at v5.6 62 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11#define pr_fmt(fmt) "LSM: " fmt 12 13#include <linux/bpf.h> 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/export.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/lsm_hooks.h> 20#include <linux/integrity.h> 21#include <linux/ima.h> 22#include <linux/evm.h> 23#include <linux/fsnotify.h> 24#include <linux/mman.h> 25#include <linux/mount.h> 26#include <linux/personality.h> 27#include <linux/backing-dev.h> 28#include <linux/string.h> 29#include <linux/msg.h> 30#include <net/flow.h> 31 32#define MAX_LSM_EVM_XATTR 2 33 34/* How many LSMs were built into the kernel? */ 35#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37/* 38 * These are descriptions of the reasons that can be passed to the 39 * security_locked_down() LSM hook. Placing this array here allows 40 * all security modules to use the same descriptions for auditing 41 * purposes. 42 */ 43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 44 [LOCKDOWN_NONE] = "none", 45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 48 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 49 [LOCKDOWN_HIBERNATION] = "hibernation", 50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 51 [LOCKDOWN_IOPORT] = "raw io port access", 52 [LOCKDOWN_MSR] = "raw MSR access", 53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 54 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 55 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 56 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 57 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 58 [LOCKDOWN_DEBUGFS] = "debugfs access", 59 [LOCKDOWN_XMON_WR] = "xmon write access", 60 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 61 [LOCKDOWN_KCORE] = "/proc/kcore access", 62 [LOCKDOWN_KPROBES] = "use of kprobes", 63 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 64 [LOCKDOWN_PERF] = "unsafe use of perf", 65 [LOCKDOWN_TRACEFS] = "use of tracefs", 66 [LOCKDOWN_XMON_RW] = "xmon read and write access", 67 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 68}; 69 70struct security_hook_heads security_hook_heads __lsm_ro_after_init; 71static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 72 73static struct kmem_cache *lsm_file_cache; 74static struct kmem_cache *lsm_inode_cache; 75 76char *lsm_names; 77static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 78 79/* Boot-time LSM user choice */ 80static __initdata const char *chosen_lsm_order; 81static __initdata const char *chosen_major_lsm; 82 83static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 84 85/* Ordered list of LSMs to initialize. */ 86static __initdata struct lsm_info **ordered_lsms; 87static __initdata struct lsm_info *exclusive; 88 89static __initdata bool debug; 90#define init_debug(...) \ 91 do { \ 92 if (debug) \ 93 pr_info(__VA_ARGS__); \ 94 } while (0) 95 96static bool __init is_enabled(struct lsm_info *lsm) 97{ 98 if (!lsm->enabled) 99 return false; 100 101 return *lsm->enabled; 102} 103 104/* Mark an LSM's enabled flag. */ 105static int lsm_enabled_true __initdata = 1; 106static int lsm_enabled_false __initdata = 0; 107static void __init set_enabled(struct lsm_info *lsm, bool enabled) 108{ 109 /* 110 * When an LSM hasn't configured an enable variable, we can use 111 * a hard-coded location for storing the default enabled state. 112 */ 113 if (!lsm->enabled) { 114 if (enabled) 115 lsm->enabled = &lsm_enabled_true; 116 else 117 lsm->enabled = &lsm_enabled_false; 118 } else if (lsm->enabled == &lsm_enabled_true) { 119 if (!enabled) 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_false) { 122 if (enabled) 123 lsm->enabled = &lsm_enabled_true; 124 } else { 125 *lsm->enabled = enabled; 126 } 127} 128 129/* Is an LSM already listed in the ordered LSMs list? */ 130static bool __init exists_ordered_lsm(struct lsm_info *lsm) 131{ 132 struct lsm_info **check; 133 134 for (check = ordered_lsms; *check; check++) 135 if (*check == lsm) 136 return true; 137 138 return false; 139} 140 141/* Append an LSM to the list of ordered LSMs to initialize. */ 142static int last_lsm __initdata; 143static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 144{ 145 /* Ignore duplicate selections. */ 146 if (exists_ordered_lsm(lsm)) 147 return; 148 149 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 150 return; 151 152 /* Enable this LSM, if it is not already set. */ 153 if (!lsm->enabled) 154 lsm->enabled = &lsm_enabled_true; 155 ordered_lsms[last_lsm++] = lsm; 156 157 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 158 is_enabled(lsm) ? "en" : "dis"); 159} 160 161/* Is an LSM allowed to be initialized? */ 162static bool __init lsm_allowed(struct lsm_info *lsm) 163{ 164 /* Skip if the LSM is disabled. */ 165 if (!is_enabled(lsm)) 166 return false; 167 168 /* Not allowed if another exclusive LSM already initialized. */ 169 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 170 init_debug("exclusive disabled: %s\n", lsm->name); 171 return false; 172 } 173 174 return true; 175} 176 177static void __init lsm_set_blob_size(int *need, int *lbs) 178{ 179 int offset; 180 181 if (*need > 0) { 182 offset = *lbs; 183 *lbs += *need; 184 *need = offset; 185 } 186} 187 188static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 189{ 190 if (!needed) 191 return; 192 193 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 194 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 195 /* 196 * The inode blob gets an rcu_head in addition to 197 * what the modules might need. 198 */ 199 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 200 blob_sizes.lbs_inode = sizeof(struct rcu_head); 201 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 202 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 203 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 204 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 205} 206 207/* Prepare LSM for initialization. */ 208static void __init prepare_lsm(struct lsm_info *lsm) 209{ 210 int enabled = lsm_allowed(lsm); 211 212 /* Record enablement (to handle any following exclusive LSMs). */ 213 set_enabled(lsm, enabled); 214 215 /* If enabled, do pre-initialization work. */ 216 if (enabled) { 217 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 218 exclusive = lsm; 219 init_debug("exclusive chosen: %s\n", lsm->name); 220 } 221 222 lsm_set_blob_sizes(lsm->blobs); 223 } 224} 225 226/* Initialize a given LSM, if it is enabled. */ 227static void __init initialize_lsm(struct lsm_info *lsm) 228{ 229 if (is_enabled(lsm)) { 230 int ret; 231 232 init_debug("initializing %s\n", lsm->name); 233 ret = lsm->init(); 234 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 235 } 236} 237 238/* Populate ordered LSMs list from comma-separated LSM name list. */ 239static void __init ordered_lsm_parse(const char *order, const char *origin) 240{ 241 struct lsm_info *lsm; 242 char *sep, *name, *next; 243 244 /* LSM_ORDER_FIRST is always first. */ 245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 246 if (lsm->order == LSM_ORDER_FIRST) 247 append_ordered_lsm(lsm, "first"); 248 } 249 250 /* Process "security=", if given. */ 251 if (chosen_major_lsm) { 252 struct lsm_info *major; 253 254 /* 255 * To match the original "security=" behavior, this 256 * explicitly does NOT fallback to another Legacy Major 257 * if the selected one was separately disabled: disable 258 * all non-matching Legacy Major LSMs. 259 */ 260 for (major = __start_lsm_info; major < __end_lsm_info; 261 major++) { 262 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 263 strcmp(major->name, chosen_major_lsm) != 0) { 264 set_enabled(major, false); 265 init_debug("security=%s disabled: %s\n", 266 chosen_major_lsm, major->name); 267 } 268 } 269 } 270 271 sep = kstrdup(order, GFP_KERNEL); 272 next = sep; 273 /* Walk the list, looking for matching LSMs. */ 274 while ((name = strsep(&next, ",")) != NULL) { 275 bool found = false; 276 277 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 278 if (lsm->order == LSM_ORDER_MUTABLE && 279 strcmp(lsm->name, name) == 0) { 280 append_ordered_lsm(lsm, origin); 281 found = true; 282 } 283 } 284 285 if (!found) 286 init_debug("%s ignored: %s\n", origin, name); 287 } 288 289 /* Process "security=", if given. */ 290 if (chosen_major_lsm) { 291 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 292 if (exists_ordered_lsm(lsm)) 293 continue; 294 if (strcmp(lsm->name, chosen_major_lsm) == 0) 295 append_ordered_lsm(lsm, "security="); 296 } 297 } 298 299 /* Disable all LSMs not in the ordered list. */ 300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 301 if (exists_ordered_lsm(lsm)) 302 continue; 303 set_enabled(lsm, false); 304 init_debug("%s disabled: %s\n", origin, lsm->name); 305 } 306 307 kfree(sep); 308} 309 310static void __init lsm_early_cred(struct cred *cred); 311static void __init lsm_early_task(struct task_struct *task); 312 313static int lsm_append(const char *new, char **result); 314 315static void __init ordered_lsm_init(void) 316{ 317 struct lsm_info **lsm; 318 319 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 320 GFP_KERNEL); 321 322 if (chosen_lsm_order) { 323 if (chosen_major_lsm) { 324 pr_info("security= is ignored because it is superseded by lsm=\n"); 325 chosen_major_lsm = NULL; 326 } 327 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 328 } else 329 ordered_lsm_parse(builtin_lsm_order, "builtin"); 330 331 for (lsm = ordered_lsms; *lsm; lsm++) 332 prepare_lsm(*lsm); 333 334 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 335 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 336 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 337 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 338 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 339 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 340 341 /* 342 * Create any kmem_caches needed for blobs 343 */ 344 if (blob_sizes.lbs_file) 345 lsm_file_cache = kmem_cache_create("lsm_file_cache", 346 blob_sizes.lbs_file, 0, 347 SLAB_PANIC, NULL); 348 if (blob_sizes.lbs_inode) 349 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 350 blob_sizes.lbs_inode, 0, 351 SLAB_PANIC, NULL); 352 353 lsm_early_cred((struct cred *) current->cred); 354 lsm_early_task(current); 355 for (lsm = ordered_lsms; *lsm; lsm++) 356 initialize_lsm(*lsm); 357 358 kfree(ordered_lsms); 359} 360 361int __init early_security_init(void) 362{ 363 int i; 364 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 365 struct lsm_info *lsm; 366 367 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 368 i++) 369 INIT_HLIST_HEAD(&list[i]); 370 371 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 372 if (!lsm->enabled) 373 lsm->enabled = &lsm_enabled_true; 374 prepare_lsm(lsm); 375 initialize_lsm(lsm); 376 } 377 378 return 0; 379} 380 381/** 382 * security_init - initializes the security framework 383 * 384 * This should be called early in the kernel initialization sequence. 385 */ 386int __init security_init(void) 387{ 388 struct lsm_info *lsm; 389 390 pr_info("Security Framework initializing\n"); 391 392 /* 393 * Append the names of the early LSM modules now that kmalloc() is 394 * available 395 */ 396 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 397 if (lsm->enabled) 398 lsm_append(lsm->name, &lsm_names); 399 } 400 401 /* Load LSMs in specified order. */ 402 ordered_lsm_init(); 403 404 return 0; 405} 406 407/* Save user chosen LSM */ 408static int __init choose_major_lsm(char *str) 409{ 410 chosen_major_lsm = str; 411 return 1; 412} 413__setup("security=", choose_major_lsm); 414 415/* Explicitly choose LSM initialization order. */ 416static int __init choose_lsm_order(char *str) 417{ 418 chosen_lsm_order = str; 419 return 1; 420} 421__setup("lsm=", choose_lsm_order); 422 423/* Enable LSM order debugging. */ 424static int __init enable_debug(char *str) 425{ 426 debug = true; 427 return 1; 428} 429__setup("lsm.debug", enable_debug); 430 431static bool match_last_lsm(const char *list, const char *lsm) 432{ 433 const char *last; 434 435 if (WARN_ON(!list || !lsm)) 436 return false; 437 last = strrchr(list, ','); 438 if (last) 439 /* Pass the comma, strcmp() will check for '\0' */ 440 last++; 441 else 442 last = list; 443 return !strcmp(last, lsm); 444} 445 446static int lsm_append(const char *new, char **result) 447{ 448 char *cp; 449 450 if (*result == NULL) { 451 *result = kstrdup(new, GFP_KERNEL); 452 if (*result == NULL) 453 return -ENOMEM; 454 } else { 455 /* Check if it is the last registered name */ 456 if (match_last_lsm(*result, new)) 457 return 0; 458 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 459 if (cp == NULL) 460 return -ENOMEM; 461 kfree(*result); 462 *result = cp; 463 } 464 return 0; 465} 466 467/** 468 * security_add_hooks - Add a modules hooks to the hook lists. 469 * @hooks: the hooks to add 470 * @count: the number of hooks to add 471 * @lsm: the name of the security module 472 * 473 * Each LSM has to register its hooks with the infrastructure. 474 */ 475void __init security_add_hooks(struct security_hook_list *hooks, int count, 476 char *lsm) 477{ 478 int i; 479 480 for (i = 0; i < count; i++) { 481 hooks[i].lsm = lsm; 482 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 483 } 484 485 /* 486 * Don't try to append during early_security_init(), we'll come back 487 * and fix this up afterwards. 488 */ 489 if (slab_is_available()) { 490 if (lsm_append(lsm, &lsm_names) < 0) 491 panic("%s - Cannot get early memory.\n", __func__); 492 } 493} 494 495int call_blocking_lsm_notifier(enum lsm_event event, void *data) 496{ 497 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 498 event, data); 499} 500EXPORT_SYMBOL(call_blocking_lsm_notifier); 501 502int register_blocking_lsm_notifier(struct notifier_block *nb) 503{ 504 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 505 nb); 506} 507EXPORT_SYMBOL(register_blocking_lsm_notifier); 508 509int unregister_blocking_lsm_notifier(struct notifier_block *nb) 510{ 511 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 512 nb); 513} 514EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 515 516/** 517 * lsm_cred_alloc - allocate a composite cred blob 518 * @cred: the cred that needs a blob 519 * @gfp: allocation type 520 * 521 * Allocate the cred blob for all the modules 522 * 523 * Returns 0, or -ENOMEM if memory can't be allocated. 524 */ 525static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 526{ 527 if (blob_sizes.lbs_cred == 0) { 528 cred->security = NULL; 529 return 0; 530 } 531 532 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 533 if (cred->security == NULL) 534 return -ENOMEM; 535 return 0; 536} 537 538/** 539 * lsm_early_cred - during initialization allocate a composite cred blob 540 * @cred: the cred that needs a blob 541 * 542 * Allocate the cred blob for all the modules 543 */ 544static void __init lsm_early_cred(struct cred *cred) 545{ 546 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 547 548 if (rc) 549 panic("%s: Early cred alloc failed.\n", __func__); 550} 551 552/** 553 * lsm_file_alloc - allocate a composite file blob 554 * @file: the file that needs a blob 555 * 556 * Allocate the file blob for all the modules 557 * 558 * Returns 0, or -ENOMEM if memory can't be allocated. 559 */ 560static int lsm_file_alloc(struct file *file) 561{ 562 if (!lsm_file_cache) { 563 file->f_security = NULL; 564 return 0; 565 } 566 567 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 568 if (file->f_security == NULL) 569 return -ENOMEM; 570 return 0; 571} 572 573/** 574 * lsm_inode_alloc - allocate a composite inode blob 575 * @inode: the inode that needs a blob 576 * 577 * Allocate the inode blob for all the modules 578 * 579 * Returns 0, or -ENOMEM if memory can't be allocated. 580 */ 581int lsm_inode_alloc(struct inode *inode) 582{ 583 if (!lsm_inode_cache) { 584 inode->i_security = NULL; 585 return 0; 586 } 587 588 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 589 if (inode->i_security == NULL) 590 return -ENOMEM; 591 return 0; 592} 593 594/** 595 * lsm_task_alloc - allocate a composite task blob 596 * @task: the task that needs a blob 597 * 598 * Allocate the task blob for all the modules 599 * 600 * Returns 0, or -ENOMEM if memory can't be allocated. 601 */ 602static int lsm_task_alloc(struct task_struct *task) 603{ 604 if (blob_sizes.lbs_task == 0) { 605 task->security = NULL; 606 return 0; 607 } 608 609 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 610 if (task->security == NULL) 611 return -ENOMEM; 612 return 0; 613} 614 615/** 616 * lsm_ipc_alloc - allocate a composite ipc blob 617 * @kip: the ipc that needs a blob 618 * 619 * Allocate the ipc blob for all the modules 620 * 621 * Returns 0, or -ENOMEM if memory can't be allocated. 622 */ 623static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 624{ 625 if (blob_sizes.lbs_ipc == 0) { 626 kip->security = NULL; 627 return 0; 628 } 629 630 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 631 if (kip->security == NULL) 632 return -ENOMEM; 633 return 0; 634} 635 636/** 637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 638 * @mp: the msg_msg that needs a blob 639 * 640 * Allocate the ipc blob for all the modules 641 * 642 * Returns 0, or -ENOMEM if memory can't be allocated. 643 */ 644static int lsm_msg_msg_alloc(struct msg_msg *mp) 645{ 646 if (blob_sizes.lbs_msg_msg == 0) { 647 mp->security = NULL; 648 return 0; 649 } 650 651 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 652 if (mp->security == NULL) 653 return -ENOMEM; 654 return 0; 655} 656 657/** 658 * lsm_early_task - during initialization allocate a composite task blob 659 * @task: the task that needs a blob 660 * 661 * Allocate the task blob for all the modules 662 */ 663static void __init lsm_early_task(struct task_struct *task) 664{ 665 int rc = lsm_task_alloc(task); 666 667 if (rc) 668 panic("%s: Early task alloc failed.\n", __func__); 669} 670 671/* 672 * Hook list operation macros. 673 * 674 * call_void_hook: 675 * This is a hook that does not return a value. 676 * 677 * call_int_hook: 678 * This is a hook that returns a value. 679 */ 680 681#define call_void_hook(FUNC, ...) \ 682 do { \ 683 struct security_hook_list *P; \ 684 \ 685 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 686 P->hook.FUNC(__VA_ARGS__); \ 687 } while (0) 688 689#define call_int_hook(FUNC, IRC, ...) ({ \ 690 int RC = IRC; \ 691 do { \ 692 struct security_hook_list *P; \ 693 \ 694 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 695 RC = P->hook.FUNC(__VA_ARGS__); \ 696 if (RC != 0) \ 697 break; \ 698 } \ 699 } while (0); \ 700 RC; \ 701}) 702 703/* Security operations */ 704 705int security_binder_set_context_mgr(struct task_struct *mgr) 706{ 707 return call_int_hook(binder_set_context_mgr, 0, mgr); 708} 709 710int security_binder_transaction(struct task_struct *from, 711 struct task_struct *to) 712{ 713 return call_int_hook(binder_transaction, 0, from, to); 714} 715 716int security_binder_transfer_binder(struct task_struct *from, 717 struct task_struct *to) 718{ 719 return call_int_hook(binder_transfer_binder, 0, from, to); 720} 721 722int security_binder_transfer_file(struct task_struct *from, 723 struct task_struct *to, struct file *file) 724{ 725 return call_int_hook(binder_transfer_file, 0, from, to, file); 726} 727 728int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 729{ 730 return call_int_hook(ptrace_access_check, 0, child, mode); 731} 732 733int security_ptrace_traceme(struct task_struct *parent) 734{ 735 return call_int_hook(ptrace_traceme, 0, parent); 736} 737 738int security_capget(struct task_struct *target, 739 kernel_cap_t *effective, 740 kernel_cap_t *inheritable, 741 kernel_cap_t *permitted) 742{ 743 return call_int_hook(capget, 0, target, 744 effective, inheritable, permitted); 745} 746 747int security_capset(struct cred *new, const struct cred *old, 748 const kernel_cap_t *effective, 749 const kernel_cap_t *inheritable, 750 const kernel_cap_t *permitted) 751{ 752 return call_int_hook(capset, 0, new, old, 753 effective, inheritable, permitted); 754} 755 756int security_capable(const struct cred *cred, 757 struct user_namespace *ns, 758 int cap, 759 unsigned int opts) 760{ 761 return call_int_hook(capable, 0, cred, ns, cap, opts); 762} 763 764int security_quotactl(int cmds, int type, int id, struct super_block *sb) 765{ 766 return call_int_hook(quotactl, 0, cmds, type, id, sb); 767} 768 769int security_quota_on(struct dentry *dentry) 770{ 771 return call_int_hook(quota_on, 0, dentry); 772} 773 774int security_syslog(int type) 775{ 776 return call_int_hook(syslog, 0, type); 777} 778 779int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 780{ 781 return call_int_hook(settime, 0, ts, tz); 782} 783 784int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 785{ 786 struct security_hook_list *hp; 787 int cap_sys_admin = 1; 788 int rc; 789 790 /* 791 * The module will respond with a positive value if 792 * it thinks the __vm_enough_memory() call should be 793 * made with the cap_sys_admin set. If all of the modules 794 * agree that it should be set it will. If any module 795 * thinks it should not be set it won't. 796 */ 797 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 798 rc = hp->hook.vm_enough_memory(mm, pages); 799 if (rc <= 0) { 800 cap_sys_admin = 0; 801 break; 802 } 803 } 804 return __vm_enough_memory(mm, pages, cap_sys_admin); 805} 806 807int security_bprm_set_creds(struct linux_binprm *bprm) 808{ 809 return call_int_hook(bprm_set_creds, 0, bprm); 810} 811 812int security_bprm_check(struct linux_binprm *bprm) 813{ 814 int ret; 815 816 ret = call_int_hook(bprm_check_security, 0, bprm); 817 if (ret) 818 return ret; 819 return ima_bprm_check(bprm); 820} 821 822void security_bprm_committing_creds(struct linux_binprm *bprm) 823{ 824 call_void_hook(bprm_committing_creds, bprm); 825} 826 827void security_bprm_committed_creds(struct linux_binprm *bprm) 828{ 829 call_void_hook(bprm_committed_creds, bprm); 830} 831 832int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 833{ 834 return call_int_hook(fs_context_dup, 0, fc, src_fc); 835} 836 837int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 838{ 839 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 840} 841 842int security_sb_alloc(struct super_block *sb) 843{ 844 return call_int_hook(sb_alloc_security, 0, sb); 845} 846 847void security_sb_free(struct super_block *sb) 848{ 849 call_void_hook(sb_free_security, sb); 850} 851 852void security_free_mnt_opts(void **mnt_opts) 853{ 854 if (!*mnt_opts) 855 return; 856 call_void_hook(sb_free_mnt_opts, *mnt_opts); 857 *mnt_opts = NULL; 858} 859EXPORT_SYMBOL(security_free_mnt_opts); 860 861int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 862{ 863 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 864} 865EXPORT_SYMBOL(security_sb_eat_lsm_opts); 866 867int security_sb_remount(struct super_block *sb, 868 void *mnt_opts) 869{ 870 return call_int_hook(sb_remount, 0, sb, mnt_opts); 871} 872EXPORT_SYMBOL(security_sb_remount); 873 874int security_sb_kern_mount(struct super_block *sb) 875{ 876 return call_int_hook(sb_kern_mount, 0, sb); 877} 878 879int security_sb_show_options(struct seq_file *m, struct super_block *sb) 880{ 881 return call_int_hook(sb_show_options, 0, m, sb); 882} 883 884int security_sb_statfs(struct dentry *dentry) 885{ 886 return call_int_hook(sb_statfs, 0, dentry); 887} 888 889int security_sb_mount(const char *dev_name, const struct path *path, 890 const char *type, unsigned long flags, void *data) 891{ 892 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 893} 894 895int security_sb_umount(struct vfsmount *mnt, int flags) 896{ 897 return call_int_hook(sb_umount, 0, mnt, flags); 898} 899 900int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 901{ 902 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 903} 904 905int security_sb_set_mnt_opts(struct super_block *sb, 906 void *mnt_opts, 907 unsigned long kern_flags, 908 unsigned long *set_kern_flags) 909{ 910 return call_int_hook(sb_set_mnt_opts, 911 mnt_opts ? -EOPNOTSUPP : 0, sb, 912 mnt_opts, kern_flags, set_kern_flags); 913} 914EXPORT_SYMBOL(security_sb_set_mnt_opts); 915 916int security_sb_clone_mnt_opts(const struct super_block *oldsb, 917 struct super_block *newsb, 918 unsigned long kern_flags, 919 unsigned long *set_kern_flags) 920{ 921 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 922 kern_flags, set_kern_flags); 923} 924EXPORT_SYMBOL(security_sb_clone_mnt_opts); 925 926int security_add_mnt_opt(const char *option, const char *val, int len, 927 void **mnt_opts) 928{ 929 return call_int_hook(sb_add_mnt_opt, -EINVAL, 930 option, val, len, mnt_opts); 931} 932EXPORT_SYMBOL(security_add_mnt_opt); 933 934int security_move_mount(const struct path *from_path, const struct path *to_path) 935{ 936 return call_int_hook(move_mount, 0, from_path, to_path); 937} 938 939int security_path_notify(const struct path *path, u64 mask, 940 unsigned int obj_type) 941{ 942 return call_int_hook(path_notify, 0, path, mask, obj_type); 943} 944 945int security_inode_alloc(struct inode *inode) 946{ 947 int rc = lsm_inode_alloc(inode); 948 949 if (unlikely(rc)) 950 return rc; 951 rc = call_int_hook(inode_alloc_security, 0, inode); 952 if (unlikely(rc)) 953 security_inode_free(inode); 954 return rc; 955} 956 957static void inode_free_by_rcu(struct rcu_head *head) 958{ 959 /* 960 * The rcu head is at the start of the inode blob 961 */ 962 kmem_cache_free(lsm_inode_cache, head); 963} 964 965void security_inode_free(struct inode *inode) 966{ 967 integrity_inode_free(inode); 968 call_void_hook(inode_free_security, inode); 969 /* 970 * The inode may still be referenced in a path walk and 971 * a call to security_inode_permission() can be made 972 * after inode_free_security() is called. Ideally, the VFS 973 * wouldn't do this, but fixing that is a much harder 974 * job. For now, simply free the i_security via RCU, and 975 * leave the current inode->i_security pointer intact. 976 * The inode will be freed after the RCU grace period too. 977 */ 978 if (inode->i_security) 979 call_rcu((struct rcu_head *)inode->i_security, 980 inode_free_by_rcu); 981} 982 983int security_dentry_init_security(struct dentry *dentry, int mode, 984 const struct qstr *name, void **ctx, 985 u32 *ctxlen) 986{ 987 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 988 name, ctx, ctxlen); 989} 990EXPORT_SYMBOL(security_dentry_init_security); 991 992int security_dentry_create_files_as(struct dentry *dentry, int mode, 993 struct qstr *name, 994 const struct cred *old, struct cred *new) 995{ 996 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 997 name, old, new); 998} 999EXPORT_SYMBOL(security_dentry_create_files_as); 1000 1001int security_inode_init_security(struct inode *inode, struct inode *dir, 1002 const struct qstr *qstr, 1003 const initxattrs initxattrs, void *fs_data) 1004{ 1005 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1006 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1007 int ret; 1008 1009 if (unlikely(IS_PRIVATE(inode))) 1010 return 0; 1011 1012 if (!initxattrs) 1013 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1014 dir, qstr, NULL, NULL, NULL); 1015 memset(new_xattrs, 0, sizeof(new_xattrs)); 1016 lsm_xattr = new_xattrs; 1017 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1018 &lsm_xattr->name, 1019 &lsm_xattr->value, 1020 &lsm_xattr->value_len); 1021 if (ret) 1022 goto out; 1023 1024 evm_xattr = lsm_xattr + 1; 1025 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1026 if (ret) 1027 goto out; 1028 ret = initxattrs(inode, new_xattrs, fs_data); 1029out: 1030 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1031 kfree(xattr->value); 1032 return (ret == -EOPNOTSUPP) ? 0 : ret; 1033} 1034EXPORT_SYMBOL(security_inode_init_security); 1035 1036int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1037 const struct qstr *qstr, const char **name, 1038 void **value, size_t *len) 1039{ 1040 if (unlikely(IS_PRIVATE(inode))) 1041 return -EOPNOTSUPP; 1042 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1043 qstr, name, value, len); 1044} 1045EXPORT_SYMBOL(security_old_inode_init_security); 1046 1047#ifdef CONFIG_SECURITY_PATH 1048int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1049 unsigned int dev) 1050{ 1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1052 return 0; 1053 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1054} 1055EXPORT_SYMBOL(security_path_mknod); 1056 1057int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1058{ 1059 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1060 return 0; 1061 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1062} 1063EXPORT_SYMBOL(security_path_mkdir); 1064 1065int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1066{ 1067 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1068 return 0; 1069 return call_int_hook(path_rmdir, 0, dir, dentry); 1070} 1071 1072int security_path_unlink(const struct path *dir, struct dentry *dentry) 1073{ 1074 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1075 return 0; 1076 return call_int_hook(path_unlink, 0, dir, dentry); 1077} 1078EXPORT_SYMBOL(security_path_unlink); 1079 1080int security_path_symlink(const struct path *dir, struct dentry *dentry, 1081 const char *old_name) 1082{ 1083 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1084 return 0; 1085 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1086} 1087 1088int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1089 struct dentry *new_dentry) 1090{ 1091 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1092 return 0; 1093 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1094} 1095 1096int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1097 const struct path *new_dir, struct dentry *new_dentry, 1098 unsigned int flags) 1099{ 1100 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1101 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1102 return 0; 1103 1104 if (flags & RENAME_EXCHANGE) { 1105 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1106 old_dir, old_dentry); 1107 if (err) 1108 return err; 1109 } 1110 1111 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1112 new_dentry); 1113} 1114EXPORT_SYMBOL(security_path_rename); 1115 1116int security_path_truncate(const struct path *path) 1117{ 1118 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1119 return 0; 1120 return call_int_hook(path_truncate, 0, path); 1121} 1122 1123int security_path_chmod(const struct path *path, umode_t mode) 1124{ 1125 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1126 return 0; 1127 return call_int_hook(path_chmod, 0, path, mode); 1128} 1129 1130int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1131{ 1132 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1133 return 0; 1134 return call_int_hook(path_chown, 0, path, uid, gid); 1135} 1136 1137int security_path_chroot(const struct path *path) 1138{ 1139 return call_int_hook(path_chroot, 0, path); 1140} 1141#endif 1142 1143int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1144{ 1145 if (unlikely(IS_PRIVATE(dir))) 1146 return 0; 1147 return call_int_hook(inode_create, 0, dir, dentry, mode); 1148} 1149EXPORT_SYMBOL_GPL(security_inode_create); 1150 1151int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1152 struct dentry *new_dentry) 1153{ 1154 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1155 return 0; 1156 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1157} 1158 1159int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1160{ 1161 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1162 return 0; 1163 return call_int_hook(inode_unlink, 0, dir, dentry); 1164} 1165 1166int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1167 const char *old_name) 1168{ 1169 if (unlikely(IS_PRIVATE(dir))) 1170 return 0; 1171 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1172} 1173 1174int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1175{ 1176 if (unlikely(IS_PRIVATE(dir))) 1177 return 0; 1178 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1179} 1180EXPORT_SYMBOL_GPL(security_inode_mkdir); 1181 1182int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1183{ 1184 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1185 return 0; 1186 return call_int_hook(inode_rmdir, 0, dir, dentry); 1187} 1188 1189int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1190{ 1191 if (unlikely(IS_PRIVATE(dir))) 1192 return 0; 1193 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1194} 1195 1196int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1197 struct inode *new_dir, struct dentry *new_dentry, 1198 unsigned int flags) 1199{ 1200 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1201 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1202 return 0; 1203 1204 if (flags & RENAME_EXCHANGE) { 1205 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1206 old_dir, old_dentry); 1207 if (err) 1208 return err; 1209 } 1210 1211 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1212 new_dir, new_dentry); 1213} 1214 1215int security_inode_readlink(struct dentry *dentry) 1216{ 1217 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1218 return 0; 1219 return call_int_hook(inode_readlink, 0, dentry); 1220} 1221 1222int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1223 bool rcu) 1224{ 1225 if (unlikely(IS_PRIVATE(inode))) 1226 return 0; 1227 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1228} 1229 1230int security_inode_permission(struct inode *inode, int mask) 1231{ 1232 if (unlikely(IS_PRIVATE(inode))) 1233 return 0; 1234 return call_int_hook(inode_permission, 0, inode, mask); 1235} 1236 1237int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1238{ 1239 int ret; 1240 1241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1242 return 0; 1243 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1244 if (ret) 1245 return ret; 1246 return evm_inode_setattr(dentry, attr); 1247} 1248EXPORT_SYMBOL_GPL(security_inode_setattr); 1249 1250int security_inode_getattr(const struct path *path) 1251{ 1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1253 return 0; 1254 return call_int_hook(inode_getattr, 0, path); 1255} 1256 1257int security_inode_setxattr(struct dentry *dentry, const char *name, 1258 const void *value, size_t size, int flags) 1259{ 1260 int ret; 1261 1262 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1263 return 0; 1264 /* 1265 * SELinux and Smack integrate the cap call, 1266 * so assume that all LSMs supplying this call do so. 1267 */ 1268 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1269 flags); 1270 1271 if (ret == 1) 1272 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1273 if (ret) 1274 return ret; 1275 ret = ima_inode_setxattr(dentry, name, value, size); 1276 if (ret) 1277 return ret; 1278 return evm_inode_setxattr(dentry, name, value, size); 1279} 1280 1281void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1282 const void *value, size_t size, int flags) 1283{ 1284 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1285 return; 1286 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1287 evm_inode_post_setxattr(dentry, name, value, size); 1288} 1289 1290int security_inode_getxattr(struct dentry *dentry, const char *name) 1291{ 1292 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1293 return 0; 1294 return call_int_hook(inode_getxattr, 0, dentry, name); 1295} 1296 1297int security_inode_listxattr(struct dentry *dentry) 1298{ 1299 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1300 return 0; 1301 return call_int_hook(inode_listxattr, 0, dentry); 1302} 1303 1304int security_inode_removexattr(struct dentry *dentry, const char *name) 1305{ 1306 int ret; 1307 1308 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1309 return 0; 1310 /* 1311 * SELinux and Smack integrate the cap call, 1312 * so assume that all LSMs supplying this call do so. 1313 */ 1314 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1315 if (ret == 1) 1316 ret = cap_inode_removexattr(dentry, name); 1317 if (ret) 1318 return ret; 1319 ret = ima_inode_removexattr(dentry, name); 1320 if (ret) 1321 return ret; 1322 return evm_inode_removexattr(dentry, name); 1323} 1324 1325int security_inode_need_killpriv(struct dentry *dentry) 1326{ 1327 return call_int_hook(inode_need_killpriv, 0, dentry); 1328} 1329 1330int security_inode_killpriv(struct dentry *dentry) 1331{ 1332 return call_int_hook(inode_killpriv, 0, dentry); 1333} 1334 1335int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1336{ 1337 struct security_hook_list *hp; 1338 int rc; 1339 1340 if (unlikely(IS_PRIVATE(inode))) 1341 return -EOPNOTSUPP; 1342 /* 1343 * Only one module will provide an attribute with a given name. 1344 */ 1345 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1346 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1347 if (rc != -EOPNOTSUPP) 1348 return rc; 1349 } 1350 return -EOPNOTSUPP; 1351} 1352 1353int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1354{ 1355 struct security_hook_list *hp; 1356 int rc; 1357 1358 if (unlikely(IS_PRIVATE(inode))) 1359 return -EOPNOTSUPP; 1360 /* 1361 * Only one module will provide an attribute with a given name. 1362 */ 1363 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1364 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1365 flags); 1366 if (rc != -EOPNOTSUPP) 1367 return rc; 1368 } 1369 return -EOPNOTSUPP; 1370} 1371 1372int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1373{ 1374 if (unlikely(IS_PRIVATE(inode))) 1375 return 0; 1376 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1377} 1378EXPORT_SYMBOL(security_inode_listsecurity); 1379 1380void security_inode_getsecid(struct inode *inode, u32 *secid) 1381{ 1382 call_void_hook(inode_getsecid, inode, secid); 1383} 1384 1385int security_inode_copy_up(struct dentry *src, struct cred **new) 1386{ 1387 return call_int_hook(inode_copy_up, 0, src, new); 1388} 1389EXPORT_SYMBOL(security_inode_copy_up); 1390 1391int security_inode_copy_up_xattr(const char *name) 1392{ 1393 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1394} 1395EXPORT_SYMBOL(security_inode_copy_up_xattr); 1396 1397int security_kernfs_init_security(struct kernfs_node *kn_dir, 1398 struct kernfs_node *kn) 1399{ 1400 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1401} 1402 1403int security_file_permission(struct file *file, int mask) 1404{ 1405 int ret; 1406 1407 ret = call_int_hook(file_permission, 0, file, mask); 1408 if (ret) 1409 return ret; 1410 1411 return fsnotify_perm(file, mask); 1412} 1413 1414int security_file_alloc(struct file *file) 1415{ 1416 int rc = lsm_file_alloc(file); 1417 1418 if (rc) 1419 return rc; 1420 rc = call_int_hook(file_alloc_security, 0, file); 1421 if (unlikely(rc)) 1422 security_file_free(file); 1423 return rc; 1424} 1425 1426void security_file_free(struct file *file) 1427{ 1428 void *blob; 1429 1430 call_void_hook(file_free_security, file); 1431 1432 blob = file->f_security; 1433 if (blob) { 1434 file->f_security = NULL; 1435 kmem_cache_free(lsm_file_cache, blob); 1436 } 1437} 1438 1439int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1440{ 1441 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1442} 1443 1444static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1445{ 1446 /* 1447 * Does we have PROT_READ and does the application expect 1448 * it to imply PROT_EXEC? If not, nothing to talk about... 1449 */ 1450 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1451 return prot; 1452 if (!(current->personality & READ_IMPLIES_EXEC)) 1453 return prot; 1454 /* 1455 * if that's an anonymous mapping, let it. 1456 */ 1457 if (!file) 1458 return prot | PROT_EXEC; 1459 /* 1460 * ditto if it's not on noexec mount, except that on !MMU we need 1461 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1462 */ 1463 if (!path_noexec(&file->f_path)) { 1464#ifndef CONFIG_MMU 1465 if (file->f_op->mmap_capabilities) { 1466 unsigned caps = file->f_op->mmap_capabilities(file); 1467 if (!(caps & NOMMU_MAP_EXEC)) 1468 return prot; 1469 } 1470#endif 1471 return prot | PROT_EXEC; 1472 } 1473 /* anything on noexec mount won't get PROT_EXEC */ 1474 return prot; 1475} 1476 1477int security_mmap_file(struct file *file, unsigned long prot, 1478 unsigned long flags) 1479{ 1480 int ret; 1481 ret = call_int_hook(mmap_file, 0, file, prot, 1482 mmap_prot(file, prot), flags); 1483 if (ret) 1484 return ret; 1485 return ima_file_mmap(file, prot); 1486} 1487 1488int security_mmap_addr(unsigned long addr) 1489{ 1490 return call_int_hook(mmap_addr, 0, addr); 1491} 1492 1493int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1494 unsigned long prot) 1495{ 1496 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1497} 1498 1499int security_file_lock(struct file *file, unsigned int cmd) 1500{ 1501 return call_int_hook(file_lock, 0, file, cmd); 1502} 1503 1504int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1505{ 1506 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1507} 1508 1509void security_file_set_fowner(struct file *file) 1510{ 1511 call_void_hook(file_set_fowner, file); 1512} 1513 1514int security_file_send_sigiotask(struct task_struct *tsk, 1515 struct fown_struct *fown, int sig) 1516{ 1517 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1518} 1519 1520int security_file_receive(struct file *file) 1521{ 1522 return call_int_hook(file_receive, 0, file); 1523} 1524 1525int security_file_open(struct file *file) 1526{ 1527 int ret; 1528 1529 ret = call_int_hook(file_open, 0, file); 1530 if (ret) 1531 return ret; 1532 1533 return fsnotify_perm(file, MAY_OPEN); 1534} 1535 1536int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1537{ 1538 int rc = lsm_task_alloc(task); 1539 1540 if (rc) 1541 return rc; 1542 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1543 if (unlikely(rc)) 1544 security_task_free(task); 1545 return rc; 1546} 1547 1548void security_task_free(struct task_struct *task) 1549{ 1550 call_void_hook(task_free, task); 1551 1552 kfree(task->security); 1553 task->security = NULL; 1554} 1555 1556int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1557{ 1558 int rc = lsm_cred_alloc(cred, gfp); 1559 1560 if (rc) 1561 return rc; 1562 1563 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1564 if (unlikely(rc)) 1565 security_cred_free(cred); 1566 return rc; 1567} 1568 1569void security_cred_free(struct cred *cred) 1570{ 1571 /* 1572 * There is a failure case in prepare_creds() that 1573 * may result in a call here with ->security being NULL. 1574 */ 1575 if (unlikely(cred->security == NULL)) 1576 return; 1577 1578 call_void_hook(cred_free, cred); 1579 1580 kfree(cred->security); 1581 cred->security = NULL; 1582} 1583 1584int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1585{ 1586 int rc = lsm_cred_alloc(new, gfp); 1587 1588 if (rc) 1589 return rc; 1590 1591 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1592 if (unlikely(rc)) 1593 security_cred_free(new); 1594 return rc; 1595} 1596 1597void security_transfer_creds(struct cred *new, const struct cred *old) 1598{ 1599 call_void_hook(cred_transfer, new, old); 1600} 1601 1602void security_cred_getsecid(const struct cred *c, u32 *secid) 1603{ 1604 *secid = 0; 1605 call_void_hook(cred_getsecid, c, secid); 1606} 1607EXPORT_SYMBOL(security_cred_getsecid); 1608 1609int security_kernel_act_as(struct cred *new, u32 secid) 1610{ 1611 return call_int_hook(kernel_act_as, 0, new, secid); 1612} 1613 1614int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1615{ 1616 return call_int_hook(kernel_create_files_as, 0, new, inode); 1617} 1618 1619int security_kernel_module_request(char *kmod_name) 1620{ 1621 int ret; 1622 1623 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1624 if (ret) 1625 return ret; 1626 return integrity_kernel_module_request(kmod_name); 1627} 1628 1629int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1630{ 1631 int ret; 1632 1633 ret = call_int_hook(kernel_read_file, 0, file, id); 1634 if (ret) 1635 return ret; 1636 return ima_read_file(file, id); 1637} 1638EXPORT_SYMBOL_GPL(security_kernel_read_file); 1639 1640int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1641 enum kernel_read_file_id id) 1642{ 1643 int ret; 1644 1645 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1646 if (ret) 1647 return ret; 1648 return ima_post_read_file(file, buf, size, id); 1649} 1650EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1651 1652int security_kernel_load_data(enum kernel_load_data_id id) 1653{ 1654 int ret; 1655 1656 ret = call_int_hook(kernel_load_data, 0, id); 1657 if (ret) 1658 return ret; 1659 return ima_load_data(id); 1660} 1661EXPORT_SYMBOL_GPL(security_kernel_load_data); 1662 1663int security_task_fix_setuid(struct cred *new, const struct cred *old, 1664 int flags) 1665{ 1666 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1667} 1668 1669int security_task_setpgid(struct task_struct *p, pid_t pgid) 1670{ 1671 return call_int_hook(task_setpgid, 0, p, pgid); 1672} 1673 1674int security_task_getpgid(struct task_struct *p) 1675{ 1676 return call_int_hook(task_getpgid, 0, p); 1677} 1678 1679int security_task_getsid(struct task_struct *p) 1680{ 1681 return call_int_hook(task_getsid, 0, p); 1682} 1683 1684void security_task_getsecid(struct task_struct *p, u32 *secid) 1685{ 1686 *secid = 0; 1687 call_void_hook(task_getsecid, p, secid); 1688} 1689EXPORT_SYMBOL(security_task_getsecid); 1690 1691int security_task_setnice(struct task_struct *p, int nice) 1692{ 1693 return call_int_hook(task_setnice, 0, p, nice); 1694} 1695 1696int security_task_setioprio(struct task_struct *p, int ioprio) 1697{ 1698 return call_int_hook(task_setioprio, 0, p, ioprio); 1699} 1700 1701int security_task_getioprio(struct task_struct *p) 1702{ 1703 return call_int_hook(task_getioprio, 0, p); 1704} 1705 1706int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1707 unsigned int flags) 1708{ 1709 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1710} 1711 1712int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1713 struct rlimit *new_rlim) 1714{ 1715 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1716} 1717 1718int security_task_setscheduler(struct task_struct *p) 1719{ 1720 return call_int_hook(task_setscheduler, 0, p); 1721} 1722 1723int security_task_getscheduler(struct task_struct *p) 1724{ 1725 return call_int_hook(task_getscheduler, 0, p); 1726} 1727 1728int security_task_movememory(struct task_struct *p) 1729{ 1730 return call_int_hook(task_movememory, 0, p); 1731} 1732 1733int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1734 int sig, const struct cred *cred) 1735{ 1736 return call_int_hook(task_kill, 0, p, info, sig, cred); 1737} 1738 1739int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1740 unsigned long arg4, unsigned long arg5) 1741{ 1742 int thisrc; 1743 int rc = -ENOSYS; 1744 struct security_hook_list *hp; 1745 1746 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1747 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1748 if (thisrc != -ENOSYS) { 1749 rc = thisrc; 1750 if (thisrc != 0) 1751 break; 1752 } 1753 } 1754 return rc; 1755} 1756 1757void security_task_to_inode(struct task_struct *p, struct inode *inode) 1758{ 1759 call_void_hook(task_to_inode, p, inode); 1760} 1761 1762int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1763{ 1764 return call_int_hook(ipc_permission, 0, ipcp, flag); 1765} 1766 1767void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1768{ 1769 *secid = 0; 1770 call_void_hook(ipc_getsecid, ipcp, secid); 1771} 1772 1773int security_msg_msg_alloc(struct msg_msg *msg) 1774{ 1775 int rc = lsm_msg_msg_alloc(msg); 1776 1777 if (unlikely(rc)) 1778 return rc; 1779 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1780 if (unlikely(rc)) 1781 security_msg_msg_free(msg); 1782 return rc; 1783} 1784 1785void security_msg_msg_free(struct msg_msg *msg) 1786{ 1787 call_void_hook(msg_msg_free_security, msg); 1788 kfree(msg->security); 1789 msg->security = NULL; 1790} 1791 1792int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1793{ 1794 int rc = lsm_ipc_alloc(msq); 1795 1796 if (unlikely(rc)) 1797 return rc; 1798 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1799 if (unlikely(rc)) 1800 security_msg_queue_free(msq); 1801 return rc; 1802} 1803 1804void security_msg_queue_free(struct kern_ipc_perm *msq) 1805{ 1806 call_void_hook(msg_queue_free_security, msq); 1807 kfree(msq->security); 1808 msq->security = NULL; 1809} 1810 1811int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1812{ 1813 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1814} 1815 1816int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1817{ 1818 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1819} 1820 1821int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1822 struct msg_msg *msg, int msqflg) 1823{ 1824 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1825} 1826 1827int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1828 struct task_struct *target, long type, int mode) 1829{ 1830 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1831} 1832 1833int security_shm_alloc(struct kern_ipc_perm *shp) 1834{ 1835 int rc = lsm_ipc_alloc(shp); 1836 1837 if (unlikely(rc)) 1838 return rc; 1839 rc = call_int_hook(shm_alloc_security, 0, shp); 1840 if (unlikely(rc)) 1841 security_shm_free(shp); 1842 return rc; 1843} 1844 1845void security_shm_free(struct kern_ipc_perm *shp) 1846{ 1847 call_void_hook(shm_free_security, shp); 1848 kfree(shp->security); 1849 shp->security = NULL; 1850} 1851 1852int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1853{ 1854 return call_int_hook(shm_associate, 0, shp, shmflg); 1855} 1856 1857int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1858{ 1859 return call_int_hook(shm_shmctl, 0, shp, cmd); 1860} 1861 1862int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1863{ 1864 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1865} 1866 1867int security_sem_alloc(struct kern_ipc_perm *sma) 1868{ 1869 int rc = lsm_ipc_alloc(sma); 1870 1871 if (unlikely(rc)) 1872 return rc; 1873 rc = call_int_hook(sem_alloc_security, 0, sma); 1874 if (unlikely(rc)) 1875 security_sem_free(sma); 1876 return rc; 1877} 1878 1879void security_sem_free(struct kern_ipc_perm *sma) 1880{ 1881 call_void_hook(sem_free_security, sma); 1882 kfree(sma->security); 1883 sma->security = NULL; 1884} 1885 1886int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1887{ 1888 return call_int_hook(sem_associate, 0, sma, semflg); 1889} 1890 1891int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1892{ 1893 return call_int_hook(sem_semctl, 0, sma, cmd); 1894} 1895 1896int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1897 unsigned nsops, int alter) 1898{ 1899 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1900} 1901 1902void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1903{ 1904 if (unlikely(inode && IS_PRIVATE(inode))) 1905 return; 1906 call_void_hook(d_instantiate, dentry, inode); 1907} 1908EXPORT_SYMBOL(security_d_instantiate); 1909 1910int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1911 char **value) 1912{ 1913 struct security_hook_list *hp; 1914 1915 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1916 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1917 continue; 1918 return hp->hook.getprocattr(p, name, value); 1919 } 1920 return -EINVAL; 1921} 1922 1923int security_setprocattr(const char *lsm, const char *name, void *value, 1924 size_t size) 1925{ 1926 struct security_hook_list *hp; 1927 1928 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1929 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1930 continue; 1931 return hp->hook.setprocattr(name, value, size); 1932 } 1933 return -EINVAL; 1934} 1935 1936int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1937{ 1938 return call_int_hook(netlink_send, 0, sk, skb); 1939} 1940 1941int security_ismaclabel(const char *name) 1942{ 1943 return call_int_hook(ismaclabel, 0, name); 1944} 1945EXPORT_SYMBOL(security_ismaclabel); 1946 1947int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1948{ 1949 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1950 seclen); 1951} 1952EXPORT_SYMBOL(security_secid_to_secctx); 1953 1954int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1955{ 1956 *secid = 0; 1957 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1958} 1959EXPORT_SYMBOL(security_secctx_to_secid); 1960 1961void security_release_secctx(char *secdata, u32 seclen) 1962{ 1963 call_void_hook(release_secctx, secdata, seclen); 1964} 1965EXPORT_SYMBOL(security_release_secctx); 1966 1967void security_inode_invalidate_secctx(struct inode *inode) 1968{ 1969 call_void_hook(inode_invalidate_secctx, inode); 1970} 1971EXPORT_SYMBOL(security_inode_invalidate_secctx); 1972 1973int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1974{ 1975 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1976} 1977EXPORT_SYMBOL(security_inode_notifysecctx); 1978 1979int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1980{ 1981 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1982} 1983EXPORT_SYMBOL(security_inode_setsecctx); 1984 1985int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1986{ 1987 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1988} 1989EXPORT_SYMBOL(security_inode_getsecctx); 1990 1991#ifdef CONFIG_SECURITY_NETWORK 1992 1993int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1994{ 1995 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1996} 1997EXPORT_SYMBOL(security_unix_stream_connect); 1998 1999int security_unix_may_send(struct socket *sock, struct socket *other) 2000{ 2001 return call_int_hook(unix_may_send, 0, sock, other); 2002} 2003EXPORT_SYMBOL(security_unix_may_send); 2004 2005int security_socket_create(int family, int type, int protocol, int kern) 2006{ 2007 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2008} 2009 2010int security_socket_post_create(struct socket *sock, int family, 2011 int type, int protocol, int kern) 2012{ 2013 return call_int_hook(socket_post_create, 0, sock, family, type, 2014 protocol, kern); 2015} 2016 2017int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2018{ 2019 return call_int_hook(socket_socketpair, 0, socka, sockb); 2020} 2021EXPORT_SYMBOL(security_socket_socketpair); 2022 2023int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2024{ 2025 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2026} 2027 2028int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2029{ 2030 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2031} 2032 2033int security_socket_listen(struct socket *sock, int backlog) 2034{ 2035 return call_int_hook(socket_listen, 0, sock, backlog); 2036} 2037 2038int security_socket_accept(struct socket *sock, struct socket *newsock) 2039{ 2040 return call_int_hook(socket_accept, 0, sock, newsock); 2041} 2042 2043int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2044{ 2045 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2046} 2047 2048int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2049 int size, int flags) 2050{ 2051 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2052} 2053 2054int security_socket_getsockname(struct socket *sock) 2055{ 2056 return call_int_hook(socket_getsockname, 0, sock); 2057} 2058 2059int security_socket_getpeername(struct socket *sock) 2060{ 2061 return call_int_hook(socket_getpeername, 0, sock); 2062} 2063 2064int security_socket_getsockopt(struct socket *sock, int level, int optname) 2065{ 2066 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2067} 2068 2069int security_socket_setsockopt(struct socket *sock, int level, int optname) 2070{ 2071 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2072} 2073 2074int security_socket_shutdown(struct socket *sock, int how) 2075{ 2076 return call_int_hook(socket_shutdown, 0, sock, how); 2077} 2078 2079int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2080{ 2081 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2082} 2083EXPORT_SYMBOL(security_sock_rcv_skb); 2084 2085int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2086 int __user *optlen, unsigned len) 2087{ 2088 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2089 optval, optlen, len); 2090} 2091 2092int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2093{ 2094 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2095 skb, secid); 2096} 2097EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2098 2099int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2100{ 2101 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2102} 2103 2104void security_sk_free(struct sock *sk) 2105{ 2106 call_void_hook(sk_free_security, sk); 2107} 2108 2109void security_sk_clone(const struct sock *sk, struct sock *newsk) 2110{ 2111 call_void_hook(sk_clone_security, sk, newsk); 2112} 2113EXPORT_SYMBOL(security_sk_clone); 2114 2115void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2116{ 2117 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2118} 2119EXPORT_SYMBOL(security_sk_classify_flow); 2120 2121void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2122{ 2123 call_void_hook(req_classify_flow, req, fl); 2124} 2125EXPORT_SYMBOL(security_req_classify_flow); 2126 2127void security_sock_graft(struct sock *sk, struct socket *parent) 2128{ 2129 call_void_hook(sock_graft, sk, parent); 2130} 2131EXPORT_SYMBOL(security_sock_graft); 2132 2133int security_inet_conn_request(struct sock *sk, 2134 struct sk_buff *skb, struct request_sock *req) 2135{ 2136 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2137} 2138EXPORT_SYMBOL(security_inet_conn_request); 2139 2140void security_inet_csk_clone(struct sock *newsk, 2141 const struct request_sock *req) 2142{ 2143 call_void_hook(inet_csk_clone, newsk, req); 2144} 2145 2146void security_inet_conn_established(struct sock *sk, 2147 struct sk_buff *skb) 2148{ 2149 call_void_hook(inet_conn_established, sk, skb); 2150} 2151EXPORT_SYMBOL(security_inet_conn_established); 2152 2153int security_secmark_relabel_packet(u32 secid) 2154{ 2155 return call_int_hook(secmark_relabel_packet, 0, secid); 2156} 2157EXPORT_SYMBOL(security_secmark_relabel_packet); 2158 2159void security_secmark_refcount_inc(void) 2160{ 2161 call_void_hook(secmark_refcount_inc); 2162} 2163EXPORT_SYMBOL(security_secmark_refcount_inc); 2164 2165void security_secmark_refcount_dec(void) 2166{ 2167 call_void_hook(secmark_refcount_dec); 2168} 2169EXPORT_SYMBOL(security_secmark_refcount_dec); 2170 2171int security_tun_dev_alloc_security(void **security) 2172{ 2173 return call_int_hook(tun_dev_alloc_security, 0, security); 2174} 2175EXPORT_SYMBOL(security_tun_dev_alloc_security); 2176 2177void security_tun_dev_free_security(void *security) 2178{ 2179 call_void_hook(tun_dev_free_security, security); 2180} 2181EXPORT_SYMBOL(security_tun_dev_free_security); 2182 2183int security_tun_dev_create(void) 2184{ 2185 return call_int_hook(tun_dev_create, 0); 2186} 2187EXPORT_SYMBOL(security_tun_dev_create); 2188 2189int security_tun_dev_attach_queue(void *security) 2190{ 2191 return call_int_hook(tun_dev_attach_queue, 0, security); 2192} 2193EXPORT_SYMBOL(security_tun_dev_attach_queue); 2194 2195int security_tun_dev_attach(struct sock *sk, void *security) 2196{ 2197 return call_int_hook(tun_dev_attach, 0, sk, security); 2198} 2199EXPORT_SYMBOL(security_tun_dev_attach); 2200 2201int security_tun_dev_open(void *security) 2202{ 2203 return call_int_hook(tun_dev_open, 0, security); 2204} 2205EXPORT_SYMBOL(security_tun_dev_open); 2206 2207int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2208{ 2209 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2210} 2211EXPORT_SYMBOL(security_sctp_assoc_request); 2212 2213int security_sctp_bind_connect(struct sock *sk, int optname, 2214 struct sockaddr *address, int addrlen) 2215{ 2216 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2217 address, addrlen); 2218} 2219EXPORT_SYMBOL(security_sctp_bind_connect); 2220 2221void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2222 struct sock *newsk) 2223{ 2224 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2225} 2226EXPORT_SYMBOL(security_sctp_sk_clone); 2227 2228#endif /* CONFIG_SECURITY_NETWORK */ 2229 2230#ifdef CONFIG_SECURITY_INFINIBAND 2231 2232int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2233{ 2234 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2235} 2236EXPORT_SYMBOL(security_ib_pkey_access); 2237 2238int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2239{ 2240 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2241} 2242EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2243 2244int security_ib_alloc_security(void **sec) 2245{ 2246 return call_int_hook(ib_alloc_security, 0, sec); 2247} 2248EXPORT_SYMBOL(security_ib_alloc_security); 2249 2250void security_ib_free_security(void *sec) 2251{ 2252 call_void_hook(ib_free_security, sec); 2253} 2254EXPORT_SYMBOL(security_ib_free_security); 2255#endif /* CONFIG_SECURITY_INFINIBAND */ 2256 2257#ifdef CONFIG_SECURITY_NETWORK_XFRM 2258 2259int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2260 struct xfrm_user_sec_ctx *sec_ctx, 2261 gfp_t gfp) 2262{ 2263 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2264} 2265EXPORT_SYMBOL(security_xfrm_policy_alloc); 2266 2267int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2268 struct xfrm_sec_ctx **new_ctxp) 2269{ 2270 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2271} 2272 2273void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2274{ 2275 call_void_hook(xfrm_policy_free_security, ctx); 2276} 2277EXPORT_SYMBOL(security_xfrm_policy_free); 2278 2279int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2280{ 2281 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2282} 2283 2284int security_xfrm_state_alloc(struct xfrm_state *x, 2285 struct xfrm_user_sec_ctx *sec_ctx) 2286{ 2287 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2288} 2289EXPORT_SYMBOL(security_xfrm_state_alloc); 2290 2291int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2292 struct xfrm_sec_ctx *polsec, u32 secid) 2293{ 2294 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2295} 2296 2297int security_xfrm_state_delete(struct xfrm_state *x) 2298{ 2299 return call_int_hook(xfrm_state_delete_security, 0, x); 2300} 2301EXPORT_SYMBOL(security_xfrm_state_delete); 2302 2303void security_xfrm_state_free(struct xfrm_state *x) 2304{ 2305 call_void_hook(xfrm_state_free_security, x); 2306} 2307 2308int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2309{ 2310 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2311} 2312 2313int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2314 struct xfrm_policy *xp, 2315 const struct flowi *fl) 2316{ 2317 struct security_hook_list *hp; 2318 int rc = 1; 2319 2320 /* 2321 * Since this function is expected to return 0 or 1, the judgment 2322 * becomes difficult if multiple LSMs supply this call. Fortunately, 2323 * we can use the first LSM's judgment because currently only SELinux 2324 * supplies this call. 2325 * 2326 * For speed optimization, we explicitly break the loop rather than 2327 * using the macro 2328 */ 2329 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2330 list) { 2331 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2332 break; 2333 } 2334 return rc; 2335} 2336 2337int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2338{ 2339 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2340} 2341 2342void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2343{ 2344 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2345 0); 2346 2347 BUG_ON(rc); 2348} 2349EXPORT_SYMBOL(security_skb_classify_flow); 2350 2351#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2352 2353#ifdef CONFIG_KEYS 2354 2355int security_key_alloc(struct key *key, const struct cred *cred, 2356 unsigned long flags) 2357{ 2358 return call_int_hook(key_alloc, 0, key, cred, flags); 2359} 2360 2361void security_key_free(struct key *key) 2362{ 2363 call_void_hook(key_free, key); 2364} 2365 2366int security_key_permission(key_ref_t key_ref, 2367 const struct cred *cred, unsigned perm) 2368{ 2369 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2370} 2371 2372int security_key_getsecurity(struct key *key, char **_buffer) 2373{ 2374 *_buffer = NULL; 2375 return call_int_hook(key_getsecurity, 0, key, _buffer); 2376} 2377 2378#endif /* CONFIG_KEYS */ 2379 2380#ifdef CONFIG_AUDIT 2381 2382int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2383{ 2384 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2385} 2386 2387int security_audit_rule_known(struct audit_krule *krule) 2388{ 2389 return call_int_hook(audit_rule_known, 0, krule); 2390} 2391 2392void security_audit_rule_free(void *lsmrule) 2393{ 2394 call_void_hook(audit_rule_free, lsmrule); 2395} 2396 2397int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2398{ 2399 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2400} 2401#endif /* CONFIG_AUDIT */ 2402 2403#ifdef CONFIG_BPF_SYSCALL 2404int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2405{ 2406 return call_int_hook(bpf, 0, cmd, attr, size); 2407} 2408int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2409{ 2410 return call_int_hook(bpf_map, 0, map, fmode); 2411} 2412int security_bpf_prog(struct bpf_prog *prog) 2413{ 2414 return call_int_hook(bpf_prog, 0, prog); 2415} 2416int security_bpf_map_alloc(struct bpf_map *map) 2417{ 2418 return call_int_hook(bpf_map_alloc_security, 0, map); 2419} 2420int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2421{ 2422 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2423} 2424void security_bpf_map_free(struct bpf_map *map) 2425{ 2426 call_void_hook(bpf_map_free_security, map); 2427} 2428void security_bpf_prog_free(struct bpf_prog_aux *aux) 2429{ 2430 call_void_hook(bpf_prog_free_security, aux); 2431} 2432#endif /* CONFIG_BPF_SYSCALL */ 2433 2434int security_locked_down(enum lockdown_reason what) 2435{ 2436 return call_int_hook(locked_down, 0, what); 2437} 2438EXPORT_SYMBOL(security_locked_down); 2439 2440#ifdef CONFIG_PERF_EVENTS 2441int security_perf_event_open(struct perf_event_attr *attr, int type) 2442{ 2443 return call_int_hook(perf_event_open, 0, attr, type); 2444} 2445 2446int security_perf_event_alloc(struct perf_event *event) 2447{ 2448 return call_int_hook(perf_event_alloc, 0, event); 2449} 2450 2451void security_perf_event_free(struct perf_event *event) 2452{ 2453 call_void_hook(perf_event_free, event); 2454} 2455 2456int security_perf_event_read(struct perf_event *event) 2457{ 2458 return call_int_hook(perf_event_read, 0, event); 2459} 2460 2461int security_perf_event_write(struct perf_event *event) 2462{ 2463 return call_int_hook(perf_event_write, 0, event); 2464} 2465#endif /* CONFIG_PERF_EVENTS */