Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * sparse memory mappings.
4 */
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/mmzone.h>
8#include <linux/memblock.h>
9#include <linux/compiler.h>
10#include <linux/highmem.h>
11#include <linux/export.h>
12#include <linux/spinlock.h>
13#include <linux/vmalloc.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16
17#include "internal.h"
18#include <asm/dma.h>
19#include <asm/pgalloc.h>
20#include <asm/pgtable.h>
21
22/*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
27#ifdef CONFIG_SPARSEMEM_EXTREME
28struct mem_section **mem_section;
29#else
30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 ____cacheline_internodealigned_in_smp;
32#endif
33EXPORT_SYMBOL(mem_section);
34
35#ifdef NODE_NOT_IN_PAGE_FLAGS
36/*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41#if MAX_NUMNODES <= 256
42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#else
44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45#endif
46
47int page_to_nid(const struct page *page)
48{
49 return section_to_node_table[page_to_section(page)];
50}
51EXPORT_SYMBOL(page_to_nid);
52
53static void set_section_nid(unsigned long section_nr, int nid)
54{
55 section_to_node_table[section_nr] = nid;
56}
57#else /* !NODE_NOT_IN_PAGE_FLAGS */
58static inline void set_section_nid(unsigned long section_nr, int nid)
59{
60}
61#endif
62
63#ifdef CONFIG_SPARSEMEM_EXTREME
64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65{
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
70 if (slab_is_available()) {
71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 } else {
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
79
80 return section;
81}
82
83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84{
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
87
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
95 if (mem_section[root])
96 return 0;
97
98 section = sparse_index_alloc(nid);
99 if (!section)
100 return -ENOMEM;
101
102 mem_section[root] = section;
103
104 return 0;
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109 return 0;
110}
111#endif
112
113#ifdef CONFIG_SPARSEMEM_EXTREME
114unsigned long __section_nr(struct mem_section *ms)
115{
116 unsigned long root_nr;
117 struct mem_section *root = NULL;
118
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
128 VM_BUG_ON(!root);
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132#else
133unsigned long __section_nr(struct mem_section *ms)
134{
135 return (unsigned long)(ms - mem_section[0]);
136}
137#endif
138
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147 return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
158{
159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
172 } else if (*end_pfn > max_sparsemem_pfn) {
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179}
180
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190unsigned long __highest_present_section_nr;
191static void section_mark_present(struct mem_section *ms)
192{
193 unsigned long section_nr = __section_nr(ms);
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
201#define for_each_present_section_nr(start, section_nr) \
202 for (section_nr = next_present_section_nr(start-1); \
203 ((section_nr != -1) && \
204 (section_nr <= __highest_present_section_nr)); \
205 section_nr = next_present_section_nr(section_nr))
206
207static inline unsigned long first_present_section_nr(void)
208{
209 return next_present_section_nr(-1);
210}
211
212static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213 unsigned long nr_pages)
214{
215 int idx = subsection_map_index(pfn);
216 int end = subsection_map_index(pfn + nr_pages - 1);
217
218 bitmap_set(map, idx, end - idx + 1);
219}
220
221void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222{
223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226 if (!nr_pages)
227 return;
228
229 for (nr = start_sec; nr <= end_sec; nr++) {
230 struct mem_section *ms;
231 unsigned long pfns;
232
233 pfns = min(nr_pages, PAGES_PER_SECTION
234 - (pfn & ~PAGE_SECTION_MASK));
235 ms = __nr_to_section(nr);
236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239 pfns, subsection_map_index(pfn),
240 subsection_map_index(pfn + pfns - 1));
241
242 pfn += pfns;
243 nr_pages -= pfns;
244 }
245}
246
247/* Record a memory area against a node. */
248void __init memory_present(int nid, unsigned long start, unsigned long end)
249{
250 unsigned long pfn;
251
252#ifdef CONFIG_SPARSEMEM_EXTREME
253 if (unlikely(!mem_section)) {
254 unsigned long size, align;
255
256 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
257 align = 1 << (INTERNODE_CACHE_SHIFT);
258 mem_section = memblock_alloc(size, align);
259 if (!mem_section)
260 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
261 __func__, size, align);
262 }
263#endif
264
265 start &= PAGE_SECTION_MASK;
266 mminit_validate_memmodel_limits(&start, &end);
267 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
268 unsigned long section = pfn_to_section_nr(pfn);
269 struct mem_section *ms;
270
271 sparse_index_init(section, nid);
272 set_section_nid(section, nid);
273
274 ms = __nr_to_section(section);
275 if (!ms->section_mem_map) {
276 ms->section_mem_map = sparse_encode_early_nid(nid) |
277 SECTION_IS_ONLINE;
278 section_mark_present(ms);
279 }
280 }
281}
282
283/*
284 * Mark all memblocks as present using memory_present(). This is a
285 * convienence function that is useful for a number of arches
286 * to mark all of the systems memory as present during initialization.
287 */
288void __init memblocks_present(void)
289{
290 struct memblock_region *reg;
291
292 for_each_memblock(memory, reg) {
293 memory_present(memblock_get_region_node(reg),
294 memblock_region_memory_base_pfn(reg),
295 memblock_region_memory_end_pfn(reg));
296 }
297}
298
299/*
300 * Subtle, we encode the real pfn into the mem_map such that
301 * the identity pfn - section_mem_map will return the actual
302 * physical page frame number.
303 */
304static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
305{
306 unsigned long coded_mem_map =
307 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
308 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
309 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
310 return coded_mem_map;
311}
312
313/*
314 * Decode mem_map from the coded memmap
315 */
316struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
317{
318 /* mask off the extra low bits of information */
319 coded_mem_map &= SECTION_MAP_MASK;
320 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
321}
322
323static void __meminit sparse_init_one_section(struct mem_section *ms,
324 unsigned long pnum, struct page *mem_map,
325 struct mem_section_usage *usage, unsigned long flags)
326{
327 ms->section_mem_map &= ~SECTION_MAP_MASK;
328 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
329 | SECTION_HAS_MEM_MAP | flags;
330 ms->usage = usage;
331}
332
333static unsigned long usemap_size(void)
334{
335 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
336}
337
338size_t mem_section_usage_size(void)
339{
340 return sizeof(struct mem_section_usage) + usemap_size();
341}
342
343#ifdef CONFIG_MEMORY_HOTREMOVE
344static struct mem_section_usage * __init
345sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
346 unsigned long size)
347{
348 struct mem_section_usage *usage;
349 unsigned long goal, limit;
350 int nid;
351 /*
352 * A page may contain usemaps for other sections preventing the
353 * page being freed and making a section unremovable while
354 * other sections referencing the usemap remain active. Similarly,
355 * a pgdat can prevent a section being removed. If section A
356 * contains a pgdat and section B contains the usemap, both
357 * sections become inter-dependent. This allocates usemaps
358 * from the same section as the pgdat where possible to avoid
359 * this problem.
360 */
361 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
362 limit = goal + (1UL << PA_SECTION_SHIFT);
363 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
364again:
365 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
366 if (!usage && limit) {
367 limit = 0;
368 goto again;
369 }
370 return usage;
371}
372
373static void __init check_usemap_section_nr(int nid,
374 struct mem_section_usage *usage)
375{
376 unsigned long usemap_snr, pgdat_snr;
377 static unsigned long old_usemap_snr;
378 static unsigned long old_pgdat_snr;
379 struct pglist_data *pgdat = NODE_DATA(nid);
380 int usemap_nid;
381
382 /* First call */
383 if (!old_usemap_snr) {
384 old_usemap_snr = NR_MEM_SECTIONS;
385 old_pgdat_snr = NR_MEM_SECTIONS;
386 }
387
388 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
389 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
390 if (usemap_snr == pgdat_snr)
391 return;
392
393 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
394 /* skip redundant message */
395 return;
396
397 old_usemap_snr = usemap_snr;
398 old_pgdat_snr = pgdat_snr;
399
400 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
401 if (usemap_nid != nid) {
402 pr_info("node %d must be removed before remove section %ld\n",
403 nid, usemap_snr);
404 return;
405 }
406 /*
407 * There is a circular dependency.
408 * Some platforms allow un-removable section because they will just
409 * gather other removable sections for dynamic partitioning.
410 * Just notify un-removable section's number here.
411 */
412 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
413 usemap_snr, pgdat_snr, nid);
414}
415#else
416static struct mem_section_usage * __init
417sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
418 unsigned long size)
419{
420 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
421}
422
423static void __init check_usemap_section_nr(int nid,
424 struct mem_section_usage *usage)
425{
426}
427#endif /* CONFIG_MEMORY_HOTREMOVE */
428
429#ifdef CONFIG_SPARSEMEM_VMEMMAP
430static unsigned long __init section_map_size(void)
431{
432 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
433}
434
435#else
436static unsigned long __init section_map_size(void)
437{
438 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
439}
440
441struct page __init *__populate_section_memmap(unsigned long pfn,
442 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
443{
444 unsigned long size = section_map_size();
445 struct page *map = sparse_buffer_alloc(size);
446 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
447
448 if (map)
449 return map;
450
451 map = memblock_alloc_try_nid_raw(size, size, addr,
452 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
453 if (!map)
454 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
455 __func__, size, PAGE_SIZE, nid, &addr);
456
457 return map;
458}
459#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
460
461static void *sparsemap_buf __meminitdata;
462static void *sparsemap_buf_end __meminitdata;
463
464static inline void __meminit sparse_buffer_free(unsigned long size)
465{
466 WARN_ON(!sparsemap_buf || size == 0);
467 memblock_free_early(__pa(sparsemap_buf), size);
468}
469
470static void __init sparse_buffer_init(unsigned long size, int nid)
471{
472 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
473 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
474 /*
475 * Pre-allocated buffer is mainly used by __populate_section_memmap
476 * and we want it to be properly aligned to the section size - this is
477 * especially the case for VMEMMAP which maps memmap to PMDs
478 */
479 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
480 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481 sparsemap_buf_end = sparsemap_buf + size;
482}
483
484static void __init sparse_buffer_fini(void)
485{
486 unsigned long size = sparsemap_buf_end - sparsemap_buf;
487
488 if (sparsemap_buf && size > 0)
489 sparse_buffer_free(size);
490 sparsemap_buf = NULL;
491}
492
493void * __meminit sparse_buffer_alloc(unsigned long size)
494{
495 void *ptr = NULL;
496
497 if (sparsemap_buf) {
498 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
499 if (ptr + size > sparsemap_buf_end)
500 ptr = NULL;
501 else {
502 /* Free redundant aligned space */
503 if ((unsigned long)(ptr - sparsemap_buf) > 0)
504 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
505 sparsemap_buf = ptr + size;
506 }
507 }
508 return ptr;
509}
510
511void __weak __meminit vmemmap_populate_print_last(void)
512{
513}
514
515/*
516 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
517 * And number of present sections in this node is map_count.
518 */
519static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
520 unsigned long pnum_end,
521 unsigned long map_count)
522{
523 struct mem_section_usage *usage;
524 unsigned long pnum;
525 struct page *map;
526
527 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
528 mem_section_usage_size() * map_count);
529 if (!usage) {
530 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
531 goto failed;
532 }
533 sparse_buffer_init(map_count * section_map_size(), nid);
534 for_each_present_section_nr(pnum_begin, pnum) {
535 unsigned long pfn = section_nr_to_pfn(pnum);
536
537 if (pnum >= pnum_end)
538 break;
539
540 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
541 nid, NULL);
542 if (!map) {
543 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
544 __func__, nid);
545 pnum_begin = pnum;
546 goto failed;
547 }
548 check_usemap_section_nr(nid, usage);
549 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
550 SECTION_IS_EARLY);
551 usage = (void *) usage + mem_section_usage_size();
552 }
553 sparse_buffer_fini();
554 return;
555failed:
556 /* We failed to allocate, mark all the following pnums as not present */
557 for_each_present_section_nr(pnum_begin, pnum) {
558 struct mem_section *ms;
559
560 if (pnum >= pnum_end)
561 break;
562 ms = __nr_to_section(pnum);
563 ms->section_mem_map = 0;
564 }
565}
566
567/*
568 * Allocate the accumulated non-linear sections, allocate a mem_map
569 * for each and record the physical to section mapping.
570 */
571void __init sparse_init(void)
572{
573 unsigned long pnum_begin = first_present_section_nr();
574 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
575 unsigned long pnum_end, map_count = 1;
576
577 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
578 set_pageblock_order();
579
580 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
581 int nid = sparse_early_nid(__nr_to_section(pnum_end));
582
583 if (nid == nid_begin) {
584 map_count++;
585 continue;
586 }
587 /* Init node with sections in range [pnum_begin, pnum_end) */
588 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
589 nid_begin = nid;
590 pnum_begin = pnum_end;
591 map_count = 1;
592 }
593 /* cover the last node */
594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595 vmemmap_populate_print_last();
596}
597
598#ifdef CONFIG_MEMORY_HOTPLUG
599
600/* Mark all memory sections within the pfn range as online */
601void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602{
603 unsigned long pfn;
604
605 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
606 unsigned long section_nr = pfn_to_section_nr(pfn);
607 struct mem_section *ms;
608
609 /* onlining code should never touch invalid ranges */
610 if (WARN_ON(!valid_section_nr(section_nr)))
611 continue;
612
613 ms = __nr_to_section(section_nr);
614 ms->section_mem_map |= SECTION_IS_ONLINE;
615 }
616}
617
618#ifdef CONFIG_MEMORY_HOTREMOVE
619/* Mark all memory sections within the pfn range as offline */
620void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621{
622 unsigned long pfn;
623
624 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625 unsigned long section_nr = pfn_to_section_nr(pfn);
626 struct mem_section *ms;
627
628 /*
629 * TODO this needs some double checking. Offlining code makes
630 * sure to check pfn_valid but those checks might be just bogus
631 */
632 if (WARN_ON(!valid_section_nr(section_nr)))
633 continue;
634
635 ms = __nr_to_section(section_nr);
636 ms->section_mem_map &= ~SECTION_IS_ONLINE;
637 }
638}
639#endif
640
641#ifdef CONFIG_SPARSEMEM_VMEMMAP
642static struct page * __meminit populate_section_memmap(unsigned long pfn,
643 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
644{
645 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
646}
647
648static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
649 struct vmem_altmap *altmap)
650{
651 unsigned long start = (unsigned long) pfn_to_page(pfn);
652 unsigned long end = start + nr_pages * sizeof(struct page);
653
654 vmemmap_free(start, end, altmap);
655}
656static void free_map_bootmem(struct page *memmap)
657{
658 unsigned long start = (unsigned long)memmap;
659 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661 vmemmap_free(start, end, NULL);
662}
663#else
664struct page * __meminit populate_section_memmap(unsigned long pfn,
665 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
666{
667 struct page *page, *ret;
668 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
669
670 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
671 if (page)
672 goto got_map_page;
673
674 ret = vmalloc(memmap_size);
675 if (ret)
676 goto got_map_ptr;
677
678 return NULL;
679got_map_page:
680 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
681got_map_ptr:
682
683 return ret;
684}
685
686static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
687 struct vmem_altmap *altmap)
688{
689 struct page *memmap = pfn_to_page(pfn);
690
691 if (is_vmalloc_addr(memmap))
692 vfree(memmap);
693 else
694 free_pages((unsigned long)memmap,
695 get_order(sizeof(struct page) * PAGES_PER_SECTION));
696}
697
698static void free_map_bootmem(struct page *memmap)
699{
700 unsigned long maps_section_nr, removing_section_nr, i;
701 unsigned long magic, nr_pages;
702 struct page *page = virt_to_page(memmap);
703
704 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
705 >> PAGE_SHIFT;
706
707 for (i = 0; i < nr_pages; i++, page++) {
708 magic = (unsigned long) page->freelist;
709
710 BUG_ON(magic == NODE_INFO);
711
712 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
713 removing_section_nr = page_private(page);
714
715 /*
716 * When this function is called, the removing section is
717 * logical offlined state. This means all pages are isolated
718 * from page allocator. If removing section's memmap is placed
719 * on the same section, it must not be freed.
720 * If it is freed, page allocator may allocate it which will
721 * be removed physically soon.
722 */
723 if (maps_section_nr != removing_section_nr)
724 put_page_bootmem(page);
725 }
726}
727#endif /* CONFIG_SPARSEMEM_VMEMMAP */
728
729static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
730 struct vmem_altmap *altmap)
731{
732 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
733 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
734 struct mem_section *ms = __pfn_to_section(pfn);
735 bool section_is_early = early_section(ms);
736 struct page *memmap = NULL;
737 bool empty;
738 unsigned long *subsection_map = ms->usage
739 ? &ms->usage->subsection_map[0] : NULL;
740
741 subsection_mask_set(map, pfn, nr_pages);
742 if (subsection_map)
743 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
744
745 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
746 "section already deactivated (%#lx + %ld)\n",
747 pfn, nr_pages))
748 return;
749
750 /*
751 * There are 3 cases to handle across two configurations
752 * (SPARSEMEM_VMEMMAP={y,n}):
753 *
754 * 1/ deactivation of a partial hot-added section (only possible
755 * in the SPARSEMEM_VMEMMAP=y case).
756 * a/ section was present at memory init
757 * b/ section was hot-added post memory init
758 * 2/ deactivation of a complete hot-added section
759 * 3/ deactivation of a complete section from memory init
760 *
761 * For 1/, when subsection_map does not empty we will not be
762 * freeing the usage map, but still need to free the vmemmap
763 * range.
764 *
765 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
766 */
767 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
768 empty = bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION);
769 if (empty) {
770 unsigned long section_nr = pfn_to_section_nr(pfn);
771
772 /*
773 * When removing an early section, the usage map is kept (as the
774 * usage maps of other sections fall into the same page). It
775 * will be re-used when re-adding the section - which is then no
776 * longer an early section. If the usage map is PageReserved, it
777 * was allocated during boot.
778 */
779 if (!PageReserved(virt_to_page(ms->usage))) {
780 kfree(ms->usage);
781 ms->usage = NULL;
782 }
783 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
784 /*
785 * Mark the section invalid so that valid_section()
786 * return false. This prevents code from dereferencing
787 * ms->usage array.
788 */
789 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
790 }
791
792 if (section_is_early && memmap)
793 free_map_bootmem(memmap);
794 else
795 depopulate_section_memmap(pfn, nr_pages, altmap);
796
797 if (empty)
798 ms->section_mem_map = (unsigned long)NULL;
799}
800
801static struct page * __meminit section_activate(int nid, unsigned long pfn,
802 unsigned long nr_pages, struct vmem_altmap *altmap)
803{
804 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
805 struct mem_section *ms = __pfn_to_section(pfn);
806 struct mem_section_usage *usage = NULL;
807 unsigned long *subsection_map;
808 struct page *memmap;
809 int rc = 0;
810
811 subsection_mask_set(map, pfn, nr_pages);
812
813 if (!ms->usage) {
814 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
815 if (!usage)
816 return ERR_PTR(-ENOMEM);
817 ms->usage = usage;
818 }
819 subsection_map = &ms->usage->subsection_map[0];
820
821 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
822 rc = -EINVAL;
823 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
824 rc = -EEXIST;
825 else
826 bitmap_or(subsection_map, map, subsection_map,
827 SUBSECTIONS_PER_SECTION);
828
829 if (rc) {
830 if (usage)
831 ms->usage = NULL;
832 kfree(usage);
833 return ERR_PTR(rc);
834 }
835
836 /*
837 * The early init code does not consider partially populated
838 * initial sections, it simply assumes that memory will never be
839 * referenced. If we hot-add memory into such a section then we
840 * do not need to populate the memmap and can simply reuse what
841 * is already there.
842 */
843 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
844 return pfn_to_page(pfn);
845
846 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
847 if (!memmap) {
848 section_deactivate(pfn, nr_pages, altmap);
849 return ERR_PTR(-ENOMEM);
850 }
851
852 return memmap;
853}
854
855/**
856 * sparse_add_section - add a memory section, or populate an existing one
857 * @nid: The node to add section on
858 * @start_pfn: start pfn of the memory range
859 * @nr_pages: number of pfns to add in the section
860 * @altmap: device page map
861 *
862 * This is only intended for hotplug.
863 *
864 * Return:
865 * * 0 - On success.
866 * * -EEXIST - Section has been present.
867 * * -ENOMEM - Out of memory.
868 */
869int __meminit sparse_add_section(int nid, unsigned long start_pfn,
870 unsigned long nr_pages, struct vmem_altmap *altmap)
871{
872 unsigned long section_nr = pfn_to_section_nr(start_pfn);
873 struct mem_section *ms;
874 struct page *memmap;
875 int ret;
876
877 ret = sparse_index_init(section_nr, nid);
878 if (ret < 0)
879 return ret;
880
881 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
882 if (IS_ERR(memmap))
883 return PTR_ERR(memmap);
884
885 /*
886 * Poison uninitialized struct pages in order to catch invalid flags
887 * combinations.
888 */
889 page_init_poison(memmap, sizeof(struct page) * nr_pages);
890
891 ms = __nr_to_section(section_nr);
892 set_section_nid(section_nr, nid);
893 section_mark_present(ms);
894
895 /* Align memmap to section boundary in the subsection case */
896 if (section_nr_to_pfn(section_nr) != start_pfn)
897 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
898 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
899
900 return 0;
901}
902
903#ifdef CONFIG_MEMORY_FAILURE
904static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
905{
906 int i;
907
908 /*
909 * A further optimization is to have per section refcounted
910 * num_poisoned_pages. But that would need more space per memmap, so
911 * for now just do a quick global check to speed up this routine in the
912 * absence of bad pages.
913 */
914 if (atomic_long_read(&num_poisoned_pages) == 0)
915 return;
916
917 for (i = 0; i < nr_pages; i++) {
918 if (PageHWPoison(&memmap[i])) {
919 num_poisoned_pages_dec();
920 ClearPageHWPoison(&memmap[i]);
921 }
922 }
923}
924#else
925static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
926{
927}
928#endif
929
930void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
931 unsigned long nr_pages, unsigned long map_offset,
932 struct vmem_altmap *altmap)
933{
934 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
935 nr_pages - map_offset);
936 section_deactivate(pfn, nr_pages, altmap);
937}
938#endif /* CONFIG_MEMORY_HOTPLUG */