at v5.6 667 lines 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct pagevec; 20 21/* 22 * Bits in mapping->flags. 23 */ 24enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32}; 33 34/** 35 * mapping_set_error - record a writeback error in the address_space 36 * @mapping - the mapping in which an error should be set 37 * @error - the error to set in the mapping 38 * 39 * When writeback fails in some way, we must record that error so that 40 * userspace can be informed when fsync and the like are called. We endeavor 41 * to report errors on any file that was open at the time of the error. Some 42 * internal callers also need to know when writeback errors have occurred. 43 * 44 * When a writeback error occurs, most filesystems will want to call 45 * mapping_set_error to record the error in the mapping so that it can be 46 * reported when the application calls fsync(2). 47 */ 48static inline void mapping_set_error(struct address_space *mapping, int error) 49{ 50 if (likely(!error)) 51 return; 52 53 /* Record in wb_err for checkers using errseq_t based tracking */ 54 filemap_set_wb_err(mapping, error); 55 56 /* Record it in flags for now, for legacy callers */ 57 if (error == -ENOSPC) 58 set_bit(AS_ENOSPC, &mapping->flags); 59 else 60 set_bit(AS_EIO, &mapping->flags); 61} 62 63static inline void mapping_set_unevictable(struct address_space *mapping) 64{ 65 set_bit(AS_UNEVICTABLE, &mapping->flags); 66} 67 68static inline void mapping_clear_unevictable(struct address_space *mapping) 69{ 70 clear_bit(AS_UNEVICTABLE, &mapping->flags); 71} 72 73static inline int mapping_unevictable(struct address_space *mapping) 74{ 75 if (mapping) 76 return test_bit(AS_UNEVICTABLE, &mapping->flags); 77 return !!mapping; 78} 79 80static inline void mapping_set_exiting(struct address_space *mapping) 81{ 82 set_bit(AS_EXITING, &mapping->flags); 83} 84 85static inline int mapping_exiting(struct address_space *mapping) 86{ 87 return test_bit(AS_EXITING, &mapping->flags); 88} 89 90static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 91{ 92 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 93} 94 95static inline int mapping_use_writeback_tags(struct address_space *mapping) 96{ 97 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 98} 99 100static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 101{ 102 return mapping->gfp_mask; 103} 104 105/* Restricts the given gfp_mask to what the mapping allows. */ 106static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 107 gfp_t gfp_mask) 108{ 109 return mapping_gfp_mask(mapping) & gfp_mask; 110} 111 112/* 113 * This is non-atomic. Only to be used before the mapping is activated. 114 * Probably needs a barrier... 115 */ 116static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 117{ 118 m->gfp_mask = mask; 119} 120 121void release_pages(struct page **pages, int nr); 122 123/* 124 * speculatively take a reference to a page. 125 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 126 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 127 * 128 * This function must be called inside the same rcu_read_lock() section as has 129 * been used to lookup the page in the pagecache radix-tree (or page table): 130 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 131 * 132 * Unless an RCU grace period has passed, the count of all pages coming out 133 * of the allocator must be considered unstable. page_count may return higher 134 * than expected, and put_page must be able to do the right thing when the 135 * page has been finished with, no matter what it is subsequently allocated 136 * for (because put_page is what is used here to drop an invalid speculative 137 * reference). 138 * 139 * This is the interesting part of the lockless pagecache (and lockless 140 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 141 * has the following pattern: 142 * 1. find page in radix tree 143 * 2. conditionally increment refcount 144 * 3. check the page is still in pagecache (if no, goto 1) 145 * 146 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 147 * following (with the i_pages lock held): 148 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 149 * B. remove page from pagecache 150 * C. free the page 151 * 152 * There are 2 critical interleavings that matter: 153 * - 2 runs before A: in this case, A sees elevated refcount and bails out 154 * - A runs before 2: in this case, 2 sees zero refcount and retries; 155 * subsequently, B will complete and 1 will find no page, causing the 156 * lookup to return NULL. 157 * 158 * It is possible that between 1 and 2, the page is removed then the exact same 159 * page is inserted into the same position in pagecache. That's OK: the 160 * old find_get_page using a lock could equally have run before or after 161 * such a re-insertion, depending on order that locks are granted. 162 * 163 * Lookups racing against pagecache insertion isn't a big problem: either 1 164 * will find the page or it will not. Likewise, the old find_get_page could run 165 * either before the insertion or afterwards, depending on timing. 166 */ 167static inline int __page_cache_add_speculative(struct page *page, int count) 168{ 169#ifdef CONFIG_TINY_RCU 170# ifdef CONFIG_PREEMPT_COUNT 171 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 172# endif 173 /* 174 * Preempt must be disabled here - we rely on rcu_read_lock doing 175 * this for us. 176 * 177 * Pagecache won't be truncated from interrupt context, so if we have 178 * found a page in the radix tree here, we have pinned its refcount by 179 * disabling preempt, and hence no need for the "speculative get" that 180 * SMP requires. 181 */ 182 VM_BUG_ON_PAGE(page_count(page) == 0, page); 183 page_ref_add(page, count); 184 185#else 186 if (unlikely(!page_ref_add_unless(page, count, 0))) { 187 /* 188 * Either the page has been freed, or will be freed. 189 * In either case, retry here and the caller should 190 * do the right thing (see comments above). 191 */ 192 return 0; 193 } 194#endif 195 VM_BUG_ON_PAGE(PageTail(page), page); 196 197 return 1; 198} 199 200static inline int page_cache_get_speculative(struct page *page) 201{ 202 return __page_cache_add_speculative(page, 1); 203} 204 205static inline int page_cache_add_speculative(struct page *page, int count) 206{ 207 return __page_cache_add_speculative(page, count); 208} 209 210#ifdef CONFIG_NUMA 211extern struct page *__page_cache_alloc(gfp_t gfp); 212#else 213static inline struct page *__page_cache_alloc(gfp_t gfp) 214{ 215 return alloc_pages(gfp, 0); 216} 217#endif 218 219static inline struct page *page_cache_alloc(struct address_space *x) 220{ 221 return __page_cache_alloc(mapping_gfp_mask(x)); 222} 223 224static inline gfp_t readahead_gfp_mask(struct address_space *x) 225{ 226 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 227} 228 229typedef int filler_t(void *, struct page *); 230 231pgoff_t page_cache_next_miss(struct address_space *mapping, 232 pgoff_t index, unsigned long max_scan); 233pgoff_t page_cache_prev_miss(struct address_space *mapping, 234 pgoff_t index, unsigned long max_scan); 235 236#define FGP_ACCESSED 0x00000001 237#define FGP_LOCK 0x00000002 238#define FGP_CREAT 0x00000004 239#define FGP_WRITE 0x00000008 240#define FGP_NOFS 0x00000010 241#define FGP_NOWAIT 0x00000020 242#define FGP_FOR_MMAP 0x00000040 243 244struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 245 int fgp_flags, gfp_t cache_gfp_mask); 246 247/** 248 * find_get_page - find and get a page reference 249 * @mapping: the address_space to search 250 * @offset: the page index 251 * 252 * Looks up the page cache slot at @mapping & @offset. If there is a 253 * page cache page, it is returned with an increased refcount. 254 * 255 * Otherwise, %NULL is returned. 256 */ 257static inline struct page *find_get_page(struct address_space *mapping, 258 pgoff_t offset) 259{ 260 return pagecache_get_page(mapping, offset, 0, 0); 261} 262 263static inline struct page *find_get_page_flags(struct address_space *mapping, 264 pgoff_t offset, int fgp_flags) 265{ 266 return pagecache_get_page(mapping, offset, fgp_flags, 0); 267} 268 269/** 270 * find_lock_page - locate, pin and lock a pagecache page 271 * @mapping: the address_space to search 272 * @offset: the page index 273 * 274 * Looks up the page cache slot at @mapping & @offset. If there is a 275 * page cache page, it is returned locked and with an increased 276 * refcount. 277 * 278 * Otherwise, %NULL is returned. 279 * 280 * find_lock_page() may sleep. 281 */ 282static inline struct page *find_lock_page(struct address_space *mapping, 283 pgoff_t offset) 284{ 285 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 286} 287 288/** 289 * find_or_create_page - locate or add a pagecache page 290 * @mapping: the page's address_space 291 * @index: the page's index into the mapping 292 * @gfp_mask: page allocation mode 293 * 294 * Looks up the page cache slot at @mapping & @offset. If there is a 295 * page cache page, it is returned locked and with an increased 296 * refcount. 297 * 298 * If the page is not present, a new page is allocated using @gfp_mask 299 * and added to the page cache and the VM's LRU list. The page is 300 * returned locked and with an increased refcount. 301 * 302 * On memory exhaustion, %NULL is returned. 303 * 304 * find_or_create_page() may sleep, even if @gfp_flags specifies an 305 * atomic allocation! 306 */ 307static inline struct page *find_or_create_page(struct address_space *mapping, 308 pgoff_t offset, gfp_t gfp_mask) 309{ 310 return pagecache_get_page(mapping, offset, 311 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 312 gfp_mask); 313} 314 315/** 316 * grab_cache_page_nowait - returns locked page at given index in given cache 317 * @mapping: target address_space 318 * @index: the page index 319 * 320 * Same as grab_cache_page(), but do not wait if the page is unavailable. 321 * This is intended for speculative data generators, where the data can 322 * be regenerated if the page couldn't be grabbed. This routine should 323 * be safe to call while holding the lock for another page. 324 * 325 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 326 * and deadlock against the caller's locked page. 327 */ 328static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 329 pgoff_t index) 330{ 331 return pagecache_get_page(mapping, index, 332 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 333 mapping_gfp_mask(mapping)); 334} 335 336static inline struct page *find_subpage(struct page *page, pgoff_t offset) 337{ 338 if (PageHuge(page)) 339 return page; 340 341 VM_BUG_ON_PAGE(PageTail(page), page); 342 343 return page + (offset & (compound_nr(page) - 1)); 344} 345 346struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 347struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 348unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 349 unsigned int nr_entries, struct page **entries, 350 pgoff_t *indices); 351unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 352 pgoff_t end, unsigned int nr_pages, 353 struct page **pages); 354static inline unsigned find_get_pages(struct address_space *mapping, 355 pgoff_t *start, unsigned int nr_pages, 356 struct page **pages) 357{ 358 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 359 pages); 360} 361unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 362 unsigned int nr_pages, struct page **pages); 363unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 364 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 365 struct page **pages); 366static inline unsigned find_get_pages_tag(struct address_space *mapping, 367 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 368 struct page **pages) 369{ 370 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 371 nr_pages, pages); 372} 373 374struct page *grab_cache_page_write_begin(struct address_space *mapping, 375 pgoff_t index, unsigned flags); 376 377/* 378 * Returns locked page at given index in given cache, creating it if needed. 379 */ 380static inline struct page *grab_cache_page(struct address_space *mapping, 381 pgoff_t index) 382{ 383 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 384} 385 386extern struct page * read_cache_page(struct address_space *mapping, 387 pgoff_t index, filler_t *filler, void *data); 388extern struct page * read_cache_page_gfp(struct address_space *mapping, 389 pgoff_t index, gfp_t gfp_mask); 390extern int read_cache_pages(struct address_space *mapping, 391 struct list_head *pages, filler_t *filler, void *data); 392 393static inline struct page *read_mapping_page(struct address_space *mapping, 394 pgoff_t index, void *data) 395{ 396 return read_cache_page(mapping, index, NULL, data); 397} 398 399/* 400 * Get index of the page with in radix-tree 401 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 402 */ 403static inline pgoff_t page_to_index(struct page *page) 404{ 405 pgoff_t pgoff; 406 407 if (likely(!PageTransTail(page))) 408 return page->index; 409 410 /* 411 * We don't initialize ->index for tail pages: calculate based on 412 * head page 413 */ 414 pgoff = compound_head(page)->index; 415 pgoff += page - compound_head(page); 416 return pgoff; 417} 418 419/* 420 * Get the offset in PAGE_SIZE. 421 * (TODO: hugepage should have ->index in PAGE_SIZE) 422 */ 423static inline pgoff_t page_to_pgoff(struct page *page) 424{ 425 if (unlikely(PageHeadHuge(page))) 426 return page->index << compound_order(page); 427 428 return page_to_index(page); 429} 430 431/* 432 * Return byte-offset into filesystem object for page. 433 */ 434static inline loff_t page_offset(struct page *page) 435{ 436 return ((loff_t)page->index) << PAGE_SHIFT; 437} 438 439static inline loff_t page_file_offset(struct page *page) 440{ 441 return ((loff_t)page_index(page)) << PAGE_SHIFT; 442} 443 444extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 445 unsigned long address); 446 447static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 448 unsigned long address) 449{ 450 pgoff_t pgoff; 451 if (unlikely(is_vm_hugetlb_page(vma))) 452 return linear_hugepage_index(vma, address); 453 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 454 pgoff += vma->vm_pgoff; 455 return pgoff; 456} 457 458extern void __lock_page(struct page *page); 459extern int __lock_page_killable(struct page *page); 460extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 461 unsigned int flags); 462extern void unlock_page(struct page *page); 463 464/* 465 * Return true if the page was successfully locked 466 */ 467static inline int trylock_page(struct page *page) 468{ 469 page = compound_head(page); 470 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 471} 472 473/* 474 * lock_page may only be called if we have the page's inode pinned. 475 */ 476static inline void lock_page(struct page *page) 477{ 478 might_sleep(); 479 if (!trylock_page(page)) 480 __lock_page(page); 481} 482 483/* 484 * lock_page_killable is like lock_page but can be interrupted by fatal 485 * signals. It returns 0 if it locked the page and -EINTR if it was 486 * killed while waiting. 487 */ 488static inline int lock_page_killable(struct page *page) 489{ 490 might_sleep(); 491 if (!trylock_page(page)) 492 return __lock_page_killable(page); 493 return 0; 494} 495 496/* 497 * lock_page_or_retry - Lock the page, unless this would block and the 498 * caller indicated that it can handle a retry. 499 * 500 * Return value and mmap_sem implications depend on flags; see 501 * __lock_page_or_retry(). 502 */ 503static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 504 unsigned int flags) 505{ 506 might_sleep(); 507 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 508} 509 510/* 511 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 512 * and should not be used directly. 513 */ 514extern void wait_on_page_bit(struct page *page, int bit_nr); 515extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 516 517/* 518 * Wait for a page to be unlocked. 519 * 520 * This must be called with the caller "holding" the page, 521 * ie with increased "page->count" so that the page won't 522 * go away during the wait.. 523 */ 524static inline void wait_on_page_locked(struct page *page) 525{ 526 if (PageLocked(page)) 527 wait_on_page_bit(compound_head(page), PG_locked); 528} 529 530static inline int wait_on_page_locked_killable(struct page *page) 531{ 532 if (!PageLocked(page)) 533 return 0; 534 return wait_on_page_bit_killable(compound_head(page), PG_locked); 535} 536 537extern void put_and_wait_on_page_locked(struct page *page); 538 539void wait_on_page_writeback(struct page *page); 540extern void end_page_writeback(struct page *page); 541void wait_for_stable_page(struct page *page); 542 543void page_endio(struct page *page, bool is_write, int err); 544 545/* 546 * Add an arbitrary waiter to a page's wait queue 547 */ 548extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 549 550/* 551 * Fault everything in given userspace address range in. 552 */ 553static inline int fault_in_pages_writeable(char __user *uaddr, int size) 554{ 555 char __user *end = uaddr + size - 1; 556 557 if (unlikely(size == 0)) 558 return 0; 559 560 if (unlikely(uaddr > end)) 561 return -EFAULT; 562 /* 563 * Writing zeroes into userspace here is OK, because we know that if 564 * the zero gets there, we'll be overwriting it. 565 */ 566 do { 567 if (unlikely(__put_user(0, uaddr) != 0)) 568 return -EFAULT; 569 uaddr += PAGE_SIZE; 570 } while (uaddr <= end); 571 572 /* Check whether the range spilled into the next page. */ 573 if (((unsigned long)uaddr & PAGE_MASK) == 574 ((unsigned long)end & PAGE_MASK)) 575 return __put_user(0, end); 576 577 return 0; 578} 579 580static inline int fault_in_pages_readable(const char __user *uaddr, int size) 581{ 582 volatile char c; 583 const char __user *end = uaddr + size - 1; 584 585 if (unlikely(size == 0)) 586 return 0; 587 588 if (unlikely(uaddr > end)) 589 return -EFAULT; 590 591 do { 592 if (unlikely(__get_user(c, uaddr) != 0)) 593 return -EFAULT; 594 uaddr += PAGE_SIZE; 595 } while (uaddr <= end); 596 597 /* Check whether the range spilled into the next page. */ 598 if (((unsigned long)uaddr & PAGE_MASK) == 599 ((unsigned long)end & PAGE_MASK)) { 600 return __get_user(c, end); 601 } 602 603 (void)c; 604 return 0; 605} 606 607int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 608 pgoff_t index, gfp_t gfp_mask); 609int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 610 pgoff_t index, gfp_t gfp_mask); 611extern void delete_from_page_cache(struct page *page); 612extern void __delete_from_page_cache(struct page *page, void *shadow); 613int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 614void delete_from_page_cache_batch(struct address_space *mapping, 615 struct pagevec *pvec); 616 617/* 618 * Like add_to_page_cache_locked, but used to add newly allocated pages: 619 * the page is new, so we can just run __SetPageLocked() against it. 620 */ 621static inline int add_to_page_cache(struct page *page, 622 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 623{ 624 int error; 625 626 __SetPageLocked(page); 627 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 628 if (unlikely(error)) 629 __ClearPageLocked(page); 630 return error; 631} 632 633static inline unsigned long dir_pages(struct inode *inode) 634{ 635 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 636 PAGE_SHIFT; 637} 638 639/** 640 * page_mkwrite_check_truncate - check if page was truncated 641 * @page: the page to check 642 * @inode: the inode to check the page against 643 * 644 * Returns the number of bytes in the page up to EOF, 645 * or -EFAULT if the page was truncated. 646 */ 647static inline int page_mkwrite_check_truncate(struct page *page, 648 struct inode *inode) 649{ 650 loff_t size = i_size_read(inode); 651 pgoff_t index = size >> PAGE_SHIFT; 652 int offset = offset_in_page(size); 653 654 if (page->mapping != inode->i_mapping) 655 return -EFAULT; 656 657 /* page is wholly inside EOF */ 658 if (page->index < index) 659 return PAGE_SIZE; 660 /* page is wholly past EOF */ 661 if (page->index > index || !offset) 662 return -EFAULT; 663 /* page is partially inside EOF */ 664 return offset; 665} 666 667#endif /* _LINUX_PAGEMAP_H */