Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * Generalized performance event event_id types, used by the
42 * attr.event_id parameter of the sys_perf_event_open()
43 * syscall:
44 */
45enum perf_hw_id {
46 /*
47 * Common hardware events, generalized by the kernel:
48 */
49 PERF_COUNT_HW_CPU_CYCLES = 0,
50 PERF_COUNT_HW_INSTRUCTIONS = 1,
51 PERF_COUNT_HW_CACHE_REFERENCES = 2,
52 PERF_COUNT_HW_CACHE_MISSES = 3,
53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
54 PERF_COUNT_HW_BRANCH_MISSES = 5,
55 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
59
60 PERF_COUNT_HW_MAX, /* non-ABI */
61};
62
63/*
64 * Generalized hardware cache events:
65 *
66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67 * { read, write, prefetch } x
68 * { accesses, misses }
69 */
70enum perf_hw_cache_id {
71 PERF_COUNT_HW_CACHE_L1D = 0,
72 PERF_COUNT_HW_CACHE_L1I = 1,
73 PERF_COUNT_HW_CACHE_LL = 2,
74 PERF_COUNT_HW_CACHE_DTLB = 3,
75 PERF_COUNT_HW_CACHE_ITLB = 4,
76 PERF_COUNT_HW_CACHE_BPU = 5,
77 PERF_COUNT_HW_CACHE_NODE = 6,
78
79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80};
81
82enum perf_hw_cache_op_id {
83 PERF_COUNT_HW_CACHE_OP_READ = 0,
84 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
86
87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88};
89
90enum perf_hw_cache_op_result_id {
91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
93
94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95};
96
97/*
98 * Special "software" events provided by the kernel, even if the hardware
99 * does not support performance events. These events measure various
100 * physical and sw events of the kernel (and allow the profiling of them as
101 * well):
102 */
103enum perf_sw_ids {
104 PERF_COUNT_SW_CPU_CLOCK = 0,
105 PERF_COUNT_SW_TASK_CLOCK = 1,
106 PERF_COUNT_SW_PAGE_FAULTS = 2,
107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
108 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
112 PERF_COUNT_SW_EMULATION_FAULTS = 8,
113 PERF_COUNT_SW_DUMMY = 9,
114 PERF_COUNT_SW_BPF_OUTPUT = 10,
115
116 PERF_COUNT_SW_MAX, /* non-ABI */
117};
118
119/*
120 * Bits that can be set in attr.sample_type to request information
121 * in the overflow packets.
122 */
123enum perf_event_sample_format {
124 PERF_SAMPLE_IP = 1U << 0,
125 PERF_SAMPLE_TID = 1U << 1,
126 PERF_SAMPLE_TIME = 1U << 2,
127 PERF_SAMPLE_ADDR = 1U << 3,
128 PERF_SAMPLE_READ = 1U << 4,
129 PERF_SAMPLE_CALLCHAIN = 1U << 5,
130 PERF_SAMPLE_ID = 1U << 6,
131 PERF_SAMPLE_CPU = 1U << 7,
132 PERF_SAMPLE_PERIOD = 1U << 8,
133 PERF_SAMPLE_STREAM_ID = 1U << 9,
134 PERF_SAMPLE_RAW = 1U << 10,
135 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
136 PERF_SAMPLE_REGS_USER = 1U << 12,
137 PERF_SAMPLE_STACK_USER = 1U << 13,
138 PERF_SAMPLE_WEIGHT = 1U << 14,
139 PERF_SAMPLE_DATA_SRC = 1U << 15,
140 PERF_SAMPLE_IDENTIFIER = 1U << 16,
141 PERF_SAMPLE_TRANSACTION = 1U << 17,
142 PERF_SAMPLE_REGS_INTR = 1U << 18,
143 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
144 PERF_SAMPLE_AUX = 1U << 20,
145
146 PERF_SAMPLE_MAX = 1U << 21, /* non-ABI */
147
148 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
149};
150
151/*
152 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
153 *
154 * If the user does not pass priv level information via branch_sample_type,
155 * the kernel uses the event's priv level. Branch and event priv levels do
156 * not have to match. Branch priv level is checked for permissions.
157 *
158 * The branch types can be combined, however BRANCH_ANY covers all types
159 * of branches and therefore it supersedes all the other types.
160 */
161enum perf_branch_sample_type_shift {
162 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
163 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
164 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
165
166 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
167 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
168 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
169 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
170 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
171 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
172 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
173 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
174
175 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
176 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
177 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
178
179 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
180 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
181
182 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
183
184 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
185};
186
187enum perf_branch_sample_type {
188 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
189 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
190 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
191
192 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
193 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
194 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
195 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
196 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
197 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
198 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
199 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
200
201 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
202 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
203 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
204
205 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
206 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
207
208 PERF_SAMPLE_BRANCH_TYPE_SAVE =
209 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
210
211 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
212};
213
214/*
215 * Common flow change classification
216 */
217enum {
218 PERF_BR_UNKNOWN = 0, /* unknown */
219 PERF_BR_COND = 1, /* conditional */
220 PERF_BR_UNCOND = 2, /* unconditional */
221 PERF_BR_IND = 3, /* indirect */
222 PERF_BR_CALL = 4, /* function call */
223 PERF_BR_IND_CALL = 5, /* indirect function call */
224 PERF_BR_RET = 6, /* function return */
225 PERF_BR_SYSCALL = 7, /* syscall */
226 PERF_BR_SYSRET = 8, /* syscall return */
227 PERF_BR_COND_CALL = 9, /* conditional function call */
228 PERF_BR_COND_RET = 10, /* conditional function return */
229 PERF_BR_MAX,
230};
231
232#define PERF_SAMPLE_BRANCH_PLM_ALL \
233 (PERF_SAMPLE_BRANCH_USER|\
234 PERF_SAMPLE_BRANCH_KERNEL|\
235 PERF_SAMPLE_BRANCH_HV)
236
237/*
238 * Values to determine ABI of the registers dump.
239 */
240enum perf_sample_regs_abi {
241 PERF_SAMPLE_REGS_ABI_NONE = 0,
242 PERF_SAMPLE_REGS_ABI_32 = 1,
243 PERF_SAMPLE_REGS_ABI_64 = 2,
244};
245
246/*
247 * Values for the memory transaction event qualifier, mostly for
248 * abort events. Multiple bits can be set.
249 */
250enum {
251 PERF_TXN_ELISION = (1 << 0), /* From elision */
252 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
253 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
254 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
255 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
256 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
257 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
258 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
259
260 PERF_TXN_MAX = (1 << 8), /* non-ABI */
261
262 /* bits 32..63 are reserved for the abort code */
263
264 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
265 PERF_TXN_ABORT_SHIFT = 32,
266};
267
268/*
269 * The format of the data returned by read() on a perf event fd,
270 * as specified by attr.read_format:
271 *
272 * struct read_format {
273 * { u64 value;
274 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
275 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
276 * { u64 id; } && PERF_FORMAT_ID
277 * } && !PERF_FORMAT_GROUP
278 *
279 * { u64 nr;
280 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
281 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
282 * { u64 value;
283 * { u64 id; } && PERF_FORMAT_ID
284 * } cntr[nr];
285 * } && PERF_FORMAT_GROUP
286 * };
287 */
288enum perf_event_read_format {
289 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
290 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
291 PERF_FORMAT_ID = 1U << 2,
292 PERF_FORMAT_GROUP = 1U << 3,
293
294 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
295};
296
297#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
298#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
299#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
300#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
301 /* add: sample_stack_user */
302#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
303#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
304#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
305
306/*
307 * Hardware event_id to monitor via a performance monitoring event:
308 *
309 * @sample_max_stack: Max number of frame pointers in a callchain,
310 * should be < /proc/sys/kernel/perf_event_max_stack
311 */
312struct perf_event_attr {
313
314 /*
315 * Major type: hardware/software/tracepoint/etc.
316 */
317 __u32 type;
318
319 /*
320 * Size of the attr structure, for fwd/bwd compat.
321 */
322 __u32 size;
323
324 /*
325 * Type specific configuration information.
326 */
327 __u64 config;
328
329 union {
330 __u64 sample_period;
331 __u64 sample_freq;
332 };
333
334 __u64 sample_type;
335 __u64 read_format;
336
337 __u64 disabled : 1, /* off by default */
338 inherit : 1, /* children inherit it */
339 pinned : 1, /* must always be on PMU */
340 exclusive : 1, /* only group on PMU */
341 exclude_user : 1, /* don't count user */
342 exclude_kernel : 1, /* ditto kernel */
343 exclude_hv : 1, /* ditto hypervisor */
344 exclude_idle : 1, /* don't count when idle */
345 mmap : 1, /* include mmap data */
346 comm : 1, /* include comm data */
347 freq : 1, /* use freq, not period */
348 inherit_stat : 1, /* per task counts */
349 enable_on_exec : 1, /* next exec enables */
350 task : 1, /* trace fork/exit */
351 watermark : 1, /* wakeup_watermark */
352 /*
353 * precise_ip:
354 *
355 * 0 - SAMPLE_IP can have arbitrary skid
356 * 1 - SAMPLE_IP must have constant skid
357 * 2 - SAMPLE_IP requested to have 0 skid
358 * 3 - SAMPLE_IP must have 0 skid
359 *
360 * See also PERF_RECORD_MISC_EXACT_IP
361 */
362 precise_ip : 2, /* skid constraint */
363 mmap_data : 1, /* non-exec mmap data */
364 sample_id_all : 1, /* sample_type all events */
365
366 exclude_host : 1, /* don't count in host */
367 exclude_guest : 1, /* don't count in guest */
368
369 exclude_callchain_kernel : 1, /* exclude kernel callchains */
370 exclude_callchain_user : 1, /* exclude user callchains */
371 mmap2 : 1, /* include mmap with inode data */
372 comm_exec : 1, /* flag comm events that are due to an exec */
373 use_clockid : 1, /* use @clockid for time fields */
374 context_switch : 1, /* context switch data */
375 write_backward : 1, /* Write ring buffer from end to beginning */
376 namespaces : 1, /* include namespaces data */
377 ksymbol : 1, /* include ksymbol events */
378 bpf_event : 1, /* include bpf events */
379 aux_output : 1, /* generate AUX records instead of events */
380 __reserved_1 : 32;
381
382 union {
383 __u32 wakeup_events; /* wakeup every n events */
384 __u32 wakeup_watermark; /* bytes before wakeup */
385 };
386
387 __u32 bp_type;
388 union {
389 __u64 bp_addr;
390 __u64 kprobe_func; /* for perf_kprobe */
391 __u64 uprobe_path; /* for perf_uprobe */
392 __u64 config1; /* extension of config */
393 };
394 union {
395 __u64 bp_len;
396 __u64 kprobe_addr; /* when kprobe_func == NULL */
397 __u64 probe_offset; /* for perf_[k,u]probe */
398 __u64 config2; /* extension of config1 */
399 };
400 __u64 branch_sample_type; /* enum perf_branch_sample_type */
401
402 /*
403 * Defines set of user regs to dump on samples.
404 * See asm/perf_regs.h for details.
405 */
406 __u64 sample_regs_user;
407
408 /*
409 * Defines size of the user stack to dump on samples.
410 */
411 __u32 sample_stack_user;
412
413 __s32 clockid;
414 /*
415 * Defines set of regs to dump for each sample
416 * state captured on:
417 * - precise = 0: PMU interrupt
418 * - precise > 0: sampled instruction
419 *
420 * See asm/perf_regs.h for details.
421 */
422 __u64 sample_regs_intr;
423
424 /*
425 * Wakeup watermark for AUX area
426 */
427 __u32 aux_watermark;
428 __u16 sample_max_stack;
429 __u16 __reserved_2;
430 __u32 aux_sample_size;
431 __u32 __reserved_3;
432};
433
434/*
435 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
436 * to query bpf programs attached to the same perf tracepoint
437 * as the given perf event.
438 */
439struct perf_event_query_bpf {
440 /*
441 * The below ids array length
442 */
443 __u32 ids_len;
444 /*
445 * Set by the kernel to indicate the number of
446 * available programs
447 */
448 __u32 prog_cnt;
449 /*
450 * User provided buffer to store program ids
451 */
452 __u32 ids[0];
453};
454
455/*
456 * Ioctls that can be done on a perf event fd:
457 */
458#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
459#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
460#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
461#define PERF_EVENT_IOC_RESET _IO ('$', 3)
462#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
463#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
464#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
465#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
466#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
467#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
468#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
469#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
470
471enum perf_event_ioc_flags {
472 PERF_IOC_FLAG_GROUP = 1U << 0,
473};
474
475/*
476 * Structure of the page that can be mapped via mmap
477 */
478struct perf_event_mmap_page {
479 __u32 version; /* version number of this structure */
480 __u32 compat_version; /* lowest version this is compat with */
481
482 /*
483 * Bits needed to read the hw events in user-space.
484 *
485 * u32 seq, time_mult, time_shift, index, width;
486 * u64 count, enabled, running;
487 * u64 cyc, time_offset;
488 * s64 pmc = 0;
489 *
490 * do {
491 * seq = pc->lock;
492 * barrier()
493 *
494 * enabled = pc->time_enabled;
495 * running = pc->time_running;
496 *
497 * if (pc->cap_usr_time && enabled != running) {
498 * cyc = rdtsc();
499 * time_offset = pc->time_offset;
500 * time_mult = pc->time_mult;
501 * time_shift = pc->time_shift;
502 * }
503 *
504 * index = pc->index;
505 * count = pc->offset;
506 * if (pc->cap_user_rdpmc && index) {
507 * width = pc->pmc_width;
508 * pmc = rdpmc(index - 1);
509 * }
510 *
511 * barrier();
512 * } while (pc->lock != seq);
513 *
514 * NOTE: for obvious reason this only works on self-monitoring
515 * processes.
516 */
517 __u32 lock; /* seqlock for synchronization */
518 __u32 index; /* hardware event identifier */
519 __s64 offset; /* add to hardware event value */
520 __u64 time_enabled; /* time event active */
521 __u64 time_running; /* time event on cpu */
522 union {
523 __u64 capabilities;
524 struct {
525 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
526 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
527
528 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
529 cap_user_time : 1, /* The time_* fields are used */
530 cap_user_time_zero : 1, /* The time_zero field is used */
531 cap_____res : 59;
532 };
533 };
534
535 /*
536 * If cap_user_rdpmc this field provides the bit-width of the value
537 * read using the rdpmc() or equivalent instruction. This can be used
538 * to sign extend the result like:
539 *
540 * pmc <<= 64 - width;
541 * pmc >>= 64 - width; // signed shift right
542 * count += pmc;
543 */
544 __u16 pmc_width;
545
546 /*
547 * If cap_usr_time the below fields can be used to compute the time
548 * delta since time_enabled (in ns) using rdtsc or similar.
549 *
550 * u64 quot, rem;
551 * u64 delta;
552 *
553 * quot = (cyc >> time_shift);
554 * rem = cyc & (((u64)1 << time_shift) - 1);
555 * delta = time_offset + quot * time_mult +
556 * ((rem * time_mult) >> time_shift);
557 *
558 * Where time_offset,time_mult,time_shift and cyc are read in the
559 * seqcount loop described above. This delta can then be added to
560 * enabled and possible running (if index), improving the scaling:
561 *
562 * enabled += delta;
563 * if (index)
564 * running += delta;
565 *
566 * quot = count / running;
567 * rem = count % running;
568 * count = quot * enabled + (rem * enabled) / running;
569 */
570 __u16 time_shift;
571 __u32 time_mult;
572 __u64 time_offset;
573 /*
574 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
575 * from sample timestamps.
576 *
577 * time = timestamp - time_zero;
578 * quot = time / time_mult;
579 * rem = time % time_mult;
580 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
581 *
582 * And vice versa:
583 *
584 * quot = cyc >> time_shift;
585 * rem = cyc & (((u64)1 << time_shift) - 1);
586 * timestamp = time_zero + quot * time_mult +
587 * ((rem * time_mult) >> time_shift);
588 */
589 __u64 time_zero;
590 __u32 size; /* Header size up to __reserved[] fields. */
591
592 /*
593 * Hole for extension of the self monitor capabilities
594 */
595
596 __u8 __reserved[118*8+4]; /* align to 1k. */
597
598 /*
599 * Control data for the mmap() data buffer.
600 *
601 * User-space reading the @data_head value should issue an smp_rmb(),
602 * after reading this value.
603 *
604 * When the mapping is PROT_WRITE the @data_tail value should be
605 * written by userspace to reflect the last read data, after issueing
606 * an smp_mb() to separate the data read from the ->data_tail store.
607 * In this case the kernel will not over-write unread data.
608 *
609 * See perf_output_put_handle() for the data ordering.
610 *
611 * data_{offset,size} indicate the location and size of the perf record
612 * buffer within the mmapped area.
613 */
614 __u64 data_head; /* head in the data section */
615 __u64 data_tail; /* user-space written tail */
616 __u64 data_offset; /* where the buffer starts */
617 __u64 data_size; /* data buffer size */
618
619 /*
620 * AUX area is defined by aux_{offset,size} fields that should be set
621 * by the userspace, so that
622 *
623 * aux_offset >= data_offset + data_size
624 *
625 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
626 *
627 * Ring buffer pointers aux_{head,tail} have the same semantics as
628 * data_{head,tail} and same ordering rules apply.
629 */
630 __u64 aux_head;
631 __u64 aux_tail;
632 __u64 aux_offset;
633 __u64 aux_size;
634};
635
636#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
637#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
638#define PERF_RECORD_MISC_KERNEL (1 << 0)
639#define PERF_RECORD_MISC_USER (2 << 0)
640#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
641#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
642#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
643
644/*
645 * Indicates that /proc/PID/maps parsing are truncated by time out.
646 */
647#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
648/*
649 * Following PERF_RECORD_MISC_* are used on different
650 * events, so can reuse the same bit position:
651 *
652 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
653 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
654 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
655 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
656 */
657#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
658#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
659#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
660#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
661/*
662 * These PERF_RECORD_MISC_* flags below are safely reused
663 * for the following events:
664 *
665 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
666 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
667 *
668 *
669 * PERF_RECORD_MISC_EXACT_IP:
670 * Indicates that the content of PERF_SAMPLE_IP points to
671 * the actual instruction that triggered the event. See also
672 * perf_event_attr::precise_ip.
673 *
674 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
675 * Indicates that thread was preempted in TASK_RUNNING state.
676 */
677#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
678#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
679/*
680 * Reserve the last bit to indicate some extended misc field
681 */
682#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
683
684struct perf_event_header {
685 __u32 type;
686 __u16 misc;
687 __u16 size;
688};
689
690struct perf_ns_link_info {
691 __u64 dev;
692 __u64 ino;
693};
694
695enum {
696 NET_NS_INDEX = 0,
697 UTS_NS_INDEX = 1,
698 IPC_NS_INDEX = 2,
699 PID_NS_INDEX = 3,
700 USER_NS_INDEX = 4,
701 MNT_NS_INDEX = 5,
702 CGROUP_NS_INDEX = 6,
703
704 NR_NAMESPACES, /* number of available namespaces */
705};
706
707enum perf_event_type {
708
709 /*
710 * If perf_event_attr.sample_id_all is set then all event types will
711 * have the sample_type selected fields related to where/when
712 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
713 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
714 * just after the perf_event_header and the fields already present for
715 * the existing fields, i.e. at the end of the payload. That way a newer
716 * perf.data file will be supported by older perf tools, with these new
717 * optional fields being ignored.
718 *
719 * struct sample_id {
720 * { u32 pid, tid; } && PERF_SAMPLE_TID
721 * { u64 time; } && PERF_SAMPLE_TIME
722 * { u64 id; } && PERF_SAMPLE_ID
723 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
724 * { u32 cpu, res; } && PERF_SAMPLE_CPU
725 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
726 * } && perf_event_attr::sample_id_all
727 *
728 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
729 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
730 * relative to header.size.
731 */
732
733 /*
734 * The MMAP events record the PROT_EXEC mappings so that we can
735 * correlate userspace IPs to code. They have the following structure:
736 *
737 * struct {
738 * struct perf_event_header header;
739 *
740 * u32 pid, tid;
741 * u64 addr;
742 * u64 len;
743 * u64 pgoff;
744 * char filename[];
745 * struct sample_id sample_id;
746 * };
747 */
748 PERF_RECORD_MMAP = 1,
749
750 /*
751 * struct {
752 * struct perf_event_header header;
753 * u64 id;
754 * u64 lost;
755 * struct sample_id sample_id;
756 * };
757 */
758 PERF_RECORD_LOST = 2,
759
760 /*
761 * struct {
762 * struct perf_event_header header;
763 *
764 * u32 pid, tid;
765 * char comm[];
766 * struct sample_id sample_id;
767 * };
768 */
769 PERF_RECORD_COMM = 3,
770
771 /*
772 * struct {
773 * struct perf_event_header header;
774 * u32 pid, ppid;
775 * u32 tid, ptid;
776 * u64 time;
777 * struct sample_id sample_id;
778 * };
779 */
780 PERF_RECORD_EXIT = 4,
781
782 /*
783 * struct {
784 * struct perf_event_header header;
785 * u64 time;
786 * u64 id;
787 * u64 stream_id;
788 * struct sample_id sample_id;
789 * };
790 */
791 PERF_RECORD_THROTTLE = 5,
792 PERF_RECORD_UNTHROTTLE = 6,
793
794 /*
795 * struct {
796 * struct perf_event_header header;
797 * u32 pid, ppid;
798 * u32 tid, ptid;
799 * u64 time;
800 * struct sample_id sample_id;
801 * };
802 */
803 PERF_RECORD_FORK = 7,
804
805 /*
806 * struct {
807 * struct perf_event_header header;
808 * u32 pid, tid;
809 *
810 * struct read_format values;
811 * struct sample_id sample_id;
812 * };
813 */
814 PERF_RECORD_READ = 8,
815
816 /*
817 * struct {
818 * struct perf_event_header header;
819 *
820 * #
821 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
822 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
823 * # is fixed relative to header.
824 * #
825 *
826 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
827 * { u64 ip; } && PERF_SAMPLE_IP
828 * { u32 pid, tid; } && PERF_SAMPLE_TID
829 * { u64 time; } && PERF_SAMPLE_TIME
830 * { u64 addr; } && PERF_SAMPLE_ADDR
831 * { u64 id; } && PERF_SAMPLE_ID
832 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
833 * { u32 cpu, res; } && PERF_SAMPLE_CPU
834 * { u64 period; } && PERF_SAMPLE_PERIOD
835 *
836 * { struct read_format values; } && PERF_SAMPLE_READ
837 *
838 * { u64 nr,
839 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
840 *
841 * #
842 * # The RAW record below is opaque data wrt the ABI
843 * #
844 * # That is, the ABI doesn't make any promises wrt to
845 * # the stability of its content, it may vary depending
846 * # on event, hardware, kernel version and phase of
847 * # the moon.
848 * #
849 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
850 * #
851 *
852 * { u32 size;
853 * char data[size];}&& PERF_SAMPLE_RAW
854 *
855 * { u64 nr;
856 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
857 *
858 * { u64 abi; # enum perf_sample_regs_abi
859 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
860 *
861 * { u64 size;
862 * char data[size];
863 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
864 *
865 * { u64 weight; } && PERF_SAMPLE_WEIGHT
866 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
867 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
868 * { u64 abi; # enum perf_sample_regs_abi
869 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
870 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
871 * { u64 size;
872 * char data[size]; } && PERF_SAMPLE_AUX
873 * };
874 */
875 PERF_RECORD_SAMPLE = 9,
876
877 /*
878 * The MMAP2 records are an augmented version of MMAP, they add
879 * maj, min, ino numbers to be used to uniquely identify each mapping
880 *
881 * struct {
882 * struct perf_event_header header;
883 *
884 * u32 pid, tid;
885 * u64 addr;
886 * u64 len;
887 * u64 pgoff;
888 * u32 maj;
889 * u32 min;
890 * u64 ino;
891 * u64 ino_generation;
892 * u32 prot, flags;
893 * char filename[];
894 * struct sample_id sample_id;
895 * };
896 */
897 PERF_RECORD_MMAP2 = 10,
898
899 /*
900 * Records that new data landed in the AUX buffer part.
901 *
902 * struct {
903 * struct perf_event_header header;
904 *
905 * u64 aux_offset;
906 * u64 aux_size;
907 * u64 flags;
908 * struct sample_id sample_id;
909 * };
910 */
911 PERF_RECORD_AUX = 11,
912
913 /*
914 * Indicates that instruction trace has started
915 *
916 * struct {
917 * struct perf_event_header header;
918 * u32 pid;
919 * u32 tid;
920 * struct sample_id sample_id;
921 * };
922 */
923 PERF_RECORD_ITRACE_START = 12,
924
925 /*
926 * Records the dropped/lost sample number.
927 *
928 * struct {
929 * struct perf_event_header header;
930 *
931 * u64 lost;
932 * struct sample_id sample_id;
933 * };
934 */
935 PERF_RECORD_LOST_SAMPLES = 13,
936
937 /*
938 * Records a context switch in or out (flagged by
939 * PERF_RECORD_MISC_SWITCH_OUT). See also
940 * PERF_RECORD_SWITCH_CPU_WIDE.
941 *
942 * struct {
943 * struct perf_event_header header;
944 * struct sample_id sample_id;
945 * };
946 */
947 PERF_RECORD_SWITCH = 14,
948
949 /*
950 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
951 * next_prev_tid that are the next (switching out) or previous
952 * (switching in) pid/tid.
953 *
954 * struct {
955 * struct perf_event_header header;
956 * u32 next_prev_pid;
957 * u32 next_prev_tid;
958 * struct sample_id sample_id;
959 * };
960 */
961 PERF_RECORD_SWITCH_CPU_WIDE = 15,
962
963 /*
964 * struct {
965 * struct perf_event_header header;
966 * u32 pid;
967 * u32 tid;
968 * u64 nr_namespaces;
969 * { u64 dev, inode; } [nr_namespaces];
970 * struct sample_id sample_id;
971 * };
972 */
973 PERF_RECORD_NAMESPACES = 16,
974
975 /*
976 * Record ksymbol register/unregister events:
977 *
978 * struct {
979 * struct perf_event_header header;
980 * u64 addr;
981 * u32 len;
982 * u16 ksym_type;
983 * u16 flags;
984 * char name[];
985 * struct sample_id sample_id;
986 * };
987 */
988 PERF_RECORD_KSYMBOL = 17,
989
990 /*
991 * Record bpf events:
992 * enum perf_bpf_event_type {
993 * PERF_BPF_EVENT_UNKNOWN = 0,
994 * PERF_BPF_EVENT_PROG_LOAD = 1,
995 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
996 * };
997 *
998 * struct {
999 * struct perf_event_header header;
1000 * u16 type;
1001 * u16 flags;
1002 * u32 id;
1003 * u8 tag[BPF_TAG_SIZE];
1004 * struct sample_id sample_id;
1005 * };
1006 */
1007 PERF_RECORD_BPF_EVENT = 18,
1008
1009 PERF_RECORD_MAX, /* non-ABI */
1010};
1011
1012enum perf_record_ksymbol_type {
1013 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1014 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1015 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1016};
1017
1018#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1019
1020enum perf_bpf_event_type {
1021 PERF_BPF_EVENT_UNKNOWN = 0,
1022 PERF_BPF_EVENT_PROG_LOAD = 1,
1023 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1024 PERF_BPF_EVENT_MAX, /* non-ABI */
1025};
1026
1027#define PERF_MAX_STACK_DEPTH 127
1028#define PERF_MAX_CONTEXTS_PER_STACK 8
1029
1030enum perf_callchain_context {
1031 PERF_CONTEXT_HV = (__u64)-32,
1032 PERF_CONTEXT_KERNEL = (__u64)-128,
1033 PERF_CONTEXT_USER = (__u64)-512,
1034
1035 PERF_CONTEXT_GUEST = (__u64)-2048,
1036 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1037 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1038
1039 PERF_CONTEXT_MAX = (__u64)-4095,
1040};
1041
1042/**
1043 * PERF_RECORD_AUX::flags bits
1044 */
1045#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1046#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1047#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1048#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1049
1050#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1051#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1052#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1053#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1054
1055#if defined(__LITTLE_ENDIAN_BITFIELD)
1056union perf_mem_data_src {
1057 __u64 val;
1058 struct {
1059 __u64 mem_op:5, /* type of opcode */
1060 mem_lvl:14, /* memory hierarchy level */
1061 mem_snoop:5, /* snoop mode */
1062 mem_lock:2, /* lock instr */
1063 mem_dtlb:7, /* tlb access */
1064 mem_lvl_num:4, /* memory hierarchy level number */
1065 mem_remote:1, /* remote */
1066 mem_snoopx:2, /* snoop mode, ext */
1067 mem_rsvd:24;
1068 };
1069};
1070#elif defined(__BIG_ENDIAN_BITFIELD)
1071union perf_mem_data_src {
1072 __u64 val;
1073 struct {
1074 __u64 mem_rsvd:24,
1075 mem_snoopx:2, /* snoop mode, ext */
1076 mem_remote:1, /* remote */
1077 mem_lvl_num:4, /* memory hierarchy level number */
1078 mem_dtlb:7, /* tlb access */
1079 mem_lock:2, /* lock instr */
1080 mem_snoop:5, /* snoop mode */
1081 mem_lvl:14, /* memory hierarchy level */
1082 mem_op:5; /* type of opcode */
1083 };
1084};
1085#else
1086#error "Unknown endianness"
1087#endif
1088
1089/* type of opcode (load/store/prefetch,code) */
1090#define PERF_MEM_OP_NA 0x01 /* not available */
1091#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1092#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1093#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1094#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1095#define PERF_MEM_OP_SHIFT 0
1096
1097/* memory hierarchy (memory level, hit or miss) */
1098#define PERF_MEM_LVL_NA 0x01 /* not available */
1099#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1100#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1101#define PERF_MEM_LVL_L1 0x08 /* L1 */
1102#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1103#define PERF_MEM_LVL_L2 0x20 /* L2 */
1104#define PERF_MEM_LVL_L3 0x40 /* L3 */
1105#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1106#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1107#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1108#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1109#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1110#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1111#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1112#define PERF_MEM_LVL_SHIFT 5
1113
1114#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1115#define PERF_MEM_REMOTE_SHIFT 37
1116
1117#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1118#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1119#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1120#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1121/* 5-0xa available */
1122#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1123#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1124#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1125#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1126#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1127
1128#define PERF_MEM_LVLNUM_SHIFT 33
1129
1130/* snoop mode */
1131#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1132#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1133#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1134#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1135#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1136#define PERF_MEM_SNOOP_SHIFT 19
1137
1138#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1139/* 1 free */
1140#define PERF_MEM_SNOOPX_SHIFT 37
1141
1142/* locked instruction */
1143#define PERF_MEM_LOCK_NA 0x01 /* not available */
1144#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1145#define PERF_MEM_LOCK_SHIFT 24
1146
1147/* TLB access */
1148#define PERF_MEM_TLB_NA 0x01 /* not available */
1149#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1150#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1151#define PERF_MEM_TLB_L1 0x08 /* L1 */
1152#define PERF_MEM_TLB_L2 0x10 /* L2 */
1153#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1154#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1155#define PERF_MEM_TLB_SHIFT 26
1156
1157#define PERF_MEM_S(a, s) \
1158 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1159
1160/*
1161 * single taken branch record layout:
1162 *
1163 * from: source instruction (may not always be a branch insn)
1164 * to: branch target
1165 * mispred: branch target was mispredicted
1166 * predicted: branch target was predicted
1167 *
1168 * support for mispred, predicted is optional. In case it
1169 * is not supported mispred = predicted = 0.
1170 *
1171 * in_tx: running in a hardware transaction
1172 * abort: aborting a hardware transaction
1173 * cycles: cycles from last branch (or 0 if not supported)
1174 * type: branch type
1175 */
1176struct perf_branch_entry {
1177 __u64 from;
1178 __u64 to;
1179 __u64 mispred:1, /* target mispredicted */
1180 predicted:1,/* target predicted */
1181 in_tx:1, /* in transaction */
1182 abort:1, /* transaction abort */
1183 cycles:16, /* cycle count to last branch */
1184 type:4, /* branch type */
1185 reserved:40;
1186};
1187
1188#endif /* _UAPI_LINUX_PERF_EVENT_H */