at v5.7-rc2 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42}; 43 44/** 45 * enum dma_transaction_type - DMA transaction types/indexes 46 * 47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 48 * automatically set as dma devices are registered. 49 */ 50enum dma_transaction_type { 51 DMA_MEMCPY, 52 DMA_XOR, 53 DMA_PQ, 54 DMA_XOR_VAL, 55 DMA_PQ_VAL, 56 DMA_MEMSET, 57 DMA_MEMSET_SG, 58 DMA_INTERRUPT, 59 DMA_PRIVATE, 60 DMA_ASYNC_TX, 61 DMA_SLAVE, 62 DMA_CYCLIC, 63 DMA_INTERLEAVE, 64/* last transaction type for creation of the capabilities mask */ 65 DMA_TX_TYPE_END, 66}; 67 68/** 69 * enum dma_transfer_direction - dma transfer mode and direction indicator 70 * @DMA_MEM_TO_MEM: Async/Memcpy mode 71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 74 */ 75enum dma_transfer_direction { 76 DMA_MEM_TO_MEM, 77 DMA_MEM_TO_DEV, 78 DMA_DEV_TO_MEM, 79 DMA_DEV_TO_DEV, 80 DMA_TRANS_NONE, 81}; 82 83/** 84 * Interleaved Transfer Request 85 * ---------------------------- 86 * A chunk is collection of contiguous bytes to be transfered. 87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 88 * ICGs may or maynot change between chunks. 89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 90 * that when repeated an integral number of times, specifies the transfer. 91 * A transfer template is specification of a Frame, the number of times 92 * it is to be repeated and other per-transfer attributes. 93 * 94 * Practically, a client driver would have ready a template for each 95 * type of transfer it is going to need during its lifetime and 96 * set only 'src_start' and 'dst_start' before submitting the requests. 97 * 98 * 99 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 100 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 101 * 102 * == Chunk size 103 * ... ICG 104 */ 105 106/** 107 * struct data_chunk - Element of scatter-gather list that makes a frame. 108 * @size: Number of bytes to read from source. 109 * size_dst := fn(op, size_src), so doesn't mean much for destination. 110 * @icg: Number of bytes to jump after last src/dst address of this 111 * chunk and before first src/dst address for next chunk. 112 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 113 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 114 * @dst_icg: Number of bytes to jump after last dst address of this 115 * chunk and before the first dst address for next chunk. 116 * Ignored if dst_inc is true and dst_sgl is false. 117 * @src_icg: Number of bytes to jump after last src address of this 118 * chunk and before the first src address for next chunk. 119 * Ignored if src_inc is true and src_sgl is false. 120 */ 121struct data_chunk { 122 size_t size; 123 size_t icg; 124 size_t dst_icg; 125 size_t src_icg; 126}; 127 128/** 129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 130 * and attributes. 131 * @src_start: Bus address of source for the first chunk. 132 * @dst_start: Bus address of destination for the first chunk. 133 * @dir: Specifies the type of Source and Destination. 134 * @src_inc: If the source address increments after reading from it. 135 * @dst_inc: If the destination address increments after writing to it. 136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 137 * Otherwise, source is read contiguously (icg ignored). 138 * Ignored if src_inc is false. 139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 140 * Otherwise, destination is filled contiguously (icg ignored). 141 * Ignored if dst_inc is false. 142 * @numf: Number of frames in this template. 143 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 144 * @sgl: Array of {chunk,icg} pairs that make up a frame. 145 */ 146struct dma_interleaved_template { 147 dma_addr_t src_start; 148 dma_addr_t dst_start; 149 enum dma_transfer_direction dir; 150 bool src_inc; 151 bool dst_inc; 152 bool src_sgl; 153 bool dst_sgl; 154 size_t numf; 155 size_t frame_size; 156 struct data_chunk sgl[0]; 157}; 158 159/** 160 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 161 * control completion, and communicate status. 162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 163 * this transaction 164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 165 * acknowledges receipt, i.e. has has a chance to establish any dependency 166 * chains 167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 170 * sources that were the result of a previous operation, in the case of a PQ 171 * operation it continues the calculation with new sources 172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 173 * on the result of this operation 174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 175 * cleared or freed 176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 177 * data and the descriptor should be in different format from normal 178 * data descriptors. 179 */ 180enum dma_ctrl_flags { 181 DMA_PREP_INTERRUPT = (1 << 0), 182 DMA_CTRL_ACK = (1 << 1), 183 DMA_PREP_PQ_DISABLE_P = (1 << 2), 184 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 185 DMA_PREP_CONTINUE = (1 << 4), 186 DMA_PREP_FENCE = (1 << 5), 187 DMA_CTRL_REUSE = (1 << 6), 188 DMA_PREP_CMD = (1 << 7), 189}; 190 191/** 192 * enum sum_check_bits - bit position of pq_check_flags 193 */ 194enum sum_check_bits { 195 SUM_CHECK_P = 0, 196 SUM_CHECK_Q = 1, 197}; 198 199/** 200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 203 */ 204enum sum_check_flags { 205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 207}; 208 209 210/** 211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 212 * See linux/cpumask.h 213 */ 214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 215 216/** 217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 218 * @memcpy_count: transaction counter 219 * @bytes_transferred: byte counter 220 */ 221 222/** 223 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 224 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 225 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 226 * helper) to the descriptor. 227 * 228 * Client drivers interested to use this mode can follow: 229 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 230 * 1. prepare the descriptor (dmaengine_prep_*) 231 * construct the metadata in the client's buffer 232 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 233 * descriptor 234 * 3. submit the transfer 235 * - DMA_DEV_TO_MEM: 236 * 1. prepare the descriptor (dmaengine_prep_*) 237 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 238 * descriptor 239 * 3. submit the transfer 240 * 4. when the transfer is completed, the metadata should be available in the 241 * attached buffer 242 * 243 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 244 * driver. The client driver can ask for the pointer, maximum size and the 245 * currently used size of the metadata and can directly update or read it. 246 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 247 * provided as helper functions. 248 * 249 * Note: the metadata area for the descriptor is no longer valid after the 250 * transfer has been completed (valid up to the point when the completion 251 * callback returns if used). 252 * 253 * Client drivers interested to use this mode can follow: 254 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 255 * 1. prepare the descriptor (dmaengine_prep_*) 256 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 257 * metadata area 258 * 3. update the metadata at the pointer 259 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 260 * of data the client has placed into the metadata buffer 261 * 5. submit the transfer 262 * - DMA_DEV_TO_MEM: 263 * 1. prepare the descriptor (dmaengine_prep_*) 264 * 2. submit the transfer 265 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 266 * pointer to the engine's metadata area 267 * 4. Read out the metadata from the pointer 268 * 269 * Note: the two mode is not compatible and clients must use one mode for a 270 * descriptor. 271 */ 272enum dma_desc_metadata_mode { 273 DESC_METADATA_NONE = 0, 274 DESC_METADATA_CLIENT = BIT(0), 275 DESC_METADATA_ENGINE = BIT(1), 276}; 277 278struct dma_chan_percpu { 279 /* stats */ 280 unsigned long memcpy_count; 281 unsigned long bytes_transferred; 282}; 283 284/** 285 * struct dma_router - DMA router structure 286 * @dev: pointer to the DMA router device 287 * @route_free: function to be called when the route can be disconnected 288 */ 289struct dma_router { 290 struct device *dev; 291 void (*route_free)(struct device *dev, void *route_data); 292}; 293 294/** 295 * struct dma_chan - devices supply DMA channels, clients use them 296 * @device: ptr to the dma device who supplies this channel, always !%NULL 297 * @slave: ptr to the device using this channel 298 * @cookie: last cookie value returned to client 299 * @completed_cookie: last completed cookie for this channel 300 * @chan_id: channel ID for sysfs 301 * @dev: class device for sysfs 302 * @name: backlink name for sysfs 303 * @dbg_client_name: slave name for debugfs in format: 304 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 305 * @device_node: used to add this to the device chan list 306 * @local: per-cpu pointer to a struct dma_chan_percpu 307 * @client_count: how many clients are using this channel 308 * @table_count: number of appearances in the mem-to-mem allocation table 309 * @router: pointer to the DMA router structure 310 * @route_data: channel specific data for the router 311 * @private: private data for certain client-channel associations 312 */ 313struct dma_chan { 314 struct dma_device *device; 315 struct device *slave; 316 dma_cookie_t cookie; 317 dma_cookie_t completed_cookie; 318 319 /* sysfs */ 320 int chan_id; 321 struct dma_chan_dev *dev; 322 const char *name; 323#ifdef CONFIG_DEBUG_FS 324 char *dbg_client_name; 325#endif 326 327 struct list_head device_node; 328 struct dma_chan_percpu __percpu *local; 329 int client_count; 330 int table_count; 331 332 /* DMA router */ 333 struct dma_router *router; 334 void *route_data; 335 336 void *private; 337}; 338 339/** 340 * struct dma_chan_dev - relate sysfs device node to backing channel device 341 * @chan: driver channel device 342 * @device: sysfs device 343 * @dev_id: parent dma_device dev_id 344 * @idr_ref: reference count to gate release of dma_device dev_id 345 */ 346struct dma_chan_dev { 347 struct dma_chan *chan; 348 struct device device; 349 int dev_id; 350 atomic_t *idr_ref; 351}; 352 353/** 354 * enum dma_slave_buswidth - defines bus width of the DMA slave 355 * device, source or target buses 356 */ 357enum dma_slave_buswidth { 358 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 359 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 360 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 361 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 362 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 363 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 364 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 365 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 366 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 367}; 368 369/** 370 * struct dma_slave_config - dma slave channel runtime config 371 * @direction: whether the data shall go in or out on this slave 372 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 373 * legal values. DEPRECATED, drivers should use the direction argument 374 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 375 * the dir field in the dma_interleaved_template structure. 376 * @src_addr: this is the physical address where DMA slave data 377 * should be read (RX), if the source is memory this argument is 378 * ignored. 379 * @dst_addr: this is the physical address where DMA slave data 380 * should be written (TX), if the source is memory this argument 381 * is ignored. 382 * @src_addr_width: this is the width in bytes of the source (RX) 383 * register where DMA data shall be read. If the source 384 * is memory this may be ignored depending on architecture. 385 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 386 * @dst_addr_width: same as src_addr_width but for destination 387 * target (TX) mutatis mutandis. 388 * @src_maxburst: the maximum number of words (note: words, as in 389 * units of the src_addr_width member, not bytes) that can be sent 390 * in one burst to the device. Typically something like half the 391 * FIFO depth on I/O peripherals so you don't overflow it. This 392 * may or may not be applicable on memory sources. 393 * @dst_maxburst: same as src_maxburst but for destination target 394 * mutatis mutandis. 395 * @src_port_window_size: The length of the register area in words the data need 396 * to be accessed on the device side. It is only used for devices which is using 397 * an area instead of a single register to receive the data. Typically the DMA 398 * loops in this area in order to transfer the data. 399 * @dst_port_window_size: same as src_port_window_size but for the destination 400 * port. 401 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 402 * with 'true' if peripheral should be flow controller. Direction will be 403 * selected at Runtime. 404 * @slave_id: Slave requester id. Only valid for slave channels. The dma 405 * slave peripheral will have unique id as dma requester which need to be 406 * pass as slave config. 407 * 408 * This struct is passed in as configuration data to a DMA engine 409 * in order to set up a certain channel for DMA transport at runtime. 410 * The DMA device/engine has to provide support for an additional 411 * callback in the dma_device structure, device_config and this struct 412 * will then be passed in as an argument to the function. 413 * 414 * The rationale for adding configuration information to this struct is as 415 * follows: if it is likely that more than one DMA slave controllers in 416 * the world will support the configuration option, then make it generic. 417 * If not: if it is fixed so that it be sent in static from the platform 418 * data, then prefer to do that. 419 */ 420struct dma_slave_config { 421 enum dma_transfer_direction direction; 422 phys_addr_t src_addr; 423 phys_addr_t dst_addr; 424 enum dma_slave_buswidth src_addr_width; 425 enum dma_slave_buswidth dst_addr_width; 426 u32 src_maxburst; 427 u32 dst_maxburst; 428 u32 src_port_window_size; 429 u32 dst_port_window_size; 430 bool device_fc; 431 unsigned int slave_id; 432}; 433 434/** 435 * enum dma_residue_granularity - Granularity of the reported transfer residue 436 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 437 * DMA channel is only able to tell whether a descriptor has been completed or 438 * not, which means residue reporting is not supported by this channel. The 439 * residue field of the dma_tx_state field will always be 0. 440 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 441 * completed segment of the transfer (For cyclic transfers this is after each 442 * period). This is typically implemented by having the hardware generate an 443 * interrupt after each transferred segment and then the drivers updates the 444 * outstanding residue by the size of the segment. Another possibility is if 445 * the hardware supports scatter-gather and the segment descriptor has a field 446 * which gets set after the segment has been completed. The driver then counts 447 * the number of segments without the flag set to compute the residue. 448 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 449 * burst. This is typically only supported if the hardware has a progress 450 * register of some sort (E.g. a register with the current read/write address 451 * or a register with the amount of bursts/beats/bytes that have been 452 * transferred or still need to be transferred). 453 */ 454enum dma_residue_granularity { 455 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 456 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 457 DMA_RESIDUE_GRANULARITY_BURST = 2, 458}; 459 460/** 461 * struct dma_slave_caps - expose capabilities of a slave channel only 462 * @src_addr_widths: bit mask of src addr widths the channel supports. 463 * Width is specified in bytes, e.g. for a channel supporting 464 * a width of 4 the mask should have BIT(4) set. 465 * @dst_addr_widths: bit mask of dst addr widths the channel supports 466 * @directions: bit mask of slave directions the channel supports. 467 * Since the enum dma_transfer_direction is not defined as bit flag for 468 * each type, the dma controller should set BIT(<TYPE>) and same 469 * should be checked by controller as well 470 * @max_burst: max burst capability per-transfer 471 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 472 * for resume later) 473 * @cmd_resume: true, if resume is supported 474 * @cmd_terminate: true, if terminate cmd is supported 475 * @residue_granularity: granularity of the reported transfer residue 476 * @descriptor_reuse: if a descriptor can be reused by client and 477 * resubmitted multiple times 478 */ 479struct dma_slave_caps { 480 u32 src_addr_widths; 481 u32 dst_addr_widths; 482 u32 directions; 483 u32 max_burst; 484 bool cmd_pause; 485 bool cmd_resume; 486 bool cmd_terminate; 487 enum dma_residue_granularity residue_granularity; 488 bool descriptor_reuse; 489}; 490 491static inline const char *dma_chan_name(struct dma_chan *chan) 492{ 493 return dev_name(&chan->dev->device); 494} 495 496void dma_chan_cleanup(struct kref *kref); 497 498/** 499 * typedef dma_filter_fn - callback filter for dma_request_channel 500 * @chan: channel to be reviewed 501 * @filter_param: opaque parameter passed through dma_request_channel 502 * 503 * When this optional parameter is specified in a call to dma_request_channel a 504 * suitable channel is passed to this routine for further dispositioning before 505 * being returned. Where 'suitable' indicates a non-busy channel that 506 * satisfies the given capability mask. It returns 'true' to indicate that the 507 * channel is suitable. 508 */ 509typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 510 511typedef void (*dma_async_tx_callback)(void *dma_async_param); 512 513enum dmaengine_tx_result { 514 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 515 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 516 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 517 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 518}; 519 520struct dmaengine_result { 521 enum dmaengine_tx_result result; 522 u32 residue; 523}; 524 525typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 526 const struct dmaengine_result *result); 527 528struct dmaengine_unmap_data { 529#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 530 u16 map_cnt; 531#else 532 u8 map_cnt; 533#endif 534 u8 to_cnt; 535 u8 from_cnt; 536 u8 bidi_cnt; 537 struct device *dev; 538 struct kref kref; 539 size_t len; 540 dma_addr_t addr[0]; 541}; 542 543struct dma_async_tx_descriptor; 544 545struct dma_descriptor_metadata_ops { 546 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 547 size_t len); 548 549 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 550 size_t *payload_len, size_t *max_len); 551 int (*set_len)(struct dma_async_tx_descriptor *desc, 552 size_t payload_len); 553}; 554 555/** 556 * struct dma_async_tx_descriptor - async transaction descriptor 557 * ---dma generic offload fields--- 558 * @cookie: tracking cookie for this transaction, set to -EBUSY if 559 * this tx is sitting on a dependency list 560 * @flags: flags to augment operation preparation, control completion, and 561 * communicate status 562 * @phys: physical address of the descriptor 563 * @chan: target channel for this operation 564 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 565 * descriptor pending. To be pushed on .issue_pending() call 566 * @callback: routine to call after this operation is complete 567 * @callback_param: general parameter to pass to the callback routine 568 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 569 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 570 * DESC_METADATA_NONE 571 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 572 * DMA driver if metadata mode is supported with the descriptor 573 * ---async_tx api specific fields--- 574 * @next: at completion submit this descriptor 575 * @parent: pointer to the next level up in the dependency chain 576 * @lock: protect the parent and next pointers 577 */ 578struct dma_async_tx_descriptor { 579 dma_cookie_t cookie; 580 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 581 dma_addr_t phys; 582 struct dma_chan *chan; 583 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 584 int (*desc_free)(struct dma_async_tx_descriptor *tx); 585 dma_async_tx_callback callback; 586 dma_async_tx_callback_result callback_result; 587 void *callback_param; 588 struct dmaengine_unmap_data *unmap; 589 enum dma_desc_metadata_mode desc_metadata_mode; 590 struct dma_descriptor_metadata_ops *metadata_ops; 591#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 592 struct dma_async_tx_descriptor *next; 593 struct dma_async_tx_descriptor *parent; 594 spinlock_t lock; 595#endif 596}; 597 598#ifdef CONFIG_DMA_ENGINE 599static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 600 struct dmaengine_unmap_data *unmap) 601{ 602 kref_get(&unmap->kref); 603 tx->unmap = unmap; 604} 605 606struct dmaengine_unmap_data * 607dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 608void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 609#else 610static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 611 struct dmaengine_unmap_data *unmap) 612{ 613} 614static inline struct dmaengine_unmap_data * 615dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 616{ 617 return NULL; 618} 619static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 620{ 621} 622#endif 623 624static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 625{ 626 if (!tx->unmap) 627 return; 628 629 dmaengine_unmap_put(tx->unmap); 630 tx->unmap = NULL; 631} 632 633#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 634static inline void txd_lock(struct dma_async_tx_descriptor *txd) 635{ 636} 637static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 638{ 639} 640static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 641{ 642 BUG(); 643} 644static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 645{ 646} 647static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 648{ 649} 650static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 651{ 652 return NULL; 653} 654static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 655{ 656 return NULL; 657} 658 659#else 660static inline void txd_lock(struct dma_async_tx_descriptor *txd) 661{ 662 spin_lock_bh(&txd->lock); 663} 664static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 665{ 666 spin_unlock_bh(&txd->lock); 667} 668static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 669{ 670 txd->next = next; 671 next->parent = txd; 672} 673static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 674{ 675 txd->parent = NULL; 676} 677static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 678{ 679 txd->next = NULL; 680} 681static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 682{ 683 return txd->parent; 684} 685static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 686{ 687 return txd->next; 688} 689#endif 690 691/** 692 * struct dma_tx_state - filled in to report the status of 693 * a transfer. 694 * @last: last completed DMA cookie 695 * @used: last issued DMA cookie (i.e. the one in progress) 696 * @residue: the remaining number of bytes left to transmit 697 * on the selected transfer for states DMA_IN_PROGRESS and 698 * DMA_PAUSED if this is implemented in the driver, else 0 699 * @in_flight_bytes: amount of data in bytes cached by the DMA. 700 */ 701struct dma_tx_state { 702 dma_cookie_t last; 703 dma_cookie_t used; 704 u32 residue; 705 u32 in_flight_bytes; 706}; 707 708/** 709 * enum dmaengine_alignment - defines alignment of the DMA async tx 710 * buffers 711 */ 712enum dmaengine_alignment { 713 DMAENGINE_ALIGN_1_BYTE = 0, 714 DMAENGINE_ALIGN_2_BYTES = 1, 715 DMAENGINE_ALIGN_4_BYTES = 2, 716 DMAENGINE_ALIGN_8_BYTES = 3, 717 DMAENGINE_ALIGN_16_BYTES = 4, 718 DMAENGINE_ALIGN_32_BYTES = 5, 719 DMAENGINE_ALIGN_64_BYTES = 6, 720}; 721 722/** 723 * struct dma_slave_map - associates slave device and it's slave channel with 724 * parameter to be used by a filter function 725 * @devname: name of the device 726 * @slave: slave channel name 727 * @param: opaque parameter to pass to struct dma_filter.fn 728 */ 729struct dma_slave_map { 730 const char *devname; 731 const char *slave; 732 void *param; 733}; 734 735/** 736 * struct dma_filter - information for slave device/channel to filter_fn/param 737 * mapping 738 * @fn: filter function callback 739 * @mapcnt: number of slave device/channel in the map 740 * @map: array of channel to filter mapping data 741 */ 742struct dma_filter { 743 dma_filter_fn fn; 744 int mapcnt; 745 const struct dma_slave_map *map; 746}; 747 748/** 749 * struct dma_device - info on the entity supplying DMA services 750 * @chancnt: how many DMA channels are supported 751 * @privatecnt: how many DMA channels are requested by dma_request_channel 752 * @channels: the list of struct dma_chan 753 * @global_node: list_head for global dma_device_list 754 * @filter: information for device/slave to filter function/param mapping 755 * @cap_mask: one or more dma_capability flags 756 * @desc_metadata_modes: supported metadata modes by the DMA device 757 * @max_xor: maximum number of xor sources, 0 if no capability 758 * @max_pq: maximum number of PQ sources and PQ-continue capability 759 * @copy_align: alignment shift for memcpy operations 760 * @xor_align: alignment shift for xor operations 761 * @pq_align: alignment shift for pq operations 762 * @fill_align: alignment shift for memset operations 763 * @dev_id: unique device ID 764 * @dev: struct device reference for dma mapping api 765 * @owner: owner module (automatically set based on the provided dev) 766 * @src_addr_widths: bit mask of src addr widths the device supports 767 * Width is specified in bytes, e.g. for a device supporting 768 * a width of 4 the mask should have BIT(4) set. 769 * @dst_addr_widths: bit mask of dst addr widths the device supports 770 * @directions: bit mask of slave directions the device supports. 771 * Since the enum dma_transfer_direction is not defined as bit flag for 772 * each type, the dma controller should set BIT(<TYPE>) and same 773 * should be checked by controller as well 774 * @max_burst: max burst capability per-transfer 775 * @residue_granularity: granularity of the transfer residue reported 776 * by tx_status 777 * @device_alloc_chan_resources: allocate resources and return the 778 * number of allocated descriptors 779 * @device_free_chan_resources: release DMA channel's resources 780 * @device_prep_dma_memcpy: prepares a memcpy operation 781 * @device_prep_dma_xor: prepares a xor operation 782 * @device_prep_dma_xor_val: prepares a xor validation operation 783 * @device_prep_dma_pq: prepares a pq operation 784 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 785 * @device_prep_dma_memset: prepares a memset operation 786 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 787 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 788 * @device_prep_slave_sg: prepares a slave dma operation 789 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 790 * The function takes a buffer of size buf_len. The callback function will 791 * be called after period_len bytes have been transferred. 792 * @device_prep_interleaved_dma: Transfer expression in a generic way. 793 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 794 * @device_config: Pushes a new configuration to a channel, return 0 or an error 795 * code 796 * @device_pause: Pauses any transfer happening on a channel. Returns 797 * 0 or an error code 798 * @device_resume: Resumes any transfer on a channel previously 799 * paused. Returns 0 or an error code 800 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 801 * or an error code 802 * @device_synchronize: Synchronizes the termination of a transfers to the 803 * current context. 804 * @device_tx_status: poll for transaction completion, the optional 805 * txstate parameter can be supplied with a pointer to get a 806 * struct with auxiliary transfer status information, otherwise the call 807 * will just return a simple status code 808 * @device_issue_pending: push pending transactions to hardware 809 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 810 * @device_release: called sometime atfer dma_async_device_unregister() is 811 * called and there are no further references to this structure. This 812 * must be implemented to free resources however many existing drivers 813 * do not and are therefore not safe to unbind while in use. 814 * @dbg_summary_show: optional routine to show contents in debugfs; default code 815 * will be used when this is omitted, but custom code can show extra, 816 * controller specific information. 817 */ 818struct dma_device { 819 struct kref ref; 820 unsigned int chancnt; 821 unsigned int privatecnt; 822 struct list_head channels; 823 struct list_head global_node; 824 struct dma_filter filter; 825 dma_cap_mask_t cap_mask; 826 enum dma_desc_metadata_mode desc_metadata_modes; 827 unsigned short max_xor; 828 unsigned short max_pq; 829 enum dmaengine_alignment copy_align; 830 enum dmaengine_alignment xor_align; 831 enum dmaengine_alignment pq_align; 832 enum dmaengine_alignment fill_align; 833 #define DMA_HAS_PQ_CONTINUE (1 << 15) 834 835 int dev_id; 836 struct device *dev; 837 struct module *owner; 838 839 u32 src_addr_widths; 840 u32 dst_addr_widths; 841 u32 directions; 842 u32 max_burst; 843 bool descriptor_reuse; 844 enum dma_residue_granularity residue_granularity; 845 846 int (*device_alloc_chan_resources)(struct dma_chan *chan); 847 void (*device_free_chan_resources)(struct dma_chan *chan); 848 849 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 850 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 851 size_t len, unsigned long flags); 852 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 853 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 854 unsigned int src_cnt, size_t len, unsigned long flags); 855 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 856 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 857 size_t len, enum sum_check_flags *result, unsigned long flags); 858 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 859 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 860 unsigned int src_cnt, const unsigned char *scf, 861 size_t len, unsigned long flags); 862 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 863 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 864 unsigned int src_cnt, const unsigned char *scf, size_t len, 865 enum sum_check_flags *pqres, unsigned long flags); 866 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 867 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 868 unsigned long flags); 869 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 870 struct dma_chan *chan, struct scatterlist *sg, 871 unsigned int nents, int value, unsigned long flags); 872 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 873 struct dma_chan *chan, unsigned long flags); 874 875 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 876 struct dma_chan *chan, struct scatterlist *sgl, 877 unsigned int sg_len, enum dma_transfer_direction direction, 878 unsigned long flags, void *context); 879 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 880 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 881 size_t period_len, enum dma_transfer_direction direction, 882 unsigned long flags); 883 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 884 struct dma_chan *chan, struct dma_interleaved_template *xt, 885 unsigned long flags); 886 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 887 struct dma_chan *chan, dma_addr_t dst, u64 data, 888 unsigned long flags); 889 890 int (*device_config)(struct dma_chan *chan, 891 struct dma_slave_config *config); 892 int (*device_pause)(struct dma_chan *chan); 893 int (*device_resume)(struct dma_chan *chan); 894 int (*device_terminate_all)(struct dma_chan *chan); 895 void (*device_synchronize)(struct dma_chan *chan); 896 897 enum dma_status (*device_tx_status)(struct dma_chan *chan, 898 dma_cookie_t cookie, 899 struct dma_tx_state *txstate); 900 void (*device_issue_pending)(struct dma_chan *chan); 901 void (*device_release)(struct dma_device *dev); 902 /* debugfs support */ 903#ifdef CONFIG_DEBUG_FS 904 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 905 struct dentry *dbg_dev_root; 906#endif 907}; 908 909static inline int dmaengine_slave_config(struct dma_chan *chan, 910 struct dma_slave_config *config) 911{ 912 if (chan->device->device_config) 913 return chan->device->device_config(chan, config); 914 915 return -ENOSYS; 916} 917 918static inline bool is_slave_direction(enum dma_transfer_direction direction) 919{ 920 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 921} 922 923static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 924 struct dma_chan *chan, dma_addr_t buf, size_t len, 925 enum dma_transfer_direction dir, unsigned long flags) 926{ 927 struct scatterlist sg; 928 sg_init_table(&sg, 1); 929 sg_dma_address(&sg) = buf; 930 sg_dma_len(&sg) = len; 931 932 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 933 return NULL; 934 935 return chan->device->device_prep_slave_sg(chan, &sg, 1, 936 dir, flags, NULL); 937} 938 939static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 940 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 941 enum dma_transfer_direction dir, unsigned long flags) 942{ 943 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 944 return NULL; 945 946 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 947 dir, flags, NULL); 948} 949 950#ifdef CONFIG_RAPIDIO_DMA_ENGINE 951struct rio_dma_ext; 952static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 953 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 954 enum dma_transfer_direction dir, unsigned long flags, 955 struct rio_dma_ext *rio_ext) 956{ 957 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 958 return NULL; 959 960 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 961 dir, flags, rio_ext); 962} 963#endif 964 965static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 966 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 967 size_t period_len, enum dma_transfer_direction dir, 968 unsigned long flags) 969{ 970 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 971 return NULL; 972 973 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 974 period_len, dir, flags); 975} 976 977static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 978 struct dma_chan *chan, struct dma_interleaved_template *xt, 979 unsigned long flags) 980{ 981 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 982 return NULL; 983 984 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 985} 986 987static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 988 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 989 unsigned long flags) 990{ 991 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 992 return NULL; 993 994 return chan->device->device_prep_dma_memset(chan, dest, value, 995 len, flags); 996} 997 998static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 999 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1000 size_t len, unsigned long flags) 1001{ 1002 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1003 return NULL; 1004 1005 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1006 len, flags); 1007} 1008 1009static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1010 enum dma_desc_metadata_mode mode) 1011{ 1012 if (!chan) 1013 return false; 1014 1015 return !!(chan->device->desc_metadata_modes & mode); 1016} 1017 1018#ifdef CONFIG_DMA_ENGINE 1019int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1020 void *data, size_t len); 1021void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1022 size_t *payload_len, size_t *max_len); 1023int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1024 size_t payload_len); 1025#else /* CONFIG_DMA_ENGINE */ 1026static inline int dmaengine_desc_attach_metadata( 1027 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1028{ 1029 return -EINVAL; 1030} 1031static inline void *dmaengine_desc_get_metadata_ptr( 1032 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1033 size_t *max_len) 1034{ 1035 return NULL; 1036} 1037static inline int dmaengine_desc_set_metadata_len( 1038 struct dma_async_tx_descriptor *desc, size_t payload_len) 1039{ 1040 return -EINVAL; 1041} 1042#endif /* CONFIG_DMA_ENGINE */ 1043 1044/** 1045 * dmaengine_terminate_all() - Terminate all active DMA transfers 1046 * @chan: The channel for which to terminate the transfers 1047 * 1048 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1049 * dmaengine_terminate_async() instead. 1050 */ 1051static inline int dmaengine_terminate_all(struct dma_chan *chan) 1052{ 1053 if (chan->device->device_terminate_all) 1054 return chan->device->device_terminate_all(chan); 1055 1056 return -ENOSYS; 1057} 1058 1059/** 1060 * dmaengine_terminate_async() - Terminate all active DMA transfers 1061 * @chan: The channel for which to terminate the transfers 1062 * 1063 * Calling this function will terminate all active and pending descriptors 1064 * that have previously been submitted to the channel. It is not guaranteed 1065 * though that the transfer for the active descriptor has stopped when the 1066 * function returns. Furthermore it is possible the complete callback of a 1067 * submitted transfer is still running when this function returns. 1068 * 1069 * dmaengine_synchronize() needs to be called before it is safe to free 1070 * any memory that is accessed by previously submitted descriptors or before 1071 * freeing any resources accessed from within the completion callback of any 1072 * perviously submitted descriptors. 1073 * 1074 * This function can be called from atomic context as well as from within a 1075 * complete callback of a descriptor submitted on the same channel. 1076 * 1077 * If none of the two conditions above apply consider using 1078 * dmaengine_terminate_sync() instead. 1079 */ 1080static inline int dmaengine_terminate_async(struct dma_chan *chan) 1081{ 1082 if (chan->device->device_terminate_all) 1083 return chan->device->device_terminate_all(chan); 1084 1085 return -EINVAL; 1086} 1087 1088/** 1089 * dmaengine_synchronize() - Synchronize DMA channel termination 1090 * @chan: The channel to synchronize 1091 * 1092 * Synchronizes to the DMA channel termination to the current context. When this 1093 * function returns it is guaranteed that all transfers for previously issued 1094 * descriptors have stopped and and it is safe to free the memory assoicated 1095 * with them. Furthermore it is guaranteed that all complete callback functions 1096 * for a previously submitted descriptor have finished running and it is safe to 1097 * free resources accessed from within the complete callbacks. 1098 * 1099 * The behavior of this function is undefined if dma_async_issue_pending() has 1100 * been called between dmaengine_terminate_async() and this function. 1101 * 1102 * This function must only be called from non-atomic context and must not be 1103 * called from within a complete callback of a descriptor submitted on the same 1104 * channel. 1105 */ 1106static inline void dmaengine_synchronize(struct dma_chan *chan) 1107{ 1108 might_sleep(); 1109 1110 if (chan->device->device_synchronize) 1111 chan->device->device_synchronize(chan); 1112} 1113 1114/** 1115 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1116 * @chan: The channel for which to terminate the transfers 1117 * 1118 * Calling this function will terminate all active and pending transfers 1119 * that have previously been submitted to the channel. It is similar to 1120 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1121 * stopped and that all complete callbacks have finished running when the 1122 * function returns. 1123 * 1124 * This function must only be called from non-atomic context and must not be 1125 * called from within a complete callback of a descriptor submitted on the same 1126 * channel. 1127 */ 1128static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1129{ 1130 int ret; 1131 1132 ret = dmaengine_terminate_async(chan); 1133 if (ret) 1134 return ret; 1135 1136 dmaengine_synchronize(chan); 1137 1138 return 0; 1139} 1140 1141static inline int dmaengine_pause(struct dma_chan *chan) 1142{ 1143 if (chan->device->device_pause) 1144 return chan->device->device_pause(chan); 1145 1146 return -ENOSYS; 1147} 1148 1149static inline int dmaengine_resume(struct dma_chan *chan) 1150{ 1151 if (chan->device->device_resume) 1152 return chan->device->device_resume(chan); 1153 1154 return -ENOSYS; 1155} 1156 1157static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1158 dma_cookie_t cookie, struct dma_tx_state *state) 1159{ 1160 return chan->device->device_tx_status(chan, cookie, state); 1161} 1162 1163static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1164{ 1165 return desc->tx_submit(desc); 1166} 1167 1168static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1169 size_t off1, size_t off2, size_t len) 1170{ 1171 return !(((1 << align) - 1) & (off1 | off2 | len)); 1172} 1173 1174static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1175 size_t off2, size_t len) 1176{ 1177 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1178} 1179 1180static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1181 size_t off2, size_t len) 1182{ 1183 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1184} 1185 1186static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1187 size_t off2, size_t len) 1188{ 1189 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1190} 1191 1192static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1193 size_t off2, size_t len) 1194{ 1195 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1196} 1197 1198static inline void 1199dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1200{ 1201 dma->max_pq = maxpq; 1202 if (has_pq_continue) 1203 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1204} 1205 1206static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1207{ 1208 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1209} 1210 1211static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1212{ 1213 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1214 1215 return (flags & mask) == mask; 1216} 1217 1218static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1219{ 1220 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1221} 1222 1223static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1224{ 1225 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1226} 1227 1228/* dma_maxpq - reduce maxpq in the face of continued operations 1229 * @dma - dma device with PQ capability 1230 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1231 * 1232 * When an engine does not support native continuation we need 3 extra 1233 * source slots to reuse P and Q with the following coefficients: 1234 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1235 * 2/ {01} * Q : use Q to continue Q' calculation 1236 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1237 * 1238 * In the case where P is disabled we only need 1 extra source: 1239 * 1/ {01} * Q : use Q to continue Q' calculation 1240 */ 1241static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1242{ 1243 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1244 return dma_dev_to_maxpq(dma); 1245 if (dmaf_p_disabled_continue(flags)) 1246 return dma_dev_to_maxpq(dma) - 1; 1247 if (dmaf_continue(flags)) 1248 return dma_dev_to_maxpq(dma) - 3; 1249 BUG(); 1250} 1251 1252static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1253 size_t dir_icg) 1254{ 1255 if (inc) { 1256 if (dir_icg) 1257 return dir_icg; 1258 if (sgl) 1259 return icg; 1260 } 1261 1262 return 0; 1263} 1264 1265static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1266 struct data_chunk *chunk) 1267{ 1268 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1269 chunk->icg, chunk->dst_icg); 1270} 1271 1272static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1273 struct data_chunk *chunk) 1274{ 1275 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1276 chunk->icg, chunk->src_icg); 1277} 1278 1279/* --- public DMA engine API --- */ 1280 1281#ifdef CONFIG_DMA_ENGINE 1282void dmaengine_get(void); 1283void dmaengine_put(void); 1284#else 1285static inline void dmaengine_get(void) 1286{ 1287} 1288static inline void dmaengine_put(void) 1289{ 1290} 1291#endif 1292 1293#ifdef CONFIG_ASYNC_TX_DMA 1294#define async_dmaengine_get() dmaengine_get() 1295#define async_dmaengine_put() dmaengine_put() 1296#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1297#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1298#else 1299#define async_dma_find_channel(type) dma_find_channel(type) 1300#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1301#else 1302static inline void async_dmaengine_get(void) 1303{ 1304} 1305static inline void async_dmaengine_put(void) 1306{ 1307} 1308static inline struct dma_chan * 1309async_dma_find_channel(enum dma_transaction_type type) 1310{ 1311 return NULL; 1312} 1313#endif /* CONFIG_ASYNC_TX_DMA */ 1314void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1315 struct dma_chan *chan); 1316 1317static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1318{ 1319 tx->flags |= DMA_CTRL_ACK; 1320} 1321 1322static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1323{ 1324 tx->flags &= ~DMA_CTRL_ACK; 1325} 1326 1327static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1328{ 1329 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1330} 1331 1332#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1333static inline void 1334__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1335{ 1336 set_bit(tx_type, dstp->bits); 1337} 1338 1339#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1340static inline void 1341__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1342{ 1343 clear_bit(tx_type, dstp->bits); 1344} 1345 1346#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1347static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1348{ 1349 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1350} 1351 1352#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1353static inline int 1354__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1355{ 1356 return test_bit(tx_type, srcp->bits); 1357} 1358 1359#define for_each_dma_cap_mask(cap, mask) \ 1360 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1361 1362/** 1363 * dma_async_issue_pending - flush pending transactions to HW 1364 * @chan: target DMA channel 1365 * 1366 * This allows drivers to push copies to HW in batches, 1367 * reducing MMIO writes where possible. 1368 */ 1369static inline void dma_async_issue_pending(struct dma_chan *chan) 1370{ 1371 chan->device->device_issue_pending(chan); 1372} 1373 1374/** 1375 * dma_async_is_tx_complete - poll for transaction completion 1376 * @chan: DMA channel 1377 * @cookie: transaction identifier to check status of 1378 * @last: returns last completed cookie, can be NULL 1379 * @used: returns last issued cookie, can be NULL 1380 * 1381 * If @last and @used are passed in, upon return they reflect the driver 1382 * internal state and can be used with dma_async_is_complete() to check 1383 * the status of multiple cookies without re-checking hardware state. 1384 */ 1385static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1386 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1387{ 1388 struct dma_tx_state state; 1389 enum dma_status status; 1390 1391 status = chan->device->device_tx_status(chan, cookie, &state); 1392 if (last) 1393 *last = state.last; 1394 if (used) 1395 *used = state.used; 1396 return status; 1397} 1398 1399/** 1400 * dma_async_is_complete - test a cookie against chan state 1401 * @cookie: transaction identifier to test status of 1402 * @last_complete: last know completed transaction 1403 * @last_used: last cookie value handed out 1404 * 1405 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1406 * the test logic is separated for lightweight testing of multiple cookies 1407 */ 1408static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1409 dma_cookie_t last_complete, dma_cookie_t last_used) 1410{ 1411 if (last_complete <= last_used) { 1412 if ((cookie <= last_complete) || (cookie > last_used)) 1413 return DMA_COMPLETE; 1414 } else { 1415 if ((cookie <= last_complete) && (cookie > last_used)) 1416 return DMA_COMPLETE; 1417 } 1418 return DMA_IN_PROGRESS; 1419} 1420 1421static inline void 1422dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1423{ 1424 if (!st) 1425 return; 1426 1427 st->last = last; 1428 st->used = used; 1429 st->residue = residue; 1430} 1431 1432#ifdef CONFIG_DMA_ENGINE 1433struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1434enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1435enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1436void dma_issue_pending_all(void); 1437struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1438 dma_filter_fn fn, void *fn_param, 1439 struct device_node *np); 1440struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1441 1442struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1443struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1444 1445void dma_release_channel(struct dma_chan *chan); 1446int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1447#else 1448static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1449{ 1450 return NULL; 1451} 1452static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1453{ 1454 return DMA_COMPLETE; 1455} 1456static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1457{ 1458 return DMA_COMPLETE; 1459} 1460static inline void dma_issue_pending_all(void) 1461{ 1462} 1463static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1464 dma_filter_fn fn, 1465 void *fn_param, 1466 struct device_node *np) 1467{ 1468 return NULL; 1469} 1470static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1471 const char *name) 1472{ 1473 return NULL; 1474} 1475static inline struct dma_chan *dma_request_chan(struct device *dev, 1476 const char *name) 1477{ 1478 return ERR_PTR(-ENODEV); 1479} 1480static inline struct dma_chan *dma_request_chan_by_mask( 1481 const dma_cap_mask_t *mask) 1482{ 1483 return ERR_PTR(-ENODEV); 1484} 1485static inline void dma_release_channel(struct dma_chan *chan) 1486{ 1487} 1488static inline int dma_get_slave_caps(struct dma_chan *chan, 1489 struct dma_slave_caps *caps) 1490{ 1491 return -ENXIO; 1492} 1493#endif 1494 1495#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) 1496 1497static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1498{ 1499 struct dma_slave_caps caps; 1500 int ret; 1501 1502 ret = dma_get_slave_caps(tx->chan, &caps); 1503 if (ret) 1504 return ret; 1505 1506 if (!caps.descriptor_reuse) 1507 return -EPERM; 1508 1509 tx->flags |= DMA_CTRL_REUSE; 1510 return 0; 1511} 1512 1513static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1514{ 1515 tx->flags &= ~DMA_CTRL_REUSE; 1516} 1517 1518static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1519{ 1520 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1521} 1522 1523static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1524{ 1525 /* this is supported for reusable desc, so check that */ 1526 if (!dmaengine_desc_test_reuse(desc)) 1527 return -EPERM; 1528 1529 return desc->desc_free(desc); 1530} 1531 1532/* --- DMA device --- */ 1533 1534int dma_async_device_register(struct dma_device *device); 1535int dmaenginem_async_device_register(struct dma_device *device); 1536void dma_async_device_unregister(struct dma_device *device); 1537int dma_async_device_channel_register(struct dma_device *device, 1538 struct dma_chan *chan); 1539void dma_async_device_channel_unregister(struct dma_device *device, 1540 struct dma_chan *chan); 1541void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1542#define dma_request_channel(mask, x, y) \ 1543 __dma_request_channel(&(mask), x, y, NULL) 1544 1545static inline struct dma_chan 1546*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1547 dma_filter_fn fn, void *fn_param, 1548 struct device *dev, const char *name) 1549{ 1550 struct dma_chan *chan; 1551 1552 chan = dma_request_slave_channel(dev, name); 1553 if (chan) 1554 return chan; 1555 1556 if (!fn || !fn_param) 1557 return NULL; 1558 1559 return __dma_request_channel(&mask, fn, fn_param, NULL); 1560} 1561 1562static inline char * 1563dmaengine_get_direction_text(enum dma_transfer_direction dir) 1564{ 1565 switch (dir) { 1566 case DMA_DEV_TO_MEM: 1567 return "DEV_TO_MEM"; 1568 case DMA_MEM_TO_DEV: 1569 return "MEM_TO_DEV"; 1570 case DMA_MEM_TO_MEM: 1571 return "MEM_TO_MEM"; 1572 case DMA_DEV_TO_DEV: 1573 return "DEV_TO_DEV"; 1574 default: 1575 return "invalid"; 1576 } 1577} 1578#endif /* DMAENGINE_H */