Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/mm.h>
56#include <linux/socket.h>
57#include <linux/file.h>
58#include <linux/net.h>
59#include <linux/interrupt.h>
60#include <linux/thread_info.h>
61#include <linux/rcupdate.h>
62#include <linux/netdevice.h>
63#include <linux/proc_fs.h>
64#include <linux/seq_file.h>
65#include <linux/mutex.h>
66#include <linux/if_bridge.h>
67#include <linux/if_frad.h>
68#include <linux/if_vlan.h>
69#include <linux/ptp_classify.h>
70#include <linux/init.h>
71#include <linux/poll.h>
72#include <linux/cache.h>
73#include <linux/module.h>
74#include <linux/highmem.h>
75#include <linux/mount.h>
76#include <linux/pseudo_fs.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/compat.h>
80#include <linux/kmod.h>
81#include <linux/audit.h>
82#include <linux/wireless.h>
83#include <linux/nsproxy.h>
84#include <linux/magic.h>
85#include <linux/slab.h>
86#include <linux/xattr.h>
87#include <linux/nospec.h>
88#include <linux/indirect_call_wrapper.h>
89
90#include <linux/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94#include <net/wext.h>
95#include <net/cls_cgroup.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/termios.h>
104#include <linux/sockios.h>
105#include <net/busy_poll.h>
106#include <linux/errqueue.h>
107
108#ifdef CONFIG_NET_RX_BUSY_POLL
109unsigned int sysctl_net_busy_read __read_mostly;
110unsigned int sysctl_net_busy_poll __read_mostly;
111#endif
112
113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117static int sock_close(struct inode *inode, struct file *file);
118static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121#ifdef CONFIG_COMPAT
122static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124#endif
125static int sock_fasync(int fd, struct file *filp, int on);
126static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132#ifdef CONFIG_PROC_FS
133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134{
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139}
140#else
141#define sock_show_fdinfo NULL
142#endif
143
144/*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156#ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158#endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166};
167
168/*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172static DEFINE_SPINLOCK(net_family_lock);
173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175/*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181/**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193{
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201}
202
203/**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222{
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245}
246
247static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
249static struct inode *sock_alloc_inode(struct super_block *sb)
250{
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267}
268
269static void sock_free_inode(struct inode *inode)
270{
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275}
276
277static void init_once(void *foo)
278{
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282}
283
284static void init_inodecache(void)
285{
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294}
295
296static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300};
301
302/*
303 * sockfs_dname() is called from d_path().
304 */
305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306{
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309}
310
311static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313};
314
315static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318{
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325}
326
327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334};
335
336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340{
341 /* Handled by LSM. */
342 return -EAGAIN;
343}
344
345static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348};
349
350static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354};
355
356static int sockfs_init_fs_context(struct fs_context *fc)
357{
358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 if (!ctx)
360 return -ENOMEM;
361 ctx->ops = &sockfs_ops;
362 ctx->dops = &sockfs_dentry_operations;
363 ctx->xattr = sockfs_xattr_handlers;
364 return 0;
365}
366
367static struct vfsmount *sock_mnt __read_mostly;
368
369static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .init_fs_context = sockfs_init_fs_context,
372 .kill_sb = kill_anon_super,
373};
374
375/*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392/**
393 * sock_alloc_file - Bind a &socket to a &file
394 * @sock: socket
395 * @flags: file status flags
396 * @dname: protocol name
397 *
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
402 */
403
404struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405{
406 struct file *file;
407
408 if (!dname)
409 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410
411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 O_RDWR | (flags & O_NONBLOCK),
413 &socket_file_ops);
414 if (IS_ERR(file)) {
415 sock_release(sock);
416 return file;
417 }
418
419 sock->file = file;
420 file->private_data = sock;
421 stream_open(SOCK_INODE(sock), file);
422 return file;
423}
424EXPORT_SYMBOL(sock_alloc_file);
425
426static int sock_map_fd(struct socket *sock, int flags)
427{
428 struct file *newfile;
429 int fd = get_unused_fd_flags(flags);
430 if (unlikely(fd < 0)) {
431 sock_release(sock);
432 return fd;
433 }
434
435 newfile = sock_alloc_file(sock, flags, NULL);
436 if (!IS_ERR(newfile)) {
437 fd_install(fd, newfile);
438 return fd;
439 }
440
441 put_unused_fd(fd);
442 return PTR_ERR(newfile);
443}
444
445/**
446 * sock_from_file - Return the &socket bounded to @file.
447 * @file: file
448 * @err: pointer to an error code return
449 *
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
451 */
452
453struct socket *sock_from_file(struct file *file, int *err)
454{
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 *err = -ENOTSOCK;
459 return NULL;
460}
461EXPORT_SYMBOL(sock_from_file);
462
463/**
464 * sockfd_lookup - Go from a file number to its socket slot
465 * @fd: file handle
466 * @err: pointer to an error code return
467 *
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
472 *
473 * On a success the socket object pointer is returned.
474 */
475
476struct socket *sockfd_lookup(int fd, int *err)
477{
478 struct file *file;
479 struct socket *sock;
480
481 file = fget(fd);
482 if (!file) {
483 *err = -EBADF;
484 return NULL;
485 }
486
487 sock = sock_from_file(file, err);
488 if (!sock)
489 fput(file);
490 return sock;
491}
492EXPORT_SYMBOL(sockfd_lookup);
493
494static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495{
496 struct fd f = fdget(fd);
497 struct socket *sock;
498
499 *err = -EBADF;
500 if (f.file) {
501 sock = sock_from_file(f.file, err);
502 if (likely(sock)) {
503 *fput_needed = f.flags;
504 return sock;
505 }
506 fdput(f);
507 }
508 return NULL;
509}
510
511static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 size_t size)
513{
514 ssize_t len;
515 ssize_t used = 0;
516
517 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 if (len < 0)
519 return len;
520 used += len;
521 if (buffer) {
522 if (size < used)
523 return -ERANGE;
524 buffer += len;
525 }
526
527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 used += len;
529 if (buffer) {
530 if (size < used)
531 return -ERANGE;
532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 buffer += len;
534 }
535
536 return used;
537}
538
539static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540{
541 int err = simple_setattr(dentry, iattr);
542
543 if (!err && (iattr->ia_valid & ATTR_UID)) {
544 struct socket *sock = SOCKET_I(d_inode(dentry));
545
546 if (sock->sk)
547 sock->sk->sk_uid = iattr->ia_uid;
548 else
549 err = -ENOENT;
550 }
551
552 return err;
553}
554
555static const struct inode_operations sockfs_inode_ops = {
556 .listxattr = sockfs_listxattr,
557 .setattr = sockfs_setattr,
558};
559
560/**
561 * sock_alloc - allocate a socket
562 *
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
566 */
567
568struct socket *sock_alloc(void)
569{
570 struct inode *inode;
571 struct socket *sock;
572
573 inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 if (!inode)
575 return NULL;
576
577 sock = SOCKET_I(inode);
578
579 inode->i_ino = get_next_ino();
580 inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 inode->i_uid = current_fsuid();
582 inode->i_gid = current_fsgid();
583 inode->i_op = &sockfs_inode_ops;
584
585 return sock;
586}
587EXPORT_SYMBOL(sock_alloc);
588
589/**
590 * sock_release - close a socket
591 * @sock: socket to close
592 *
593 * The socket is released from the protocol stack if it has a release
594 * callback, and the inode is then released if the socket is bound to
595 * an inode not a file.
596 */
597
598static void __sock_release(struct socket *sock, struct inode *inode)
599{
600 if (sock->ops) {
601 struct module *owner = sock->ops->owner;
602
603 if (inode)
604 inode_lock(inode);
605 sock->ops->release(sock);
606 sock->sk = NULL;
607 if (inode)
608 inode_unlock(inode);
609 sock->ops = NULL;
610 module_put(owner);
611 }
612
613 if (sock->wq.fasync_list)
614 pr_err("%s: fasync list not empty!\n", __func__);
615
616 if (!sock->file) {
617 iput(SOCK_INODE(sock));
618 return;
619 }
620 sock->file = NULL;
621}
622
623void sock_release(struct socket *sock)
624{
625 __sock_release(sock, NULL);
626}
627EXPORT_SYMBOL(sock_release);
628
629void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630{
631 u8 flags = *tx_flags;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 flags |= SKBTX_HW_TSTAMP;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 flags |= SKBTX_SW_TSTAMP;
638
639 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 flags |= SKBTX_SCHED_TSTAMP;
641
642 *tx_flags = flags;
643}
644EXPORT_SYMBOL(__sock_tx_timestamp);
645
646INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 size_t));
648INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 size_t));
650static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651{
652 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 inet_sendmsg, sock, msg,
654 msg_data_left(msg));
655 BUG_ON(ret == -EIOCBQUEUED);
656 return ret;
657}
658
659/**
660 * sock_sendmsg - send a message through @sock
661 * @sock: socket
662 * @msg: message to send
663 *
664 * Sends @msg through @sock, passing through LSM.
665 * Returns the number of bytes sent, or an error code.
666 */
667int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668{
669 int err = security_socket_sendmsg(sock, msg,
670 msg_data_left(msg));
671
672 return err ?: sock_sendmsg_nosec(sock, msg);
673}
674EXPORT_SYMBOL(sock_sendmsg);
675
676/**
677 * kernel_sendmsg - send a message through @sock (kernel-space)
678 * @sock: socket
679 * @msg: message header
680 * @vec: kernel vec
681 * @num: vec array length
682 * @size: total message data size
683 *
684 * Builds the message data with @vec and sends it through @sock.
685 * Returns the number of bytes sent, or an error code.
686 */
687
688int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 struct kvec *vec, size_t num, size_t size)
690{
691 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 return sock_sendmsg(sock, msg);
693}
694EXPORT_SYMBOL(kernel_sendmsg);
695
696/**
697 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
698 * @sk: sock
699 * @msg: message header
700 * @vec: output s/g array
701 * @num: output s/g array length
702 * @size: total message data size
703 *
704 * Builds the message data with @vec and sends it through @sock.
705 * Returns the number of bytes sent, or an error code.
706 * Caller must hold @sk.
707 */
708
709int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 struct kvec *vec, size_t num, size_t size)
711{
712 struct socket *sock = sk->sk_socket;
713
714 if (!sock->ops->sendmsg_locked)
715 return sock_no_sendmsg_locked(sk, msg, size);
716
717 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718
719 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720}
721EXPORT_SYMBOL(kernel_sendmsg_locked);
722
723static bool skb_is_err_queue(const struct sk_buff *skb)
724{
725 /* pkt_type of skbs enqueued on the error queue are set to
726 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 * in recvmsg, since skbs received on a local socket will never
728 * have a pkt_type of PACKET_OUTGOING.
729 */
730 return skb->pkt_type == PACKET_OUTGOING;
731}
732
733/* On transmit, software and hardware timestamps are returned independently.
734 * As the two skb clones share the hardware timestamp, which may be updated
735 * before the software timestamp is received, a hardware TX timestamp may be
736 * returned only if there is no software TX timestamp. Ignore false software
737 * timestamps, which may be made in the __sock_recv_timestamp() call when the
738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739 * hardware timestamp.
740 */
741static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742{
743 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744}
745
746static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747{
748 struct scm_ts_pktinfo ts_pktinfo;
749 struct net_device *orig_dev;
750
751 if (!skb_mac_header_was_set(skb))
752 return;
753
754 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755
756 rcu_read_lock();
757 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 if (orig_dev)
759 ts_pktinfo.if_index = orig_dev->ifindex;
760 rcu_read_unlock();
761
762 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 sizeof(ts_pktinfo), &ts_pktinfo);
765}
766
767/*
768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769 */
770void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
772{
773 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 struct scm_timestamping_internal tss;
776
777 int empty = 1, false_tstamp = 0;
778 struct skb_shared_hwtstamps *shhwtstamps =
779 skb_hwtstamps(skb);
780
781 /* Race occurred between timestamp enabling and packet
782 receiving. Fill in the current time for now. */
783 if (need_software_tstamp && skb->tstamp == 0) {
784 __net_timestamp(skb);
785 false_tstamp = 1;
786 }
787
788 if (need_software_tstamp) {
789 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 if (new_tstamp) {
791 struct __kernel_sock_timeval tv;
792
793 skb_get_new_timestamp(skb, &tv);
794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 sizeof(tv), &tv);
796 } else {
797 struct __kernel_old_timeval tv;
798
799 skb_get_timestamp(skb, &tv);
800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 sizeof(tv), &tv);
802 }
803 } else {
804 if (new_tstamp) {
805 struct __kernel_timespec ts;
806
807 skb_get_new_timestampns(skb, &ts);
808 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 sizeof(ts), &ts);
810 } else {
811 struct __kernel_old_timespec ts;
812
813 skb_get_timestampns(skb, &ts);
814 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 sizeof(ts), &ts);
816 }
817 }
818 }
819
820 memset(&tss, 0, sizeof(tss));
821 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 empty = 0;
824 if (shhwtstamps &&
825 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 empty = 0;
829 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 !skb_is_err_queue(skb))
831 put_ts_pktinfo(msg, skb);
832 }
833 if (!empty) {
834 if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 put_cmsg_scm_timestamping64(msg, &tss);
836 else
837 put_cmsg_scm_timestamping(msg, &tss);
838
839 if (skb_is_err_queue(skb) && skb->len &&
840 SKB_EXT_ERR(skb)->opt_stats)
841 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 skb->len, skb->data);
843 }
844}
845EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846
847void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 struct sk_buff *skb)
849{
850 int ack;
851
852 if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 return;
854 if (!skb->wifi_acked_valid)
855 return;
856
857 ack = skb->wifi_acked;
858
859 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860}
861EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862
863static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 struct sk_buff *skb)
865{
866 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869}
870
871void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 struct sk_buff *skb)
873{
874 sock_recv_timestamp(msg, sk, skb);
875 sock_recv_drops(msg, sk, skb);
876}
877EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878
879INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 size_t, int));
881INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 size_t, int));
883static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 int flags)
885{
886 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 inet_recvmsg, sock, msg, msg_data_left(msg),
888 flags);
889}
890
891/**
892 * sock_recvmsg - receive a message from @sock
893 * @sock: socket
894 * @msg: message to receive
895 * @flags: message flags
896 *
897 * Receives @msg from @sock, passing through LSM. Returns the total number
898 * of bytes received, or an error.
899 */
900int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901{
902 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903
904 return err ?: sock_recvmsg_nosec(sock, msg, flags);
905}
906EXPORT_SYMBOL(sock_recvmsg);
907
908/**
909 * kernel_recvmsg - Receive a message from a socket (kernel space)
910 * @sock: The socket to receive the message from
911 * @msg: Received message
912 * @vec: Input s/g array for message data
913 * @num: Size of input s/g array
914 * @size: Number of bytes to read
915 * @flags: Message flags (MSG_DONTWAIT, etc...)
916 *
917 * On return the msg structure contains the scatter/gather array passed in the
918 * vec argument. The array is modified so that it consists of the unfilled
919 * portion of the original array.
920 *
921 * The returned value is the total number of bytes received, or an error.
922 */
923
924int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 struct kvec *vec, size_t num, size_t size, int flags)
926{
927 mm_segment_t oldfs = get_fs();
928 int result;
929
930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 set_fs(KERNEL_DS);
932 result = sock_recvmsg(sock, msg, flags);
933 set_fs(oldfs);
934 return result;
935}
936EXPORT_SYMBOL(kernel_recvmsg);
937
938static ssize_t sock_sendpage(struct file *file, struct page *page,
939 int offset, size_t size, loff_t *ppos, int more)
940{
941 struct socket *sock;
942 int flags;
943
944 sock = file->private_data;
945
946 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
947 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
948 flags |= more;
949
950 return kernel_sendpage(sock, page, offset, size, flags);
951}
952
953static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
954 struct pipe_inode_info *pipe, size_t len,
955 unsigned int flags)
956{
957 struct socket *sock = file->private_data;
958
959 if (unlikely(!sock->ops->splice_read))
960 return generic_file_splice_read(file, ppos, pipe, len, flags);
961
962 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
963}
964
965static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
966{
967 struct file *file = iocb->ki_filp;
968 struct socket *sock = file->private_data;
969 struct msghdr msg = {.msg_iter = *to,
970 .msg_iocb = iocb};
971 ssize_t res;
972
973 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
974 msg.msg_flags = MSG_DONTWAIT;
975
976 if (iocb->ki_pos != 0)
977 return -ESPIPE;
978
979 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
980 return 0;
981
982 res = sock_recvmsg(sock, &msg, msg.msg_flags);
983 *to = msg.msg_iter;
984 return res;
985}
986
987static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
988{
989 struct file *file = iocb->ki_filp;
990 struct socket *sock = file->private_data;
991 struct msghdr msg = {.msg_iter = *from,
992 .msg_iocb = iocb};
993 ssize_t res;
994
995 if (iocb->ki_pos != 0)
996 return -ESPIPE;
997
998 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
999 msg.msg_flags = MSG_DONTWAIT;
1000
1001 if (sock->type == SOCK_SEQPACKET)
1002 msg.msg_flags |= MSG_EOR;
1003
1004 res = sock_sendmsg(sock, &msg);
1005 *from = msg.msg_iter;
1006 return res;
1007}
1008
1009/*
1010 * Atomic setting of ioctl hooks to avoid race
1011 * with module unload.
1012 */
1013
1014static DEFINE_MUTEX(br_ioctl_mutex);
1015static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1016
1017void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1018{
1019 mutex_lock(&br_ioctl_mutex);
1020 br_ioctl_hook = hook;
1021 mutex_unlock(&br_ioctl_mutex);
1022}
1023EXPORT_SYMBOL(brioctl_set);
1024
1025static DEFINE_MUTEX(vlan_ioctl_mutex);
1026static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1027
1028void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1029{
1030 mutex_lock(&vlan_ioctl_mutex);
1031 vlan_ioctl_hook = hook;
1032 mutex_unlock(&vlan_ioctl_mutex);
1033}
1034EXPORT_SYMBOL(vlan_ioctl_set);
1035
1036static DEFINE_MUTEX(dlci_ioctl_mutex);
1037static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1038
1039void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1040{
1041 mutex_lock(&dlci_ioctl_mutex);
1042 dlci_ioctl_hook = hook;
1043 mutex_unlock(&dlci_ioctl_mutex);
1044}
1045EXPORT_SYMBOL(dlci_ioctl_set);
1046
1047static long sock_do_ioctl(struct net *net, struct socket *sock,
1048 unsigned int cmd, unsigned long arg)
1049{
1050 int err;
1051 void __user *argp = (void __user *)arg;
1052
1053 err = sock->ops->ioctl(sock, cmd, arg);
1054
1055 /*
1056 * If this ioctl is unknown try to hand it down
1057 * to the NIC driver.
1058 */
1059 if (err != -ENOIOCTLCMD)
1060 return err;
1061
1062 if (cmd == SIOCGIFCONF) {
1063 struct ifconf ifc;
1064 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1065 return -EFAULT;
1066 rtnl_lock();
1067 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1068 rtnl_unlock();
1069 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1070 err = -EFAULT;
1071 } else {
1072 struct ifreq ifr;
1073 bool need_copyout;
1074 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1075 return -EFAULT;
1076 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1077 if (!err && need_copyout)
1078 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1079 return -EFAULT;
1080 }
1081 return err;
1082}
1083
1084/*
1085 * With an ioctl, arg may well be a user mode pointer, but we don't know
1086 * what to do with it - that's up to the protocol still.
1087 */
1088
1089/**
1090 * get_net_ns - increment the refcount of the network namespace
1091 * @ns: common namespace (net)
1092 *
1093 * Returns the net's common namespace.
1094 */
1095
1096struct ns_common *get_net_ns(struct ns_common *ns)
1097{
1098 return &get_net(container_of(ns, struct net, ns))->ns;
1099}
1100EXPORT_SYMBOL_GPL(get_net_ns);
1101
1102static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1103{
1104 struct socket *sock;
1105 struct sock *sk;
1106 void __user *argp = (void __user *)arg;
1107 int pid, err;
1108 struct net *net;
1109
1110 sock = file->private_data;
1111 sk = sock->sk;
1112 net = sock_net(sk);
1113 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1114 struct ifreq ifr;
1115 bool need_copyout;
1116 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1117 return -EFAULT;
1118 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1119 if (!err && need_copyout)
1120 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1121 return -EFAULT;
1122 } else
1123#ifdef CONFIG_WEXT_CORE
1124 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1125 err = wext_handle_ioctl(net, cmd, argp);
1126 } else
1127#endif
1128 switch (cmd) {
1129 case FIOSETOWN:
1130 case SIOCSPGRP:
1131 err = -EFAULT;
1132 if (get_user(pid, (int __user *)argp))
1133 break;
1134 err = f_setown(sock->file, pid, 1);
1135 break;
1136 case FIOGETOWN:
1137 case SIOCGPGRP:
1138 err = put_user(f_getown(sock->file),
1139 (int __user *)argp);
1140 break;
1141 case SIOCGIFBR:
1142 case SIOCSIFBR:
1143 case SIOCBRADDBR:
1144 case SIOCBRDELBR:
1145 err = -ENOPKG;
1146 if (!br_ioctl_hook)
1147 request_module("bridge");
1148
1149 mutex_lock(&br_ioctl_mutex);
1150 if (br_ioctl_hook)
1151 err = br_ioctl_hook(net, cmd, argp);
1152 mutex_unlock(&br_ioctl_mutex);
1153 break;
1154 case SIOCGIFVLAN:
1155 case SIOCSIFVLAN:
1156 err = -ENOPKG;
1157 if (!vlan_ioctl_hook)
1158 request_module("8021q");
1159
1160 mutex_lock(&vlan_ioctl_mutex);
1161 if (vlan_ioctl_hook)
1162 err = vlan_ioctl_hook(net, argp);
1163 mutex_unlock(&vlan_ioctl_mutex);
1164 break;
1165 case SIOCADDDLCI:
1166 case SIOCDELDLCI:
1167 err = -ENOPKG;
1168 if (!dlci_ioctl_hook)
1169 request_module("dlci");
1170
1171 mutex_lock(&dlci_ioctl_mutex);
1172 if (dlci_ioctl_hook)
1173 err = dlci_ioctl_hook(cmd, argp);
1174 mutex_unlock(&dlci_ioctl_mutex);
1175 break;
1176 case SIOCGSKNS:
1177 err = -EPERM;
1178 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179 break;
1180
1181 err = open_related_ns(&net->ns, get_net_ns);
1182 break;
1183 case SIOCGSTAMP_OLD:
1184 case SIOCGSTAMPNS_OLD:
1185 if (!sock->ops->gettstamp) {
1186 err = -ENOIOCTLCMD;
1187 break;
1188 }
1189 err = sock->ops->gettstamp(sock, argp,
1190 cmd == SIOCGSTAMP_OLD,
1191 !IS_ENABLED(CONFIG_64BIT));
1192 break;
1193 case SIOCGSTAMP_NEW:
1194 case SIOCGSTAMPNS_NEW:
1195 if (!sock->ops->gettstamp) {
1196 err = -ENOIOCTLCMD;
1197 break;
1198 }
1199 err = sock->ops->gettstamp(sock, argp,
1200 cmd == SIOCGSTAMP_NEW,
1201 false);
1202 break;
1203 default:
1204 err = sock_do_ioctl(net, sock, cmd, arg);
1205 break;
1206 }
1207 return err;
1208}
1209
1210/**
1211 * sock_create_lite - creates a socket
1212 * @family: protocol family (AF_INET, ...)
1213 * @type: communication type (SOCK_STREAM, ...)
1214 * @protocol: protocol (0, ...)
1215 * @res: new socket
1216 *
1217 * Creates a new socket and assigns it to @res, passing through LSM.
1218 * The new socket initialization is not complete, see kernel_accept().
1219 * Returns 0 or an error. On failure @res is set to %NULL.
1220 * This function internally uses GFP_KERNEL.
1221 */
1222
1223int sock_create_lite(int family, int type, int protocol, struct socket **res)
1224{
1225 int err;
1226 struct socket *sock = NULL;
1227
1228 err = security_socket_create(family, type, protocol, 1);
1229 if (err)
1230 goto out;
1231
1232 sock = sock_alloc();
1233 if (!sock) {
1234 err = -ENOMEM;
1235 goto out;
1236 }
1237
1238 sock->type = type;
1239 err = security_socket_post_create(sock, family, type, protocol, 1);
1240 if (err)
1241 goto out_release;
1242
1243out:
1244 *res = sock;
1245 return err;
1246out_release:
1247 sock_release(sock);
1248 sock = NULL;
1249 goto out;
1250}
1251EXPORT_SYMBOL(sock_create_lite);
1252
1253/* No kernel lock held - perfect */
1254static __poll_t sock_poll(struct file *file, poll_table *wait)
1255{
1256 struct socket *sock = file->private_data;
1257 __poll_t events = poll_requested_events(wait), flag = 0;
1258
1259 if (!sock->ops->poll)
1260 return 0;
1261
1262 if (sk_can_busy_loop(sock->sk)) {
1263 /* poll once if requested by the syscall */
1264 if (events & POLL_BUSY_LOOP)
1265 sk_busy_loop(sock->sk, 1);
1266
1267 /* if this socket can poll_ll, tell the system call */
1268 flag = POLL_BUSY_LOOP;
1269 }
1270
1271 return sock->ops->poll(file, sock, wait) | flag;
1272}
1273
1274static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1275{
1276 struct socket *sock = file->private_data;
1277
1278 return sock->ops->mmap(file, sock, vma);
1279}
1280
1281static int sock_close(struct inode *inode, struct file *filp)
1282{
1283 __sock_release(SOCKET_I(inode), inode);
1284 return 0;
1285}
1286
1287/*
1288 * Update the socket async list
1289 *
1290 * Fasync_list locking strategy.
1291 *
1292 * 1. fasync_list is modified only under process context socket lock
1293 * i.e. under semaphore.
1294 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1295 * or under socket lock
1296 */
1297
1298static int sock_fasync(int fd, struct file *filp, int on)
1299{
1300 struct socket *sock = filp->private_data;
1301 struct sock *sk = sock->sk;
1302 struct socket_wq *wq = &sock->wq;
1303
1304 if (sk == NULL)
1305 return -EINVAL;
1306
1307 lock_sock(sk);
1308 fasync_helper(fd, filp, on, &wq->fasync_list);
1309
1310 if (!wq->fasync_list)
1311 sock_reset_flag(sk, SOCK_FASYNC);
1312 else
1313 sock_set_flag(sk, SOCK_FASYNC);
1314
1315 release_sock(sk);
1316 return 0;
1317}
1318
1319/* This function may be called only under rcu_lock */
1320
1321int sock_wake_async(struct socket_wq *wq, int how, int band)
1322{
1323 if (!wq || !wq->fasync_list)
1324 return -1;
1325
1326 switch (how) {
1327 case SOCK_WAKE_WAITD:
1328 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1329 break;
1330 goto call_kill;
1331 case SOCK_WAKE_SPACE:
1332 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1333 break;
1334 /* fall through */
1335 case SOCK_WAKE_IO:
1336call_kill:
1337 kill_fasync(&wq->fasync_list, SIGIO, band);
1338 break;
1339 case SOCK_WAKE_URG:
1340 kill_fasync(&wq->fasync_list, SIGURG, band);
1341 }
1342
1343 return 0;
1344}
1345EXPORT_SYMBOL(sock_wake_async);
1346
1347/**
1348 * __sock_create - creates a socket
1349 * @net: net namespace
1350 * @family: protocol family (AF_INET, ...)
1351 * @type: communication type (SOCK_STREAM, ...)
1352 * @protocol: protocol (0, ...)
1353 * @res: new socket
1354 * @kern: boolean for kernel space sockets
1355 *
1356 * Creates a new socket and assigns it to @res, passing through LSM.
1357 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1358 * be set to true if the socket resides in kernel space.
1359 * This function internally uses GFP_KERNEL.
1360 */
1361
1362int __sock_create(struct net *net, int family, int type, int protocol,
1363 struct socket **res, int kern)
1364{
1365 int err;
1366 struct socket *sock;
1367 const struct net_proto_family *pf;
1368
1369 /*
1370 * Check protocol is in range
1371 */
1372 if (family < 0 || family >= NPROTO)
1373 return -EAFNOSUPPORT;
1374 if (type < 0 || type >= SOCK_MAX)
1375 return -EINVAL;
1376
1377 /* Compatibility.
1378
1379 This uglymoron is moved from INET layer to here to avoid
1380 deadlock in module load.
1381 */
1382 if (family == PF_INET && type == SOCK_PACKET) {
1383 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1384 current->comm);
1385 family = PF_PACKET;
1386 }
1387
1388 err = security_socket_create(family, type, protocol, kern);
1389 if (err)
1390 return err;
1391
1392 /*
1393 * Allocate the socket and allow the family to set things up. if
1394 * the protocol is 0, the family is instructed to select an appropriate
1395 * default.
1396 */
1397 sock = sock_alloc();
1398 if (!sock) {
1399 net_warn_ratelimited("socket: no more sockets\n");
1400 return -ENFILE; /* Not exactly a match, but its the
1401 closest posix thing */
1402 }
1403
1404 sock->type = type;
1405
1406#ifdef CONFIG_MODULES
1407 /* Attempt to load a protocol module if the find failed.
1408 *
1409 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1410 * requested real, full-featured networking support upon configuration.
1411 * Otherwise module support will break!
1412 */
1413 if (rcu_access_pointer(net_families[family]) == NULL)
1414 request_module("net-pf-%d", family);
1415#endif
1416
1417 rcu_read_lock();
1418 pf = rcu_dereference(net_families[family]);
1419 err = -EAFNOSUPPORT;
1420 if (!pf)
1421 goto out_release;
1422
1423 /*
1424 * We will call the ->create function, that possibly is in a loadable
1425 * module, so we have to bump that loadable module refcnt first.
1426 */
1427 if (!try_module_get(pf->owner))
1428 goto out_release;
1429
1430 /* Now protected by module ref count */
1431 rcu_read_unlock();
1432
1433 err = pf->create(net, sock, protocol, kern);
1434 if (err < 0)
1435 goto out_module_put;
1436
1437 /*
1438 * Now to bump the refcnt of the [loadable] module that owns this
1439 * socket at sock_release time we decrement its refcnt.
1440 */
1441 if (!try_module_get(sock->ops->owner))
1442 goto out_module_busy;
1443
1444 /*
1445 * Now that we're done with the ->create function, the [loadable]
1446 * module can have its refcnt decremented
1447 */
1448 module_put(pf->owner);
1449 err = security_socket_post_create(sock, family, type, protocol, kern);
1450 if (err)
1451 goto out_sock_release;
1452 *res = sock;
1453
1454 return 0;
1455
1456out_module_busy:
1457 err = -EAFNOSUPPORT;
1458out_module_put:
1459 sock->ops = NULL;
1460 module_put(pf->owner);
1461out_sock_release:
1462 sock_release(sock);
1463 return err;
1464
1465out_release:
1466 rcu_read_unlock();
1467 goto out_sock_release;
1468}
1469EXPORT_SYMBOL(__sock_create);
1470
1471/**
1472 * sock_create - creates a socket
1473 * @family: protocol family (AF_INET, ...)
1474 * @type: communication type (SOCK_STREAM, ...)
1475 * @protocol: protocol (0, ...)
1476 * @res: new socket
1477 *
1478 * A wrapper around __sock_create().
1479 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1480 */
1481
1482int sock_create(int family, int type, int protocol, struct socket **res)
1483{
1484 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1485}
1486EXPORT_SYMBOL(sock_create);
1487
1488/**
1489 * sock_create_kern - creates a socket (kernel space)
1490 * @net: net namespace
1491 * @family: protocol family (AF_INET, ...)
1492 * @type: communication type (SOCK_STREAM, ...)
1493 * @protocol: protocol (0, ...)
1494 * @res: new socket
1495 *
1496 * A wrapper around __sock_create().
1497 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1498 */
1499
1500int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1501{
1502 return __sock_create(net, family, type, protocol, res, 1);
1503}
1504EXPORT_SYMBOL(sock_create_kern);
1505
1506int __sys_socket(int family, int type, int protocol)
1507{
1508 int retval;
1509 struct socket *sock;
1510 int flags;
1511
1512 /* Check the SOCK_* constants for consistency. */
1513 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1514 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1515 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1516 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1517
1518 flags = type & ~SOCK_TYPE_MASK;
1519 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1520 return -EINVAL;
1521 type &= SOCK_TYPE_MASK;
1522
1523 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1524 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1525
1526 retval = sock_create(family, type, protocol, &sock);
1527 if (retval < 0)
1528 return retval;
1529
1530 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1531}
1532
1533SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1534{
1535 return __sys_socket(family, type, protocol);
1536}
1537
1538/*
1539 * Create a pair of connected sockets.
1540 */
1541
1542int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1543{
1544 struct socket *sock1, *sock2;
1545 int fd1, fd2, err;
1546 struct file *newfile1, *newfile2;
1547 int flags;
1548
1549 flags = type & ~SOCK_TYPE_MASK;
1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 return -EINVAL;
1552 type &= SOCK_TYPE_MASK;
1553
1554 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1555 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1556
1557 /*
1558 * reserve descriptors and make sure we won't fail
1559 * to return them to userland.
1560 */
1561 fd1 = get_unused_fd_flags(flags);
1562 if (unlikely(fd1 < 0))
1563 return fd1;
1564
1565 fd2 = get_unused_fd_flags(flags);
1566 if (unlikely(fd2 < 0)) {
1567 put_unused_fd(fd1);
1568 return fd2;
1569 }
1570
1571 err = put_user(fd1, &usockvec[0]);
1572 if (err)
1573 goto out;
1574
1575 err = put_user(fd2, &usockvec[1]);
1576 if (err)
1577 goto out;
1578
1579 /*
1580 * Obtain the first socket and check if the underlying protocol
1581 * supports the socketpair call.
1582 */
1583
1584 err = sock_create(family, type, protocol, &sock1);
1585 if (unlikely(err < 0))
1586 goto out;
1587
1588 err = sock_create(family, type, protocol, &sock2);
1589 if (unlikely(err < 0)) {
1590 sock_release(sock1);
1591 goto out;
1592 }
1593
1594 err = security_socket_socketpair(sock1, sock2);
1595 if (unlikely(err)) {
1596 sock_release(sock2);
1597 sock_release(sock1);
1598 goto out;
1599 }
1600
1601 err = sock1->ops->socketpair(sock1, sock2);
1602 if (unlikely(err < 0)) {
1603 sock_release(sock2);
1604 sock_release(sock1);
1605 goto out;
1606 }
1607
1608 newfile1 = sock_alloc_file(sock1, flags, NULL);
1609 if (IS_ERR(newfile1)) {
1610 err = PTR_ERR(newfile1);
1611 sock_release(sock2);
1612 goto out;
1613 }
1614
1615 newfile2 = sock_alloc_file(sock2, flags, NULL);
1616 if (IS_ERR(newfile2)) {
1617 err = PTR_ERR(newfile2);
1618 fput(newfile1);
1619 goto out;
1620 }
1621
1622 audit_fd_pair(fd1, fd2);
1623
1624 fd_install(fd1, newfile1);
1625 fd_install(fd2, newfile2);
1626 return 0;
1627
1628out:
1629 put_unused_fd(fd2);
1630 put_unused_fd(fd1);
1631 return err;
1632}
1633
1634SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1635 int __user *, usockvec)
1636{
1637 return __sys_socketpair(family, type, protocol, usockvec);
1638}
1639
1640/*
1641 * Bind a name to a socket. Nothing much to do here since it's
1642 * the protocol's responsibility to handle the local address.
1643 *
1644 * We move the socket address to kernel space before we call
1645 * the protocol layer (having also checked the address is ok).
1646 */
1647
1648int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1649{
1650 struct socket *sock;
1651 struct sockaddr_storage address;
1652 int err, fput_needed;
1653
1654 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 if (sock) {
1656 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1657 if (!err) {
1658 err = security_socket_bind(sock,
1659 (struct sockaddr *)&address,
1660 addrlen);
1661 if (!err)
1662 err = sock->ops->bind(sock,
1663 (struct sockaddr *)
1664 &address, addrlen);
1665 }
1666 fput_light(sock->file, fput_needed);
1667 }
1668 return err;
1669}
1670
1671SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1672{
1673 return __sys_bind(fd, umyaddr, addrlen);
1674}
1675
1676/*
1677 * Perform a listen. Basically, we allow the protocol to do anything
1678 * necessary for a listen, and if that works, we mark the socket as
1679 * ready for listening.
1680 */
1681
1682int __sys_listen(int fd, int backlog)
1683{
1684 struct socket *sock;
1685 int err, fput_needed;
1686 int somaxconn;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (sock) {
1690 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1691 if ((unsigned int)backlog > somaxconn)
1692 backlog = somaxconn;
1693
1694 err = security_socket_listen(sock, backlog);
1695 if (!err)
1696 err = sock->ops->listen(sock, backlog);
1697
1698 fput_light(sock->file, fput_needed);
1699 }
1700 return err;
1701}
1702
1703SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1704{
1705 return __sys_listen(fd, backlog);
1706}
1707
1708int __sys_accept4_file(struct file *file, unsigned file_flags,
1709 struct sockaddr __user *upeer_sockaddr,
1710 int __user *upeer_addrlen, int flags,
1711 unsigned long nofile)
1712{
1713 struct socket *sock, *newsock;
1714 struct file *newfile;
1715 int err, len, newfd;
1716 struct sockaddr_storage address;
1717
1718 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1719 return -EINVAL;
1720
1721 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1723
1724 sock = sock_from_file(file, &err);
1725 if (!sock)
1726 goto out;
1727
1728 err = -ENFILE;
1729 newsock = sock_alloc();
1730 if (!newsock)
1731 goto out;
1732
1733 newsock->type = sock->type;
1734 newsock->ops = sock->ops;
1735
1736 /*
1737 * We don't need try_module_get here, as the listening socket (sock)
1738 * has the protocol module (sock->ops->owner) held.
1739 */
1740 __module_get(newsock->ops->owner);
1741
1742 newfd = __get_unused_fd_flags(flags, nofile);
1743 if (unlikely(newfd < 0)) {
1744 err = newfd;
1745 sock_release(newsock);
1746 goto out;
1747 }
1748 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1749 if (IS_ERR(newfile)) {
1750 err = PTR_ERR(newfile);
1751 put_unused_fd(newfd);
1752 goto out;
1753 }
1754
1755 err = security_socket_accept(sock, newsock);
1756 if (err)
1757 goto out_fd;
1758
1759 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1760 false);
1761 if (err < 0)
1762 goto out_fd;
1763
1764 if (upeer_sockaddr) {
1765 len = newsock->ops->getname(newsock,
1766 (struct sockaddr *)&address, 2);
1767 if (len < 0) {
1768 err = -ECONNABORTED;
1769 goto out_fd;
1770 }
1771 err = move_addr_to_user(&address,
1772 len, upeer_sockaddr, upeer_addrlen);
1773 if (err < 0)
1774 goto out_fd;
1775 }
1776
1777 /* File flags are not inherited via accept() unlike another OSes. */
1778
1779 fd_install(newfd, newfile);
1780 err = newfd;
1781out:
1782 return err;
1783out_fd:
1784 fput(newfile);
1785 put_unused_fd(newfd);
1786 goto out;
1787
1788}
1789
1790/*
1791 * For accept, we attempt to create a new socket, set up the link
1792 * with the client, wake up the client, then return the new
1793 * connected fd. We collect the address of the connector in kernel
1794 * space and move it to user at the very end. This is unclean because
1795 * we open the socket then return an error.
1796 *
1797 * 1003.1g adds the ability to recvmsg() to query connection pending
1798 * status to recvmsg. We need to add that support in a way thats
1799 * clean when we restructure accept also.
1800 */
1801
1802int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1803 int __user *upeer_addrlen, int flags)
1804{
1805 int ret = -EBADF;
1806 struct fd f;
1807
1808 f = fdget(fd);
1809 if (f.file) {
1810 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1811 upeer_addrlen, flags,
1812 rlimit(RLIMIT_NOFILE));
1813 if (f.flags)
1814 fput(f.file);
1815 }
1816
1817 return ret;
1818}
1819
1820SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1821 int __user *, upeer_addrlen, int, flags)
1822{
1823 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1824}
1825
1826SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1827 int __user *, upeer_addrlen)
1828{
1829 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1830}
1831
1832/*
1833 * Attempt to connect to a socket with the server address. The address
1834 * is in user space so we verify it is OK and move it to kernel space.
1835 *
1836 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1837 * break bindings
1838 *
1839 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1840 * other SEQPACKET protocols that take time to connect() as it doesn't
1841 * include the -EINPROGRESS status for such sockets.
1842 */
1843
1844int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1845 int addrlen, int file_flags)
1846{
1847 struct socket *sock;
1848 int err;
1849
1850 sock = sock_from_file(file, &err);
1851 if (!sock)
1852 goto out;
1853
1854 err =
1855 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1856 if (err)
1857 goto out;
1858
1859 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1860 sock->file->f_flags | file_flags);
1861out:
1862 return err;
1863}
1864
1865int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1866{
1867 int ret = -EBADF;
1868 struct fd f;
1869
1870 f = fdget(fd);
1871 if (f.file) {
1872 struct sockaddr_storage address;
1873
1874 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1875 if (!ret)
1876 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1877 if (f.flags)
1878 fput(f.file);
1879 }
1880
1881 return ret;
1882}
1883
1884SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1885 int, addrlen)
1886{
1887 return __sys_connect(fd, uservaddr, addrlen);
1888}
1889
1890/*
1891 * Get the local address ('name') of a socket object. Move the obtained
1892 * name to user space.
1893 */
1894
1895int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1896 int __user *usockaddr_len)
1897{
1898 struct socket *sock;
1899 struct sockaddr_storage address;
1900 int err, fput_needed;
1901
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 if (!sock)
1904 goto out;
1905
1906 err = security_socket_getsockname(sock);
1907 if (err)
1908 goto out_put;
1909
1910 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1911 if (err < 0)
1912 goto out_put;
1913 /* "err" is actually length in this case */
1914 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1915
1916out_put:
1917 fput_light(sock->file, fput_needed);
1918out:
1919 return err;
1920}
1921
1922SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1923 int __user *, usockaddr_len)
1924{
1925 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1926}
1927
1928/*
1929 * Get the remote address ('name') of a socket object. Move the obtained
1930 * name to user space.
1931 */
1932
1933int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1934 int __user *usockaddr_len)
1935{
1936 struct socket *sock;
1937 struct sockaddr_storage address;
1938 int err, fput_needed;
1939
1940 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941 if (sock != NULL) {
1942 err = security_socket_getpeername(sock);
1943 if (err) {
1944 fput_light(sock->file, fput_needed);
1945 return err;
1946 }
1947
1948 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1949 if (err >= 0)
1950 /* "err" is actually length in this case */
1951 err = move_addr_to_user(&address, err, usockaddr,
1952 usockaddr_len);
1953 fput_light(sock->file, fput_needed);
1954 }
1955 return err;
1956}
1957
1958SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1959 int __user *, usockaddr_len)
1960{
1961 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1962}
1963
1964/*
1965 * Send a datagram to a given address. We move the address into kernel
1966 * space and check the user space data area is readable before invoking
1967 * the protocol.
1968 */
1969int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1970 struct sockaddr __user *addr, int addr_len)
1971{
1972 struct socket *sock;
1973 struct sockaddr_storage address;
1974 int err;
1975 struct msghdr msg;
1976 struct iovec iov;
1977 int fput_needed;
1978
1979 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1980 if (unlikely(err))
1981 return err;
1982 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983 if (!sock)
1984 goto out;
1985
1986 msg.msg_name = NULL;
1987 msg.msg_control = NULL;
1988 msg.msg_controllen = 0;
1989 msg.msg_namelen = 0;
1990 if (addr) {
1991 err = move_addr_to_kernel(addr, addr_len, &address);
1992 if (err < 0)
1993 goto out_put;
1994 msg.msg_name = (struct sockaddr *)&address;
1995 msg.msg_namelen = addr_len;
1996 }
1997 if (sock->file->f_flags & O_NONBLOCK)
1998 flags |= MSG_DONTWAIT;
1999 msg.msg_flags = flags;
2000 err = sock_sendmsg(sock, &msg);
2001
2002out_put:
2003 fput_light(sock->file, fput_needed);
2004out:
2005 return err;
2006}
2007
2008SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2009 unsigned int, flags, struct sockaddr __user *, addr,
2010 int, addr_len)
2011{
2012 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2013}
2014
2015/*
2016 * Send a datagram down a socket.
2017 */
2018
2019SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2020 unsigned int, flags)
2021{
2022 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2023}
2024
2025/*
2026 * Receive a frame from the socket and optionally record the address of the
2027 * sender. We verify the buffers are writable and if needed move the
2028 * sender address from kernel to user space.
2029 */
2030int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2031 struct sockaddr __user *addr, int __user *addr_len)
2032{
2033 struct socket *sock;
2034 struct iovec iov;
2035 struct msghdr msg;
2036 struct sockaddr_storage address;
2037 int err, err2;
2038 int fput_needed;
2039
2040 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2041 if (unlikely(err))
2042 return err;
2043 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 if (!sock)
2045 goto out;
2046
2047 msg.msg_control = NULL;
2048 msg.msg_controllen = 0;
2049 /* Save some cycles and don't copy the address if not needed */
2050 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2051 /* We assume all kernel code knows the size of sockaddr_storage */
2052 msg.msg_namelen = 0;
2053 msg.msg_iocb = NULL;
2054 msg.msg_flags = 0;
2055 if (sock->file->f_flags & O_NONBLOCK)
2056 flags |= MSG_DONTWAIT;
2057 err = sock_recvmsg(sock, &msg, flags);
2058
2059 if (err >= 0 && addr != NULL) {
2060 err2 = move_addr_to_user(&address,
2061 msg.msg_namelen, addr, addr_len);
2062 if (err2 < 0)
2063 err = err2;
2064 }
2065
2066 fput_light(sock->file, fput_needed);
2067out:
2068 return err;
2069}
2070
2071SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2072 unsigned int, flags, struct sockaddr __user *, addr,
2073 int __user *, addr_len)
2074{
2075 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2076}
2077
2078/*
2079 * Receive a datagram from a socket.
2080 */
2081
2082SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2083 unsigned int, flags)
2084{
2085 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2086}
2087
2088/*
2089 * Set a socket option. Because we don't know the option lengths we have
2090 * to pass the user mode parameter for the protocols to sort out.
2091 */
2092
2093static int __sys_setsockopt(int fd, int level, int optname,
2094 char __user *optval, int optlen)
2095{
2096 mm_segment_t oldfs = get_fs();
2097 char *kernel_optval = NULL;
2098 int err, fput_needed;
2099 struct socket *sock;
2100
2101 if (optlen < 0)
2102 return -EINVAL;
2103
2104 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2105 if (sock != NULL) {
2106 err = security_socket_setsockopt(sock, level, optname);
2107 if (err)
2108 goto out_put;
2109
2110 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2111 &optname, optval, &optlen,
2112 &kernel_optval);
2113
2114 if (err < 0) {
2115 goto out_put;
2116 } else if (err > 0) {
2117 err = 0;
2118 goto out_put;
2119 }
2120
2121 if (kernel_optval) {
2122 set_fs(KERNEL_DS);
2123 optval = (char __user __force *)kernel_optval;
2124 }
2125
2126 if (level == SOL_SOCKET)
2127 err =
2128 sock_setsockopt(sock, level, optname, optval,
2129 optlen);
2130 else
2131 err =
2132 sock->ops->setsockopt(sock, level, optname, optval,
2133 optlen);
2134
2135 if (kernel_optval) {
2136 set_fs(oldfs);
2137 kfree(kernel_optval);
2138 }
2139out_put:
2140 fput_light(sock->file, fput_needed);
2141 }
2142 return err;
2143}
2144
2145SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2146 char __user *, optval, int, optlen)
2147{
2148 return __sys_setsockopt(fd, level, optname, optval, optlen);
2149}
2150
2151/*
2152 * Get a socket option. Because we don't know the option lengths we have
2153 * to pass a user mode parameter for the protocols to sort out.
2154 */
2155
2156static int __sys_getsockopt(int fd, int level, int optname,
2157 char __user *optval, int __user *optlen)
2158{
2159 int err, fput_needed;
2160 struct socket *sock;
2161 int max_optlen;
2162
2163 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164 if (sock != NULL) {
2165 err = security_socket_getsockopt(sock, level, optname);
2166 if (err)
2167 goto out_put;
2168
2169 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2170
2171 if (level == SOL_SOCKET)
2172 err =
2173 sock_getsockopt(sock, level, optname, optval,
2174 optlen);
2175 else
2176 err =
2177 sock->ops->getsockopt(sock, level, optname, optval,
2178 optlen);
2179
2180 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2181 optval, optlen,
2182 max_optlen, err);
2183out_put:
2184 fput_light(sock->file, fput_needed);
2185 }
2186 return err;
2187}
2188
2189SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2190 char __user *, optval, int __user *, optlen)
2191{
2192 return __sys_getsockopt(fd, level, optname, optval, optlen);
2193}
2194
2195/*
2196 * Shutdown a socket.
2197 */
2198
2199int __sys_shutdown(int fd, int how)
2200{
2201 int err, fput_needed;
2202 struct socket *sock;
2203
2204 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2205 if (sock != NULL) {
2206 err = security_socket_shutdown(sock, how);
2207 if (!err)
2208 err = sock->ops->shutdown(sock, how);
2209 fput_light(sock->file, fput_needed);
2210 }
2211 return err;
2212}
2213
2214SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2215{
2216 return __sys_shutdown(fd, how);
2217}
2218
2219/* A couple of helpful macros for getting the address of the 32/64 bit
2220 * fields which are the same type (int / unsigned) on our platforms.
2221 */
2222#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2223#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2224#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2225
2226struct used_address {
2227 struct sockaddr_storage name;
2228 unsigned int name_len;
2229};
2230
2231static int copy_msghdr_from_user(struct msghdr *kmsg,
2232 struct user_msghdr __user *umsg,
2233 struct sockaddr __user **save_addr,
2234 struct iovec **iov)
2235{
2236 struct user_msghdr msg;
2237 ssize_t err;
2238
2239 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2240 return -EFAULT;
2241
2242 kmsg->msg_control = (void __force *)msg.msg_control;
2243 kmsg->msg_controllen = msg.msg_controllen;
2244 kmsg->msg_flags = msg.msg_flags;
2245
2246 kmsg->msg_namelen = msg.msg_namelen;
2247 if (!msg.msg_name)
2248 kmsg->msg_namelen = 0;
2249
2250 if (kmsg->msg_namelen < 0)
2251 return -EINVAL;
2252
2253 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2254 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2255
2256 if (save_addr)
2257 *save_addr = msg.msg_name;
2258
2259 if (msg.msg_name && kmsg->msg_namelen) {
2260 if (!save_addr) {
2261 err = move_addr_to_kernel(msg.msg_name,
2262 kmsg->msg_namelen,
2263 kmsg->msg_name);
2264 if (err < 0)
2265 return err;
2266 }
2267 } else {
2268 kmsg->msg_name = NULL;
2269 kmsg->msg_namelen = 0;
2270 }
2271
2272 if (msg.msg_iovlen > UIO_MAXIOV)
2273 return -EMSGSIZE;
2274
2275 kmsg->msg_iocb = NULL;
2276
2277 err = import_iovec(save_addr ? READ : WRITE,
2278 msg.msg_iov, msg.msg_iovlen,
2279 UIO_FASTIOV, iov, &kmsg->msg_iter);
2280 return err < 0 ? err : 0;
2281}
2282
2283static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2284 unsigned int flags, struct used_address *used_address,
2285 unsigned int allowed_msghdr_flags)
2286{
2287 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2288 __aligned(sizeof(__kernel_size_t));
2289 /* 20 is size of ipv6_pktinfo */
2290 unsigned char *ctl_buf = ctl;
2291 int ctl_len;
2292 ssize_t err;
2293
2294 err = -ENOBUFS;
2295
2296 if (msg_sys->msg_controllen > INT_MAX)
2297 goto out;
2298 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2299 ctl_len = msg_sys->msg_controllen;
2300 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2301 err =
2302 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2303 sizeof(ctl));
2304 if (err)
2305 goto out;
2306 ctl_buf = msg_sys->msg_control;
2307 ctl_len = msg_sys->msg_controllen;
2308 } else if (ctl_len) {
2309 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2310 CMSG_ALIGN(sizeof(struct cmsghdr)));
2311 if (ctl_len > sizeof(ctl)) {
2312 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2313 if (ctl_buf == NULL)
2314 goto out;
2315 }
2316 err = -EFAULT;
2317 /*
2318 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2319 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2320 * checking falls down on this.
2321 */
2322 if (copy_from_user(ctl_buf,
2323 (void __user __force *)msg_sys->msg_control,
2324 ctl_len))
2325 goto out_freectl;
2326 msg_sys->msg_control = ctl_buf;
2327 }
2328 msg_sys->msg_flags = flags;
2329
2330 if (sock->file->f_flags & O_NONBLOCK)
2331 msg_sys->msg_flags |= MSG_DONTWAIT;
2332 /*
2333 * If this is sendmmsg() and current destination address is same as
2334 * previously succeeded address, omit asking LSM's decision.
2335 * used_address->name_len is initialized to UINT_MAX so that the first
2336 * destination address never matches.
2337 */
2338 if (used_address && msg_sys->msg_name &&
2339 used_address->name_len == msg_sys->msg_namelen &&
2340 !memcmp(&used_address->name, msg_sys->msg_name,
2341 used_address->name_len)) {
2342 err = sock_sendmsg_nosec(sock, msg_sys);
2343 goto out_freectl;
2344 }
2345 err = sock_sendmsg(sock, msg_sys);
2346 /*
2347 * If this is sendmmsg() and sending to current destination address was
2348 * successful, remember it.
2349 */
2350 if (used_address && err >= 0) {
2351 used_address->name_len = msg_sys->msg_namelen;
2352 if (msg_sys->msg_name)
2353 memcpy(&used_address->name, msg_sys->msg_name,
2354 used_address->name_len);
2355 }
2356
2357out_freectl:
2358 if (ctl_buf != ctl)
2359 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2360out:
2361 return err;
2362}
2363
2364int sendmsg_copy_msghdr(struct msghdr *msg,
2365 struct user_msghdr __user *umsg, unsigned flags,
2366 struct iovec **iov)
2367{
2368 int err;
2369
2370 if (flags & MSG_CMSG_COMPAT) {
2371 struct compat_msghdr __user *msg_compat;
2372
2373 msg_compat = (struct compat_msghdr __user *) umsg;
2374 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2375 } else {
2376 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2377 }
2378 if (err < 0)
2379 return err;
2380
2381 return 0;
2382}
2383
2384static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2385 struct msghdr *msg_sys, unsigned int flags,
2386 struct used_address *used_address,
2387 unsigned int allowed_msghdr_flags)
2388{
2389 struct sockaddr_storage address;
2390 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2391 ssize_t err;
2392
2393 msg_sys->msg_name = &address;
2394
2395 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2396 if (err < 0)
2397 return err;
2398
2399 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2400 allowed_msghdr_flags);
2401 kfree(iov);
2402 return err;
2403}
2404
2405/*
2406 * BSD sendmsg interface
2407 */
2408long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2409 unsigned int flags)
2410{
2411 /* disallow ancillary data requests from this path */
2412 if (msg->msg_control || msg->msg_controllen)
2413 return -EINVAL;
2414
2415 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2416}
2417
2418long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2419 bool forbid_cmsg_compat)
2420{
2421 int fput_needed, err;
2422 struct msghdr msg_sys;
2423 struct socket *sock;
2424
2425 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2426 return -EINVAL;
2427
2428 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2429 if (!sock)
2430 goto out;
2431
2432 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2433
2434 fput_light(sock->file, fput_needed);
2435out:
2436 return err;
2437}
2438
2439SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2440{
2441 return __sys_sendmsg(fd, msg, flags, true);
2442}
2443
2444/*
2445 * Linux sendmmsg interface
2446 */
2447
2448int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2449 unsigned int flags, bool forbid_cmsg_compat)
2450{
2451 int fput_needed, err, datagrams;
2452 struct socket *sock;
2453 struct mmsghdr __user *entry;
2454 struct compat_mmsghdr __user *compat_entry;
2455 struct msghdr msg_sys;
2456 struct used_address used_address;
2457 unsigned int oflags = flags;
2458
2459 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2460 return -EINVAL;
2461
2462 if (vlen > UIO_MAXIOV)
2463 vlen = UIO_MAXIOV;
2464
2465 datagrams = 0;
2466
2467 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2468 if (!sock)
2469 return err;
2470
2471 used_address.name_len = UINT_MAX;
2472 entry = mmsg;
2473 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2474 err = 0;
2475 flags |= MSG_BATCH;
2476
2477 while (datagrams < vlen) {
2478 if (datagrams == vlen - 1)
2479 flags = oflags;
2480
2481 if (MSG_CMSG_COMPAT & flags) {
2482 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2483 &msg_sys, flags, &used_address, MSG_EOR);
2484 if (err < 0)
2485 break;
2486 err = __put_user(err, &compat_entry->msg_len);
2487 ++compat_entry;
2488 } else {
2489 err = ___sys_sendmsg(sock,
2490 (struct user_msghdr __user *)entry,
2491 &msg_sys, flags, &used_address, MSG_EOR);
2492 if (err < 0)
2493 break;
2494 err = put_user(err, &entry->msg_len);
2495 ++entry;
2496 }
2497
2498 if (err)
2499 break;
2500 ++datagrams;
2501 if (msg_data_left(&msg_sys))
2502 break;
2503 cond_resched();
2504 }
2505
2506 fput_light(sock->file, fput_needed);
2507
2508 /* We only return an error if no datagrams were able to be sent */
2509 if (datagrams != 0)
2510 return datagrams;
2511
2512 return err;
2513}
2514
2515SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2516 unsigned int, vlen, unsigned int, flags)
2517{
2518 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2519}
2520
2521int recvmsg_copy_msghdr(struct msghdr *msg,
2522 struct user_msghdr __user *umsg, unsigned flags,
2523 struct sockaddr __user **uaddr,
2524 struct iovec **iov)
2525{
2526 ssize_t err;
2527
2528 if (MSG_CMSG_COMPAT & flags) {
2529 struct compat_msghdr __user *msg_compat;
2530
2531 msg_compat = (struct compat_msghdr __user *) umsg;
2532 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2533 } else {
2534 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2535 }
2536 if (err < 0)
2537 return err;
2538
2539 return 0;
2540}
2541
2542static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2543 struct user_msghdr __user *msg,
2544 struct sockaddr __user *uaddr,
2545 unsigned int flags, int nosec)
2546{
2547 struct compat_msghdr __user *msg_compat =
2548 (struct compat_msghdr __user *) msg;
2549 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2550 struct sockaddr_storage addr;
2551 unsigned long cmsg_ptr;
2552 int len;
2553 ssize_t err;
2554
2555 msg_sys->msg_name = &addr;
2556 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2557 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2558
2559 /* We assume all kernel code knows the size of sockaddr_storage */
2560 msg_sys->msg_namelen = 0;
2561
2562 if (sock->file->f_flags & O_NONBLOCK)
2563 flags |= MSG_DONTWAIT;
2564
2565 if (unlikely(nosec))
2566 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2567 else
2568 err = sock_recvmsg(sock, msg_sys, flags);
2569
2570 if (err < 0)
2571 goto out;
2572 len = err;
2573
2574 if (uaddr != NULL) {
2575 err = move_addr_to_user(&addr,
2576 msg_sys->msg_namelen, uaddr,
2577 uaddr_len);
2578 if (err < 0)
2579 goto out;
2580 }
2581 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2582 COMPAT_FLAGS(msg));
2583 if (err)
2584 goto out;
2585 if (MSG_CMSG_COMPAT & flags)
2586 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2587 &msg_compat->msg_controllen);
2588 else
2589 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2590 &msg->msg_controllen);
2591 if (err)
2592 goto out;
2593 err = len;
2594out:
2595 return err;
2596}
2597
2598static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2599 struct msghdr *msg_sys, unsigned int flags, int nosec)
2600{
2601 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2602 /* user mode address pointers */
2603 struct sockaddr __user *uaddr;
2604 ssize_t err;
2605
2606 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2607 if (err < 0)
2608 return err;
2609
2610 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2611 kfree(iov);
2612 return err;
2613}
2614
2615/*
2616 * BSD recvmsg interface
2617 */
2618
2619long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2620 struct user_msghdr __user *umsg,
2621 struct sockaddr __user *uaddr, unsigned int flags)
2622{
2623 /* disallow ancillary data requests from this path */
2624 if (msg->msg_control || msg->msg_controllen)
2625 return -EINVAL;
2626
2627 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2628}
2629
2630long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2631 bool forbid_cmsg_compat)
2632{
2633 int fput_needed, err;
2634 struct msghdr msg_sys;
2635 struct socket *sock;
2636
2637 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2638 return -EINVAL;
2639
2640 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2641 if (!sock)
2642 goto out;
2643
2644 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2645
2646 fput_light(sock->file, fput_needed);
2647out:
2648 return err;
2649}
2650
2651SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2652 unsigned int, flags)
2653{
2654 return __sys_recvmsg(fd, msg, flags, true);
2655}
2656
2657/*
2658 * Linux recvmmsg interface
2659 */
2660
2661static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2662 unsigned int vlen, unsigned int flags,
2663 struct timespec64 *timeout)
2664{
2665 int fput_needed, err, datagrams;
2666 struct socket *sock;
2667 struct mmsghdr __user *entry;
2668 struct compat_mmsghdr __user *compat_entry;
2669 struct msghdr msg_sys;
2670 struct timespec64 end_time;
2671 struct timespec64 timeout64;
2672
2673 if (timeout &&
2674 poll_select_set_timeout(&end_time, timeout->tv_sec,
2675 timeout->tv_nsec))
2676 return -EINVAL;
2677
2678 datagrams = 0;
2679
2680 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2681 if (!sock)
2682 return err;
2683
2684 if (likely(!(flags & MSG_ERRQUEUE))) {
2685 err = sock_error(sock->sk);
2686 if (err) {
2687 datagrams = err;
2688 goto out_put;
2689 }
2690 }
2691
2692 entry = mmsg;
2693 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2694
2695 while (datagrams < vlen) {
2696 /*
2697 * No need to ask LSM for more than the first datagram.
2698 */
2699 if (MSG_CMSG_COMPAT & flags) {
2700 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2701 &msg_sys, flags & ~MSG_WAITFORONE,
2702 datagrams);
2703 if (err < 0)
2704 break;
2705 err = __put_user(err, &compat_entry->msg_len);
2706 ++compat_entry;
2707 } else {
2708 err = ___sys_recvmsg(sock,
2709 (struct user_msghdr __user *)entry,
2710 &msg_sys, flags & ~MSG_WAITFORONE,
2711 datagrams);
2712 if (err < 0)
2713 break;
2714 err = put_user(err, &entry->msg_len);
2715 ++entry;
2716 }
2717
2718 if (err)
2719 break;
2720 ++datagrams;
2721
2722 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2723 if (flags & MSG_WAITFORONE)
2724 flags |= MSG_DONTWAIT;
2725
2726 if (timeout) {
2727 ktime_get_ts64(&timeout64);
2728 *timeout = timespec64_sub(end_time, timeout64);
2729 if (timeout->tv_sec < 0) {
2730 timeout->tv_sec = timeout->tv_nsec = 0;
2731 break;
2732 }
2733
2734 /* Timeout, return less than vlen datagrams */
2735 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2736 break;
2737 }
2738
2739 /* Out of band data, return right away */
2740 if (msg_sys.msg_flags & MSG_OOB)
2741 break;
2742 cond_resched();
2743 }
2744
2745 if (err == 0)
2746 goto out_put;
2747
2748 if (datagrams == 0) {
2749 datagrams = err;
2750 goto out_put;
2751 }
2752
2753 /*
2754 * We may return less entries than requested (vlen) if the
2755 * sock is non block and there aren't enough datagrams...
2756 */
2757 if (err != -EAGAIN) {
2758 /*
2759 * ... or if recvmsg returns an error after we
2760 * received some datagrams, where we record the
2761 * error to return on the next call or if the
2762 * app asks about it using getsockopt(SO_ERROR).
2763 */
2764 sock->sk->sk_err = -err;
2765 }
2766out_put:
2767 fput_light(sock->file, fput_needed);
2768
2769 return datagrams;
2770}
2771
2772int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2773 unsigned int vlen, unsigned int flags,
2774 struct __kernel_timespec __user *timeout,
2775 struct old_timespec32 __user *timeout32)
2776{
2777 int datagrams;
2778 struct timespec64 timeout_sys;
2779
2780 if (timeout && get_timespec64(&timeout_sys, timeout))
2781 return -EFAULT;
2782
2783 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2784 return -EFAULT;
2785
2786 if (!timeout && !timeout32)
2787 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2788
2789 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2790
2791 if (datagrams <= 0)
2792 return datagrams;
2793
2794 if (timeout && put_timespec64(&timeout_sys, timeout))
2795 datagrams = -EFAULT;
2796
2797 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2798 datagrams = -EFAULT;
2799
2800 return datagrams;
2801}
2802
2803SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2804 unsigned int, vlen, unsigned int, flags,
2805 struct __kernel_timespec __user *, timeout)
2806{
2807 if (flags & MSG_CMSG_COMPAT)
2808 return -EINVAL;
2809
2810 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2811}
2812
2813#ifdef CONFIG_COMPAT_32BIT_TIME
2814SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2815 unsigned int, vlen, unsigned int, flags,
2816 struct old_timespec32 __user *, timeout)
2817{
2818 if (flags & MSG_CMSG_COMPAT)
2819 return -EINVAL;
2820
2821 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2822}
2823#endif
2824
2825#ifdef __ARCH_WANT_SYS_SOCKETCALL
2826/* Argument list sizes for sys_socketcall */
2827#define AL(x) ((x) * sizeof(unsigned long))
2828static const unsigned char nargs[21] = {
2829 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2830 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2831 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2832 AL(4), AL(5), AL(4)
2833};
2834
2835#undef AL
2836
2837/*
2838 * System call vectors.
2839 *
2840 * Argument checking cleaned up. Saved 20% in size.
2841 * This function doesn't need to set the kernel lock because
2842 * it is set by the callees.
2843 */
2844
2845SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2846{
2847 unsigned long a[AUDITSC_ARGS];
2848 unsigned long a0, a1;
2849 int err;
2850 unsigned int len;
2851
2852 if (call < 1 || call > SYS_SENDMMSG)
2853 return -EINVAL;
2854 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2855
2856 len = nargs[call];
2857 if (len > sizeof(a))
2858 return -EINVAL;
2859
2860 /* copy_from_user should be SMP safe. */
2861 if (copy_from_user(a, args, len))
2862 return -EFAULT;
2863
2864 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2865 if (err)
2866 return err;
2867
2868 a0 = a[0];
2869 a1 = a[1];
2870
2871 switch (call) {
2872 case SYS_SOCKET:
2873 err = __sys_socket(a0, a1, a[2]);
2874 break;
2875 case SYS_BIND:
2876 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2877 break;
2878 case SYS_CONNECT:
2879 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2880 break;
2881 case SYS_LISTEN:
2882 err = __sys_listen(a0, a1);
2883 break;
2884 case SYS_ACCEPT:
2885 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2886 (int __user *)a[2], 0);
2887 break;
2888 case SYS_GETSOCKNAME:
2889 err =
2890 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2891 (int __user *)a[2]);
2892 break;
2893 case SYS_GETPEERNAME:
2894 err =
2895 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2896 (int __user *)a[2]);
2897 break;
2898 case SYS_SOCKETPAIR:
2899 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2900 break;
2901 case SYS_SEND:
2902 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2903 NULL, 0);
2904 break;
2905 case SYS_SENDTO:
2906 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2907 (struct sockaddr __user *)a[4], a[5]);
2908 break;
2909 case SYS_RECV:
2910 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2911 NULL, NULL);
2912 break;
2913 case SYS_RECVFROM:
2914 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2915 (struct sockaddr __user *)a[4],
2916 (int __user *)a[5]);
2917 break;
2918 case SYS_SHUTDOWN:
2919 err = __sys_shutdown(a0, a1);
2920 break;
2921 case SYS_SETSOCKOPT:
2922 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2923 a[4]);
2924 break;
2925 case SYS_GETSOCKOPT:
2926 err =
2927 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2928 (int __user *)a[4]);
2929 break;
2930 case SYS_SENDMSG:
2931 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2932 a[2], true);
2933 break;
2934 case SYS_SENDMMSG:
2935 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2936 a[3], true);
2937 break;
2938 case SYS_RECVMSG:
2939 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2940 a[2], true);
2941 break;
2942 case SYS_RECVMMSG:
2943 if (IS_ENABLED(CONFIG_64BIT))
2944 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2945 a[2], a[3],
2946 (struct __kernel_timespec __user *)a[4],
2947 NULL);
2948 else
2949 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2950 a[2], a[3], NULL,
2951 (struct old_timespec32 __user *)a[4]);
2952 break;
2953 case SYS_ACCEPT4:
2954 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2955 (int __user *)a[2], a[3]);
2956 break;
2957 default:
2958 err = -EINVAL;
2959 break;
2960 }
2961 return err;
2962}
2963
2964#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2965
2966/**
2967 * sock_register - add a socket protocol handler
2968 * @ops: description of protocol
2969 *
2970 * This function is called by a protocol handler that wants to
2971 * advertise its address family, and have it linked into the
2972 * socket interface. The value ops->family corresponds to the
2973 * socket system call protocol family.
2974 */
2975int sock_register(const struct net_proto_family *ops)
2976{
2977 int err;
2978
2979 if (ops->family >= NPROTO) {
2980 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2981 return -ENOBUFS;
2982 }
2983
2984 spin_lock(&net_family_lock);
2985 if (rcu_dereference_protected(net_families[ops->family],
2986 lockdep_is_held(&net_family_lock)))
2987 err = -EEXIST;
2988 else {
2989 rcu_assign_pointer(net_families[ops->family], ops);
2990 err = 0;
2991 }
2992 spin_unlock(&net_family_lock);
2993
2994 pr_info("NET: Registered protocol family %d\n", ops->family);
2995 return err;
2996}
2997EXPORT_SYMBOL(sock_register);
2998
2999/**
3000 * sock_unregister - remove a protocol handler
3001 * @family: protocol family to remove
3002 *
3003 * This function is called by a protocol handler that wants to
3004 * remove its address family, and have it unlinked from the
3005 * new socket creation.
3006 *
3007 * If protocol handler is a module, then it can use module reference
3008 * counts to protect against new references. If protocol handler is not
3009 * a module then it needs to provide its own protection in
3010 * the ops->create routine.
3011 */
3012void sock_unregister(int family)
3013{
3014 BUG_ON(family < 0 || family >= NPROTO);
3015
3016 spin_lock(&net_family_lock);
3017 RCU_INIT_POINTER(net_families[family], NULL);
3018 spin_unlock(&net_family_lock);
3019
3020 synchronize_rcu();
3021
3022 pr_info("NET: Unregistered protocol family %d\n", family);
3023}
3024EXPORT_SYMBOL(sock_unregister);
3025
3026bool sock_is_registered(int family)
3027{
3028 return family < NPROTO && rcu_access_pointer(net_families[family]);
3029}
3030
3031static int __init sock_init(void)
3032{
3033 int err;
3034 /*
3035 * Initialize the network sysctl infrastructure.
3036 */
3037 err = net_sysctl_init();
3038 if (err)
3039 goto out;
3040
3041 /*
3042 * Initialize skbuff SLAB cache
3043 */
3044 skb_init();
3045
3046 /*
3047 * Initialize the protocols module.
3048 */
3049
3050 init_inodecache();
3051
3052 err = register_filesystem(&sock_fs_type);
3053 if (err)
3054 goto out_fs;
3055 sock_mnt = kern_mount(&sock_fs_type);
3056 if (IS_ERR(sock_mnt)) {
3057 err = PTR_ERR(sock_mnt);
3058 goto out_mount;
3059 }
3060
3061 /* The real protocol initialization is performed in later initcalls.
3062 */
3063
3064#ifdef CONFIG_NETFILTER
3065 err = netfilter_init();
3066 if (err)
3067 goto out;
3068#endif
3069
3070 ptp_classifier_init();
3071
3072out:
3073 return err;
3074
3075out_mount:
3076 unregister_filesystem(&sock_fs_type);
3077out_fs:
3078 goto out;
3079}
3080
3081core_initcall(sock_init); /* early initcall */
3082
3083#ifdef CONFIG_PROC_FS
3084void socket_seq_show(struct seq_file *seq)
3085{
3086 seq_printf(seq, "sockets: used %d\n",
3087 sock_inuse_get(seq->private));
3088}
3089#endif /* CONFIG_PROC_FS */
3090
3091#ifdef CONFIG_COMPAT
3092static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3093{
3094 struct compat_ifconf ifc32;
3095 struct ifconf ifc;
3096 int err;
3097
3098 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3099 return -EFAULT;
3100
3101 ifc.ifc_len = ifc32.ifc_len;
3102 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3103
3104 rtnl_lock();
3105 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3106 rtnl_unlock();
3107 if (err)
3108 return err;
3109
3110 ifc32.ifc_len = ifc.ifc_len;
3111 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3112 return -EFAULT;
3113
3114 return 0;
3115}
3116
3117static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3118{
3119 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3120 bool convert_in = false, convert_out = false;
3121 size_t buf_size = 0;
3122 struct ethtool_rxnfc __user *rxnfc = NULL;
3123 struct ifreq ifr;
3124 u32 rule_cnt = 0, actual_rule_cnt;
3125 u32 ethcmd;
3126 u32 data;
3127 int ret;
3128
3129 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3130 return -EFAULT;
3131
3132 compat_rxnfc = compat_ptr(data);
3133
3134 if (get_user(ethcmd, &compat_rxnfc->cmd))
3135 return -EFAULT;
3136
3137 /* Most ethtool structures are defined without padding.
3138 * Unfortunately struct ethtool_rxnfc is an exception.
3139 */
3140 switch (ethcmd) {
3141 default:
3142 break;
3143 case ETHTOOL_GRXCLSRLALL:
3144 /* Buffer size is variable */
3145 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3146 return -EFAULT;
3147 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3148 return -ENOMEM;
3149 buf_size += rule_cnt * sizeof(u32);
3150 /* fall through */
3151 case ETHTOOL_GRXRINGS:
3152 case ETHTOOL_GRXCLSRLCNT:
3153 case ETHTOOL_GRXCLSRULE:
3154 case ETHTOOL_SRXCLSRLINS:
3155 convert_out = true;
3156 /* fall through */
3157 case ETHTOOL_SRXCLSRLDEL:
3158 buf_size += sizeof(struct ethtool_rxnfc);
3159 convert_in = true;
3160 rxnfc = compat_alloc_user_space(buf_size);
3161 break;
3162 }
3163
3164 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3165 return -EFAULT;
3166
3167 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3168
3169 if (convert_in) {
3170 /* We expect there to be holes between fs.m_ext and
3171 * fs.ring_cookie and at the end of fs, but nowhere else.
3172 */
3173 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3174 sizeof(compat_rxnfc->fs.m_ext) !=
3175 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3176 sizeof(rxnfc->fs.m_ext));
3177 BUILD_BUG_ON(
3178 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3179 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3180 offsetof(struct ethtool_rxnfc, fs.location) -
3181 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3182
3183 if (copy_in_user(rxnfc, compat_rxnfc,
3184 (void __user *)(&rxnfc->fs.m_ext + 1) -
3185 (void __user *)rxnfc) ||
3186 copy_in_user(&rxnfc->fs.ring_cookie,
3187 &compat_rxnfc->fs.ring_cookie,
3188 (void __user *)(&rxnfc->fs.location + 1) -
3189 (void __user *)&rxnfc->fs.ring_cookie))
3190 return -EFAULT;
3191 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3192 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3193 return -EFAULT;
3194 } else if (copy_in_user(&rxnfc->rule_cnt,
3195 &compat_rxnfc->rule_cnt,
3196 sizeof(rxnfc->rule_cnt)))
3197 return -EFAULT;
3198 }
3199
3200 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3201 if (ret)
3202 return ret;
3203
3204 if (convert_out) {
3205 if (copy_in_user(compat_rxnfc, rxnfc,
3206 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3207 (const void __user *)rxnfc) ||
3208 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3209 &rxnfc->fs.ring_cookie,
3210 (const void __user *)(&rxnfc->fs.location + 1) -
3211 (const void __user *)&rxnfc->fs.ring_cookie) ||
3212 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3213 sizeof(rxnfc->rule_cnt)))
3214 return -EFAULT;
3215
3216 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3217 /* As an optimisation, we only copy the actual
3218 * number of rules that the underlying
3219 * function returned. Since Mallory might
3220 * change the rule count in user memory, we
3221 * check that it is less than the rule count
3222 * originally given (as the user buffer size),
3223 * which has been range-checked.
3224 */
3225 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3226 return -EFAULT;
3227 if (actual_rule_cnt < rule_cnt)
3228 rule_cnt = actual_rule_cnt;
3229 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3230 &rxnfc->rule_locs[0],
3231 rule_cnt * sizeof(u32)))
3232 return -EFAULT;
3233 }
3234 }
3235
3236 return 0;
3237}
3238
3239static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3240{
3241 compat_uptr_t uptr32;
3242 struct ifreq ifr;
3243 void __user *saved;
3244 int err;
3245
3246 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3247 return -EFAULT;
3248
3249 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3250 return -EFAULT;
3251
3252 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3253 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3254
3255 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3256 if (!err) {
3257 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3258 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3259 err = -EFAULT;
3260 }
3261 return err;
3262}
3263
3264/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3265static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3266 struct compat_ifreq __user *u_ifreq32)
3267{
3268 struct ifreq ifreq;
3269 u32 data32;
3270
3271 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3272 return -EFAULT;
3273 if (get_user(data32, &u_ifreq32->ifr_data))
3274 return -EFAULT;
3275 ifreq.ifr_data = compat_ptr(data32);
3276
3277 return dev_ioctl(net, cmd, &ifreq, NULL);
3278}
3279
3280static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3281 unsigned int cmd,
3282 struct compat_ifreq __user *uifr32)
3283{
3284 struct ifreq __user *uifr;
3285 int err;
3286
3287 /* Handle the fact that while struct ifreq has the same *layout* on
3288 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3289 * which are handled elsewhere, it still has different *size* due to
3290 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3291 * resulting in struct ifreq being 32 and 40 bytes respectively).
3292 * As a result, if the struct happens to be at the end of a page and
3293 * the next page isn't readable/writable, we get a fault. To prevent
3294 * that, copy back and forth to the full size.
3295 */
3296
3297 uifr = compat_alloc_user_space(sizeof(*uifr));
3298 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3299 return -EFAULT;
3300
3301 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3302
3303 if (!err) {
3304 switch (cmd) {
3305 case SIOCGIFFLAGS:
3306 case SIOCGIFMETRIC:
3307 case SIOCGIFMTU:
3308 case SIOCGIFMEM:
3309 case SIOCGIFHWADDR:
3310 case SIOCGIFINDEX:
3311 case SIOCGIFADDR:
3312 case SIOCGIFBRDADDR:
3313 case SIOCGIFDSTADDR:
3314 case SIOCGIFNETMASK:
3315 case SIOCGIFPFLAGS:
3316 case SIOCGIFTXQLEN:
3317 case SIOCGMIIPHY:
3318 case SIOCGMIIREG:
3319 case SIOCGIFNAME:
3320 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3321 err = -EFAULT;
3322 break;
3323 }
3324 }
3325 return err;
3326}
3327
3328static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3329 struct compat_ifreq __user *uifr32)
3330{
3331 struct ifreq ifr;
3332 struct compat_ifmap __user *uifmap32;
3333 int err;
3334
3335 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3336 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3337 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3338 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3339 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3340 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3341 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3342 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3343 if (err)
3344 return -EFAULT;
3345
3346 err = dev_ioctl(net, cmd, &ifr, NULL);
3347
3348 if (cmd == SIOCGIFMAP && !err) {
3349 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3350 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3351 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3352 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3353 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3354 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3355 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3356 if (err)
3357 err = -EFAULT;
3358 }
3359 return err;
3360}
3361
3362struct rtentry32 {
3363 u32 rt_pad1;
3364 struct sockaddr rt_dst; /* target address */
3365 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3366 struct sockaddr rt_genmask; /* target network mask (IP) */
3367 unsigned short rt_flags;
3368 short rt_pad2;
3369 u32 rt_pad3;
3370 unsigned char rt_tos;
3371 unsigned char rt_class;
3372 short rt_pad4;
3373 short rt_metric; /* +1 for binary compatibility! */
3374 /* char * */ u32 rt_dev; /* forcing the device at add */
3375 u32 rt_mtu; /* per route MTU/Window */
3376 u32 rt_window; /* Window clamping */
3377 unsigned short rt_irtt; /* Initial RTT */
3378};
3379
3380struct in6_rtmsg32 {
3381 struct in6_addr rtmsg_dst;
3382 struct in6_addr rtmsg_src;
3383 struct in6_addr rtmsg_gateway;
3384 u32 rtmsg_type;
3385 u16 rtmsg_dst_len;
3386 u16 rtmsg_src_len;
3387 u32 rtmsg_metric;
3388 u32 rtmsg_info;
3389 u32 rtmsg_flags;
3390 s32 rtmsg_ifindex;
3391};
3392
3393static int routing_ioctl(struct net *net, struct socket *sock,
3394 unsigned int cmd, void __user *argp)
3395{
3396 int ret;
3397 void *r = NULL;
3398 struct in6_rtmsg r6;
3399 struct rtentry r4;
3400 char devname[16];
3401 u32 rtdev;
3402 mm_segment_t old_fs = get_fs();
3403
3404 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3405 struct in6_rtmsg32 __user *ur6 = argp;
3406 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3407 3 * sizeof(struct in6_addr));
3408 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3409 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3410 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3411 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3412 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3413 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3414 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3415
3416 r = (void *) &r6;
3417 } else { /* ipv4 */
3418 struct rtentry32 __user *ur4 = argp;
3419 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3420 3 * sizeof(struct sockaddr));
3421 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3422 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3423 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3424 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3425 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3426 ret |= get_user(rtdev, &(ur4->rt_dev));
3427 if (rtdev) {
3428 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3429 r4.rt_dev = (char __user __force *)devname;
3430 devname[15] = 0;
3431 } else
3432 r4.rt_dev = NULL;
3433
3434 r = (void *) &r4;
3435 }
3436
3437 if (ret) {
3438 ret = -EFAULT;
3439 goto out;
3440 }
3441
3442 set_fs(KERNEL_DS);
3443 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3444 set_fs(old_fs);
3445
3446out:
3447 return ret;
3448}
3449
3450/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3451 * for some operations; this forces use of the newer bridge-utils that
3452 * use compatible ioctls
3453 */
3454static int old_bridge_ioctl(compat_ulong_t __user *argp)
3455{
3456 compat_ulong_t tmp;
3457
3458 if (get_user(tmp, argp))
3459 return -EFAULT;
3460 if (tmp == BRCTL_GET_VERSION)
3461 return BRCTL_VERSION + 1;
3462 return -EINVAL;
3463}
3464
3465static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3466 unsigned int cmd, unsigned long arg)
3467{
3468 void __user *argp = compat_ptr(arg);
3469 struct sock *sk = sock->sk;
3470 struct net *net = sock_net(sk);
3471
3472 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3473 return compat_ifr_data_ioctl(net, cmd, argp);
3474
3475 switch (cmd) {
3476 case SIOCSIFBR:
3477 case SIOCGIFBR:
3478 return old_bridge_ioctl(argp);
3479 case SIOCGIFCONF:
3480 return compat_dev_ifconf(net, argp);
3481 case SIOCETHTOOL:
3482 return ethtool_ioctl(net, argp);
3483 case SIOCWANDEV:
3484 return compat_siocwandev(net, argp);
3485 case SIOCGIFMAP:
3486 case SIOCSIFMAP:
3487 return compat_sioc_ifmap(net, cmd, argp);
3488 case SIOCADDRT:
3489 case SIOCDELRT:
3490 return routing_ioctl(net, sock, cmd, argp);
3491 case SIOCGSTAMP_OLD:
3492 case SIOCGSTAMPNS_OLD:
3493 if (!sock->ops->gettstamp)
3494 return -ENOIOCTLCMD;
3495 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3496 !COMPAT_USE_64BIT_TIME);
3497
3498 case SIOCBONDSLAVEINFOQUERY:
3499 case SIOCBONDINFOQUERY:
3500 case SIOCSHWTSTAMP:
3501 case SIOCGHWTSTAMP:
3502 return compat_ifr_data_ioctl(net, cmd, argp);
3503
3504 case FIOSETOWN:
3505 case SIOCSPGRP:
3506 case FIOGETOWN:
3507 case SIOCGPGRP:
3508 case SIOCBRADDBR:
3509 case SIOCBRDELBR:
3510 case SIOCGIFVLAN:
3511 case SIOCSIFVLAN:
3512 case SIOCADDDLCI:
3513 case SIOCDELDLCI:
3514 case SIOCGSKNS:
3515 case SIOCGSTAMP_NEW:
3516 case SIOCGSTAMPNS_NEW:
3517 return sock_ioctl(file, cmd, arg);
3518
3519 case SIOCGIFFLAGS:
3520 case SIOCSIFFLAGS:
3521 case SIOCGIFMETRIC:
3522 case SIOCSIFMETRIC:
3523 case SIOCGIFMTU:
3524 case SIOCSIFMTU:
3525 case SIOCGIFMEM:
3526 case SIOCSIFMEM:
3527 case SIOCGIFHWADDR:
3528 case SIOCSIFHWADDR:
3529 case SIOCADDMULTI:
3530 case SIOCDELMULTI:
3531 case SIOCGIFINDEX:
3532 case SIOCGIFADDR:
3533 case SIOCSIFADDR:
3534 case SIOCSIFHWBROADCAST:
3535 case SIOCDIFADDR:
3536 case SIOCGIFBRDADDR:
3537 case SIOCSIFBRDADDR:
3538 case SIOCGIFDSTADDR:
3539 case SIOCSIFDSTADDR:
3540 case SIOCGIFNETMASK:
3541 case SIOCSIFNETMASK:
3542 case SIOCSIFPFLAGS:
3543 case SIOCGIFPFLAGS:
3544 case SIOCGIFTXQLEN:
3545 case SIOCSIFTXQLEN:
3546 case SIOCBRADDIF:
3547 case SIOCBRDELIF:
3548 case SIOCGIFNAME:
3549 case SIOCSIFNAME:
3550 case SIOCGMIIPHY:
3551 case SIOCGMIIREG:
3552 case SIOCSMIIREG:
3553 case SIOCBONDENSLAVE:
3554 case SIOCBONDRELEASE:
3555 case SIOCBONDSETHWADDR:
3556 case SIOCBONDCHANGEACTIVE:
3557 return compat_ifreq_ioctl(net, sock, cmd, argp);
3558
3559 case SIOCSARP:
3560 case SIOCGARP:
3561 case SIOCDARP:
3562 case SIOCOUTQ:
3563 case SIOCOUTQNSD:
3564 case SIOCATMARK:
3565 return sock_do_ioctl(net, sock, cmd, arg);
3566 }
3567
3568 return -ENOIOCTLCMD;
3569}
3570
3571static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3572 unsigned long arg)
3573{
3574 struct socket *sock = file->private_data;
3575 int ret = -ENOIOCTLCMD;
3576 struct sock *sk;
3577 struct net *net;
3578
3579 sk = sock->sk;
3580 net = sock_net(sk);
3581
3582 if (sock->ops->compat_ioctl)
3583 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3584
3585 if (ret == -ENOIOCTLCMD &&
3586 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3587 ret = compat_wext_handle_ioctl(net, cmd, arg);
3588
3589 if (ret == -ENOIOCTLCMD)
3590 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3591
3592 return ret;
3593}
3594#endif
3595
3596/**
3597 * kernel_bind - bind an address to a socket (kernel space)
3598 * @sock: socket
3599 * @addr: address
3600 * @addrlen: length of address
3601 *
3602 * Returns 0 or an error.
3603 */
3604
3605int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3606{
3607 return sock->ops->bind(sock, addr, addrlen);
3608}
3609EXPORT_SYMBOL(kernel_bind);
3610
3611/**
3612 * kernel_listen - move socket to listening state (kernel space)
3613 * @sock: socket
3614 * @backlog: pending connections queue size
3615 *
3616 * Returns 0 or an error.
3617 */
3618
3619int kernel_listen(struct socket *sock, int backlog)
3620{
3621 return sock->ops->listen(sock, backlog);
3622}
3623EXPORT_SYMBOL(kernel_listen);
3624
3625/**
3626 * kernel_accept - accept a connection (kernel space)
3627 * @sock: listening socket
3628 * @newsock: new connected socket
3629 * @flags: flags
3630 *
3631 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3632 * If it fails, @newsock is guaranteed to be %NULL.
3633 * Returns 0 or an error.
3634 */
3635
3636int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3637{
3638 struct sock *sk = sock->sk;
3639 int err;
3640
3641 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3642 newsock);
3643 if (err < 0)
3644 goto done;
3645
3646 err = sock->ops->accept(sock, *newsock, flags, true);
3647 if (err < 0) {
3648 sock_release(*newsock);
3649 *newsock = NULL;
3650 goto done;
3651 }
3652
3653 (*newsock)->ops = sock->ops;
3654 __module_get((*newsock)->ops->owner);
3655
3656done:
3657 return err;
3658}
3659EXPORT_SYMBOL(kernel_accept);
3660
3661/**
3662 * kernel_connect - connect a socket (kernel space)
3663 * @sock: socket
3664 * @addr: address
3665 * @addrlen: address length
3666 * @flags: flags (O_NONBLOCK, ...)
3667 *
3668 * For datagram sockets, @addr is the addres to which datagrams are sent
3669 * by default, and the only address from which datagrams are received.
3670 * For stream sockets, attempts to connect to @addr.
3671 * Returns 0 or an error code.
3672 */
3673
3674int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3675 int flags)
3676{
3677 return sock->ops->connect(sock, addr, addrlen, flags);
3678}
3679EXPORT_SYMBOL(kernel_connect);
3680
3681/**
3682 * kernel_getsockname - get the address which the socket is bound (kernel space)
3683 * @sock: socket
3684 * @addr: address holder
3685 *
3686 * Fills the @addr pointer with the address which the socket is bound.
3687 * Returns 0 or an error code.
3688 */
3689
3690int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3691{
3692 return sock->ops->getname(sock, addr, 0);
3693}
3694EXPORT_SYMBOL(kernel_getsockname);
3695
3696/**
3697 * kernel_peername - get the address which the socket is connected (kernel space)
3698 * @sock: socket
3699 * @addr: address holder
3700 *
3701 * Fills the @addr pointer with the address which the socket is connected.
3702 * Returns 0 or an error code.
3703 */
3704
3705int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3706{
3707 return sock->ops->getname(sock, addr, 1);
3708}
3709EXPORT_SYMBOL(kernel_getpeername);
3710
3711/**
3712 * kernel_getsockopt - get a socket option (kernel space)
3713 * @sock: socket
3714 * @level: API level (SOL_SOCKET, ...)
3715 * @optname: option tag
3716 * @optval: option value
3717 * @optlen: option length
3718 *
3719 * Assigns the option length to @optlen.
3720 * Returns 0 or an error.
3721 */
3722
3723int kernel_getsockopt(struct socket *sock, int level, int optname,
3724 char *optval, int *optlen)
3725{
3726 mm_segment_t oldfs = get_fs();
3727 char __user *uoptval;
3728 int __user *uoptlen;
3729 int err;
3730
3731 uoptval = (char __user __force *) optval;
3732 uoptlen = (int __user __force *) optlen;
3733
3734 set_fs(KERNEL_DS);
3735 if (level == SOL_SOCKET)
3736 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3737 else
3738 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3739 uoptlen);
3740 set_fs(oldfs);
3741 return err;
3742}
3743EXPORT_SYMBOL(kernel_getsockopt);
3744
3745/**
3746 * kernel_setsockopt - set a socket option (kernel space)
3747 * @sock: socket
3748 * @level: API level (SOL_SOCKET, ...)
3749 * @optname: option tag
3750 * @optval: option value
3751 * @optlen: option length
3752 *
3753 * Returns 0 or an error.
3754 */
3755
3756int kernel_setsockopt(struct socket *sock, int level, int optname,
3757 char *optval, unsigned int optlen)
3758{
3759 mm_segment_t oldfs = get_fs();
3760 char __user *uoptval;
3761 int err;
3762
3763 uoptval = (char __user __force *) optval;
3764
3765 set_fs(KERNEL_DS);
3766 if (level == SOL_SOCKET)
3767 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3768 else
3769 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3770 optlen);
3771 set_fs(oldfs);
3772 return err;
3773}
3774EXPORT_SYMBOL(kernel_setsockopt);
3775
3776/**
3777 * kernel_sendpage - send a &page through a socket (kernel space)
3778 * @sock: socket
3779 * @page: page
3780 * @offset: page offset
3781 * @size: total size in bytes
3782 * @flags: flags (MSG_DONTWAIT, ...)
3783 *
3784 * Returns the total amount sent in bytes or an error.
3785 */
3786
3787int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3788 size_t size, int flags)
3789{
3790 if (sock->ops->sendpage)
3791 return sock->ops->sendpage(sock, page, offset, size, flags);
3792
3793 return sock_no_sendpage(sock, page, offset, size, flags);
3794}
3795EXPORT_SYMBOL(kernel_sendpage);
3796
3797/**
3798 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3799 * @sk: sock
3800 * @page: page
3801 * @offset: page offset
3802 * @size: total size in bytes
3803 * @flags: flags (MSG_DONTWAIT, ...)
3804 *
3805 * Returns the total amount sent in bytes or an error.
3806 * Caller must hold @sk.
3807 */
3808
3809int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3810 size_t size, int flags)
3811{
3812 struct socket *sock = sk->sk_socket;
3813
3814 if (sock->ops->sendpage_locked)
3815 return sock->ops->sendpage_locked(sk, page, offset, size,
3816 flags);
3817
3818 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3819}
3820EXPORT_SYMBOL(kernel_sendpage_locked);
3821
3822/**
3823 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3824 * @sock: socket
3825 * @how: connection part
3826 *
3827 * Returns 0 or an error.
3828 */
3829
3830int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3831{
3832 return sock->ops->shutdown(sock, how);
3833}
3834EXPORT_SYMBOL(kernel_sock_shutdown);
3835
3836/**
3837 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3838 * @sk: socket
3839 *
3840 * This routine returns the IP overhead imposed by a socket i.e.
3841 * the length of the underlying IP header, depending on whether
3842 * this is an IPv4 or IPv6 socket and the length from IP options turned
3843 * on at the socket. Assumes that the caller has a lock on the socket.
3844 */
3845
3846u32 kernel_sock_ip_overhead(struct sock *sk)
3847{
3848 struct inet_sock *inet;
3849 struct ip_options_rcu *opt;
3850 u32 overhead = 0;
3851#if IS_ENABLED(CONFIG_IPV6)
3852 struct ipv6_pinfo *np;
3853 struct ipv6_txoptions *optv6 = NULL;
3854#endif /* IS_ENABLED(CONFIG_IPV6) */
3855
3856 if (!sk)
3857 return overhead;
3858
3859 switch (sk->sk_family) {
3860 case AF_INET:
3861 inet = inet_sk(sk);
3862 overhead += sizeof(struct iphdr);
3863 opt = rcu_dereference_protected(inet->inet_opt,
3864 sock_owned_by_user(sk));
3865 if (opt)
3866 overhead += opt->opt.optlen;
3867 return overhead;
3868#if IS_ENABLED(CONFIG_IPV6)
3869 case AF_INET6:
3870 np = inet6_sk(sk);
3871 overhead += sizeof(struct ipv6hdr);
3872 if (np)
3873 optv6 = rcu_dereference_protected(np->opt,
3874 sock_owned_by_user(sk));
3875 if (optv6)
3876 overhead += (optv6->opt_flen + optv6->opt_nflen);
3877 return overhead;
3878#endif /* IS_ENABLED(CONFIG_IPV6) */
3879 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3880 return overhead;
3881 }
3882}
3883EXPORT_SYMBOL(kernel_sock_ip_overhead);