower.next, \
4400 ldev = netdev_lower_get_next(dev, &(iter)); \
4401 ldev; \
4402 ldev = netdev_lower_get_next(dev, &(iter)))
4403
4404struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4405 struct list_head **iter);
4406int netdev_walk_all_lower_dev(struct net_device *dev,
4407 int (*fn)(struct net_device *lower_dev,
4408 void *data),
4409 void *data);
4410int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4411 int (*fn)(struct net_device *lower_dev,
4412 void *data),
4413 void *data);
4414
4415void *netdev_adjacent_get_private(struct list_head *adj_list);
4416void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4417struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4418struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4419int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4420 struct netlink_ext_ack *extack);
4421int netdev_master_upper_dev_link(struct net_device *dev,
4422 struct net_device *upper_dev,
4423 void *upper_priv, void *upper_info,
4424 struct netlink_ext_ack *extack);
4425void netdev_upper_dev_unlink(struct net_device *dev,
4426 struct net_device *upper_dev);
4427int netdev_adjacent_change_prepare(struct net_device *old_dev,
4428 struct net_device *new_dev,
4429 struct net_device *dev,
4430 struct netlink_ext_ack *extack);
4431void netdev_adjacent_change_commit(struct net_device *old_dev,
4432 struct net_device *new_dev,
4433 struct net_device *dev);
4434void netdev_adjacent_change_abort(struct net_device *old_dev,
4435 struct net_device *new_dev,
4436 struct net_device *dev);
4437void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4438void *netdev_lower_dev_get_private(struct net_device *dev,
4439 struct net_device *lower_dev);
4440void netdev_lower_state_changed(struct net_device *lower_dev,
4441 void *lower_state_info);
4442
4443/* RSS keys are 40 or 52 bytes long */
4444#define NETDEV_RSS_KEY_LEN 52
4445extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4446void netdev_rss_key_fill(void *buffer, size_t len);
4447
4448int skb_checksum_help(struct sk_buff *skb);
4449int skb_crc32c_csum_help(struct sk_buff *skb);
4450int skb_csum_hwoffload_help(struct sk_buff *skb,
4451 const netdev_features_t features);
4452
4453struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4454 netdev_features_t features, bool tx_path);
4455struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4456 netdev_features_t features);
4457
4458struct netdev_bonding_info {
4459 ifslave slave;
4460 ifbond master;
4461};
4462
4463struct netdev_notifier_bonding_info {
4464 struct netdev_notifier_info info; /* must be first */
4465 struct netdev_bonding_info bonding_info;
4466};
4467
4468void netdev_bonding_info_change(struct net_device *dev,
4469 struct netdev_bonding_info *bonding_info);
4470
4471#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4472void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4473#else
4474static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4475 const void *data)
4476{
4477}
4478#endif
4479
4480static inline
4481struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4482{
4483 return __skb_gso_segment(skb, features, true);
4484}
4485__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4486
4487static inline bool can_checksum_protocol(netdev_features_t features,
4488 __be16 protocol)
4489{
4490 if (protocol == htons(ETH_P_FCOE))
4491 return !!(features & NETIF_F_FCOE_CRC);
4492
4493 /* Assume this is an IP checksum (not SCTP CRC) */
4494
4495 if (features & NETIF_F_HW_CSUM) {
4496 /* Can checksum everything */
4497 return true;
4498 }
4499
4500 switch (protocol) {
4501 case htons(ETH_P_IP):
4502 return !!(features & NETIF_F_IP_CSUM);
4503 case htons(ETH_P_IPV6):
4504 return !!(features & NETIF_F_IPV6_CSUM);
4505 default:
4506 return false;
4507 }
4508}
4509
4510#ifdef CONFIG_BUG
4511void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4512#else
4513static inline void netdev_rx_csum_fault(struct net_device *dev,
4514 struct sk_buff *skb)
4515{
4516}
4517#endif
4518/* rx skb timestamps */
4519void net_enable_timestamp(void);
4520void net_disable_timestamp(void);
4521
4522#ifdef CONFIG_PROC_FS
4523int __init dev_proc_init(void);
4524#else
4525#define dev_proc_init() 0
4526#endif
4527
4528static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4529 struct sk_buff *skb, struct net_device *dev,
4530 bool more)
4531{
4532 __this_cpu_write(softnet_data.xmit.more, more);
4533 return ops->ndo_start_xmit(skb, dev);
4534}
4535
4536static inline bool netdev_xmit_more(void)
4537{
4538 return __this_cpu_read(softnet_data.xmit.more);
4539}
4540
4541static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4542 struct netdev_queue *txq, bool more)
4543{
4544 const struct net_device_ops *ops = dev->netdev_ops;
4545 netdev_tx_t rc;
4546
4547 rc = __netdev_start_xmit(ops, skb, dev, more);
4548 if (rc == NETDEV_TX_OK)
4549 txq_trans_update(txq);
4550
4551 return rc;
4552}
4553
4554int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4555 const void *ns);
4556void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4557 const void *ns);
4558
4559static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4560{
4561 return netdev_class_create_file_ns(class_attr, NULL);
4562}
4563
4564static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4565{
4566 netdev_class_remove_file_ns(class_attr, NULL);
4567}
4568
4569extern const struct kobj_ns_type_operations net_ns_type_operations;
4570
4571const char *netdev_drivername(const struct net_device *dev);
4572
4573void linkwatch_run_queue(void);
4574
4575static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4576 netdev_features_t f2)
4577{
4578 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4579 if (f1 & NETIF_F_HW_CSUM)
4580 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4581 else
4582 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4583 }
4584
4585 return f1 & f2;
4586}
4587
4588static inline netdev_features_t netdev_get_wanted_features(
4589 struct net_device *dev)
4590{
4591 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4592}
4593netdev_features_t netdev_increment_features(netdev_features_t all,
4594 netdev_features_t one, netdev_features_t mask);
4595
4596/* Allow TSO being used on stacked device :
4597 * Performing the GSO segmentation before last device
4598 * is a performance improvement.
4599 */
4600static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4601 netdev_features_t mask)
4602{
4603 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4604}
4605
4606int __netdev_update_features(struct net_device *dev);
4607void netdev_update_features(struct net_device *dev);
4608void netdev_change_features(struct net_device *dev);
4609
4610void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4611 struct net_device *dev);
4612
4613netdev_features_t passthru_features_check(struct sk_buff *skb,
4614 struct net_device *dev,
4615 netdev_features_t features);
4616netdev_features_t netif_skb_features(struct sk_buff *skb);
4617
4618static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4619{
4620 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4621
4622 /* check flags correspondence */
4623 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4624 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4625 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4626 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4627 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4628 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4629 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4630 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4631 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4632 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4633 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4634 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4635 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4636 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4637 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4638 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4639 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4640 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4641 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4642
4643 return (features & feature) == feature;
4644}
4645
4646static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4647{
4648 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4649 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4650}
4651
4652static inline bool netif_needs_gso(struct sk_buff *skb,
4653 netdev_features_t features)
4654{
4655 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4656 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4657 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4658}
4659
4660static inline void netif_set_gso_max_size(struct net_device *dev,
4661 unsigned int size)
4662{
4663 dev->gso_max_size = size;
4664}
4665
4666static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4667 int pulled_hlen, u16 mac_offset,
4668 int mac_len)
4669{
4670 skb->protocol = protocol;
4671 skb->encapsulation = 1;
4672 skb_push(skb, pulled_hlen);
4673 skb_reset_transport_header(skb);
4674 skb->mac_header = mac_offset;
4675 skb->network_header = skb->mac_header + mac_len;
4676 skb->mac_len = mac_len;
4677}
4678
4679static inline bool netif_is_macsec(const struct net_device *dev)
4680{
4681 return dev->priv_flags & IFF_MACSEC;
4682}
4683
4684static inline bool netif_is_macvlan(const struct net_device *dev)
4685{
4686 return dev->priv_flags & IFF_MACVLAN;
4687}
4688
4689static inline bool netif_is_macvlan_port(const struct net_device *dev)
4690{
4691 return dev->priv_flags & IFF_MACVLAN_PORT;
4692}
4693
4694static inline bool netif_is_bond_master(const struct net_device *dev)
4695{
4696 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4697}
4698
4699static inline bool netif_is_bond_slave(const struct net_device *dev)
4700{
4701 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4702}
4703
4704static inline bool netif_supports_nofcs(struct net_device *dev)
4705{
4706 return dev->priv_flags & IFF_SUPP_NOFCS;
4707}
4708
4709static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4710{
4711 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4712}
4713
4714static inline bool netif_is_l3_master(const struct net_device *dev)
4715{
4716 return dev->priv_flags & IFF_L3MDEV_MASTER;
4717}
4718
4719static inline bool netif_is_l3_slave(const struct net_device *dev)
4720{
4721 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4722}
4723
4724static inline bool netif_is_bridge_master(const struct net_device *dev)
4725{
4726 return dev->priv_flags & IFF_EBRIDGE;
4727}
4728
4729static inline bool netif_is_bridge_port(const struct net_device *dev)
4730{
4731 return dev->priv_flags & IFF_BRIDGE_PORT;
4732}
4733
4734static inline bool netif_is_ovs_master(const struct net_device *dev)
4735{
4736 return dev->priv_flags & IFF_OPENVSWITCH;
4737}
4738
4739static inline bool netif_is_ovs_port(const struct net_device *dev)
4740{
4741 return dev->priv_flags & IFF_OVS_DATAPATH;
4742}
4743
4744static inline bool netif_is_team_master(const struct net_device *dev)
4745{
4746 return dev->priv_flags & IFF_TEAM;
4747}
4748
4749static inline bool netif_is_team_port(const struct net_device *dev)
4750{
4751 return dev->priv_flags & IFF_TEAM_PORT;
4752}
4753
4754static inline bool netif_is_lag_master(const struct net_device *dev)
4755{
4756 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4757}
4758
4759static inline bool netif_is_lag_port(const struct net_device *dev)
4760{
4761 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4762}
4763
4764static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4765{
4766 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4767}
4768
4769static inline bool netif_is_failover(const struct net_device *dev)
4770{
4771 return dev->priv_flags & IFF_FAILOVER;
4772}
4773
4774static inline bool netif_is_failover_slave(const struct net_device *dev)
4775{
4776 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4777}
4778
4779/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4780static inline void netif_keep_dst(struct net_device *dev)
4781{
4782 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4783}
4784
4785/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4786static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4787{
4788 /* TODO: reserve and use an additional IFF bit, if we get more users */
4789 return dev->priv_flags & IFF_MACSEC;
4790}
4791
4792extern struct pernet_operations __net_initdata loopback_net_ops;
4793
4794/* Logging, debugging and troubleshooting/diagnostic helpers. */
4795
4796/* netdev_printk helpers, similar to dev_printk */
4797
4798static inline const char *netdev_name(const struct net_device *dev)
4799{
4800 if (!dev->name[0] || strchr(dev->name, '%'))
4801 return "(unnamed net_device)";
4802 return dev->name;
4803}
4804
4805static inline bool netdev_unregistering(const struct net_device *dev)
4806{
4807 return dev->reg_state == NETREG_UNREGISTERING;
4808}
4809
4810static inline const char *netdev_reg_state(const struct net_device *dev)
4811{
4812 switch (dev->reg_state) {
4813 case NETREG_UNINITIALIZED: return " (uninitialized)";
4814 case NETREG_REGISTERED: return "";
4815 case NETREG_UNREGISTERING: return " (unregistering)";
4816 case NETREG_UNREGISTERED: return " (unregistered)";
4817 case NETREG_RELEASED: return " (released)";
4818 case NETREG_DUMMY: return " (dummy)";
4819 }
4820
4821 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4822 return " (unknown)";
4823}
4824
4825__printf(3, 4) __cold
4826void netdev_printk(const char *level, const struct net_device *dev,
4827 const char *format, ...);
4828__printf(2, 3) __cold
4829void netdev_emerg(const struct net_device *dev, const char *format, ...);
4830__printf(2, 3) __cold
4831void netdev_alert(const struct net_device *dev, const char *format, ...);
4832__printf(2, 3) __cold
4833void netdev_crit(const struct net_device *dev, const char *format, ...);
4834__printf(2, 3) __cold
4835void netdev_err(const struct net_device *dev, const char *format, ...);
4836__printf(2, 3) __cold
4837void netdev_warn(const struct net_device *dev, const char *format, ...);
4838__printf(2, 3) __cold
4839void netdev_notice(const struct net_device *dev, const char *format, ...);
4840__printf(2, 3) __cold
4841void netdev_info(const struct net_device *dev, const char *format, ...);
4842
4843#define netdev_level_once(level, dev, fmt, ...) \
4844do { \
4845 static bool __print_once __read_mostly; \
4846 \
4847 if (!__print_once) { \
4848 __print_once = true; \
4849 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4850 } \
4851} while (0)
4852
4853#define netdev_emerg_once(dev, fmt, ...) \
4854 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4855#define netdev_alert_once(dev, fmt, ...) \
4856 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4857#define netdev_crit_once(dev, fmt, ...) \
4858 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4859#define netdev_err_once(dev, fmt, ...) \
4860 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4861#define netdev_warn_once(dev, fmt, ...) \
4862 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4863#define netdev_notice_once(dev, fmt, ...) \
4864 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4865#define netdev_info_once(dev, fmt, ...) \
4866 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4867
4868#define MODULE_ALIAS_NETDEV(device) \
4869 MODULE_ALIAS("netdev-" device)
4870
4871#if defined(CONFIG_DYNAMIC_DEBUG)
4872#define netdev_dbg(__dev, format, args...) \
4873do { \
4874 dynamic_netdev_dbg(__dev, format, ##args); \
4875} while (0)
4876#elif defined(DEBUG)
4877#define netdev_dbg(__dev, format, args...) \
4878 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4879#else
4880#define netdev_dbg(__dev, format, args...) \
4881({ \
4882 if (0) \
4883 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4884})
4885#endif
4886
4887#if defined(VERBOSE_DEBUG)
4888#define netdev_vdbg netdev_dbg
4889#else
4890
4891#define netdev_vdbg(dev, format, args...) \
4892({ \
4893 if (0) \
4894 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4895 0; \
4896})
4897#endif
4898
4899/*
4900 * netdev_WARN() acts like dev_printk(), but with the key difference
4901 * of using a WARN/WARN_ON to get the message out, including the
4902 * file/line information and a backtrace.
4903 */
4904#define netdev_WARN(dev, format, args...) \
4905 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4906 netdev_reg_state(dev), ##args)
4907
4908#define netdev_WARN_ONCE(dev, format, args...) \
4909 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4910 netdev_reg_state(dev), ##args)
4911
4912/* netif printk helpers, similar to netdev_printk */
4913
4914#define netif_printk(priv, type, level, dev, fmt, args...) \
4915do { \
4916 if (netif_msg_##type(priv)) \
4917 netdev_printk(level, (dev), fmt, ##args); \
4918} while (0)
4919
4920#define netif_level(level, priv, type, dev, fmt, args...) \
4921do { \
4922 if (netif_msg_##type(priv)) \
4923 netdev_##level(dev, fmt, ##args); \
4924} while (0)
4925
4926#define netif_emerg(priv, type, dev, fmt, args...) \
4927 netif_level(emerg, priv, type, dev, fmt, ##args)
4928#define netif_alert(priv, type, dev, fmt, args...) \
4929 netif_level(alert, priv, type, dev, fmt, ##args)
4930#define netif_crit(priv, type, dev, fmt, args...) \
4931 netif_level(crit, priv, type, dev, fmt, ##args)
4932#define netif_err(priv, type, dev, fmt, args...) \
4933 netif_level(err, priv, type, dev, fmt, ##args)
4934#define netif_warn(priv, type, dev, fmt, args...) \
4935 netif_level(warn, priv, type, dev, fmt, ##args)
4936#define netif_notice(priv, type, dev, fmt, args...) \
4937 netif_level(notice, priv, type, dev, fmt, ##args)
4938#define netif_info(priv, type, dev, fmt, args...) \
4939 netif_level(info, priv, type, dev, fmt, ##args)
4940
4941#if defined(CONFIG_DYNAMIC_DEBUG)
4942#define netif_dbg(priv, type, netdev, format, args...) \
4943do { \
4944 if (netif_msg_##type(priv)) \
4945 dynamic_netdev_dbg(netdev, format, ##args); \
4946} while (0)
4947#elif defined(DEBUG)
4948#define netif_dbg(priv, type, dev, format, args...) \
4949 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4950#else
4951#define netif_dbg(priv, type, dev, format, args...) \
4952({ \
4953 if (0) \
4954 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4955 0; \
4956})
4957#endif
4958
4959/* if @cond then downgrade to debug, else print at @level */
4960#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4961 do { \
4962 if (cond) \
4963 netif_dbg(priv, type, netdev, fmt, ##args); \
4964 else \
4965 netif_ ## level(priv, type, netdev, fmt, ##args); \
4966 } while (0)
4967
4968#if defined(VERBOSE_DEBUG)
4969#define netif_vdbg netif_dbg
4970#else
4971#define netif_vdbg(priv, type, dev, format, args...) \
4972({ \
4973 if (0) \
4974 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4975 0; \
4976})
4977#endif
4978
4979/*
4980 * The list of packet types we will receive (as opposed to discard)
4981 * and the routines to invoke.
4982 *
4983 * Why 16. Because with 16 the only overlap we get on a hash of the
4984 * low nibble of the protocol value is RARP/SNAP/X.25.
4985 *
4986 * 0800 IP
4987 * 0001 802.3
4988 * 0002 AX.25
4989 * 0004 802.2
4990 * 8035 RARP
4991 * 0005 SNAP
4992 * 0805 X.25
4993 * 0806 ARP
4994 * 8137 IPX
4995 * 0009 Localtalk
4996 * 86DD IPv6
4997 */
4998#define PTYPE_HASH_SIZE (16)
4999#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5000
5001extern struct net_device *blackhole_netdev;
5002
5003#endif /* _LINUX_NETDEVICE_H */