Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
12#include <linux/pm_runtime.h>
13#include <linux/sched/signal.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17
18#include "tb.h"
19
20/* Switch NVM support */
21
22#define NVM_DEVID 0x05
23#define NVM_VERSION 0x08
24#define NVM_CSS 0x10
25#define NVM_FLASH_SIZE 0x45
26
27#define NVM_MIN_SIZE SZ_32K
28#define NVM_MAX_SIZE SZ_512K
29
30static DEFINE_IDA(nvm_ida);
31
32struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36};
37
38/*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43static LIST_HEAD(nvm_auth_status_cache);
44static DEFINE_MUTEX(nvm_auth_status_lock);
45
46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47{
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56}
57
58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59{
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67}
68
69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70{
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92}
93
94static void nvm_clear_auth_status(const struct tb_switch *sw)
95{
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105}
106
107static int nvm_validate_and_write(struct tb_switch *sw)
108{
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 if (tb_switch_is_usb4(sw))
167 return usb4_switch_nvm_write(sw, 0, buf, image_size);
168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169}
170
171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172{
173 int ret = 0;
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
179 */
180 if (!sw->safe_mode) {
181 u32 status;
182
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
209}
210
211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
225 }
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
266 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
275 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
331 struct tb_switch *sw = priv;
332 int ret;
333
334 pm_runtime_get_sync(&sw->dev);
335
336 if (!mutex_trylock(&sw->tb->lock)) {
337 ret = restart_syscall();
338 goto out;
339 }
340
341 ret = nvm_read(sw, offset, val, bytes);
342 mutex_unlock(&sw->tb->lock);
343
344out:
345 pm_runtime_mark_last_busy(&sw->dev);
346 pm_runtime_put_autosuspend(&sw->dev);
347
348 return ret;
349}
350
351static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
352 size_t bytes)
353{
354 return -EPERM;
355}
356
357static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
358 size_t bytes)
359{
360 struct tb_switch *sw = priv;
361 int ret = 0;
362
363 if (!mutex_trylock(&sw->tb->lock))
364 return restart_syscall();
365
366 /*
367 * Since writing the NVM image might require some special steps,
368 * for example when CSS headers are written, we cache the image
369 * locally here and handle the special cases when the user asks
370 * us to authenticate the image.
371 */
372 if (!sw->nvm->buf) {
373 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
374 if (!sw->nvm->buf) {
375 ret = -ENOMEM;
376 goto unlock;
377 }
378 }
379
380 sw->nvm->buf_data_size = offset + bytes;
381 memcpy(sw->nvm->buf + offset, val, bytes);
382
383unlock:
384 mutex_unlock(&sw->tb->lock);
385
386 return ret;
387}
388
389static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
390 size_t size, bool active)
391{
392 struct nvmem_config config;
393
394 memset(&config, 0, sizeof(config));
395
396 if (active) {
397 config.name = "nvm_active";
398 config.reg_read = tb_switch_nvm_read;
399 config.read_only = true;
400 } else {
401 config.name = "nvm_non_active";
402 config.reg_read = tb_switch_nvm_no_read;
403 config.reg_write = tb_switch_nvm_write;
404 config.root_only = true;
405 }
406
407 config.id = id;
408 config.stride = 4;
409 config.word_size = 4;
410 config.size = size;
411 config.dev = &sw->dev;
412 config.owner = THIS_MODULE;
413 config.priv = sw;
414
415 return nvmem_register(&config);
416}
417
418static int tb_switch_nvm_add(struct tb_switch *sw)
419{
420 struct nvmem_device *nvm_dev;
421 struct tb_switch_nvm *nvm;
422 u32 val;
423 int ret;
424
425 if (!nvm_readable(sw))
426 return 0;
427
428 /*
429 * The NVM format of non-Intel hardware is not known so
430 * currently restrict NVM upgrade for Intel hardware. We may
431 * relax this in the future when we learn other NVM formats.
432 */
433 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
434 dev_info(&sw->dev,
435 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
436 sw->config.vendor_id);
437 return 0;
438 }
439
440 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
441 if (!nvm)
442 return -ENOMEM;
443
444 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
445
446 /*
447 * If the switch is in safe-mode the only accessible portion of
448 * the NVM is the non-active one where userspace is expected to
449 * write new functional NVM.
450 */
451 if (!sw->safe_mode) {
452 u32 nvm_size, hdr_size;
453
454 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
455 if (ret)
456 goto err_ida;
457
458 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
459 nvm_size = (SZ_1M << (val & 7)) / 8;
460 nvm_size = (nvm_size - hdr_size) / 2;
461
462 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
463 if (ret)
464 goto err_ida;
465
466 nvm->major = val >> 16;
467 nvm->minor = val >> 8;
468
469 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
470 if (IS_ERR(nvm_dev)) {
471 ret = PTR_ERR(nvm_dev);
472 goto err_ida;
473 }
474 nvm->active = nvm_dev;
475 }
476
477 if (!sw->no_nvm_upgrade) {
478 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
479 if (IS_ERR(nvm_dev)) {
480 ret = PTR_ERR(nvm_dev);
481 goto err_nvm_active;
482 }
483 nvm->non_active = nvm_dev;
484 }
485
486 sw->nvm = nvm;
487 return 0;
488
489err_nvm_active:
490 if (nvm->active)
491 nvmem_unregister(nvm->active);
492err_ida:
493 ida_simple_remove(&nvm_ida, nvm->id);
494 kfree(nvm);
495
496 return ret;
497}
498
499static void tb_switch_nvm_remove(struct tb_switch *sw)
500{
501 struct tb_switch_nvm *nvm;
502
503 nvm = sw->nvm;
504 sw->nvm = NULL;
505
506 if (!nvm)
507 return;
508
509 /* Remove authentication status in case the switch is unplugged */
510 if (!nvm->authenticating)
511 nvm_clear_auth_status(sw);
512
513 if (nvm->non_active)
514 nvmem_unregister(nvm->non_active);
515 if (nvm->active)
516 nvmem_unregister(nvm->active);
517 ida_simple_remove(&nvm_ida, nvm->id);
518 vfree(nvm->buf);
519 kfree(nvm);
520}
521
522/* port utility functions */
523
524static const char *tb_port_type(struct tb_regs_port_header *port)
525{
526 switch (port->type >> 16) {
527 case 0:
528 switch ((u8) port->type) {
529 case 0:
530 return "Inactive";
531 case 1:
532 return "Port";
533 case 2:
534 return "NHI";
535 default:
536 return "unknown";
537 }
538 case 0x2:
539 return "Ethernet";
540 case 0x8:
541 return "SATA";
542 case 0xe:
543 return "DP/HDMI";
544 case 0x10:
545 return "PCIe";
546 case 0x20:
547 return "USB";
548 default:
549 return "unknown";
550 }
551}
552
553static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
554{
555 tb_dbg(tb,
556 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
557 port->port_number, port->vendor_id, port->device_id,
558 port->revision, port->thunderbolt_version, tb_port_type(port),
559 port->type);
560 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
561 port->max_in_hop_id, port->max_out_hop_id);
562 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
563 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
564}
565
566/**
567 * tb_port_state() - get connectedness state of a port
568 *
569 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
570 *
571 * Return: Returns an enum tb_port_state on success or an error code on failure.
572 */
573static int tb_port_state(struct tb_port *port)
574{
575 struct tb_cap_phy phy;
576 int res;
577 if (port->cap_phy == 0) {
578 tb_port_WARN(port, "does not have a PHY\n");
579 return -EINVAL;
580 }
581 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
582 if (res)
583 return res;
584 return phy.state;
585}
586
587/**
588 * tb_wait_for_port() - wait for a port to become ready
589 *
590 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
591 * wait_if_unplugged is set then we also wait if the port is in state
592 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
593 * switch resume). Otherwise we only wait if a device is registered but the link
594 * has not yet been established.
595 *
596 * Return: Returns an error code on failure. Returns 0 if the port is not
597 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
598 * if the port is connected and in state TB_PORT_UP.
599 */
600int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
601{
602 int retries = 10;
603 int state;
604 if (!port->cap_phy) {
605 tb_port_WARN(port, "does not have PHY\n");
606 return -EINVAL;
607 }
608 if (tb_is_upstream_port(port)) {
609 tb_port_WARN(port, "is the upstream port\n");
610 return -EINVAL;
611 }
612
613 while (retries--) {
614 state = tb_port_state(port);
615 if (state < 0)
616 return state;
617 if (state == TB_PORT_DISABLED) {
618 tb_port_dbg(port, "is disabled (state: 0)\n");
619 return 0;
620 }
621 if (state == TB_PORT_UNPLUGGED) {
622 if (wait_if_unplugged) {
623 /* used during resume */
624 tb_port_dbg(port,
625 "is unplugged (state: 7), retrying...\n");
626 msleep(100);
627 continue;
628 }
629 tb_port_dbg(port, "is unplugged (state: 7)\n");
630 return 0;
631 }
632 if (state == TB_PORT_UP) {
633 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
634 return 1;
635 }
636
637 /*
638 * After plug-in the state is TB_PORT_CONNECTING. Give it some
639 * time.
640 */
641 tb_port_dbg(port,
642 "is connected, link is not up (state: %d), retrying...\n",
643 state);
644 msleep(100);
645 }
646 tb_port_warn(port,
647 "failed to reach state TB_PORT_UP. Ignoring port...\n");
648 return 0;
649}
650
651/**
652 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
653 *
654 * Change the number of NFC credits allocated to @port by @credits. To remove
655 * NFC credits pass a negative amount of credits.
656 *
657 * Return: Returns 0 on success or an error code on failure.
658 */
659int tb_port_add_nfc_credits(struct tb_port *port, int credits)
660{
661 u32 nfc_credits;
662
663 if (credits == 0 || port->sw->is_unplugged)
664 return 0;
665
666 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
667 nfc_credits += credits;
668
669 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
670 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
671
672 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
673 port->config.nfc_credits |= nfc_credits;
674
675 return tb_port_write(port, &port->config.nfc_credits,
676 TB_CFG_PORT, ADP_CS_4, 1);
677}
678
679/**
680 * tb_port_set_initial_credits() - Set initial port link credits allocated
681 * @port: Port to set the initial credits
682 * @credits: Number of credits to to allocate
683 *
684 * Set initial credits value to be used for ingress shared buffering.
685 */
686int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
687{
688 u32 data;
689 int ret;
690
691 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
692 if (ret)
693 return ret;
694
695 data &= ~ADP_CS_5_LCA_MASK;
696 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
697
698 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
699}
700
701/**
702 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
703 *
704 * Return: Returns 0 on success or an error code on failure.
705 */
706int tb_port_clear_counter(struct tb_port *port, int counter)
707{
708 u32 zero[3] = { 0, 0, 0 };
709 tb_port_dbg(port, "clearing counter %d\n", counter);
710 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
711}
712
713/**
714 * tb_port_unlock() - Unlock downstream port
715 * @port: Port to unlock
716 *
717 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
718 * downstream router accessible for CM.
719 */
720int tb_port_unlock(struct tb_port *port)
721{
722 if (tb_switch_is_icm(port->sw))
723 return 0;
724 if (!tb_port_is_null(port))
725 return -EINVAL;
726 if (tb_switch_is_usb4(port->sw))
727 return usb4_port_unlock(port);
728 return 0;
729}
730
731/**
732 * tb_init_port() - initialize a port
733 *
734 * This is a helper method for tb_switch_alloc. Does not check or initialize
735 * any downstream switches.
736 *
737 * Return: Returns 0 on success or an error code on failure.
738 */
739static int tb_init_port(struct tb_port *port)
740{
741 int res;
742 int cap;
743
744 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
745 if (res) {
746 if (res == -ENODEV) {
747 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
748 port->port);
749 return 0;
750 }
751 return res;
752 }
753
754 /* Port 0 is the switch itself and has no PHY. */
755 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
756 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
757
758 if (cap > 0)
759 port->cap_phy = cap;
760 else
761 tb_port_WARN(port, "non switch port without a PHY\n");
762
763 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
764 if (cap > 0)
765 port->cap_usb4 = cap;
766 } else if (port->port != 0) {
767 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
768 if (cap > 0)
769 port->cap_adap = cap;
770 }
771
772 tb_dump_port(port->sw->tb, &port->config);
773
774 /* Control port does not need HopID allocation */
775 if (port->port) {
776 ida_init(&port->in_hopids);
777 ida_init(&port->out_hopids);
778 }
779
780 INIT_LIST_HEAD(&port->list);
781 return 0;
782
783}
784
785static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
786 int max_hopid)
787{
788 int port_max_hopid;
789 struct ida *ida;
790
791 if (in) {
792 port_max_hopid = port->config.max_in_hop_id;
793 ida = &port->in_hopids;
794 } else {
795 port_max_hopid = port->config.max_out_hop_id;
796 ida = &port->out_hopids;
797 }
798
799 /* HopIDs 0-7 are reserved */
800 if (min_hopid < TB_PATH_MIN_HOPID)
801 min_hopid = TB_PATH_MIN_HOPID;
802
803 if (max_hopid < 0 || max_hopid > port_max_hopid)
804 max_hopid = port_max_hopid;
805
806 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
807}
808
809/**
810 * tb_port_alloc_in_hopid() - Allocate input HopID from port
811 * @port: Port to allocate HopID for
812 * @min_hopid: Minimum acceptable input HopID
813 * @max_hopid: Maximum acceptable input HopID
814 *
815 * Return: HopID between @min_hopid and @max_hopid or negative errno in
816 * case of error.
817 */
818int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
819{
820 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
821}
822
823/**
824 * tb_port_alloc_out_hopid() - Allocate output HopID from port
825 * @port: Port to allocate HopID for
826 * @min_hopid: Minimum acceptable output HopID
827 * @max_hopid: Maximum acceptable output HopID
828 *
829 * Return: HopID between @min_hopid and @max_hopid or negative errno in
830 * case of error.
831 */
832int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
833{
834 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
835}
836
837/**
838 * tb_port_release_in_hopid() - Release allocated input HopID from port
839 * @port: Port whose HopID to release
840 * @hopid: HopID to release
841 */
842void tb_port_release_in_hopid(struct tb_port *port, int hopid)
843{
844 ida_simple_remove(&port->in_hopids, hopid);
845}
846
847/**
848 * tb_port_release_out_hopid() - Release allocated output HopID from port
849 * @port: Port whose HopID to release
850 * @hopid: HopID to release
851 */
852void tb_port_release_out_hopid(struct tb_port *port, int hopid)
853{
854 ida_simple_remove(&port->out_hopids, hopid);
855}
856
857/**
858 * tb_next_port_on_path() - Return next port for given port on a path
859 * @start: Start port of the walk
860 * @end: End port of the walk
861 * @prev: Previous port (%NULL if this is the first)
862 *
863 * This function can be used to walk from one port to another if they
864 * are connected through zero or more switches. If the @prev is dual
865 * link port, the function follows that link and returns another end on
866 * that same link.
867 *
868 * If the @end port has been reached, return %NULL.
869 *
870 * Domain tb->lock must be held when this function is called.
871 */
872struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
873 struct tb_port *prev)
874{
875 struct tb_port *next;
876
877 if (!prev)
878 return start;
879
880 if (prev->sw == end->sw) {
881 if (prev == end)
882 return NULL;
883 return end;
884 }
885
886 if (start->sw->config.depth < end->sw->config.depth) {
887 if (prev->remote &&
888 prev->remote->sw->config.depth > prev->sw->config.depth)
889 next = prev->remote;
890 else
891 next = tb_port_at(tb_route(end->sw), prev->sw);
892 } else {
893 if (tb_is_upstream_port(prev)) {
894 next = prev->remote;
895 } else {
896 next = tb_upstream_port(prev->sw);
897 /*
898 * Keep the same link if prev and next are both
899 * dual link ports.
900 */
901 if (next->dual_link_port &&
902 next->link_nr != prev->link_nr) {
903 next = next->dual_link_port;
904 }
905 }
906 }
907
908 return next;
909}
910
911static int tb_port_get_link_speed(struct tb_port *port)
912{
913 u32 val, speed;
914 int ret;
915
916 if (!port->cap_phy)
917 return -EINVAL;
918
919 ret = tb_port_read(port, &val, TB_CFG_PORT,
920 port->cap_phy + LANE_ADP_CS_1, 1);
921 if (ret)
922 return ret;
923
924 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
925 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
926 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
927}
928
929static int tb_port_get_link_width(struct tb_port *port)
930{
931 u32 val;
932 int ret;
933
934 if (!port->cap_phy)
935 return -EINVAL;
936
937 ret = tb_port_read(port, &val, TB_CFG_PORT,
938 port->cap_phy + LANE_ADP_CS_1, 1);
939 if (ret)
940 return ret;
941
942 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
943 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
944}
945
946static bool tb_port_is_width_supported(struct tb_port *port, int width)
947{
948 u32 phy, widths;
949 int ret;
950
951 if (!port->cap_phy)
952 return false;
953
954 ret = tb_port_read(port, &phy, TB_CFG_PORT,
955 port->cap_phy + LANE_ADP_CS_0, 1);
956 if (ret)
957 return false;
958
959 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
960 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
961
962 return !!(widths & width);
963}
964
965static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
966{
967 u32 val;
968 int ret;
969
970 if (!port->cap_phy)
971 return -EINVAL;
972
973 ret = tb_port_read(port, &val, TB_CFG_PORT,
974 port->cap_phy + LANE_ADP_CS_1, 1);
975 if (ret)
976 return ret;
977
978 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
979 switch (width) {
980 case 1:
981 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
982 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
983 break;
984 case 2:
985 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
986 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
987 break;
988 default:
989 return -EINVAL;
990 }
991
992 val |= LANE_ADP_CS_1_LB;
993
994 return tb_port_write(port, &val, TB_CFG_PORT,
995 port->cap_phy + LANE_ADP_CS_1, 1);
996}
997
998static int tb_port_lane_bonding_enable(struct tb_port *port)
999{
1000 int ret;
1001
1002 /*
1003 * Enable lane bonding for both links if not already enabled by
1004 * for example the boot firmware.
1005 */
1006 ret = tb_port_get_link_width(port);
1007 if (ret == 1) {
1008 ret = tb_port_set_link_width(port, 2);
1009 if (ret)
1010 return ret;
1011 }
1012
1013 ret = tb_port_get_link_width(port->dual_link_port);
1014 if (ret == 1) {
1015 ret = tb_port_set_link_width(port->dual_link_port, 2);
1016 if (ret) {
1017 tb_port_set_link_width(port, 1);
1018 return ret;
1019 }
1020 }
1021
1022 port->bonded = true;
1023 port->dual_link_port->bonded = true;
1024
1025 return 0;
1026}
1027
1028static void tb_port_lane_bonding_disable(struct tb_port *port)
1029{
1030 port->dual_link_port->bonded = false;
1031 port->bonded = false;
1032
1033 tb_port_set_link_width(port->dual_link_port, 1);
1034 tb_port_set_link_width(port, 1);
1035}
1036
1037/**
1038 * tb_port_is_enabled() - Is the adapter port enabled
1039 * @port: Port to check
1040 */
1041bool tb_port_is_enabled(struct tb_port *port)
1042{
1043 switch (port->config.type) {
1044 case TB_TYPE_PCIE_UP:
1045 case TB_TYPE_PCIE_DOWN:
1046 return tb_pci_port_is_enabled(port);
1047
1048 case TB_TYPE_DP_HDMI_IN:
1049 case TB_TYPE_DP_HDMI_OUT:
1050 return tb_dp_port_is_enabled(port);
1051
1052 case TB_TYPE_USB3_UP:
1053 case TB_TYPE_USB3_DOWN:
1054 return tb_usb3_port_is_enabled(port);
1055
1056 default:
1057 return false;
1058 }
1059}
1060
1061/**
1062 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1063 * @port: USB3 adapter port to check
1064 */
1065bool tb_usb3_port_is_enabled(struct tb_port *port)
1066{
1067 u32 data;
1068
1069 if (tb_port_read(port, &data, TB_CFG_PORT,
1070 port->cap_adap + ADP_USB3_CS_0, 1))
1071 return false;
1072
1073 return !!(data & ADP_USB3_CS_0_PE);
1074}
1075
1076/**
1077 * tb_usb3_port_enable() - Enable USB3 adapter port
1078 * @port: USB3 adapter port to enable
1079 * @enable: Enable/disable the USB3 adapter
1080 */
1081int tb_usb3_port_enable(struct tb_port *port, bool enable)
1082{
1083 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1084 : ADP_USB3_CS_0_V;
1085
1086 if (!port->cap_adap)
1087 return -ENXIO;
1088 return tb_port_write(port, &word, TB_CFG_PORT,
1089 port->cap_adap + ADP_USB3_CS_0, 1);
1090}
1091
1092/**
1093 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1094 * @port: PCIe port to check
1095 */
1096bool tb_pci_port_is_enabled(struct tb_port *port)
1097{
1098 u32 data;
1099
1100 if (tb_port_read(port, &data, TB_CFG_PORT,
1101 port->cap_adap + ADP_PCIE_CS_0, 1))
1102 return false;
1103
1104 return !!(data & ADP_PCIE_CS_0_PE);
1105}
1106
1107/**
1108 * tb_pci_port_enable() - Enable PCIe adapter port
1109 * @port: PCIe port to enable
1110 * @enable: Enable/disable the PCIe adapter
1111 */
1112int tb_pci_port_enable(struct tb_port *port, bool enable)
1113{
1114 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1115 if (!port->cap_adap)
1116 return -ENXIO;
1117 return tb_port_write(port, &word, TB_CFG_PORT,
1118 port->cap_adap + ADP_PCIE_CS_0, 1);
1119}
1120
1121/**
1122 * tb_dp_port_hpd_is_active() - Is HPD already active
1123 * @port: DP out port to check
1124 *
1125 * Checks if the DP OUT adapter port has HDP bit already set.
1126 */
1127int tb_dp_port_hpd_is_active(struct tb_port *port)
1128{
1129 u32 data;
1130 int ret;
1131
1132 ret = tb_port_read(port, &data, TB_CFG_PORT,
1133 port->cap_adap + ADP_DP_CS_2, 1);
1134 if (ret)
1135 return ret;
1136
1137 return !!(data & ADP_DP_CS_2_HDP);
1138}
1139
1140/**
1141 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1142 * @port: Port to clear HPD
1143 *
1144 * If the DP IN port has HDP set, this function can be used to clear it.
1145 */
1146int tb_dp_port_hpd_clear(struct tb_port *port)
1147{
1148 u32 data;
1149 int ret;
1150
1151 ret = tb_port_read(port, &data, TB_CFG_PORT,
1152 port->cap_adap + ADP_DP_CS_3, 1);
1153 if (ret)
1154 return ret;
1155
1156 data |= ADP_DP_CS_3_HDPC;
1157 return tb_port_write(port, &data, TB_CFG_PORT,
1158 port->cap_adap + ADP_DP_CS_3, 1);
1159}
1160
1161/**
1162 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1163 * @port: DP IN/OUT port to set hops
1164 * @video: Video Hop ID
1165 * @aux_tx: AUX TX Hop ID
1166 * @aux_rx: AUX RX Hop ID
1167 *
1168 * Programs specified Hop IDs for DP IN/OUT port.
1169 */
1170int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1171 unsigned int aux_tx, unsigned int aux_rx)
1172{
1173 u32 data[2];
1174 int ret;
1175
1176 ret = tb_port_read(port, data, TB_CFG_PORT,
1177 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1178 if (ret)
1179 return ret;
1180
1181 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1182 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1183 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1184
1185 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1186 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1187 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1188 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1189 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190
1191 return tb_port_write(port, data, TB_CFG_PORT,
1192 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1193}
1194
1195/**
1196 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1197 * @port: DP adapter port to check
1198 */
1199bool tb_dp_port_is_enabled(struct tb_port *port)
1200{
1201 u32 data[2];
1202
1203 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1204 ARRAY_SIZE(data)))
1205 return false;
1206
1207 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1208}
1209
1210/**
1211 * tb_dp_port_enable() - Enables/disables DP paths of a port
1212 * @port: DP IN/OUT port
1213 * @enable: Enable/disable DP path
1214 *
1215 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1216 * calling this function.
1217 */
1218int tb_dp_port_enable(struct tb_port *port, bool enable)
1219{
1220 u32 data[2];
1221 int ret;
1222
1223 ret = tb_port_read(port, data, TB_CFG_PORT,
1224 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1225 if (ret)
1226 return ret;
1227
1228 if (enable)
1229 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1230 else
1231 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1232
1233 return tb_port_write(port, data, TB_CFG_PORT,
1234 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1235}
1236
1237/* switch utility functions */
1238
1239static const char *tb_switch_generation_name(const struct tb_switch *sw)
1240{
1241 switch (sw->generation) {
1242 case 1:
1243 return "Thunderbolt 1";
1244 case 2:
1245 return "Thunderbolt 2";
1246 case 3:
1247 return "Thunderbolt 3";
1248 case 4:
1249 return "USB4";
1250 default:
1251 return "Unknown";
1252 }
1253}
1254
1255static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1256{
1257 const struct tb_regs_switch_header *regs = &sw->config;
1258
1259 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1260 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1261 regs->revision, regs->thunderbolt_version);
1262 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1263 tb_dbg(tb, " Config:\n");
1264 tb_dbg(tb,
1265 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1266 regs->upstream_port_number, regs->depth,
1267 (((u64) regs->route_hi) << 32) | regs->route_lo,
1268 regs->enabled, regs->plug_events_delay);
1269 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1270 regs->__unknown1, regs->__unknown4);
1271}
1272
1273/**
1274 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1275 *
1276 * Return: Returns 0 on success or an error code on failure.
1277 */
1278int tb_switch_reset(struct tb *tb, u64 route)
1279{
1280 struct tb_cfg_result res;
1281 struct tb_regs_switch_header header = {
1282 header.route_hi = route >> 32,
1283 header.route_lo = route,
1284 header.enabled = true,
1285 };
1286 tb_dbg(tb, "resetting switch at %llx\n", route);
1287 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1288 0, 2, 2, 2);
1289 if (res.err)
1290 return res.err;
1291 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1292 if (res.err > 0)
1293 return -EIO;
1294 return res.err;
1295}
1296
1297/**
1298 * tb_plug_events_active() - enable/disable plug events on a switch
1299 *
1300 * Also configures a sane plug_events_delay of 255ms.
1301 *
1302 * Return: Returns 0 on success or an error code on failure.
1303 */
1304static int tb_plug_events_active(struct tb_switch *sw, bool active)
1305{
1306 u32 data;
1307 int res;
1308
1309 if (tb_switch_is_icm(sw))
1310 return 0;
1311
1312 sw->config.plug_events_delay = 0xff;
1313 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1314 if (res)
1315 return res;
1316
1317 /* Plug events are always enabled in USB4 */
1318 if (tb_switch_is_usb4(sw))
1319 return 0;
1320
1321 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1322 if (res)
1323 return res;
1324
1325 if (active) {
1326 data = data & 0xFFFFFF83;
1327 switch (sw->config.device_id) {
1328 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1329 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1330 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1331 break;
1332 default:
1333 data |= 4;
1334 }
1335 } else {
1336 data = data | 0x7c;
1337 }
1338 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1339 sw->cap_plug_events + 1, 1);
1340}
1341
1342static ssize_t authorized_show(struct device *dev,
1343 struct device_attribute *attr,
1344 char *buf)
1345{
1346 struct tb_switch *sw = tb_to_switch(dev);
1347
1348 return sprintf(buf, "%u\n", sw->authorized);
1349}
1350
1351static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1352{
1353 int ret = -EINVAL;
1354
1355 if (!mutex_trylock(&sw->tb->lock))
1356 return restart_syscall();
1357
1358 if (sw->authorized)
1359 goto unlock;
1360
1361 switch (val) {
1362 /* Approve switch */
1363 case 1:
1364 if (sw->key)
1365 ret = tb_domain_approve_switch_key(sw->tb, sw);
1366 else
1367 ret = tb_domain_approve_switch(sw->tb, sw);
1368 break;
1369
1370 /* Challenge switch */
1371 case 2:
1372 if (sw->key)
1373 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1374 break;
1375
1376 default:
1377 break;
1378 }
1379
1380 if (!ret) {
1381 sw->authorized = val;
1382 /* Notify status change to the userspace */
1383 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1384 }
1385
1386unlock:
1387 mutex_unlock(&sw->tb->lock);
1388 return ret;
1389}
1390
1391static ssize_t authorized_store(struct device *dev,
1392 struct device_attribute *attr,
1393 const char *buf, size_t count)
1394{
1395 struct tb_switch *sw = tb_to_switch(dev);
1396 unsigned int val;
1397 ssize_t ret;
1398
1399 ret = kstrtouint(buf, 0, &val);
1400 if (ret)
1401 return ret;
1402 if (val > 2)
1403 return -EINVAL;
1404
1405 pm_runtime_get_sync(&sw->dev);
1406 ret = tb_switch_set_authorized(sw, val);
1407 pm_runtime_mark_last_busy(&sw->dev);
1408 pm_runtime_put_autosuspend(&sw->dev);
1409
1410 return ret ? ret : count;
1411}
1412static DEVICE_ATTR_RW(authorized);
1413
1414static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1415 char *buf)
1416{
1417 struct tb_switch *sw = tb_to_switch(dev);
1418
1419 return sprintf(buf, "%u\n", sw->boot);
1420}
1421static DEVICE_ATTR_RO(boot);
1422
1423static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1424 char *buf)
1425{
1426 struct tb_switch *sw = tb_to_switch(dev);
1427
1428 return sprintf(buf, "%#x\n", sw->device);
1429}
1430static DEVICE_ATTR_RO(device);
1431
1432static ssize_t
1433device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1434{
1435 struct tb_switch *sw = tb_to_switch(dev);
1436
1437 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1438}
1439static DEVICE_ATTR_RO(device_name);
1440
1441static ssize_t
1442generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1443{
1444 struct tb_switch *sw = tb_to_switch(dev);
1445
1446 return sprintf(buf, "%u\n", sw->generation);
1447}
1448static DEVICE_ATTR_RO(generation);
1449
1450static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1451 char *buf)
1452{
1453 struct tb_switch *sw = tb_to_switch(dev);
1454 ssize_t ret;
1455
1456 if (!mutex_trylock(&sw->tb->lock))
1457 return restart_syscall();
1458
1459 if (sw->key)
1460 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1461 else
1462 ret = sprintf(buf, "\n");
1463
1464 mutex_unlock(&sw->tb->lock);
1465 return ret;
1466}
1467
1468static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1469 const char *buf, size_t count)
1470{
1471 struct tb_switch *sw = tb_to_switch(dev);
1472 u8 key[TB_SWITCH_KEY_SIZE];
1473 ssize_t ret = count;
1474 bool clear = false;
1475
1476 if (!strcmp(buf, "\n"))
1477 clear = true;
1478 else if (hex2bin(key, buf, sizeof(key)))
1479 return -EINVAL;
1480
1481 if (!mutex_trylock(&sw->tb->lock))
1482 return restart_syscall();
1483
1484 if (sw->authorized) {
1485 ret = -EBUSY;
1486 } else {
1487 kfree(sw->key);
1488 if (clear) {
1489 sw->key = NULL;
1490 } else {
1491 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1492 if (!sw->key)
1493 ret = -ENOMEM;
1494 }
1495 }
1496
1497 mutex_unlock(&sw->tb->lock);
1498 return ret;
1499}
1500static DEVICE_ATTR(key, 0600, key_show, key_store);
1501
1502static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1503 char *buf)
1504{
1505 struct tb_switch *sw = tb_to_switch(dev);
1506
1507 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1508}
1509
1510/*
1511 * Currently all lanes must run at the same speed but we expose here
1512 * both directions to allow possible asymmetric links in the future.
1513 */
1514static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1515static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1516
1517static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1518 char *buf)
1519{
1520 struct tb_switch *sw = tb_to_switch(dev);
1521
1522 return sprintf(buf, "%u\n", sw->link_width);
1523}
1524
1525/*
1526 * Currently link has same amount of lanes both directions (1 or 2) but
1527 * expose them separately to allow possible asymmetric links in the future.
1528 */
1529static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1530static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1531
1532static ssize_t nvm_authenticate_show(struct device *dev,
1533 struct device_attribute *attr, char *buf)
1534{
1535 struct tb_switch *sw = tb_to_switch(dev);
1536 u32 status;
1537
1538 nvm_get_auth_status(sw, &status);
1539 return sprintf(buf, "%#x\n", status);
1540}
1541
1542static ssize_t nvm_authenticate_store(struct device *dev,
1543 struct device_attribute *attr, const char *buf, size_t count)
1544{
1545 struct tb_switch *sw = tb_to_switch(dev);
1546 bool val;
1547 int ret;
1548
1549 pm_runtime_get_sync(&sw->dev);
1550
1551 if (!mutex_trylock(&sw->tb->lock)) {
1552 ret = restart_syscall();
1553 goto exit_rpm;
1554 }
1555
1556 /* If NVMem devices are not yet added */
1557 if (!sw->nvm) {
1558 ret = -EAGAIN;
1559 goto exit_unlock;
1560 }
1561
1562 ret = kstrtobool(buf, &val);
1563 if (ret)
1564 goto exit_unlock;
1565
1566 /* Always clear the authentication status */
1567 nvm_clear_auth_status(sw);
1568
1569 if (val) {
1570 if (!sw->nvm->buf) {
1571 ret = -EINVAL;
1572 goto exit_unlock;
1573 }
1574
1575 ret = nvm_validate_and_write(sw);
1576 if (ret)
1577 goto exit_unlock;
1578
1579 sw->nvm->authenticating = true;
1580 ret = nvm_authenticate(sw);
1581 }
1582
1583exit_unlock:
1584 mutex_unlock(&sw->tb->lock);
1585exit_rpm:
1586 pm_runtime_mark_last_busy(&sw->dev);
1587 pm_runtime_put_autosuspend(&sw->dev);
1588
1589 if (ret)
1590 return ret;
1591 return count;
1592}
1593static DEVICE_ATTR_RW(nvm_authenticate);
1594
1595static ssize_t nvm_version_show(struct device *dev,
1596 struct device_attribute *attr, char *buf)
1597{
1598 struct tb_switch *sw = tb_to_switch(dev);
1599 int ret;
1600
1601 if (!mutex_trylock(&sw->tb->lock))
1602 return restart_syscall();
1603
1604 if (sw->safe_mode)
1605 ret = -ENODATA;
1606 else if (!sw->nvm)
1607 ret = -EAGAIN;
1608 else
1609 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1610
1611 mutex_unlock(&sw->tb->lock);
1612
1613 return ret;
1614}
1615static DEVICE_ATTR_RO(nvm_version);
1616
1617static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1618 char *buf)
1619{
1620 struct tb_switch *sw = tb_to_switch(dev);
1621
1622 return sprintf(buf, "%#x\n", sw->vendor);
1623}
1624static DEVICE_ATTR_RO(vendor);
1625
1626static ssize_t
1627vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1628{
1629 struct tb_switch *sw = tb_to_switch(dev);
1630
1631 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1632}
1633static DEVICE_ATTR_RO(vendor_name);
1634
1635static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1636 char *buf)
1637{
1638 struct tb_switch *sw = tb_to_switch(dev);
1639
1640 return sprintf(buf, "%pUb\n", sw->uuid);
1641}
1642static DEVICE_ATTR_RO(unique_id);
1643
1644static struct attribute *switch_attrs[] = {
1645 &dev_attr_authorized.attr,
1646 &dev_attr_boot.attr,
1647 &dev_attr_device.attr,
1648 &dev_attr_device_name.attr,
1649 &dev_attr_generation.attr,
1650 &dev_attr_key.attr,
1651 &dev_attr_nvm_authenticate.attr,
1652 &dev_attr_nvm_version.attr,
1653 &dev_attr_rx_speed.attr,
1654 &dev_attr_rx_lanes.attr,
1655 &dev_attr_tx_speed.attr,
1656 &dev_attr_tx_lanes.attr,
1657 &dev_attr_vendor.attr,
1658 &dev_attr_vendor_name.attr,
1659 &dev_attr_unique_id.attr,
1660 NULL,
1661};
1662
1663static umode_t switch_attr_is_visible(struct kobject *kobj,
1664 struct attribute *attr, int n)
1665{
1666 struct device *dev = container_of(kobj, struct device, kobj);
1667 struct tb_switch *sw = tb_to_switch(dev);
1668
1669 if (attr == &dev_attr_device.attr) {
1670 if (!sw->device)
1671 return 0;
1672 } else if (attr == &dev_attr_device_name.attr) {
1673 if (!sw->device_name)
1674 return 0;
1675 } else if (attr == &dev_attr_vendor.attr) {
1676 if (!sw->vendor)
1677 return 0;
1678 } else if (attr == &dev_attr_vendor_name.attr) {
1679 if (!sw->vendor_name)
1680 return 0;
1681 } else if (attr == &dev_attr_key.attr) {
1682 if (tb_route(sw) &&
1683 sw->tb->security_level == TB_SECURITY_SECURE &&
1684 sw->security_level == TB_SECURITY_SECURE)
1685 return attr->mode;
1686 return 0;
1687 } else if (attr == &dev_attr_rx_speed.attr ||
1688 attr == &dev_attr_rx_lanes.attr ||
1689 attr == &dev_attr_tx_speed.attr ||
1690 attr == &dev_attr_tx_lanes.attr) {
1691 if (tb_route(sw))
1692 return attr->mode;
1693 return 0;
1694 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1695 if (nvm_upgradeable(sw))
1696 return attr->mode;
1697 return 0;
1698 } else if (attr == &dev_attr_nvm_version.attr) {
1699 if (nvm_readable(sw))
1700 return attr->mode;
1701 return 0;
1702 } else if (attr == &dev_attr_boot.attr) {
1703 if (tb_route(sw))
1704 return attr->mode;
1705 return 0;
1706 }
1707
1708 return sw->safe_mode ? 0 : attr->mode;
1709}
1710
1711static struct attribute_group switch_group = {
1712 .is_visible = switch_attr_is_visible,
1713 .attrs = switch_attrs,
1714};
1715
1716static const struct attribute_group *switch_groups[] = {
1717 &switch_group,
1718 NULL,
1719};
1720
1721static void tb_switch_release(struct device *dev)
1722{
1723 struct tb_switch *sw = tb_to_switch(dev);
1724 struct tb_port *port;
1725
1726 dma_port_free(sw->dma_port);
1727
1728 tb_switch_for_each_port(sw, port) {
1729 if (!port->disabled) {
1730 ida_destroy(&port->in_hopids);
1731 ida_destroy(&port->out_hopids);
1732 }
1733 }
1734
1735 kfree(sw->uuid);
1736 kfree(sw->device_name);
1737 kfree(sw->vendor_name);
1738 kfree(sw->ports);
1739 kfree(sw->drom);
1740 kfree(sw->key);
1741 kfree(sw);
1742}
1743
1744/*
1745 * Currently only need to provide the callbacks. Everything else is handled
1746 * in the connection manager.
1747 */
1748static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1749{
1750 struct tb_switch *sw = tb_to_switch(dev);
1751 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1752
1753 if (cm_ops->runtime_suspend_switch)
1754 return cm_ops->runtime_suspend_switch(sw);
1755
1756 return 0;
1757}
1758
1759static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1760{
1761 struct tb_switch *sw = tb_to_switch(dev);
1762 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1763
1764 if (cm_ops->runtime_resume_switch)
1765 return cm_ops->runtime_resume_switch(sw);
1766 return 0;
1767}
1768
1769static const struct dev_pm_ops tb_switch_pm_ops = {
1770 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1771 NULL)
1772};
1773
1774struct device_type tb_switch_type = {
1775 .name = "thunderbolt_device",
1776 .release = tb_switch_release,
1777 .pm = &tb_switch_pm_ops,
1778};
1779
1780static int tb_switch_get_generation(struct tb_switch *sw)
1781{
1782 switch (sw->config.device_id) {
1783 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1784 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1785 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1786 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1787 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1788 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1789 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1790 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1791 return 1;
1792
1793 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1794 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1795 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1796 return 2;
1797
1798 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1799 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1800 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1801 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1802 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1803 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1804 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1805 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1806 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1807 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1808 return 3;
1809
1810 default:
1811 if (tb_switch_is_usb4(sw))
1812 return 4;
1813
1814 /*
1815 * For unknown switches assume generation to be 1 to be
1816 * on the safe side.
1817 */
1818 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1819 sw->config.device_id);
1820 return 1;
1821 }
1822}
1823
1824static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1825{
1826 int max_depth;
1827
1828 if (tb_switch_is_usb4(sw) ||
1829 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1830 max_depth = USB4_SWITCH_MAX_DEPTH;
1831 else
1832 max_depth = TB_SWITCH_MAX_DEPTH;
1833
1834 return depth > max_depth;
1835}
1836
1837/**
1838 * tb_switch_alloc() - allocate a switch
1839 * @tb: Pointer to the owning domain
1840 * @parent: Parent device for this switch
1841 * @route: Route string for this switch
1842 *
1843 * Allocates and initializes a switch. Will not upload configuration to
1844 * the switch. For that you need to call tb_switch_configure()
1845 * separately. The returned switch should be released by calling
1846 * tb_switch_put().
1847 *
1848 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1849 * failure.
1850 */
1851struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1852 u64 route)
1853{
1854 struct tb_switch *sw;
1855 int upstream_port;
1856 int i, ret, depth;
1857
1858 /* Unlock the downstream port so we can access the switch below */
1859 if (route) {
1860 struct tb_switch *parent_sw = tb_to_switch(parent);
1861 struct tb_port *down;
1862
1863 down = tb_port_at(route, parent_sw);
1864 tb_port_unlock(down);
1865 }
1866
1867 depth = tb_route_length(route);
1868
1869 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1870 if (upstream_port < 0)
1871 return ERR_PTR(upstream_port);
1872
1873 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1874 if (!sw)
1875 return ERR_PTR(-ENOMEM);
1876
1877 sw->tb = tb;
1878 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1879 if (ret)
1880 goto err_free_sw_ports;
1881
1882 sw->generation = tb_switch_get_generation(sw);
1883
1884 tb_dbg(tb, "current switch config:\n");
1885 tb_dump_switch(tb, sw);
1886
1887 /* configure switch */
1888 sw->config.upstream_port_number = upstream_port;
1889 sw->config.depth = depth;
1890 sw->config.route_hi = upper_32_bits(route);
1891 sw->config.route_lo = lower_32_bits(route);
1892 sw->config.enabled = 0;
1893
1894 /* Make sure we do not exceed maximum topology limit */
1895 if (tb_switch_exceeds_max_depth(sw, depth)) {
1896 ret = -EADDRNOTAVAIL;
1897 goto err_free_sw_ports;
1898 }
1899
1900 /* initialize ports */
1901 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1902 GFP_KERNEL);
1903 if (!sw->ports) {
1904 ret = -ENOMEM;
1905 goto err_free_sw_ports;
1906 }
1907
1908 for (i = 0; i <= sw->config.max_port_number; i++) {
1909 /* minimum setup for tb_find_cap and tb_drom_read to work */
1910 sw->ports[i].sw = sw;
1911 sw->ports[i].port = i;
1912 }
1913
1914 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1915 if (ret > 0)
1916 sw->cap_plug_events = ret;
1917
1918 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1919 if (ret > 0)
1920 sw->cap_lc = ret;
1921
1922 /* Root switch is always authorized */
1923 if (!route)
1924 sw->authorized = true;
1925
1926 device_initialize(&sw->dev);
1927 sw->dev.parent = parent;
1928 sw->dev.bus = &tb_bus_type;
1929 sw->dev.type = &tb_switch_type;
1930 sw->dev.groups = switch_groups;
1931 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1932
1933 return sw;
1934
1935err_free_sw_ports:
1936 kfree(sw->ports);
1937 kfree(sw);
1938
1939 return ERR_PTR(ret);
1940}
1941
1942/**
1943 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1944 * @tb: Pointer to the owning domain
1945 * @parent: Parent device for this switch
1946 * @route: Route string for this switch
1947 *
1948 * This creates a switch in safe mode. This means the switch pretty much
1949 * lacks all capabilities except DMA configuration port before it is
1950 * flashed with a valid NVM firmware.
1951 *
1952 * The returned switch must be released by calling tb_switch_put().
1953 *
1954 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1955 */
1956struct tb_switch *
1957tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1958{
1959 struct tb_switch *sw;
1960
1961 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1962 if (!sw)
1963 return ERR_PTR(-ENOMEM);
1964
1965 sw->tb = tb;
1966 sw->config.depth = tb_route_length(route);
1967 sw->config.route_hi = upper_32_bits(route);
1968 sw->config.route_lo = lower_32_bits(route);
1969 sw->safe_mode = true;
1970
1971 device_initialize(&sw->dev);
1972 sw->dev.parent = parent;
1973 sw->dev.bus = &tb_bus_type;
1974 sw->dev.type = &tb_switch_type;
1975 sw->dev.groups = switch_groups;
1976 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1977
1978 return sw;
1979}
1980
1981/**
1982 * tb_switch_configure() - Uploads configuration to the switch
1983 * @sw: Switch to configure
1984 *
1985 * Call this function before the switch is added to the system. It will
1986 * upload configuration to the switch and makes it available for the
1987 * connection manager to use. Can be called to the switch again after
1988 * resume from low power states to re-initialize it.
1989 *
1990 * Return: %0 in case of success and negative errno in case of failure
1991 */
1992int tb_switch_configure(struct tb_switch *sw)
1993{
1994 struct tb *tb = sw->tb;
1995 u64 route;
1996 int ret;
1997
1998 route = tb_route(sw);
1999
2000 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2001 sw->config.enabled ? "restoring " : "initializing", route,
2002 tb_route_length(route), sw->config.upstream_port_number);
2003
2004 sw->config.enabled = 1;
2005
2006 if (tb_switch_is_usb4(sw)) {
2007 /*
2008 * For USB4 devices, we need to program the CM version
2009 * accordingly so that it knows to expose all the
2010 * additional capabilities.
2011 */
2012 sw->config.cmuv = USB4_VERSION_1_0;
2013
2014 /* Enumerate the switch */
2015 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2016 ROUTER_CS_1, 4);
2017 if (ret)
2018 return ret;
2019
2020 ret = usb4_switch_setup(sw);
2021 if (ret)
2022 return ret;
2023
2024 ret = usb4_switch_configure_link(sw);
2025 } else {
2026 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2027 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2028 sw->config.vendor_id);
2029
2030 if (!sw->cap_plug_events) {
2031 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2032 return -ENODEV;
2033 }
2034
2035 /* Enumerate the switch */
2036 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2037 ROUTER_CS_1, 3);
2038 if (ret)
2039 return ret;
2040
2041 ret = tb_lc_configure_link(sw);
2042 }
2043 if (ret)
2044 return ret;
2045
2046 return tb_plug_events_active(sw, true);
2047}
2048
2049static int tb_switch_set_uuid(struct tb_switch *sw)
2050{
2051 bool uid = false;
2052 u32 uuid[4];
2053 int ret;
2054
2055 if (sw->uuid)
2056 return 0;
2057
2058 if (tb_switch_is_usb4(sw)) {
2059 ret = usb4_switch_read_uid(sw, &sw->uid);
2060 if (ret)
2061 return ret;
2062 uid = true;
2063 } else {
2064 /*
2065 * The newer controllers include fused UUID as part of
2066 * link controller specific registers
2067 */
2068 ret = tb_lc_read_uuid(sw, uuid);
2069 if (ret) {
2070 if (ret != -EINVAL)
2071 return ret;
2072 uid = true;
2073 }
2074 }
2075
2076 if (uid) {
2077 /*
2078 * ICM generates UUID based on UID and fills the upper
2079 * two words with ones. This is not strictly following
2080 * UUID format but we want to be compatible with it so
2081 * we do the same here.
2082 */
2083 uuid[0] = sw->uid & 0xffffffff;
2084 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2085 uuid[2] = 0xffffffff;
2086 uuid[3] = 0xffffffff;
2087 }
2088
2089 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2090 if (!sw->uuid)
2091 return -ENOMEM;
2092 return 0;
2093}
2094
2095static int tb_switch_add_dma_port(struct tb_switch *sw)
2096{
2097 u32 status;
2098 int ret;
2099
2100 switch (sw->generation) {
2101 case 2:
2102 /* Only root switch can be upgraded */
2103 if (tb_route(sw))
2104 return 0;
2105
2106 /* fallthrough */
2107 case 3:
2108 ret = tb_switch_set_uuid(sw);
2109 if (ret)
2110 return ret;
2111 break;
2112
2113 default:
2114 /*
2115 * DMA port is the only thing available when the switch
2116 * is in safe mode.
2117 */
2118 if (!sw->safe_mode)
2119 return 0;
2120 break;
2121 }
2122
2123 /* Root switch DMA port requires running firmware */
2124 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2125 return 0;
2126
2127 sw->dma_port = dma_port_alloc(sw);
2128 if (!sw->dma_port)
2129 return 0;
2130
2131 if (sw->no_nvm_upgrade)
2132 return 0;
2133
2134 /*
2135 * If there is status already set then authentication failed
2136 * when the dma_port_flash_update_auth() returned. Power cycling
2137 * is not needed (it was done already) so only thing we do here
2138 * is to unblock runtime PM of the root port.
2139 */
2140 nvm_get_auth_status(sw, &status);
2141 if (status) {
2142 if (!tb_route(sw))
2143 nvm_authenticate_complete_dma_port(sw);
2144 return 0;
2145 }
2146
2147 /*
2148 * Check status of the previous flash authentication. If there
2149 * is one we need to power cycle the switch in any case to make
2150 * it functional again.
2151 */
2152 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2153 if (ret <= 0)
2154 return ret;
2155
2156 /* Now we can allow root port to suspend again */
2157 if (!tb_route(sw))
2158 nvm_authenticate_complete_dma_port(sw);
2159
2160 if (status) {
2161 tb_sw_info(sw, "switch flash authentication failed\n");
2162 nvm_set_auth_status(sw, status);
2163 }
2164
2165 tb_sw_info(sw, "power cycling the switch now\n");
2166 dma_port_power_cycle(sw->dma_port);
2167
2168 /*
2169 * We return error here which causes the switch adding failure.
2170 * It should appear back after power cycle is complete.
2171 */
2172 return -ESHUTDOWN;
2173}
2174
2175static void tb_switch_default_link_ports(struct tb_switch *sw)
2176{
2177 int i;
2178
2179 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2180 struct tb_port *port = &sw->ports[i];
2181 struct tb_port *subordinate;
2182
2183 if (!tb_port_is_null(port))
2184 continue;
2185
2186 /* Check for the subordinate port */
2187 if (i == sw->config.max_port_number ||
2188 !tb_port_is_null(&sw->ports[i + 1]))
2189 continue;
2190
2191 /* Link them if not already done so (by DROM) */
2192 subordinate = &sw->ports[i + 1];
2193 if (!port->dual_link_port && !subordinate->dual_link_port) {
2194 port->link_nr = 0;
2195 port->dual_link_port = subordinate;
2196 subordinate->link_nr = 1;
2197 subordinate->dual_link_port = port;
2198
2199 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2200 port->port, subordinate->port);
2201 }
2202 }
2203}
2204
2205static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2206{
2207 const struct tb_port *up = tb_upstream_port(sw);
2208
2209 if (!up->dual_link_port || !up->dual_link_port->remote)
2210 return false;
2211
2212 if (tb_switch_is_usb4(sw))
2213 return usb4_switch_lane_bonding_possible(sw);
2214 return tb_lc_lane_bonding_possible(sw);
2215}
2216
2217static int tb_switch_update_link_attributes(struct tb_switch *sw)
2218{
2219 struct tb_port *up;
2220 bool change = false;
2221 int ret;
2222
2223 if (!tb_route(sw) || tb_switch_is_icm(sw))
2224 return 0;
2225
2226 up = tb_upstream_port(sw);
2227
2228 ret = tb_port_get_link_speed(up);
2229 if (ret < 0)
2230 return ret;
2231 if (sw->link_speed != ret)
2232 change = true;
2233 sw->link_speed = ret;
2234
2235 ret = tb_port_get_link_width(up);
2236 if (ret < 0)
2237 return ret;
2238 if (sw->link_width != ret)
2239 change = true;
2240 sw->link_width = ret;
2241
2242 /* Notify userspace that there is possible link attribute change */
2243 if (device_is_registered(&sw->dev) && change)
2244 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2245
2246 return 0;
2247}
2248
2249/**
2250 * tb_switch_lane_bonding_enable() - Enable lane bonding
2251 * @sw: Switch to enable lane bonding
2252 *
2253 * Connection manager can call this function to enable lane bonding of a
2254 * switch. If conditions are correct and both switches support the feature,
2255 * lanes are bonded. It is safe to call this to any switch.
2256 */
2257int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2258{
2259 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2260 struct tb_port *up, *down;
2261 u64 route = tb_route(sw);
2262 int ret;
2263
2264 if (!route)
2265 return 0;
2266
2267 if (!tb_switch_lane_bonding_possible(sw))
2268 return 0;
2269
2270 up = tb_upstream_port(sw);
2271 down = tb_port_at(route, parent);
2272
2273 if (!tb_port_is_width_supported(up, 2) ||
2274 !tb_port_is_width_supported(down, 2))
2275 return 0;
2276
2277 ret = tb_port_lane_bonding_enable(up);
2278 if (ret) {
2279 tb_port_warn(up, "failed to enable lane bonding\n");
2280 return ret;
2281 }
2282
2283 ret = tb_port_lane_bonding_enable(down);
2284 if (ret) {
2285 tb_port_warn(down, "failed to enable lane bonding\n");
2286 tb_port_lane_bonding_disable(up);
2287 return ret;
2288 }
2289
2290 tb_switch_update_link_attributes(sw);
2291
2292 tb_sw_dbg(sw, "lane bonding enabled\n");
2293 return ret;
2294}
2295
2296/**
2297 * tb_switch_lane_bonding_disable() - Disable lane bonding
2298 * @sw: Switch whose lane bonding to disable
2299 *
2300 * Disables lane bonding between @sw and parent. This can be called even
2301 * if lanes were not bonded originally.
2302 */
2303void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2304{
2305 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2306 struct tb_port *up, *down;
2307
2308 if (!tb_route(sw))
2309 return;
2310
2311 up = tb_upstream_port(sw);
2312 if (!up->bonded)
2313 return;
2314
2315 down = tb_port_at(tb_route(sw), parent);
2316
2317 tb_port_lane_bonding_disable(up);
2318 tb_port_lane_bonding_disable(down);
2319
2320 tb_switch_update_link_attributes(sw);
2321 tb_sw_dbg(sw, "lane bonding disabled\n");
2322}
2323
2324/**
2325 * tb_switch_add() - Add a switch to the domain
2326 * @sw: Switch to add
2327 *
2328 * This is the last step in adding switch to the domain. It will read
2329 * identification information from DROM and initializes ports so that
2330 * they can be used to connect other switches. The switch will be
2331 * exposed to the userspace when this function successfully returns. To
2332 * remove and release the switch, call tb_switch_remove().
2333 *
2334 * Return: %0 in case of success and negative errno in case of failure
2335 */
2336int tb_switch_add(struct tb_switch *sw)
2337{
2338 int i, ret;
2339
2340 /*
2341 * Initialize DMA control port now before we read DROM. Recent
2342 * host controllers have more complete DROM on NVM that includes
2343 * vendor and model identification strings which we then expose
2344 * to the userspace. NVM can be accessed through DMA
2345 * configuration based mailbox.
2346 */
2347 ret = tb_switch_add_dma_port(sw);
2348 if (ret) {
2349 dev_err(&sw->dev, "failed to add DMA port\n");
2350 return ret;
2351 }
2352
2353 if (!sw->safe_mode) {
2354 /* read drom */
2355 ret = tb_drom_read(sw);
2356 if (ret) {
2357 dev_err(&sw->dev, "reading DROM failed\n");
2358 return ret;
2359 }
2360 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2361
2362 ret = tb_switch_set_uuid(sw);
2363 if (ret) {
2364 dev_err(&sw->dev, "failed to set UUID\n");
2365 return ret;
2366 }
2367
2368 for (i = 0; i <= sw->config.max_port_number; i++) {
2369 if (sw->ports[i].disabled) {
2370 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2371 continue;
2372 }
2373 ret = tb_init_port(&sw->ports[i]);
2374 if (ret) {
2375 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2376 return ret;
2377 }
2378 }
2379
2380 tb_switch_default_link_ports(sw);
2381
2382 ret = tb_switch_update_link_attributes(sw);
2383 if (ret)
2384 return ret;
2385
2386 ret = tb_switch_tmu_init(sw);
2387 if (ret)
2388 return ret;
2389 }
2390
2391 ret = device_add(&sw->dev);
2392 if (ret) {
2393 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2394 return ret;
2395 }
2396
2397 if (tb_route(sw)) {
2398 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2399 sw->vendor, sw->device);
2400 if (sw->vendor_name && sw->device_name)
2401 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2402 sw->device_name);
2403 }
2404
2405 ret = tb_switch_nvm_add(sw);
2406 if (ret) {
2407 dev_err(&sw->dev, "failed to add NVM devices\n");
2408 device_del(&sw->dev);
2409 return ret;
2410 }
2411
2412 pm_runtime_set_active(&sw->dev);
2413 if (sw->rpm) {
2414 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2415 pm_runtime_use_autosuspend(&sw->dev);
2416 pm_runtime_mark_last_busy(&sw->dev);
2417 pm_runtime_enable(&sw->dev);
2418 pm_request_autosuspend(&sw->dev);
2419 }
2420
2421 return 0;
2422}
2423
2424/**
2425 * tb_switch_remove() - Remove and release a switch
2426 * @sw: Switch to remove
2427 *
2428 * This will remove the switch from the domain and release it after last
2429 * reference count drops to zero. If there are switches connected below
2430 * this switch, they will be removed as well.
2431 */
2432void tb_switch_remove(struct tb_switch *sw)
2433{
2434 struct tb_port *port;
2435
2436 if (sw->rpm) {
2437 pm_runtime_get_sync(&sw->dev);
2438 pm_runtime_disable(&sw->dev);
2439 }
2440
2441 /* port 0 is the switch itself and never has a remote */
2442 tb_switch_for_each_port(sw, port) {
2443 if (tb_port_has_remote(port)) {
2444 tb_switch_remove(port->remote->sw);
2445 port->remote = NULL;
2446 } else if (port->xdomain) {
2447 tb_xdomain_remove(port->xdomain);
2448 port->xdomain = NULL;
2449 }
2450 }
2451
2452 if (!sw->is_unplugged)
2453 tb_plug_events_active(sw, false);
2454
2455 if (tb_switch_is_usb4(sw))
2456 usb4_switch_unconfigure_link(sw);
2457 else
2458 tb_lc_unconfigure_link(sw);
2459
2460 tb_switch_nvm_remove(sw);
2461
2462 if (tb_route(sw))
2463 dev_info(&sw->dev, "device disconnected\n");
2464 device_unregister(&sw->dev);
2465}
2466
2467/**
2468 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2469 */
2470void tb_sw_set_unplugged(struct tb_switch *sw)
2471{
2472 struct tb_port *port;
2473
2474 if (sw == sw->tb->root_switch) {
2475 tb_sw_WARN(sw, "cannot unplug root switch\n");
2476 return;
2477 }
2478 if (sw->is_unplugged) {
2479 tb_sw_WARN(sw, "is_unplugged already set\n");
2480 return;
2481 }
2482 sw->is_unplugged = true;
2483 tb_switch_for_each_port(sw, port) {
2484 if (tb_port_has_remote(port))
2485 tb_sw_set_unplugged(port->remote->sw);
2486 else if (port->xdomain)
2487 port->xdomain->is_unplugged = true;
2488 }
2489}
2490
2491int tb_switch_resume(struct tb_switch *sw)
2492{
2493 struct tb_port *port;
2494 int err;
2495
2496 tb_sw_dbg(sw, "resuming switch\n");
2497
2498 /*
2499 * Check for UID of the connected switches except for root
2500 * switch which we assume cannot be removed.
2501 */
2502 if (tb_route(sw)) {
2503 u64 uid;
2504
2505 /*
2506 * Check first that we can still read the switch config
2507 * space. It may be that there is now another domain
2508 * connected.
2509 */
2510 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2511 if (err < 0) {
2512 tb_sw_info(sw, "switch not present anymore\n");
2513 return err;
2514 }
2515
2516 if (tb_switch_is_usb4(sw))
2517 err = usb4_switch_read_uid(sw, &uid);
2518 else
2519 err = tb_drom_read_uid_only(sw, &uid);
2520 if (err) {
2521 tb_sw_warn(sw, "uid read failed\n");
2522 return err;
2523 }
2524 if (sw->uid != uid) {
2525 tb_sw_info(sw,
2526 "changed while suspended (uid %#llx -> %#llx)\n",
2527 sw->uid, uid);
2528 return -ENODEV;
2529 }
2530 }
2531
2532 err = tb_switch_configure(sw);
2533 if (err)
2534 return err;
2535
2536 /* check for surviving downstream switches */
2537 tb_switch_for_each_port(sw, port) {
2538 if (!tb_port_has_remote(port) && !port->xdomain)
2539 continue;
2540
2541 if (tb_wait_for_port(port, true) <= 0) {
2542 tb_port_warn(port,
2543 "lost during suspend, disconnecting\n");
2544 if (tb_port_has_remote(port))
2545 tb_sw_set_unplugged(port->remote->sw);
2546 else if (port->xdomain)
2547 port->xdomain->is_unplugged = true;
2548 } else if (tb_port_has_remote(port) || port->xdomain) {
2549 /*
2550 * Always unlock the port so the downstream
2551 * switch/domain is accessible.
2552 */
2553 if (tb_port_unlock(port))
2554 tb_port_warn(port, "failed to unlock port\n");
2555 if (port->remote && tb_switch_resume(port->remote->sw)) {
2556 tb_port_warn(port,
2557 "lost during suspend, disconnecting\n");
2558 tb_sw_set_unplugged(port->remote->sw);
2559 }
2560 }
2561 }
2562 return 0;
2563}
2564
2565void tb_switch_suspend(struct tb_switch *sw)
2566{
2567 struct tb_port *port;
2568 int err;
2569
2570 err = tb_plug_events_active(sw, false);
2571 if (err)
2572 return;
2573
2574 tb_switch_for_each_port(sw, port) {
2575 if (tb_port_has_remote(port))
2576 tb_switch_suspend(port->remote->sw);
2577 }
2578
2579 if (tb_switch_is_usb4(sw))
2580 usb4_switch_set_sleep(sw);
2581 else
2582 tb_lc_set_sleep(sw);
2583}
2584
2585/**
2586 * tb_switch_query_dp_resource() - Query availability of DP resource
2587 * @sw: Switch whose DP resource is queried
2588 * @in: DP IN port
2589 *
2590 * Queries availability of DP resource for DP tunneling using switch
2591 * specific means. Returns %true if resource is available.
2592 */
2593bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2594{
2595 if (tb_switch_is_usb4(sw))
2596 return usb4_switch_query_dp_resource(sw, in);
2597 return tb_lc_dp_sink_query(sw, in);
2598}
2599
2600/**
2601 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2602 * @sw: Switch whose DP resource is allocated
2603 * @in: DP IN port
2604 *
2605 * Allocates DP resource for DP tunneling. The resource must be
2606 * available for this to succeed (see tb_switch_query_dp_resource()).
2607 * Returns %0 in success and negative errno otherwise.
2608 */
2609int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2610{
2611 if (tb_switch_is_usb4(sw))
2612 return usb4_switch_alloc_dp_resource(sw, in);
2613 return tb_lc_dp_sink_alloc(sw, in);
2614}
2615
2616/**
2617 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2618 * @sw: Switch whose DP resource is de-allocated
2619 * @in: DP IN port
2620 *
2621 * De-allocates DP resource that was previously allocated for DP
2622 * tunneling.
2623 */
2624void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2625{
2626 int ret;
2627
2628 if (tb_switch_is_usb4(sw))
2629 ret = usb4_switch_dealloc_dp_resource(sw, in);
2630 else
2631 ret = tb_lc_dp_sink_dealloc(sw, in);
2632
2633 if (ret)
2634 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2635 in->port);
2636}
2637
2638struct tb_sw_lookup {
2639 struct tb *tb;
2640 u8 link;
2641 u8 depth;
2642 const uuid_t *uuid;
2643 u64 route;
2644};
2645
2646static int tb_switch_match(struct device *dev, const void *data)
2647{
2648 struct tb_switch *sw = tb_to_switch(dev);
2649 const struct tb_sw_lookup *lookup = data;
2650
2651 if (!sw)
2652 return 0;
2653 if (sw->tb != lookup->tb)
2654 return 0;
2655
2656 if (lookup->uuid)
2657 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2658
2659 if (lookup->route) {
2660 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2661 sw->config.route_hi == upper_32_bits(lookup->route);
2662 }
2663
2664 /* Root switch is matched only by depth */
2665 if (!lookup->depth)
2666 return !sw->depth;
2667
2668 return sw->link == lookup->link && sw->depth == lookup->depth;
2669}
2670
2671/**
2672 * tb_switch_find_by_link_depth() - Find switch by link and depth
2673 * @tb: Domain the switch belongs
2674 * @link: Link number the switch is connected
2675 * @depth: Depth of the switch in link
2676 *
2677 * Returned switch has reference count increased so the caller needs to
2678 * call tb_switch_put() when done with the switch.
2679 */
2680struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2681{
2682 struct tb_sw_lookup lookup;
2683 struct device *dev;
2684
2685 memset(&lookup, 0, sizeof(lookup));
2686 lookup.tb = tb;
2687 lookup.link = link;
2688 lookup.depth = depth;
2689
2690 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2691 if (dev)
2692 return tb_to_switch(dev);
2693
2694 return NULL;
2695}
2696
2697/**
2698 * tb_switch_find_by_uuid() - Find switch by UUID
2699 * @tb: Domain the switch belongs
2700 * @uuid: UUID to look for
2701 *
2702 * Returned switch has reference count increased so the caller needs to
2703 * call tb_switch_put() when done with the switch.
2704 */
2705struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2706{
2707 struct tb_sw_lookup lookup;
2708 struct device *dev;
2709
2710 memset(&lookup, 0, sizeof(lookup));
2711 lookup.tb = tb;
2712 lookup.uuid = uuid;
2713
2714 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2715 if (dev)
2716 return tb_to_switch(dev);
2717
2718 return NULL;
2719}
2720
2721/**
2722 * tb_switch_find_by_route() - Find switch by route string
2723 * @tb: Domain the switch belongs
2724 * @route: Route string to look for
2725 *
2726 * Returned switch has reference count increased so the caller needs to
2727 * call tb_switch_put() when done with the switch.
2728 */
2729struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2730{
2731 struct tb_sw_lookup lookup;
2732 struct device *dev;
2733
2734 if (!route)
2735 return tb_switch_get(tb->root_switch);
2736
2737 memset(&lookup, 0, sizeof(lookup));
2738 lookup.tb = tb;
2739 lookup.route = route;
2740
2741 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2742 if (dev)
2743 return tb_to_switch(dev);
2744
2745 return NULL;
2746}
2747
2748/**
2749 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2750 * @sw: Switch to find the port from
2751 * @type: Port type to look for
2752 */
2753struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2754 enum tb_port_type type)
2755{
2756 struct tb_port *port;
2757
2758 tb_switch_for_each_port(sw, port) {
2759 if (port->config.type == type)
2760 return port;
2761 }
2762
2763 return NULL;
2764}
2765
2766void tb_switch_exit(void)
2767{
2768 ida_destroy(&nvm_ida);
2769}