Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
62
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <net/dst.h>
66#include <net/checksum.h>
67#include <net/tcp_states.h>
68#include <linux/net_tstamp.h>
69#include <net/l3mdev.h>
70
71/*
72 * This structure really needs to be cleaned up.
73 * Most of it is for TCP, and not used by any of
74 * the other protocols.
75 */
76
77/* Define this to get the SOCK_DBG debugging facility. */
78#define SOCK_DEBUGGING
79#ifdef SOCK_DEBUGGING
80#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 printk(KERN_DEBUG msg); } while (0)
82#else
83/* Validate arguments and do nothing */
84static inline __printf(2, 3)
85void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86{
87}
88#endif
89
90/* This is the per-socket lock. The spinlock provides a synchronization
91 * between user contexts and software interrupt processing, whereas the
92 * mini-semaphore synchronizes multiple users amongst themselves.
93 */
94typedef struct {
95 spinlock_t slock;
96 int owned;
97 wait_queue_head_t wq;
98 /*
99 * We express the mutex-alike socket_lock semantics
100 * to the lock validator by explicitly managing
101 * the slock as a lock variant (in addition to
102 * the slock itself):
103 */
104#ifdef CONFIG_DEBUG_LOCK_ALLOC
105 struct lockdep_map dep_map;
106#endif
107} socket_lock_t;
108
109struct sock;
110struct proto;
111struct net;
112
113typedef __u32 __bitwise __portpair;
114typedef __u64 __bitwise __addrpair;
115
116/**
117 * struct sock_common - minimal network layer representation of sockets
118 * @skc_daddr: Foreign IPv4 addr
119 * @skc_rcv_saddr: Bound local IPv4 addr
120 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
121 * @skc_hash: hash value used with various protocol lookup tables
122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
123 * @skc_dport: placeholder for inet_dport/tw_dport
124 * @skc_num: placeholder for inet_num/tw_num
125 * @skc_portpair: __u32 union of @skc_dport & @skc_num
126 * @skc_family: network address family
127 * @skc_state: Connection state
128 * @skc_reuse: %SO_REUSEADDR setting
129 * @skc_reuseport: %SO_REUSEPORT setting
130 * @skc_ipv6only: socket is IPV6 only
131 * @skc_net_refcnt: socket is using net ref counting
132 * @skc_bound_dev_if: bound device index if != 0
133 * @skc_bind_node: bind hash linkage for various protocol lookup tables
134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135 * @skc_prot: protocol handlers inside a network family
136 * @skc_net: reference to the network namespace of this socket
137 * @skc_v6_daddr: IPV6 destination address
138 * @skc_v6_rcv_saddr: IPV6 source address
139 * @skc_cookie: socket's cookie value
140 * @skc_node: main hash linkage for various protocol lookup tables
141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142 * @skc_tx_queue_mapping: tx queue number for this connection
143 * @skc_rx_queue_mapping: rx queue number for this connection
144 * @skc_flags: place holder for sk_flags
145 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
146 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
147 * @skc_listener: connection request listener socket (aka rsk_listener)
148 * [union with @skc_flags]
149 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
150 * [union with @skc_flags]
151 * @skc_incoming_cpu: record/match cpu processing incoming packets
152 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
153 * [union with @skc_incoming_cpu]
154 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
155 * [union with @skc_incoming_cpu]
156 * @skc_refcnt: reference count
157 *
158 * This is the minimal network layer representation of sockets, the header
159 * for struct sock and struct inet_timewait_sock.
160 */
161struct sock_common {
162 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
163 * address on 64bit arches : cf INET_MATCH()
164 */
165 union {
166 __addrpair skc_addrpair;
167 struct {
168 __be32 skc_daddr;
169 __be32 skc_rcv_saddr;
170 };
171 };
172 union {
173 unsigned int skc_hash;
174 __u16 skc_u16hashes[2];
175 };
176 /* skc_dport && skc_num must be grouped as well */
177 union {
178 __portpair skc_portpair;
179 struct {
180 __be16 skc_dport;
181 __u16 skc_num;
182 };
183 };
184
185 unsigned short skc_family;
186 volatile unsigned char skc_state;
187 unsigned char skc_reuse:4;
188 unsigned char skc_reuseport:1;
189 unsigned char skc_ipv6only:1;
190 unsigned char skc_net_refcnt:1;
191 int skc_bound_dev_if;
192 union {
193 struct hlist_node skc_bind_node;
194 struct hlist_node skc_portaddr_node;
195 };
196 struct proto *skc_prot;
197 possible_net_t skc_net;
198
199#if IS_ENABLED(CONFIG_IPV6)
200 struct in6_addr skc_v6_daddr;
201 struct in6_addr skc_v6_rcv_saddr;
202#endif
203
204 atomic64_t skc_cookie;
205
206 /* following fields are padding to force
207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
208 * assuming IPV6 is enabled. We use this padding differently
209 * for different kind of 'sockets'
210 */
211 union {
212 unsigned long skc_flags;
213 struct sock *skc_listener; /* request_sock */
214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
215 };
216 /*
217 * fields between dontcopy_begin/dontcopy_end
218 * are not copied in sock_copy()
219 */
220 /* private: */
221 int skc_dontcopy_begin[0];
222 /* public: */
223 union {
224 struct hlist_node skc_node;
225 struct hlist_nulls_node skc_nulls_node;
226 };
227 unsigned short skc_tx_queue_mapping;
228#ifdef CONFIG_XPS
229 unsigned short skc_rx_queue_mapping;
230#endif
231 union {
232 int skc_incoming_cpu;
233 u32 skc_rcv_wnd;
234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 };
236
237 refcount_t skc_refcnt;
238 /* private: */
239 int skc_dontcopy_end[0];
240 union {
241 u32 skc_rxhash;
242 u32 skc_window_clamp;
243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 };
245 /* public: */
246};
247
248struct bpf_sk_storage;
249
250/**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_dst_cache: destination cache
261 * @sk_dst_pending_confirm: need to confirm neighbour
262 * @sk_policy: flow policy
263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
264 * @sk_receive_queue: incoming packets
265 * @sk_wmem_alloc: transmit queue bytes committed
266 * @sk_tsq_flags: TCP Small Queues flags
267 * @sk_write_queue: Packet sending queue
268 * @sk_omem_alloc: "o" is "option" or "other"
269 * @sk_wmem_queued: persistent queue size
270 * @sk_forward_alloc: space allocated forward
271 * @sk_napi_id: id of the last napi context to receive data for sk
272 * @sk_ll_usec: usecs to busypoll when there is no data
273 * @sk_allocation: allocation mode
274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
277 * @sk_sndbuf: size of send buffer in bytes
278 * @__sk_flags_offset: empty field used to determine location of bitfield
279 * @sk_padding: unused element for alignment
280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
281 * @sk_no_check_rx: allow zero checksum in RX packets
282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
284 * @sk_route_forced_caps: static, forced route capabilities
285 * (set in tcp_init_sock())
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_priority: %SO_PRIORITY setting
304 * @sk_type: socket type (%SOCK_STREAM, etc)
305 * @sk_protocol: which protocol this socket belongs in this network family
306 * @sk_peer_pid: &struct pid for this socket's peer
307 * @sk_peer_cred: %SO_PEERCRED setting
308 * @sk_rcvlowat: %SO_RCVLOWAT setting
309 * @sk_rcvtimeo: %SO_RCVTIMEO setting
310 * @sk_sndtimeo: %SO_SNDTIMEO setting
311 * @sk_txhash: computed flow hash for use on transmit
312 * @sk_filter: socket filtering instructions
313 * @sk_timer: sock cleanup timer
314 * @sk_stamp: time stamp of last packet received
315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
316 * @sk_tsflags: SO_TIMESTAMPING socket options
317 * @sk_tskey: counter to disambiguate concurrent tstamp requests
318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
319 * @sk_socket: Identd and reporting IO signals
320 * @sk_user_data: RPC layer private data
321 * @sk_frag: cached page frag
322 * @sk_peek_off: current peek_offset value
323 * @sk_send_head: front of stuff to transmit
324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
326 * @sk_security: used by security modules
327 * @sk_mark: generic packet mark
328 * @sk_cgrp_data: cgroup data for this cgroup
329 * @sk_memcg: this socket's memory cgroup association
330 * @sk_write_pending: a write to stream socket waits to start
331 * @sk_state_change: callback to indicate change in the state of the sock
332 * @sk_data_ready: callback to indicate there is data to be processed
333 * @sk_write_space: callback to indicate there is bf sending space available
334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
335 * @sk_backlog_rcv: callback to process the backlog
336 * @sk_validate_xmit_skb: ptr to an optional validate function
337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
338 * @sk_reuseport_cb: reuseport group container
339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
340 * @sk_rcu: used during RCU grace period
341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
344 * @sk_txtime_unused: unused txtime flags
345 */
346struct sock {
347 /*
348 * Now struct inet_timewait_sock also uses sock_common, so please just
349 * don't add nothing before this first member (__sk_common) --acme
350 */
351 struct sock_common __sk_common;
352#define sk_node __sk_common.skc_node
353#define sk_nulls_node __sk_common.skc_nulls_node
354#define sk_refcnt __sk_common.skc_refcnt
355#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
356#ifdef CONFIG_XPS
357#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
358#endif
359
360#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
361#define sk_dontcopy_end __sk_common.skc_dontcopy_end
362#define sk_hash __sk_common.skc_hash
363#define sk_portpair __sk_common.skc_portpair
364#define sk_num __sk_common.skc_num
365#define sk_dport __sk_common.skc_dport
366#define sk_addrpair __sk_common.skc_addrpair
367#define sk_daddr __sk_common.skc_daddr
368#define sk_rcv_saddr __sk_common.skc_rcv_saddr
369#define sk_family __sk_common.skc_family
370#define sk_state __sk_common.skc_state
371#define sk_reuse __sk_common.skc_reuse
372#define sk_reuseport __sk_common.skc_reuseport
373#define sk_ipv6only __sk_common.skc_ipv6only
374#define sk_net_refcnt __sk_common.skc_net_refcnt
375#define sk_bound_dev_if __sk_common.skc_bound_dev_if
376#define sk_bind_node __sk_common.skc_bind_node
377#define sk_prot __sk_common.skc_prot
378#define sk_net __sk_common.skc_net
379#define sk_v6_daddr __sk_common.skc_v6_daddr
380#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
381#define sk_cookie __sk_common.skc_cookie
382#define sk_incoming_cpu __sk_common.skc_incoming_cpu
383#define sk_flags __sk_common.skc_flags
384#define sk_rxhash __sk_common.skc_rxhash
385
386 socket_lock_t sk_lock;
387 atomic_t sk_drops;
388 int sk_rcvlowat;
389 struct sk_buff_head sk_error_queue;
390 struct sk_buff *sk_rx_skb_cache;
391 struct sk_buff_head sk_receive_queue;
392 /*
393 * The backlog queue is special, it is always used with
394 * the per-socket spinlock held and requires low latency
395 * access. Therefore we special case it's implementation.
396 * Note : rmem_alloc is in this structure to fill a hole
397 * on 64bit arches, not because its logically part of
398 * backlog.
399 */
400 struct {
401 atomic_t rmem_alloc;
402 int len;
403 struct sk_buff *head;
404 struct sk_buff *tail;
405 } sk_backlog;
406#define sk_rmem_alloc sk_backlog.rmem_alloc
407
408 int sk_forward_alloc;
409#ifdef CONFIG_NET_RX_BUSY_POLL
410 unsigned int sk_ll_usec;
411 /* ===== mostly read cache line ===== */
412 unsigned int sk_napi_id;
413#endif
414 int sk_rcvbuf;
415
416 struct sk_filter __rcu *sk_filter;
417 union {
418 struct socket_wq __rcu *sk_wq;
419 /* private: */
420 struct socket_wq *sk_wq_raw;
421 /* public: */
422 };
423#ifdef CONFIG_XFRM
424 struct xfrm_policy __rcu *sk_policy[2];
425#endif
426 struct dst_entry *sk_rx_dst;
427 struct dst_entry __rcu *sk_dst_cache;
428 atomic_t sk_omem_alloc;
429 int sk_sndbuf;
430
431 /* ===== cache line for TX ===== */
432 int sk_wmem_queued;
433 refcount_t sk_wmem_alloc;
434 unsigned long sk_tsq_flags;
435 union {
436 struct sk_buff *sk_send_head;
437 struct rb_root tcp_rtx_queue;
438 };
439 struct sk_buff *sk_tx_skb_cache;
440 struct sk_buff_head sk_write_queue;
441 __s32 sk_peek_off;
442 int sk_write_pending;
443 __u32 sk_dst_pending_confirm;
444 u32 sk_pacing_status; /* see enum sk_pacing */
445 long sk_sndtimeo;
446 struct timer_list sk_timer;
447 __u32 sk_priority;
448 __u32 sk_mark;
449 unsigned long sk_pacing_rate; /* bytes per second */
450 unsigned long sk_max_pacing_rate;
451 struct page_frag sk_frag;
452 netdev_features_t sk_route_caps;
453 netdev_features_t sk_route_nocaps;
454 netdev_features_t sk_route_forced_caps;
455 int sk_gso_type;
456 unsigned int sk_gso_max_size;
457 gfp_t sk_allocation;
458 __u32 sk_txhash;
459
460 /*
461 * Because of non atomicity rules, all
462 * changes are protected by socket lock.
463 */
464 u8 sk_padding : 1,
465 sk_kern_sock : 1,
466 sk_no_check_tx : 1,
467 sk_no_check_rx : 1,
468 sk_userlocks : 4;
469 u8 sk_pacing_shift;
470 u16 sk_type;
471 u16 sk_protocol;
472 u16 sk_gso_max_segs;
473 unsigned long sk_lingertime;
474 struct proto *sk_prot_creator;
475 rwlock_t sk_callback_lock;
476 int sk_err,
477 sk_err_soft;
478 u32 sk_ack_backlog;
479 u32 sk_max_ack_backlog;
480 kuid_t sk_uid;
481 struct pid *sk_peer_pid;
482 const struct cred *sk_peer_cred;
483 long sk_rcvtimeo;
484 ktime_t sk_stamp;
485#if BITS_PER_LONG==32
486 seqlock_t sk_stamp_seq;
487#endif
488 u16 sk_tsflags;
489 u8 sk_shutdown;
490 u32 sk_tskey;
491 atomic_t sk_zckey;
492
493 u8 sk_clockid;
494 u8 sk_txtime_deadline_mode : 1,
495 sk_txtime_report_errors : 1,
496 sk_txtime_unused : 6;
497
498 struct socket *sk_socket;
499 void *sk_user_data;
500#ifdef CONFIG_SECURITY
501 void *sk_security;
502#endif
503 struct sock_cgroup_data sk_cgrp_data;
504 struct mem_cgroup *sk_memcg;
505 void (*sk_state_change)(struct sock *sk);
506 void (*sk_data_ready)(struct sock *sk);
507 void (*sk_write_space)(struct sock *sk);
508 void (*sk_error_report)(struct sock *sk);
509 int (*sk_backlog_rcv)(struct sock *sk,
510 struct sk_buff *skb);
511#ifdef CONFIG_SOCK_VALIDATE_XMIT
512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
513 struct net_device *dev,
514 struct sk_buff *skb);
515#endif
516 void (*sk_destruct)(struct sock *sk);
517 struct sock_reuseport __rcu *sk_reuseport_cb;
518#ifdef CONFIG_BPF_SYSCALL
519 struct bpf_sk_storage __rcu *sk_bpf_storage;
520#endif
521 struct rcu_head sk_rcu;
522};
523
524enum sk_pacing {
525 SK_PACING_NONE = 0,
526 SK_PACING_NEEDED = 1,
527 SK_PACING_FQ = 2,
528};
529
530#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
531
532#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
533#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
534
535/*
536 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
537 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
538 * on a socket means that the socket will reuse everybody else's port
539 * without looking at the other's sk_reuse value.
540 */
541
542#define SK_NO_REUSE 0
543#define SK_CAN_REUSE 1
544#define SK_FORCE_REUSE 2
545
546int sk_set_peek_off(struct sock *sk, int val);
547
548static inline int sk_peek_offset(struct sock *sk, int flags)
549{
550 if (unlikely(flags & MSG_PEEK)) {
551 return READ_ONCE(sk->sk_peek_off);
552 }
553
554 return 0;
555}
556
557static inline void sk_peek_offset_bwd(struct sock *sk, int val)
558{
559 s32 off = READ_ONCE(sk->sk_peek_off);
560
561 if (unlikely(off >= 0)) {
562 off = max_t(s32, off - val, 0);
563 WRITE_ONCE(sk->sk_peek_off, off);
564 }
565}
566
567static inline void sk_peek_offset_fwd(struct sock *sk, int val)
568{
569 sk_peek_offset_bwd(sk, -val);
570}
571
572/*
573 * Hashed lists helper routines
574 */
575static inline struct sock *sk_entry(const struct hlist_node *node)
576{
577 return hlist_entry(node, struct sock, sk_node);
578}
579
580static inline struct sock *__sk_head(const struct hlist_head *head)
581{
582 return hlist_entry(head->first, struct sock, sk_node);
583}
584
585static inline struct sock *sk_head(const struct hlist_head *head)
586{
587 return hlist_empty(head) ? NULL : __sk_head(head);
588}
589
590static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
591{
592 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
593}
594
595static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
596{
597 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
598}
599
600static inline struct sock *sk_next(const struct sock *sk)
601{
602 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
603}
604
605static inline struct sock *sk_nulls_next(const struct sock *sk)
606{
607 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
608 hlist_nulls_entry(sk->sk_nulls_node.next,
609 struct sock, sk_nulls_node) :
610 NULL;
611}
612
613static inline bool sk_unhashed(const struct sock *sk)
614{
615 return hlist_unhashed(&sk->sk_node);
616}
617
618static inline bool sk_hashed(const struct sock *sk)
619{
620 return !sk_unhashed(sk);
621}
622
623static inline void sk_node_init(struct hlist_node *node)
624{
625 node->pprev = NULL;
626}
627
628static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
629{
630 node->pprev = NULL;
631}
632
633static inline void __sk_del_node(struct sock *sk)
634{
635 __hlist_del(&sk->sk_node);
636}
637
638/* NB: equivalent to hlist_del_init_rcu */
639static inline bool __sk_del_node_init(struct sock *sk)
640{
641 if (sk_hashed(sk)) {
642 __sk_del_node(sk);
643 sk_node_init(&sk->sk_node);
644 return true;
645 }
646 return false;
647}
648
649/* Grab socket reference count. This operation is valid only
650 when sk is ALREADY grabbed f.e. it is found in hash table
651 or a list and the lookup is made under lock preventing hash table
652 modifications.
653 */
654
655static __always_inline void sock_hold(struct sock *sk)
656{
657 refcount_inc(&sk->sk_refcnt);
658}
659
660/* Ungrab socket in the context, which assumes that socket refcnt
661 cannot hit zero, f.e. it is true in context of any socketcall.
662 */
663static __always_inline void __sock_put(struct sock *sk)
664{
665 refcount_dec(&sk->sk_refcnt);
666}
667
668static inline bool sk_del_node_init(struct sock *sk)
669{
670 bool rc = __sk_del_node_init(sk);
671
672 if (rc) {
673 /* paranoid for a while -acme */
674 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
675 __sock_put(sk);
676 }
677 return rc;
678}
679#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
680
681static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
682{
683 if (sk_hashed(sk)) {
684 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
685 return true;
686 }
687 return false;
688}
689
690static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
691{
692 bool rc = __sk_nulls_del_node_init_rcu(sk);
693
694 if (rc) {
695 /* paranoid for a while -acme */
696 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
697 __sock_put(sk);
698 }
699 return rc;
700}
701
702static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
703{
704 hlist_add_head(&sk->sk_node, list);
705}
706
707static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
708{
709 sock_hold(sk);
710 __sk_add_node(sk, list);
711}
712
713static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
714{
715 sock_hold(sk);
716 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
717 sk->sk_family == AF_INET6)
718 hlist_add_tail_rcu(&sk->sk_node, list);
719 else
720 hlist_add_head_rcu(&sk->sk_node, list);
721}
722
723static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
724{
725 sock_hold(sk);
726 hlist_add_tail_rcu(&sk->sk_node, list);
727}
728
729static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
730{
731 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
732}
733
734static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
735{
736 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
737}
738
739static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
740{
741 sock_hold(sk);
742 __sk_nulls_add_node_rcu(sk, list);
743}
744
745static inline void __sk_del_bind_node(struct sock *sk)
746{
747 __hlist_del(&sk->sk_bind_node);
748}
749
750static inline void sk_add_bind_node(struct sock *sk,
751 struct hlist_head *list)
752{
753 hlist_add_head(&sk->sk_bind_node, list);
754}
755
756#define sk_for_each(__sk, list) \
757 hlist_for_each_entry(__sk, list, sk_node)
758#define sk_for_each_rcu(__sk, list) \
759 hlist_for_each_entry_rcu(__sk, list, sk_node)
760#define sk_nulls_for_each(__sk, node, list) \
761 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
762#define sk_nulls_for_each_rcu(__sk, node, list) \
763 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
764#define sk_for_each_from(__sk) \
765 hlist_for_each_entry_from(__sk, sk_node)
766#define sk_nulls_for_each_from(__sk, node) \
767 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
768 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
769#define sk_for_each_safe(__sk, tmp, list) \
770 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
771#define sk_for_each_bound(__sk, list) \
772 hlist_for_each_entry(__sk, list, sk_bind_node)
773
774/**
775 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
776 * @tpos: the type * to use as a loop cursor.
777 * @pos: the &struct hlist_node to use as a loop cursor.
778 * @head: the head for your list.
779 * @offset: offset of hlist_node within the struct.
780 *
781 */
782#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
783 for (pos = rcu_dereference(hlist_first_rcu(head)); \
784 pos != NULL && \
785 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
786 pos = rcu_dereference(hlist_next_rcu(pos)))
787
788static inline struct user_namespace *sk_user_ns(struct sock *sk)
789{
790 /* Careful only use this in a context where these parameters
791 * can not change and must all be valid, such as recvmsg from
792 * userspace.
793 */
794 return sk->sk_socket->file->f_cred->user_ns;
795}
796
797/* Sock flags */
798enum sock_flags {
799 SOCK_DEAD,
800 SOCK_DONE,
801 SOCK_URGINLINE,
802 SOCK_KEEPOPEN,
803 SOCK_LINGER,
804 SOCK_DESTROY,
805 SOCK_BROADCAST,
806 SOCK_TIMESTAMP,
807 SOCK_ZAPPED,
808 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
809 SOCK_DBG, /* %SO_DEBUG setting */
810 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
811 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
812 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
813 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
814 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
815 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
816 SOCK_FASYNC, /* fasync() active */
817 SOCK_RXQ_OVFL,
818 SOCK_ZEROCOPY, /* buffers from userspace */
819 SOCK_WIFI_STATUS, /* push wifi status to userspace */
820 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
821 * Will use last 4 bytes of packet sent from
822 * user-space instead.
823 */
824 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
825 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
826 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
827 SOCK_TXTIME,
828 SOCK_XDP, /* XDP is attached */
829 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
830};
831
832#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
833
834static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
835{
836 nsk->sk_flags = osk->sk_flags;
837}
838
839static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
840{
841 __set_bit(flag, &sk->sk_flags);
842}
843
844static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
845{
846 __clear_bit(flag, &sk->sk_flags);
847}
848
849static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
850{
851 return test_bit(flag, &sk->sk_flags);
852}
853
854#ifdef CONFIG_NET
855DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
856static inline int sk_memalloc_socks(void)
857{
858 return static_branch_unlikely(&memalloc_socks_key);
859}
860#else
861
862static inline int sk_memalloc_socks(void)
863{
864 return 0;
865}
866
867#endif
868
869static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
870{
871 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
872}
873
874static inline void sk_acceptq_removed(struct sock *sk)
875{
876 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
877}
878
879static inline void sk_acceptq_added(struct sock *sk)
880{
881 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
882}
883
884static inline bool sk_acceptq_is_full(const struct sock *sk)
885{
886 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
887}
888
889/*
890 * Compute minimal free write space needed to queue new packets.
891 */
892static inline int sk_stream_min_wspace(const struct sock *sk)
893{
894 return READ_ONCE(sk->sk_wmem_queued) >> 1;
895}
896
897static inline int sk_stream_wspace(const struct sock *sk)
898{
899 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
900}
901
902static inline void sk_wmem_queued_add(struct sock *sk, int val)
903{
904 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
905}
906
907void sk_stream_write_space(struct sock *sk);
908
909/* OOB backlog add */
910static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
911{
912 /* dont let skb dst not refcounted, we are going to leave rcu lock */
913 skb_dst_force(skb);
914
915 if (!sk->sk_backlog.tail)
916 WRITE_ONCE(sk->sk_backlog.head, skb);
917 else
918 sk->sk_backlog.tail->next = skb;
919
920 WRITE_ONCE(sk->sk_backlog.tail, skb);
921 skb->next = NULL;
922}
923
924/*
925 * Take into account size of receive queue and backlog queue
926 * Do not take into account this skb truesize,
927 * to allow even a single big packet to come.
928 */
929static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
930{
931 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
932
933 return qsize > limit;
934}
935
936/* The per-socket spinlock must be held here. */
937static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
938 unsigned int limit)
939{
940 if (sk_rcvqueues_full(sk, limit))
941 return -ENOBUFS;
942
943 /*
944 * If the skb was allocated from pfmemalloc reserves, only
945 * allow SOCK_MEMALLOC sockets to use it as this socket is
946 * helping free memory
947 */
948 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
949 return -ENOMEM;
950
951 __sk_add_backlog(sk, skb);
952 sk->sk_backlog.len += skb->truesize;
953 return 0;
954}
955
956int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
957
958static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
959{
960 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
961 return __sk_backlog_rcv(sk, skb);
962
963 return sk->sk_backlog_rcv(sk, skb);
964}
965
966static inline void sk_incoming_cpu_update(struct sock *sk)
967{
968 int cpu = raw_smp_processor_id();
969
970 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
971 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
972}
973
974static inline void sock_rps_record_flow_hash(__u32 hash)
975{
976#ifdef CONFIG_RPS
977 struct rps_sock_flow_table *sock_flow_table;
978
979 rcu_read_lock();
980 sock_flow_table = rcu_dereference(rps_sock_flow_table);
981 rps_record_sock_flow(sock_flow_table, hash);
982 rcu_read_unlock();
983#endif
984}
985
986static inline void sock_rps_record_flow(const struct sock *sk)
987{
988#ifdef CONFIG_RPS
989 if (static_branch_unlikely(&rfs_needed)) {
990 /* Reading sk->sk_rxhash might incur an expensive cache line
991 * miss.
992 *
993 * TCP_ESTABLISHED does cover almost all states where RFS
994 * might be useful, and is cheaper [1] than testing :
995 * IPv4: inet_sk(sk)->inet_daddr
996 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
997 * OR an additional socket flag
998 * [1] : sk_state and sk_prot are in the same cache line.
999 */
1000 if (sk->sk_state == TCP_ESTABLISHED)
1001 sock_rps_record_flow_hash(sk->sk_rxhash);
1002 }
1003#endif
1004}
1005
1006static inline void sock_rps_save_rxhash(struct sock *sk,
1007 const struct sk_buff *skb)
1008{
1009#ifdef CONFIG_RPS
1010 if (unlikely(sk->sk_rxhash != skb->hash))
1011 sk->sk_rxhash = skb->hash;
1012#endif
1013}
1014
1015static inline void sock_rps_reset_rxhash(struct sock *sk)
1016{
1017#ifdef CONFIG_RPS
1018 sk->sk_rxhash = 0;
1019#endif
1020}
1021
1022#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1023 ({ int __rc; \
1024 release_sock(__sk); \
1025 __rc = __condition; \
1026 if (!__rc) { \
1027 *(__timeo) = wait_woken(__wait, \
1028 TASK_INTERRUPTIBLE, \
1029 *(__timeo)); \
1030 } \
1031 sched_annotate_sleep(); \
1032 lock_sock(__sk); \
1033 __rc = __condition; \
1034 __rc; \
1035 })
1036
1037int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1038int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1039void sk_stream_wait_close(struct sock *sk, long timeo_p);
1040int sk_stream_error(struct sock *sk, int flags, int err);
1041void sk_stream_kill_queues(struct sock *sk);
1042void sk_set_memalloc(struct sock *sk);
1043void sk_clear_memalloc(struct sock *sk);
1044
1045void __sk_flush_backlog(struct sock *sk);
1046
1047static inline bool sk_flush_backlog(struct sock *sk)
1048{
1049 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1050 __sk_flush_backlog(sk);
1051 return true;
1052 }
1053 return false;
1054}
1055
1056int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1057
1058struct request_sock_ops;
1059struct timewait_sock_ops;
1060struct inet_hashinfo;
1061struct raw_hashinfo;
1062struct smc_hashinfo;
1063struct module;
1064
1065/*
1066 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1067 * un-modified. Special care is taken when initializing object to zero.
1068 */
1069static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1070{
1071 if (offsetof(struct sock, sk_node.next) != 0)
1072 memset(sk, 0, offsetof(struct sock, sk_node.next));
1073 memset(&sk->sk_node.pprev, 0,
1074 size - offsetof(struct sock, sk_node.pprev));
1075}
1076
1077/* Networking protocol blocks we attach to sockets.
1078 * socket layer -> transport layer interface
1079 */
1080struct proto {
1081 void (*close)(struct sock *sk,
1082 long timeout);
1083 int (*pre_connect)(struct sock *sk,
1084 struct sockaddr *uaddr,
1085 int addr_len);
1086 int (*connect)(struct sock *sk,
1087 struct sockaddr *uaddr,
1088 int addr_len);
1089 int (*disconnect)(struct sock *sk, int flags);
1090
1091 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1092 bool kern);
1093
1094 int (*ioctl)(struct sock *sk, int cmd,
1095 unsigned long arg);
1096 int (*init)(struct sock *sk);
1097 void (*destroy)(struct sock *sk);
1098 void (*shutdown)(struct sock *sk, int how);
1099 int (*setsockopt)(struct sock *sk, int level,
1100 int optname, char __user *optval,
1101 unsigned int optlen);
1102 int (*getsockopt)(struct sock *sk, int level,
1103 int optname, char __user *optval,
1104 int __user *option);
1105 void (*keepalive)(struct sock *sk, int valbool);
1106#ifdef CONFIG_COMPAT
1107 int (*compat_setsockopt)(struct sock *sk,
1108 int level,
1109 int optname, char __user *optval,
1110 unsigned int optlen);
1111 int (*compat_getsockopt)(struct sock *sk,
1112 int level,
1113 int optname, char __user *optval,
1114 int __user *option);
1115 int (*compat_ioctl)(struct sock *sk,
1116 unsigned int cmd, unsigned long arg);
1117#endif
1118 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1119 size_t len);
1120 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1121 size_t len, int noblock, int flags,
1122 int *addr_len);
1123 int (*sendpage)(struct sock *sk, struct page *page,
1124 int offset, size_t size, int flags);
1125 int (*bind)(struct sock *sk,
1126 struct sockaddr *uaddr, int addr_len);
1127
1128 int (*backlog_rcv) (struct sock *sk,
1129 struct sk_buff *skb);
1130
1131 void (*release_cb)(struct sock *sk);
1132
1133 /* Keeping track of sk's, looking them up, and port selection methods. */
1134 int (*hash)(struct sock *sk);
1135 void (*unhash)(struct sock *sk);
1136 void (*rehash)(struct sock *sk);
1137 int (*get_port)(struct sock *sk, unsigned short snum);
1138
1139 /* Keeping track of sockets in use */
1140#ifdef CONFIG_PROC_FS
1141 unsigned int inuse_idx;
1142#endif
1143
1144 bool (*stream_memory_free)(const struct sock *sk, int wake);
1145 bool (*stream_memory_read)(const struct sock *sk);
1146 /* Memory pressure */
1147 void (*enter_memory_pressure)(struct sock *sk);
1148 void (*leave_memory_pressure)(struct sock *sk);
1149 atomic_long_t *memory_allocated; /* Current allocated memory. */
1150 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1151 /*
1152 * Pressure flag: try to collapse.
1153 * Technical note: it is used by multiple contexts non atomically.
1154 * All the __sk_mem_schedule() is of this nature: accounting
1155 * is strict, actions are advisory and have some latency.
1156 */
1157 unsigned long *memory_pressure;
1158 long *sysctl_mem;
1159
1160 int *sysctl_wmem;
1161 int *sysctl_rmem;
1162 u32 sysctl_wmem_offset;
1163 u32 sysctl_rmem_offset;
1164
1165 int max_header;
1166 bool no_autobind;
1167
1168 struct kmem_cache *slab;
1169 unsigned int obj_size;
1170 slab_flags_t slab_flags;
1171 unsigned int useroffset; /* Usercopy region offset */
1172 unsigned int usersize; /* Usercopy region size */
1173
1174 struct percpu_counter *orphan_count;
1175
1176 struct request_sock_ops *rsk_prot;
1177 struct timewait_sock_ops *twsk_prot;
1178
1179 union {
1180 struct inet_hashinfo *hashinfo;
1181 struct udp_table *udp_table;
1182 struct raw_hashinfo *raw_hash;
1183 struct smc_hashinfo *smc_hash;
1184 } h;
1185
1186 struct module *owner;
1187
1188 char name[32];
1189
1190 struct list_head node;
1191#ifdef SOCK_REFCNT_DEBUG
1192 atomic_t socks;
1193#endif
1194 int (*diag_destroy)(struct sock *sk, int err);
1195} __randomize_layout;
1196
1197int proto_register(struct proto *prot, int alloc_slab);
1198void proto_unregister(struct proto *prot);
1199int sock_load_diag_module(int family, int protocol);
1200
1201#ifdef SOCK_REFCNT_DEBUG
1202static inline void sk_refcnt_debug_inc(struct sock *sk)
1203{
1204 atomic_inc(&sk->sk_prot->socks);
1205}
1206
1207static inline void sk_refcnt_debug_dec(struct sock *sk)
1208{
1209 atomic_dec(&sk->sk_prot->socks);
1210 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1211 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1212}
1213
1214static inline void sk_refcnt_debug_release(const struct sock *sk)
1215{
1216 if (refcount_read(&sk->sk_refcnt) != 1)
1217 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1218 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1219}
1220#else /* SOCK_REFCNT_DEBUG */
1221#define sk_refcnt_debug_inc(sk) do { } while (0)
1222#define sk_refcnt_debug_dec(sk) do { } while (0)
1223#define sk_refcnt_debug_release(sk) do { } while (0)
1224#endif /* SOCK_REFCNT_DEBUG */
1225
1226static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1227{
1228 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1229 return false;
1230
1231 return sk->sk_prot->stream_memory_free ?
1232 sk->sk_prot->stream_memory_free(sk, wake) : true;
1233}
1234
1235static inline bool sk_stream_memory_free(const struct sock *sk)
1236{
1237 return __sk_stream_memory_free(sk, 0);
1238}
1239
1240static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1241{
1242 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1243 __sk_stream_memory_free(sk, wake);
1244}
1245
1246static inline bool sk_stream_is_writeable(const struct sock *sk)
1247{
1248 return __sk_stream_is_writeable(sk, 0);
1249}
1250
1251static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1252 struct cgroup *ancestor)
1253{
1254#ifdef CONFIG_SOCK_CGROUP_DATA
1255 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1256 ancestor);
1257#else
1258 return -ENOTSUPP;
1259#endif
1260}
1261
1262static inline bool sk_has_memory_pressure(const struct sock *sk)
1263{
1264 return sk->sk_prot->memory_pressure != NULL;
1265}
1266
1267static inline bool sk_under_memory_pressure(const struct sock *sk)
1268{
1269 if (!sk->sk_prot->memory_pressure)
1270 return false;
1271
1272 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1273 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1274 return true;
1275
1276 return !!*sk->sk_prot->memory_pressure;
1277}
1278
1279static inline long
1280sk_memory_allocated(const struct sock *sk)
1281{
1282 return atomic_long_read(sk->sk_prot->memory_allocated);
1283}
1284
1285static inline long
1286sk_memory_allocated_add(struct sock *sk, int amt)
1287{
1288 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1289}
1290
1291static inline void
1292sk_memory_allocated_sub(struct sock *sk, int amt)
1293{
1294 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1295}
1296
1297static inline void sk_sockets_allocated_dec(struct sock *sk)
1298{
1299 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1300}
1301
1302static inline void sk_sockets_allocated_inc(struct sock *sk)
1303{
1304 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1305}
1306
1307static inline u64
1308sk_sockets_allocated_read_positive(struct sock *sk)
1309{
1310 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1311}
1312
1313static inline int
1314proto_sockets_allocated_sum_positive(struct proto *prot)
1315{
1316 return percpu_counter_sum_positive(prot->sockets_allocated);
1317}
1318
1319static inline long
1320proto_memory_allocated(struct proto *prot)
1321{
1322 return atomic_long_read(prot->memory_allocated);
1323}
1324
1325static inline bool
1326proto_memory_pressure(struct proto *prot)
1327{
1328 if (!prot->memory_pressure)
1329 return false;
1330 return !!*prot->memory_pressure;
1331}
1332
1333
1334#ifdef CONFIG_PROC_FS
1335/* Called with local bh disabled */
1336void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1337int sock_prot_inuse_get(struct net *net, struct proto *proto);
1338int sock_inuse_get(struct net *net);
1339#else
1340static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1341 int inc)
1342{
1343}
1344#endif
1345
1346
1347/* With per-bucket locks this operation is not-atomic, so that
1348 * this version is not worse.
1349 */
1350static inline int __sk_prot_rehash(struct sock *sk)
1351{
1352 sk->sk_prot->unhash(sk);
1353 return sk->sk_prot->hash(sk);
1354}
1355
1356/* About 10 seconds */
1357#define SOCK_DESTROY_TIME (10*HZ)
1358
1359/* Sockets 0-1023 can't be bound to unless you are superuser */
1360#define PROT_SOCK 1024
1361
1362#define SHUTDOWN_MASK 3
1363#define RCV_SHUTDOWN 1
1364#define SEND_SHUTDOWN 2
1365
1366#define SOCK_SNDBUF_LOCK 1
1367#define SOCK_RCVBUF_LOCK 2
1368#define SOCK_BINDADDR_LOCK 4
1369#define SOCK_BINDPORT_LOCK 8
1370
1371struct socket_alloc {
1372 struct socket socket;
1373 struct inode vfs_inode;
1374};
1375
1376static inline struct socket *SOCKET_I(struct inode *inode)
1377{
1378 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1379}
1380
1381static inline struct inode *SOCK_INODE(struct socket *socket)
1382{
1383 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1384}
1385
1386/*
1387 * Functions for memory accounting
1388 */
1389int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1390int __sk_mem_schedule(struct sock *sk, int size, int kind);
1391void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1392void __sk_mem_reclaim(struct sock *sk, int amount);
1393
1394/* We used to have PAGE_SIZE here, but systems with 64KB pages
1395 * do not necessarily have 16x time more memory than 4KB ones.
1396 */
1397#define SK_MEM_QUANTUM 4096
1398#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1399#define SK_MEM_SEND 0
1400#define SK_MEM_RECV 1
1401
1402/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1403static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1404{
1405 long val = sk->sk_prot->sysctl_mem[index];
1406
1407#if PAGE_SIZE > SK_MEM_QUANTUM
1408 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1409#elif PAGE_SIZE < SK_MEM_QUANTUM
1410 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1411#endif
1412 return val;
1413}
1414
1415static inline int sk_mem_pages(int amt)
1416{
1417 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1418}
1419
1420static inline bool sk_has_account(struct sock *sk)
1421{
1422 /* return true if protocol supports memory accounting */
1423 return !!sk->sk_prot->memory_allocated;
1424}
1425
1426static inline bool sk_wmem_schedule(struct sock *sk, int size)
1427{
1428 if (!sk_has_account(sk))
1429 return true;
1430 return size <= sk->sk_forward_alloc ||
1431 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1432}
1433
1434static inline bool
1435sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1436{
1437 if (!sk_has_account(sk))
1438 return true;
1439 return size<= sk->sk_forward_alloc ||
1440 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1441 skb_pfmemalloc(skb);
1442}
1443
1444static inline void sk_mem_reclaim(struct sock *sk)
1445{
1446 if (!sk_has_account(sk))
1447 return;
1448 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1449 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1450}
1451
1452static inline void sk_mem_reclaim_partial(struct sock *sk)
1453{
1454 if (!sk_has_account(sk))
1455 return;
1456 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1457 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1458}
1459
1460static inline void sk_mem_charge(struct sock *sk, int size)
1461{
1462 if (!sk_has_account(sk))
1463 return;
1464 sk->sk_forward_alloc -= size;
1465}
1466
1467static inline void sk_mem_uncharge(struct sock *sk, int size)
1468{
1469 if (!sk_has_account(sk))
1470 return;
1471 sk->sk_forward_alloc += size;
1472
1473 /* Avoid a possible overflow.
1474 * TCP send queues can make this happen, if sk_mem_reclaim()
1475 * is not called and more than 2 GBytes are released at once.
1476 *
1477 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1478 * no need to hold that much forward allocation anyway.
1479 */
1480 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1481 __sk_mem_reclaim(sk, 1 << 20);
1482}
1483
1484DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1485static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1486{
1487 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1488 sk_wmem_queued_add(sk, -skb->truesize);
1489 sk_mem_uncharge(sk, skb->truesize);
1490 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1491 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1492 skb_ext_reset(skb);
1493 skb_zcopy_clear(skb, true);
1494 sk->sk_tx_skb_cache = skb;
1495 return;
1496 }
1497 __kfree_skb(skb);
1498}
1499
1500static inline void sock_release_ownership(struct sock *sk)
1501{
1502 if (sk->sk_lock.owned) {
1503 sk->sk_lock.owned = 0;
1504
1505 /* The sk_lock has mutex_unlock() semantics: */
1506 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1507 }
1508}
1509
1510/*
1511 * Macro so as to not evaluate some arguments when
1512 * lockdep is not enabled.
1513 *
1514 * Mark both the sk_lock and the sk_lock.slock as a
1515 * per-address-family lock class.
1516 */
1517#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1518do { \
1519 sk->sk_lock.owned = 0; \
1520 init_waitqueue_head(&sk->sk_lock.wq); \
1521 spin_lock_init(&(sk)->sk_lock.slock); \
1522 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1523 sizeof((sk)->sk_lock)); \
1524 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1525 (skey), (sname)); \
1526 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1527} while (0)
1528
1529#ifdef CONFIG_LOCKDEP
1530static inline bool lockdep_sock_is_held(const struct sock *sk)
1531{
1532 return lockdep_is_held(&sk->sk_lock) ||
1533 lockdep_is_held(&sk->sk_lock.slock);
1534}
1535#endif
1536
1537void lock_sock_nested(struct sock *sk, int subclass);
1538
1539static inline void lock_sock(struct sock *sk)
1540{
1541 lock_sock_nested(sk, 0);
1542}
1543
1544void __release_sock(struct sock *sk);
1545void release_sock(struct sock *sk);
1546
1547/* BH context may only use the following locking interface. */
1548#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1549#define bh_lock_sock_nested(__sk) \
1550 spin_lock_nested(&((__sk)->sk_lock.slock), \
1551 SINGLE_DEPTH_NESTING)
1552#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1553
1554bool lock_sock_fast(struct sock *sk);
1555/**
1556 * unlock_sock_fast - complement of lock_sock_fast
1557 * @sk: socket
1558 * @slow: slow mode
1559 *
1560 * fast unlock socket for user context.
1561 * If slow mode is on, we call regular release_sock()
1562 */
1563static inline void unlock_sock_fast(struct sock *sk, bool slow)
1564{
1565 if (slow)
1566 release_sock(sk);
1567 else
1568 spin_unlock_bh(&sk->sk_lock.slock);
1569}
1570
1571/* Used by processes to "lock" a socket state, so that
1572 * interrupts and bottom half handlers won't change it
1573 * from under us. It essentially blocks any incoming
1574 * packets, so that we won't get any new data or any
1575 * packets that change the state of the socket.
1576 *
1577 * While locked, BH processing will add new packets to
1578 * the backlog queue. This queue is processed by the
1579 * owner of the socket lock right before it is released.
1580 *
1581 * Since ~2.3.5 it is also exclusive sleep lock serializing
1582 * accesses from user process context.
1583 */
1584
1585static inline void sock_owned_by_me(const struct sock *sk)
1586{
1587#ifdef CONFIG_LOCKDEP
1588 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1589#endif
1590}
1591
1592static inline bool sock_owned_by_user(const struct sock *sk)
1593{
1594 sock_owned_by_me(sk);
1595 return sk->sk_lock.owned;
1596}
1597
1598static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1599{
1600 return sk->sk_lock.owned;
1601}
1602
1603/* no reclassification while locks are held */
1604static inline bool sock_allow_reclassification(const struct sock *csk)
1605{
1606 struct sock *sk = (struct sock *)csk;
1607
1608 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1609}
1610
1611struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1612 struct proto *prot, int kern);
1613void sk_free(struct sock *sk);
1614void sk_destruct(struct sock *sk);
1615struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1616void sk_free_unlock_clone(struct sock *sk);
1617
1618struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1619 gfp_t priority);
1620void __sock_wfree(struct sk_buff *skb);
1621void sock_wfree(struct sk_buff *skb);
1622struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1623 gfp_t priority);
1624void skb_orphan_partial(struct sk_buff *skb);
1625void sock_rfree(struct sk_buff *skb);
1626void sock_efree(struct sk_buff *skb);
1627#ifdef CONFIG_INET
1628void sock_edemux(struct sk_buff *skb);
1629#else
1630#define sock_edemux sock_efree
1631#endif
1632
1633int sock_setsockopt(struct socket *sock, int level, int op,
1634 char __user *optval, unsigned int optlen);
1635
1636int sock_getsockopt(struct socket *sock, int level, int op,
1637 char __user *optval, int __user *optlen);
1638int sock_gettstamp(struct socket *sock, void __user *userstamp,
1639 bool timeval, bool time32);
1640struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1641 int noblock, int *errcode);
1642struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1643 unsigned long data_len, int noblock,
1644 int *errcode, int max_page_order);
1645void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1646void sock_kfree_s(struct sock *sk, void *mem, int size);
1647void sock_kzfree_s(struct sock *sk, void *mem, int size);
1648void sk_send_sigurg(struct sock *sk);
1649
1650struct sockcm_cookie {
1651 u64 transmit_time;
1652 u32 mark;
1653 u16 tsflags;
1654};
1655
1656static inline void sockcm_init(struct sockcm_cookie *sockc,
1657 const struct sock *sk)
1658{
1659 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1660}
1661
1662int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1663 struct sockcm_cookie *sockc);
1664int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1665 struct sockcm_cookie *sockc);
1666
1667/*
1668 * Functions to fill in entries in struct proto_ops when a protocol
1669 * does not implement a particular function.
1670 */
1671int sock_no_bind(struct socket *, struct sockaddr *, int);
1672int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1673int sock_no_socketpair(struct socket *, struct socket *);
1674int sock_no_accept(struct socket *, struct socket *, int, bool);
1675int sock_no_getname(struct socket *, struct sockaddr *, int);
1676int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1677int sock_no_listen(struct socket *, int);
1678int sock_no_shutdown(struct socket *, int);
1679int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1680int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1681int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1682int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1683int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1684int sock_no_mmap(struct file *file, struct socket *sock,
1685 struct vm_area_struct *vma);
1686ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1687 size_t size, int flags);
1688ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1689 int offset, size_t size, int flags);
1690
1691/*
1692 * Functions to fill in entries in struct proto_ops when a protocol
1693 * uses the inet style.
1694 */
1695int sock_common_getsockopt(struct socket *sock, int level, int optname,
1696 char __user *optval, int __user *optlen);
1697int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1698 int flags);
1699int sock_common_setsockopt(struct socket *sock, int level, int optname,
1700 char __user *optval, unsigned int optlen);
1701int compat_sock_common_getsockopt(struct socket *sock, int level,
1702 int optname, char __user *optval, int __user *optlen);
1703int compat_sock_common_setsockopt(struct socket *sock, int level,
1704 int optname, char __user *optval, unsigned int optlen);
1705
1706void sk_common_release(struct sock *sk);
1707
1708/*
1709 * Default socket callbacks and setup code
1710 */
1711
1712/* Initialise core socket variables */
1713void sock_init_data(struct socket *sock, struct sock *sk);
1714
1715/*
1716 * Socket reference counting postulates.
1717 *
1718 * * Each user of socket SHOULD hold a reference count.
1719 * * Each access point to socket (an hash table bucket, reference from a list,
1720 * running timer, skb in flight MUST hold a reference count.
1721 * * When reference count hits 0, it means it will never increase back.
1722 * * When reference count hits 0, it means that no references from
1723 * outside exist to this socket and current process on current CPU
1724 * is last user and may/should destroy this socket.
1725 * * sk_free is called from any context: process, BH, IRQ. When
1726 * it is called, socket has no references from outside -> sk_free
1727 * may release descendant resources allocated by the socket, but
1728 * to the time when it is called, socket is NOT referenced by any
1729 * hash tables, lists etc.
1730 * * Packets, delivered from outside (from network or from another process)
1731 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1732 * when they sit in queue. Otherwise, packets will leak to hole, when
1733 * socket is looked up by one cpu and unhasing is made by another CPU.
1734 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1735 * (leak to backlog). Packet socket does all the processing inside
1736 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1737 * use separate SMP lock, so that they are prone too.
1738 */
1739
1740/* Ungrab socket and destroy it, if it was the last reference. */
1741static inline void sock_put(struct sock *sk)
1742{
1743 if (refcount_dec_and_test(&sk->sk_refcnt))
1744 sk_free(sk);
1745}
1746/* Generic version of sock_put(), dealing with all sockets
1747 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1748 */
1749void sock_gen_put(struct sock *sk);
1750
1751int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1752 unsigned int trim_cap, bool refcounted);
1753static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1754 const int nested)
1755{
1756 return __sk_receive_skb(sk, skb, nested, 1, true);
1757}
1758
1759static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1760{
1761 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1762 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1763 return;
1764 sk->sk_tx_queue_mapping = tx_queue;
1765}
1766
1767#define NO_QUEUE_MAPPING USHRT_MAX
1768
1769static inline void sk_tx_queue_clear(struct sock *sk)
1770{
1771 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1772}
1773
1774static inline int sk_tx_queue_get(const struct sock *sk)
1775{
1776 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1777 return sk->sk_tx_queue_mapping;
1778
1779 return -1;
1780}
1781
1782static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1783{
1784#ifdef CONFIG_XPS
1785 if (skb_rx_queue_recorded(skb)) {
1786 u16 rx_queue = skb_get_rx_queue(skb);
1787
1788 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1789 return;
1790
1791 sk->sk_rx_queue_mapping = rx_queue;
1792 }
1793#endif
1794}
1795
1796static inline void sk_rx_queue_clear(struct sock *sk)
1797{
1798#ifdef CONFIG_XPS
1799 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1800#endif
1801}
1802
1803#ifdef CONFIG_XPS
1804static inline int sk_rx_queue_get(const struct sock *sk)
1805{
1806 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1807 return sk->sk_rx_queue_mapping;
1808
1809 return -1;
1810}
1811#endif
1812
1813static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1814{
1815 sk_tx_queue_clear(sk);
1816 sk->sk_socket = sock;
1817}
1818
1819static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1820{
1821 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1822 return &rcu_dereference_raw(sk->sk_wq)->wait;
1823}
1824/* Detach socket from process context.
1825 * Announce socket dead, detach it from wait queue and inode.
1826 * Note that parent inode held reference count on this struct sock,
1827 * we do not release it in this function, because protocol
1828 * probably wants some additional cleanups or even continuing
1829 * to work with this socket (TCP).
1830 */
1831static inline void sock_orphan(struct sock *sk)
1832{
1833 write_lock_bh(&sk->sk_callback_lock);
1834 sock_set_flag(sk, SOCK_DEAD);
1835 sk_set_socket(sk, NULL);
1836 sk->sk_wq = NULL;
1837 write_unlock_bh(&sk->sk_callback_lock);
1838}
1839
1840static inline void sock_graft(struct sock *sk, struct socket *parent)
1841{
1842 WARN_ON(parent->sk);
1843 write_lock_bh(&sk->sk_callback_lock);
1844 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1845 parent->sk = sk;
1846 sk_set_socket(sk, parent);
1847 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1848 security_sock_graft(sk, parent);
1849 write_unlock_bh(&sk->sk_callback_lock);
1850}
1851
1852kuid_t sock_i_uid(struct sock *sk);
1853unsigned long sock_i_ino(struct sock *sk);
1854
1855static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1856{
1857 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1858}
1859
1860static inline u32 net_tx_rndhash(void)
1861{
1862 u32 v = prandom_u32();
1863
1864 return v ?: 1;
1865}
1866
1867static inline void sk_set_txhash(struct sock *sk)
1868{
1869 sk->sk_txhash = net_tx_rndhash();
1870}
1871
1872static inline void sk_rethink_txhash(struct sock *sk)
1873{
1874 if (sk->sk_txhash)
1875 sk_set_txhash(sk);
1876}
1877
1878static inline struct dst_entry *
1879__sk_dst_get(struct sock *sk)
1880{
1881 return rcu_dereference_check(sk->sk_dst_cache,
1882 lockdep_sock_is_held(sk));
1883}
1884
1885static inline struct dst_entry *
1886sk_dst_get(struct sock *sk)
1887{
1888 struct dst_entry *dst;
1889
1890 rcu_read_lock();
1891 dst = rcu_dereference(sk->sk_dst_cache);
1892 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1893 dst = NULL;
1894 rcu_read_unlock();
1895 return dst;
1896}
1897
1898static inline void dst_negative_advice(struct sock *sk)
1899{
1900 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1901
1902 sk_rethink_txhash(sk);
1903
1904 if (dst && dst->ops->negative_advice) {
1905 ndst = dst->ops->negative_advice(dst);
1906
1907 if (ndst != dst) {
1908 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1909 sk_tx_queue_clear(sk);
1910 sk->sk_dst_pending_confirm = 0;
1911 }
1912 }
1913}
1914
1915static inline void
1916__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1917{
1918 struct dst_entry *old_dst;
1919
1920 sk_tx_queue_clear(sk);
1921 sk->sk_dst_pending_confirm = 0;
1922 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1923 lockdep_sock_is_held(sk));
1924 rcu_assign_pointer(sk->sk_dst_cache, dst);
1925 dst_release(old_dst);
1926}
1927
1928static inline void
1929sk_dst_set(struct sock *sk, struct dst_entry *dst)
1930{
1931 struct dst_entry *old_dst;
1932
1933 sk_tx_queue_clear(sk);
1934 sk->sk_dst_pending_confirm = 0;
1935 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1936 dst_release(old_dst);
1937}
1938
1939static inline void
1940__sk_dst_reset(struct sock *sk)
1941{
1942 __sk_dst_set(sk, NULL);
1943}
1944
1945static inline void
1946sk_dst_reset(struct sock *sk)
1947{
1948 sk_dst_set(sk, NULL);
1949}
1950
1951struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1952
1953struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1954
1955static inline void sk_dst_confirm(struct sock *sk)
1956{
1957 if (!READ_ONCE(sk->sk_dst_pending_confirm))
1958 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1959}
1960
1961static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1962{
1963 if (skb_get_dst_pending_confirm(skb)) {
1964 struct sock *sk = skb->sk;
1965 unsigned long now = jiffies;
1966
1967 /* avoid dirtying neighbour */
1968 if (READ_ONCE(n->confirmed) != now)
1969 WRITE_ONCE(n->confirmed, now);
1970 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1971 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1972 }
1973}
1974
1975bool sk_mc_loop(struct sock *sk);
1976
1977static inline bool sk_can_gso(const struct sock *sk)
1978{
1979 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1980}
1981
1982void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1983
1984static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1985{
1986 sk->sk_route_nocaps |= flags;
1987 sk->sk_route_caps &= ~flags;
1988}
1989
1990static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1991 struct iov_iter *from, char *to,
1992 int copy, int offset)
1993{
1994 if (skb->ip_summed == CHECKSUM_NONE) {
1995 __wsum csum = 0;
1996 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1997 return -EFAULT;
1998 skb->csum = csum_block_add(skb->csum, csum, offset);
1999 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2000 if (!copy_from_iter_full_nocache(to, copy, from))
2001 return -EFAULT;
2002 } else if (!copy_from_iter_full(to, copy, from))
2003 return -EFAULT;
2004
2005 return 0;
2006}
2007
2008static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2009 struct iov_iter *from, int copy)
2010{
2011 int err, offset = skb->len;
2012
2013 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2014 copy, offset);
2015 if (err)
2016 __skb_trim(skb, offset);
2017
2018 return err;
2019}
2020
2021static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2022 struct sk_buff *skb,
2023 struct page *page,
2024 int off, int copy)
2025{
2026 int err;
2027
2028 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2029 copy, skb->len);
2030 if (err)
2031 return err;
2032
2033 skb->len += copy;
2034 skb->data_len += copy;
2035 skb->truesize += copy;
2036 sk_wmem_queued_add(sk, copy);
2037 sk_mem_charge(sk, copy);
2038 return 0;
2039}
2040
2041/**
2042 * sk_wmem_alloc_get - returns write allocations
2043 * @sk: socket
2044 *
2045 * Return: sk_wmem_alloc minus initial offset of one
2046 */
2047static inline int sk_wmem_alloc_get(const struct sock *sk)
2048{
2049 return refcount_read(&sk->sk_wmem_alloc) - 1;
2050}
2051
2052/**
2053 * sk_rmem_alloc_get - returns read allocations
2054 * @sk: socket
2055 *
2056 * Return: sk_rmem_alloc
2057 */
2058static inline int sk_rmem_alloc_get(const struct sock *sk)
2059{
2060 return atomic_read(&sk->sk_rmem_alloc);
2061}
2062
2063/**
2064 * sk_has_allocations - check if allocations are outstanding
2065 * @sk: socket
2066 *
2067 * Return: true if socket has write or read allocations
2068 */
2069static inline bool sk_has_allocations(const struct sock *sk)
2070{
2071 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2072}
2073
2074/**
2075 * skwq_has_sleeper - check if there are any waiting processes
2076 * @wq: struct socket_wq
2077 *
2078 * Return: true if socket_wq has waiting processes
2079 *
2080 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2081 * barrier call. They were added due to the race found within the tcp code.
2082 *
2083 * Consider following tcp code paths::
2084 *
2085 * CPU1 CPU2
2086 * sys_select receive packet
2087 * ... ...
2088 * __add_wait_queue update tp->rcv_nxt
2089 * ... ...
2090 * tp->rcv_nxt check sock_def_readable
2091 * ... {
2092 * schedule rcu_read_lock();
2093 * wq = rcu_dereference(sk->sk_wq);
2094 * if (wq && waitqueue_active(&wq->wait))
2095 * wake_up_interruptible(&wq->wait)
2096 * ...
2097 * }
2098 *
2099 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2100 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2101 * could then endup calling schedule and sleep forever if there are no more
2102 * data on the socket.
2103 *
2104 */
2105static inline bool skwq_has_sleeper(struct socket_wq *wq)
2106{
2107 return wq && wq_has_sleeper(&wq->wait);
2108}
2109
2110/**
2111 * sock_poll_wait - place memory barrier behind the poll_wait call.
2112 * @filp: file
2113 * @sock: socket to wait on
2114 * @p: poll_table
2115 *
2116 * See the comments in the wq_has_sleeper function.
2117 */
2118static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2119 poll_table *p)
2120{
2121 if (!poll_does_not_wait(p)) {
2122 poll_wait(filp, &sock->wq.wait, p);
2123 /* We need to be sure we are in sync with the
2124 * socket flags modification.
2125 *
2126 * This memory barrier is paired in the wq_has_sleeper.
2127 */
2128 smp_mb();
2129 }
2130}
2131
2132static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2133{
2134 if (sk->sk_txhash) {
2135 skb->l4_hash = 1;
2136 skb->hash = sk->sk_txhash;
2137 }
2138}
2139
2140void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2141
2142/*
2143 * Queue a received datagram if it will fit. Stream and sequenced
2144 * protocols can't normally use this as they need to fit buffers in
2145 * and play with them.
2146 *
2147 * Inlined as it's very short and called for pretty much every
2148 * packet ever received.
2149 */
2150static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2151{
2152 skb_orphan(skb);
2153 skb->sk = sk;
2154 skb->destructor = sock_rfree;
2155 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2156 sk_mem_charge(sk, skb->truesize);
2157}
2158
2159void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2160 unsigned long expires);
2161
2162void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2163
2164int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2165 struct sk_buff *skb, unsigned int flags,
2166 void (*destructor)(struct sock *sk,
2167 struct sk_buff *skb));
2168int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2169int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2170
2171int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2172struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2173
2174/*
2175 * Recover an error report and clear atomically
2176 */
2177
2178static inline int sock_error(struct sock *sk)
2179{
2180 int err;
2181 if (likely(!sk->sk_err))
2182 return 0;
2183 err = xchg(&sk->sk_err, 0);
2184 return -err;
2185}
2186
2187static inline unsigned long sock_wspace(struct sock *sk)
2188{
2189 int amt = 0;
2190
2191 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2192 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2193 if (amt < 0)
2194 amt = 0;
2195 }
2196 return amt;
2197}
2198
2199/* Note:
2200 * We use sk->sk_wq_raw, from contexts knowing this
2201 * pointer is not NULL and cannot disappear/change.
2202 */
2203static inline void sk_set_bit(int nr, struct sock *sk)
2204{
2205 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2206 !sock_flag(sk, SOCK_FASYNC))
2207 return;
2208
2209 set_bit(nr, &sk->sk_wq_raw->flags);
2210}
2211
2212static inline void sk_clear_bit(int nr, struct sock *sk)
2213{
2214 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2215 !sock_flag(sk, SOCK_FASYNC))
2216 return;
2217
2218 clear_bit(nr, &sk->sk_wq_raw->flags);
2219}
2220
2221static inline void sk_wake_async(const struct sock *sk, int how, int band)
2222{
2223 if (sock_flag(sk, SOCK_FASYNC)) {
2224 rcu_read_lock();
2225 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2226 rcu_read_unlock();
2227 }
2228}
2229
2230/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2231 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2232 * Note: for send buffers, TCP works better if we can build two skbs at
2233 * minimum.
2234 */
2235#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2236
2237#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2238#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2239
2240static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2241{
2242 u32 val;
2243
2244 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2245 return;
2246
2247 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2248
2249 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2250}
2251
2252struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2253 bool force_schedule);
2254
2255/**
2256 * sk_page_frag - return an appropriate page_frag
2257 * @sk: socket
2258 *
2259 * Use the per task page_frag instead of the per socket one for
2260 * optimization when we know that we're in the normal context and owns
2261 * everything that's associated with %current.
2262 *
2263 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2264 * inside other socket operations and end up recursing into sk_page_frag()
2265 * while it's already in use.
2266 *
2267 * Return: a per task page_frag if context allows that,
2268 * otherwise a per socket one.
2269 */
2270static inline struct page_frag *sk_page_frag(struct sock *sk)
2271{
2272 if (gfpflags_normal_context(sk->sk_allocation))
2273 return ¤t->task_frag;
2274
2275 return &sk->sk_frag;
2276}
2277
2278bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2279
2280/*
2281 * Default write policy as shown to user space via poll/select/SIGIO
2282 */
2283static inline bool sock_writeable(const struct sock *sk)
2284{
2285 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2286}
2287
2288static inline gfp_t gfp_any(void)
2289{
2290 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2291}
2292
2293static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2294{
2295 return noblock ? 0 : sk->sk_rcvtimeo;
2296}
2297
2298static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2299{
2300 return noblock ? 0 : sk->sk_sndtimeo;
2301}
2302
2303static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2304{
2305 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2306
2307 return v ?: 1;
2308}
2309
2310/* Alas, with timeout socket operations are not restartable.
2311 * Compare this to poll().
2312 */
2313static inline int sock_intr_errno(long timeo)
2314{
2315 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2316}
2317
2318struct sock_skb_cb {
2319 u32 dropcount;
2320};
2321
2322/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2323 * using skb->cb[] would keep using it directly and utilize its
2324 * alignement guarantee.
2325 */
2326#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2327 sizeof(struct sock_skb_cb)))
2328
2329#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2330 SOCK_SKB_CB_OFFSET))
2331
2332#define sock_skb_cb_check_size(size) \
2333 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2334
2335static inline void
2336sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2337{
2338 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2339 atomic_read(&sk->sk_drops) : 0;
2340}
2341
2342static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2343{
2344 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2345
2346 atomic_add(segs, &sk->sk_drops);
2347}
2348
2349static inline ktime_t sock_read_timestamp(struct sock *sk)
2350{
2351#if BITS_PER_LONG==32
2352 unsigned int seq;
2353 ktime_t kt;
2354
2355 do {
2356 seq = read_seqbegin(&sk->sk_stamp_seq);
2357 kt = sk->sk_stamp;
2358 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2359
2360 return kt;
2361#else
2362 return READ_ONCE(sk->sk_stamp);
2363#endif
2364}
2365
2366static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2367{
2368#if BITS_PER_LONG==32
2369 write_seqlock(&sk->sk_stamp_seq);
2370 sk->sk_stamp = kt;
2371 write_sequnlock(&sk->sk_stamp_seq);
2372#else
2373 WRITE_ONCE(sk->sk_stamp, kt);
2374#endif
2375}
2376
2377void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2378 struct sk_buff *skb);
2379void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2380 struct sk_buff *skb);
2381
2382static inline void
2383sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2384{
2385 ktime_t kt = skb->tstamp;
2386 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2387
2388 /*
2389 * generate control messages if
2390 * - receive time stamping in software requested
2391 * - software time stamp available and wanted
2392 * - hardware time stamps available and wanted
2393 */
2394 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2395 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2396 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2397 (hwtstamps->hwtstamp &&
2398 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2399 __sock_recv_timestamp(msg, sk, skb);
2400 else
2401 sock_write_timestamp(sk, kt);
2402
2403 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2404 __sock_recv_wifi_status(msg, sk, skb);
2405}
2406
2407void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2408 struct sk_buff *skb);
2409
2410#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2411static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2412 struct sk_buff *skb)
2413{
2414#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2415 (1UL << SOCK_RCVTSTAMP))
2416#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2417 SOF_TIMESTAMPING_RAW_HARDWARE)
2418
2419 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2420 __sock_recv_ts_and_drops(msg, sk, skb);
2421 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2422 sock_write_timestamp(sk, skb->tstamp);
2423 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2424 sock_write_timestamp(sk, 0);
2425}
2426
2427void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2428
2429/**
2430 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2431 * @sk: socket sending this packet
2432 * @tsflags: timestamping flags to use
2433 * @tx_flags: completed with instructions for time stamping
2434 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2435 *
2436 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2437 */
2438static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2439 __u8 *tx_flags, __u32 *tskey)
2440{
2441 if (unlikely(tsflags)) {
2442 __sock_tx_timestamp(tsflags, tx_flags);
2443 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2444 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2445 *tskey = sk->sk_tskey++;
2446 }
2447 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2448 *tx_flags |= SKBTX_WIFI_STATUS;
2449}
2450
2451static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2452 __u8 *tx_flags)
2453{
2454 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2455}
2456
2457static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2458{
2459 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2460 &skb_shinfo(skb)->tskey);
2461}
2462
2463DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2464/**
2465 * sk_eat_skb - Release a skb if it is no longer needed
2466 * @sk: socket to eat this skb from
2467 * @skb: socket buffer to eat
2468 *
2469 * This routine must be called with interrupts disabled or with the socket
2470 * locked so that the sk_buff queue operation is ok.
2471*/
2472static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2473{
2474 __skb_unlink(skb, &sk->sk_receive_queue);
2475 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2476 !sk->sk_rx_skb_cache) {
2477 sk->sk_rx_skb_cache = skb;
2478 skb_orphan(skb);
2479 return;
2480 }
2481 __kfree_skb(skb);
2482}
2483
2484static inline
2485struct net *sock_net(const struct sock *sk)
2486{
2487 return read_pnet(&sk->sk_net);
2488}
2489
2490static inline
2491void sock_net_set(struct sock *sk, struct net *net)
2492{
2493 write_pnet(&sk->sk_net, net);
2494}
2495
2496static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2497{
2498 if (skb->sk) {
2499 struct sock *sk = skb->sk;
2500
2501 skb->destructor = NULL;
2502 skb->sk = NULL;
2503 return sk;
2504 }
2505 return NULL;
2506}
2507
2508/* This helper checks if a socket is a full socket,
2509 * ie _not_ a timewait or request socket.
2510 */
2511static inline bool sk_fullsock(const struct sock *sk)
2512{
2513 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2514}
2515
2516/* Checks if this SKB belongs to an HW offloaded socket
2517 * and whether any SW fallbacks are required based on dev.
2518 * Check decrypted mark in case skb_orphan() cleared socket.
2519 */
2520static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2521 struct net_device *dev)
2522{
2523#ifdef CONFIG_SOCK_VALIDATE_XMIT
2524 struct sock *sk = skb->sk;
2525
2526 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2527 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2528#ifdef CONFIG_TLS_DEVICE
2529 } else if (unlikely(skb->decrypted)) {
2530 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2531 kfree_skb(skb);
2532 skb = NULL;
2533#endif
2534 }
2535#endif
2536
2537 return skb;
2538}
2539
2540/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2541 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2542 */
2543static inline bool sk_listener(const struct sock *sk)
2544{
2545 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2546}
2547
2548void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2549int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2550 int type);
2551
2552bool sk_ns_capable(const struct sock *sk,
2553 struct user_namespace *user_ns, int cap);
2554bool sk_capable(const struct sock *sk, int cap);
2555bool sk_net_capable(const struct sock *sk, int cap);
2556
2557void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2558
2559/* Take into consideration the size of the struct sk_buff overhead in the
2560 * determination of these values, since that is non-constant across
2561 * platforms. This makes socket queueing behavior and performance
2562 * not depend upon such differences.
2563 */
2564#define _SK_MEM_PACKETS 256
2565#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2566#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2567#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2568
2569extern __u32 sysctl_wmem_max;
2570extern __u32 sysctl_rmem_max;
2571
2572extern int sysctl_tstamp_allow_data;
2573extern int sysctl_optmem_max;
2574
2575extern __u32 sysctl_wmem_default;
2576extern __u32 sysctl_rmem_default;
2577
2578DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2579
2580static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2581{
2582 /* Does this proto have per netns sysctl_wmem ? */
2583 if (proto->sysctl_wmem_offset)
2584 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2585
2586 return *proto->sysctl_wmem;
2587}
2588
2589static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2590{
2591 /* Does this proto have per netns sysctl_rmem ? */
2592 if (proto->sysctl_rmem_offset)
2593 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2594
2595 return *proto->sysctl_rmem;
2596}
2597
2598/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2599 * Some wifi drivers need to tweak it to get more chunks.
2600 * They can use this helper from their ndo_start_xmit()
2601 */
2602static inline void sk_pacing_shift_update(struct sock *sk, int val)
2603{
2604 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2605 return;
2606 WRITE_ONCE(sk->sk_pacing_shift, val);
2607}
2608
2609/* if a socket is bound to a device, check that the given device
2610 * index is either the same or that the socket is bound to an L3
2611 * master device and the given device index is also enslaved to
2612 * that L3 master
2613 */
2614static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2615{
2616 int mdif;
2617
2618 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2619 return true;
2620
2621 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2622 if (mdif && mdif == sk->sk_bound_dev_if)
2623 return true;
2624
2625 return false;
2626}
2627
2628void sock_def_readable(struct sock *sk);
2629
2630#endif /* _SOCK_H */