Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56
57struct sfp_bus;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63/* UDP Tunnel offloads */
64struct udp_tunnel_info;
65struct bpf_prog;
66struct xdp_buff;
67
68void netdev_set_default_ethtool_ops(struct net_device *dev,
69 const struct ethtool_ops *ops);
70
71/* Backlog congestion levels */
72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73#define NET_RX_DROP 1 /* packet dropped */
74
75#define MAX_NEST_DEV 8
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106/* Driver transmit return codes */
107#define NETDEV_TX_MASK 0xf0
108
109enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113};
114typedef enum netdev_tx netdev_tx_t;
115
116/*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120static inline bool dev_xmit_complete(int rc)
121{
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132}
133
134/*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139#if defined(CONFIG_HYPERV_NET)
140# define LL_MAX_HEADER 128
141#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142# if defined(CONFIG_MAC80211_MESH)
143# define LL_MAX_HEADER 128
144# else
145# define LL_MAX_HEADER 96
146# endif
147#else
148# define LL_MAX_HEADER 32
149#endif
150
151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153#define MAX_HEADER LL_MAX_HEADER
154#else
155#define MAX_HEADER (LL_MAX_HEADER + 48)
156#endif
157
158/*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187};
188
189
190#include <linux/cache.h>
191#include <linux/skbuff.h>
192
193#ifdef CONFIG_RPS
194#include <linux/static_key.h>
195extern struct static_key_false rps_needed;
196extern struct static_key_false rfs_needed;
197#endif
198
199struct neighbour;
200struct neigh_parms;
201struct sk_buff;
202
203struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207#define NETDEV_HW_ADDR_T_LAN 1
208#define NETDEV_HW_ADDR_T_SAN 2
209#define NETDEV_HW_ADDR_T_SLAVE 3
210#define NETDEV_HW_ADDR_T_UNICAST 4
211#define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217};
218
219struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222};
223
224#define netdev_hw_addr_list_count(l) ((l)->count)
225#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226#define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231#define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236#define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244#define HH_DATA_MOD 16
245#define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247#define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250};
251
252/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260#define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 __be16 (*parse_protocol)(const struct sk_buff *skb);
276};
277
278/* These flag bits are private to the generic network queueing
279 * layer; they may not be explicitly referenced by any other
280 * code.
281 */
282
283enum netdev_state_t {
284 __LINK_STATE_START,
285 __LINK_STATE_PRESENT,
286 __LINK_STATE_NOCARRIER,
287 __LINK_STATE_LINKWATCH_PENDING,
288 __LINK_STATE_DORMANT,
289};
290
291
292/*
293 * This structure holds boot-time configured netdevice settings. They
294 * are then used in the device probing.
295 */
296struct netdev_boot_setup {
297 char name[IFNAMSIZ];
298 struct ifmap map;
299};
300#define NETDEV_BOOT_SETUP_MAX 8
301
302int __init netdev_boot_setup(char *str);
303
304struct gro_list {
305 struct list_head list;
306 int count;
307};
308
309/*
310 * size of gro hash buckets, must less than bit number of
311 * napi_struct::gro_bitmask
312 */
313#define GRO_HASH_BUCKETS 8
314
315/*
316 * Structure for NAPI scheduling similar to tasklet but with weighting
317 */
318struct napi_struct {
319 /* The poll_list must only be managed by the entity which
320 * changes the state of the NAPI_STATE_SCHED bit. This means
321 * whoever atomically sets that bit can add this napi_struct
322 * to the per-CPU poll_list, and whoever clears that bit
323 * can remove from the list right before clearing the bit.
324 */
325 struct list_head poll_list;
326
327 unsigned long state;
328 int weight;
329 unsigned long gro_bitmask;
330 int (*poll)(struct napi_struct *, int);
331#ifdef CONFIG_NETPOLL
332 int poll_owner;
333#endif
334 struct net_device *dev;
335 struct gro_list gro_hash[GRO_HASH_BUCKETS];
336 struct sk_buff *skb;
337 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
338 int rx_count; /* length of rx_list */
339 struct hrtimer timer;
340 struct list_head dev_list;
341 struct hlist_node napi_hash_node;
342 unsigned int napi_id;
343};
344
345enum {
346 NAPI_STATE_SCHED, /* Poll is scheduled */
347 NAPI_STATE_MISSED, /* reschedule a napi */
348 NAPI_STATE_DISABLE, /* Disable pending */
349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
353};
354
355enum {
356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
363};
364
365enum gro_result {
366 GRO_MERGED,
367 GRO_MERGED_FREE,
368 GRO_HELD,
369 GRO_NORMAL,
370 GRO_DROP,
371 GRO_CONSUMED,
372};
373typedef enum gro_result gro_result_t;
374
375/*
376 * enum rx_handler_result - Possible return values for rx_handlers.
377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
378 * further.
379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
380 * case skb->dev was changed by rx_handler.
381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
383 *
384 * rx_handlers are functions called from inside __netif_receive_skb(), to do
385 * special processing of the skb, prior to delivery to protocol handlers.
386 *
387 * Currently, a net_device can only have a single rx_handler registered. Trying
388 * to register a second rx_handler will return -EBUSY.
389 *
390 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
391 * To unregister a rx_handler on a net_device, use
392 * netdev_rx_handler_unregister().
393 *
394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
395 * do with the skb.
396 *
397 * If the rx_handler consumed the skb in some way, it should return
398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
399 * the skb to be delivered in some other way.
400 *
401 * If the rx_handler changed skb->dev, to divert the skb to another
402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
403 * new device will be called if it exists.
404 *
405 * If the rx_handler decides the skb should be ignored, it should return
406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
407 * are registered on exact device (ptype->dev == skb->dev).
408 *
409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
410 * delivered, it should return RX_HANDLER_PASS.
411 *
412 * A device without a registered rx_handler will behave as if rx_handler
413 * returned RX_HANDLER_PASS.
414 */
415
416enum rx_handler_result {
417 RX_HANDLER_CONSUMED,
418 RX_HANDLER_ANOTHER,
419 RX_HANDLER_EXACT,
420 RX_HANDLER_PASS,
421};
422typedef enum rx_handler_result rx_handler_result_t;
423typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
424
425void __napi_schedule(struct napi_struct *n);
426void __napi_schedule_irqoff(struct napi_struct *n);
427
428static inline bool napi_disable_pending(struct napi_struct *n)
429{
430 return test_bit(NAPI_STATE_DISABLE, &n->state);
431}
432
433bool napi_schedule_prep(struct napi_struct *n);
434
435/**
436 * napi_schedule - schedule NAPI poll
437 * @n: NAPI context
438 *
439 * Schedule NAPI poll routine to be called if it is not already
440 * running.
441 */
442static inline void napi_schedule(struct napi_struct *n)
443{
444 if (napi_schedule_prep(n))
445 __napi_schedule(n);
446}
447
448/**
449 * napi_schedule_irqoff - schedule NAPI poll
450 * @n: NAPI context
451 *
452 * Variant of napi_schedule(), assuming hard irqs are masked.
453 */
454static inline void napi_schedule_irqoff(struct napi_struct *n)
455{
456 if (napi_schedule_prep(n))
457 __napi_schedule_irqoff(n);
458}
459
460/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
461static inline bool napi_reschedule(struct napi_struct *napi)
462{
463 if (napi_schedule_prep(napi)) {
464 __napi_schedule(napi);
465 return true;
466 }
467 return false;
468}
469
470bool napi_complete_done(struct napi_struct *n, int work_done);
471/**
472 * napi_complete - NAPI processing complete
473 * @n: NAPI context
474 *
475 * Mark NAPI processing as complete.
476 * Consider using napi_complete_done() instead.
477 * Return false if device should avoid rearming interrupts.
478 */
479static inline bool napi_complete(struct napi_struct *n)
480{
481 return napi_complete_done(n, 0);
482}
483
484/**
485 * napi_hash_del - remove a NAPI from global table
486 * @napi: NAPI context
487 *
488 * Warning: caller must observe RCU grace period
489 * before freeing memory containing @napi, if
490 * this function returns true.
491 * Note: core networking stack automatically calls it
492 * from netif_napi_del().
493 * Drivers might want to call this helper to combine all
494 * the needed RCU grace periods into a single one.
495 */
496bool napi_hash_del(struct napi_struct *napi);
497
498/**
499 * napi_disable - prevent NAPI from scheduling
500 * @n: NAPI context
501 *
502 * Stop NAPI from being scheduled on this context.
503 * Waits till any outstanding processing completes.
504 */
505void napi_disable(struct napi_struct *n);
506
507/**
508 * napi_enable - enable NAPI scheduling
509 * @n: NAPI context
510 *
511 * Resume NAPI from being scheduled on this context.
512 * Must be paired with napi_disable.
513 */
514static inline void napi_enable(struct napi_struct *n)
515{
516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 smp_mb__before_atomic();
518 clear_bit(NAPI_STATE_SCHED, &n->state);
519 clear_bit(NAPI_STATE_NPSVC, &n->state);
520}
521
522/**
523 * napi_synchronize - wait until NAPI is not running
524 * @n: NAPI context
525 *
526 * Wait until NAPI is done being scheduled on this context.
527 * Waits till any outstanding processing completes but
528 * does not disable future activations.
529 */
530static inline void napi_synchronize(const struct napi_struct *n)
531{
532 if (IS_ENABLED(CONFIG_SMP))
533 while (test_bit(NAPI_STATE_SCHED, &n->state))
534 msleep(1);
535 else
536 barrier();
537}
538
539/**
540 * napi_if_scheduled_mark_missed - if napi is running, set the
541 * NAPIF_STATE_MISSED
542 * @n: NAPI context
543 *
544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545 * NAPI is scheduled.
546 **/
547static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548{
549 unsigned long val, new;
550
551 do {
552 val = READ_ONCE(n->state);
553 if (val & NAPIF_STATE_DISABLE)
554 return true;
555
556 if (!(val & NAPIF_STATE_SCHED))
557 return false;
558
559 new = val | NAPIF_STATE_MISSED;
560 } while (cmpxchg(&n->state, val, new) != val);
561
562 return true;
563}
564
565enum netdev_queue_state_t {
566 __QUEUE_STATE_DRV_XOFF,
567 __QUEUE_STATE_STACK_XOFF,
568 __QUEUE_STATE_FROZEN,
569};
570
571#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
572#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
573#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
574
575#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 QUEUE_STATE_FROZEN)
578#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 QUEUE_STATE_FROZEN)
580
581/*
582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
583 * netif_tx_* functions below are used to manipulate this flag. The
584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585 * queue independently. The netif_xmit_*stopped functions below are called
586 * to check if the queue has been stopped by the driver or stack (either
587 * of the XOFF bits are set in the state). Drivers should not need to call
588 * netif_xmit*stopped functions, they should only be using netif_tx_*.
589 */
590
591struct netdev_queue {
592/*
593 * read-mostly part
594 */
595 struct net_device *dev;
596 struct Qdisc __rcu *qdisc;
597 struct Qdisc *qdisc_sleeping;
598#ifdef CONFIG_SYSFS
599 struct kobject kobj;
600#endif
601#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 int numa_node;
603#endif
604 unsigned long tx_maxrate;
605 /*
606 * Number of TX timeouts for this queue
607 * (/sys/class/net/DEV/Q/trans_timeout)
608 */
609 unsigned long trans_timeout;
610
611 /* Subordinate device that the queue has been assigned to */
612 struct net_device *sb_dev;
613#ifdef CONFIG_XDP_SOCKETS
614 struct xdp_umem *umem;
615#endif
616/*
617 * write-mostly part
618 */
619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
620 int xmit_lock_owner;
621 /*
622 * Time (in jiffies) of last Tx
623 */
624 unsigned long trans_start;
625
626 unsigned long state;
627
628#ifdef CONFIG_BQL
629 struct dql dql;
630#endif
631} ____cacheline_aligned_in_smp;
632
633extern int sysctl_fb_tunnels_only_for_init_net;
634extern int sysctl_devconf_inherit_init_net;
635
636static inline bool net_has_fallback_tunnels(const struct net *net)
637{
638 return net == &init_net ||
639 !IS_ENABLED(CONFIG_SYSCTL) ||
640 !sysctl_fb_tunnels_only_for_init_net;
641}
642
643static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
644{
645#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 return q->numa_node;
647#else
648 return NUMA_NO_NODE;
649#endif
650}
651
652static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
653{
654#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 q->numa_node = node;
656#endif
657}
658
659#ifdef CONFIG_RPS
660/*
661 * This structure holds an RPS map which can be of variable length. The
662 * map is an array of CPUs.
663 */
664struct rps_map {
665 unsigned int len;
666 struct rcu_head rcu;
667 u16 cpus[0];
668};
669#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
670
671/*
672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
673 * tail pointer for that CPU's input queue at the time of last enqueue, and
674 * a hardware filter index.
675 */
676struct rps_dev_flow {
677 u16 cpu;
678 u16 filter;
679 unsigned int last_qtail;
680};
681#define RPS_NO_FILTER 0xffff
682
683/*
684 * The rps_dev_flow_table structure contains a table of flow mappings.
685 */
686struct rps_dev_flow_table {
687 unsigned int mask;
688 struct rcu_head rcu;
689 struct rps_dev_flow flows[0];
690};
691#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
692 ((_num) * sizeof(struct rps_dev_flow)))
693
694/*
695 * The rps_sock_flow_table contains mappings of flows to the last CPU
696 * on which they were processed by the application (set in recvmsg).
697 * Each entry is a 32bit value. Upper part is the high-order bits
698 * of flow hash, lower part is CPU number.
699 * rps_cpu_mask is used to partition the space, depending on number of
700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
702 * meaning we use 32-6=26 bits for the hash.
703 */
704struct rps_sock_flow_table {
705 u32 mask;
706
707 u32 ents[0] ____cacheline_aligned_in_smp;
708};
709#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
710
711#define RPS_NO_CPU 0xffff
712
713extern u32 rps_cpu_mask;
714extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
715
716static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
717 u32 hash)
718{
719 if (table && hash) {
720 unsigned int index = hash & table->mask;
721 u32 val = hash & ~rps_cpu_mask;
722
723 /* We only give a hint, preemption can change CPU under us */
724 val |= raw_smp_processor_id();
725
726 if (table->ents[index] != val)
727 table->ents[index] = val;
728 }
729}
730
731#ifdef CONFIG_RFS_ACCEL
732bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
733 u16 filter_id);
734#endif
735#endif /* CONFIG_RPS */
736
737/* This structure contains an instance of an RX queue. */
738struct netdev_rx_queue {
739#ifdef CONFIG_RPS
740 struct rps_map __rcu *rps_map;
741 struct rps_dev_flow_table __rcu *rps_flow_table;
742#endif
743 struct kobject kobj;
744 struct net_device *dev;
745 struct xdp_rxq_info xdp_rxq;
746#ifdef CONFIG_XDP_SOCKETS
747 struct xdp_umem *umem;
748#endif
749} ____cacheline_aligned_in_smp;
750
751/*
752 * RX queue sysfs structures and functions.
753 */
754struct rx_queue_attribute {
755 struct attribute attr;
756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
757 ssize_t (*store)(struct netdev_rx_queue *queue,
758 const char *buf, size_t len);
759};
760
761#ifdef CONFIG_XPS
762/*
763 * This structure holds an XPS map which can be of variable length. The
764 * map is an array of queues.
765 */
766struct xps_map {
767 unsigned int len;
768 unsigned int alloc_len;
769 struct rcu_head rcu;
770 u16 queues[0];
771};
772#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
773#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
774 - sizeof(struct xps_map)) / sizeof(u16))
775
776/*
777 * This structure holds all XPS maps for device. Maps are indexed by CPU.
778 */
779struct xps_dev_maps {
780 struct rcu_head rcu;
781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
782};
783
784#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
786
787#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
788 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
789
790#endif /* CONFIG_XPS */
791
792#define TC_MAX_QUEUE 16
793#define TC_BITMASK 15
794/* HW offloaded queuing disciplines txq count and offset maps */
795struct netdev_tc_txq {
796 u16 count;
797 u16 offset;
798};
799
800#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
801/*
802 * This structure is to hold information about the device
803 * configured to run FCoE protocol stack.
804 */
805struct netdev_fcoe_hbainfo {
806 char manufacturer[64];
807 char serial_number[64];
808 char hardware_version[64];
809 char driver_version[64];
810 char optionrom_version[64];
811 char firmware_version[64];
812 char model[256];
813 char model_description[256];
814};
815#endif
816
817#define MAX_PHYS_ITEM_ID_LEN 32
818
819/* This structure holds a unique identifier to identify some
820 * physical item (port for example) used by a netdevice.
821 */
822struct netdev_phys_item_id {
823 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
824 unsigned char id_len;
825};
826
827static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
828 struct netdev_phys_item_id *b)
829{
830 return a->id_len == b->id_len &&
831 memcmp(a->id, b->id, a->id_len) == 0;
832}
833
834typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
835 struct sk_buff *skb,
836 struct net_device *sb_dev);
837
838enum tc_setup_type {
839 TC_SETUP_QDISC_MQPRIO,
840 TC_SETUP_CLSU32,
841 TC_SETUP_CLSFLOWER,
842 TC_SETUP_CLSMATCHALL,
843 TC_SETUP_CLSBPF,
844 TC_SETUP_BLOCK,
845 TC_SETUP_QDISC_CBS,
846 TC_SETUP_QDISC_RED,
847 TC_SETUP_QDISC_PRIO,
848 TC_SETUP_QDISC_MQ,
849 TC_SETUP_QDISC_ETF,
850 TC_SETUP_ROOT_QDISC,
851 TC_SETUP_QDISC_GRED,
852 TC_SETUP_QDISC_TAPRIO,
853 TC_SETUP_FT,
854 TC_SETUP_QDISC_ETS,
855 TC_SETUP_QDISC_TBF,
856};
857
858/* These structures hold the attributes of bpf state that are being passed
859 * to the netdevice through the bpf op.
860 */
861enum bpf_netdev_command {
862 /* Set or clear a bpf program used in the earliest stages of packet
863 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
864 * is responsible for calling bpf_prog_put on any old progs that are
865 * stored. In case of error, the callee need not release the new prog
866 * reference, but on success it takes ownership and must bpf_prog_put
867 * when it is no longer used.
868 */
869 XDP_SETUP_PROG,
870 XDP_SETUP_PROG_HW,
871 XDP_QUERY_PROG,
872 XDP_QUERY_PROG_HW,
873 /* BPF program for offload callbacks, invoked at program load time. */
874 BPF_OFFLOAD_MAP_ALLOC,
875 BPF_OFFLOAD_MAP_FREE,
876 XDP_SETUP_XSK_UMEM,
877};
878
879struct bpf_prog_offload_ops;
880struct netlink_ext_ack;
881struct xdp_umem;
882struct xdp_dev_bulk_queue;
883
884struct netdev_bpf {
885 enum bpf_netdev_command command;
886 union {
887 /* XDP_SETUP_PROG */
888 struct {
889 u32 flags;
890 struct bpf_prog *prog;
891 struct netlink_ext_ack *extack;
892 };
893 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
894 struct {
895 u32 prog_id;
896 /* flags with which program was installed */
897 u32 prog_flags;
898 };
899 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
900 struct {
901 struct bpf_offloaded_map *offmap;
902 };
903 /* XDP_SETUP_XSK_UMEM */
904 struct {
905 struct xdp_umem *umem;
906 u16 queue_id;
907 } xsk;
908 };
909};
910
911/* Flags for ndo_xsk_wakeup. */
912#define XDP_WAKEUP_RX (1 << 0)
913#define XDP_WAKEUP_TX (1 << 1)
914
915#ifdef CONFIG_XFRM_OFFLOAD
916struct xfrmdev_ops {
917 int (*xdo_dev_state_add) (struct xfrm_state *x);
918 void (*xdo_dev_state_delete) (struct xfrm_state *x);
919 void (*xdo_dev_state_free) (struct xfrm_state *x);
920 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
921 struct xfrm_state *x);
922 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
923};
924#endif
925
926struct dev_ifalias {
927 struct rcu_head rcuhead;
928 char ifalias[];
929};
930
931struct devlink;
932struct tlsdev_ops;
933
934struct netdev_name_node {
935 struct hlist_node hlist;
936 struct list_head list;
937 struct net_device *dev;
938 const char *name;
939};
940
941int netdev_name_node_alt_create(struct net_device *dev, const char *name);
942int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
943
944struct netdev_net_notifier {
945 struct list_head list;
946 struct notifier_block *nb;
947};
948
949/*
950 * This structure defines the management hooks for network devices.
951 * The following hooks can be defined; unless noted otherwise, they are
952 * optional and can be filled with a null pointer.
953 *
954 * int (*ndo_init)(struct net_device *dev);
955 * This function is called once when a network device is registered.
956 * The network device can use this for any late stage initialization
957 * or semantic validation. It can fail with an error code which will
958 * be propagated back to register_netdev.
959 *
960 * void (*ndo_uninit)(struct net_device *dev);
961 * This function is called when device is unregistered or when registration
962 * fails. It is not called if init fails.
963 *
964 * int (*ndo_open)(struct net_device *dev);
965 * This function is called when a network device transitions to the up
966 * state.
967 *
968 * int (*ndo_stop)(struct net_device *dev);
969 * This function is called when a network device transitions to the down
970 * state.
971 *
972 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
973 * struct net_device *dev);
974 * Called when a packet needs to be transmitted.
975 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
976 * the queue before that can happen; it's for obsolete devices and weird
977 * corner cases, but the stack really does a non-trivial amount
978 * of useless work if you return NETDEV_TX_BUSY.
979 * Required; cannot be NULL.
980 *
981 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
982 * struct net_device *dev
983 * netdev_features_t features);
984 * Called by core transmit path to determine if device is capable of
985 * performing offload operations on a given packet. This is to give
986 * the device an opportunity to implement any restrictions that cannot
987 * be otherwise expressed by feature flags. The check is called with
988 * the set of features that the stack has calculated and it returns
989 * those the driver believes to be appropriate.
990 *
991 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
992 * struct net_device *sb_dev);
993 * Called to decide which queue to use when device supports multiple
994 * transmit queues.
995 *
996 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
997 * This function is called to allow device receiver to make
998 * changes to configuration when multicast or promiscuous is enabled.
999 *
1000 * void (*ndo_set_rx_mode)(struct net_device *dev);
1001 * This function is called device changes address list filtering.
1002 * If driver handles unicast address filtering, it should set
1003 * IFF_UNICAST_FLT in its priv_flags.
1004 *
1005 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1006 * This function is called when the Media Access Control address
1007 * needs to be changed. If this interface is not defined, the
1008 * MAC address can not be changed.
1009 *
1010 * int (*ndo_validate_addr)(struct net_device *dev);
1011 * Test if Media Access Control address is valid for the device.
1012 *
1013 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1014 * Called when a user requests an ioctl which can't be handled by
1015 * the generic interface code. If not defined ioctls return
1016 * not supported error code.
1017 *
1018 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1019 * Used to set network devices bus interface parameters. This interface
1020 * is retained for legacy reasons; new devices should use the bus
1021 * interface (PCI) for low level management.
1022 *
1023 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1024 * Called when a user wants to change the Maximum Transfer Unit
1025 * of a device.
1026 *
1027 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1028 * Callback used when the transmitter has not made any progress
1029 * for dev->watchdog ticks.
1030 *
1031 * void (*ndo_get_stats64)(struct net_device *dev,
1032 * struct rtnl_link_stats64 *storage);
1033 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1034 * Called when a user wants to get the network device usage
1035 * statistics. Drivers must do one of the following:
1036 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1037 * rtnl_link_stats64 structure passed by the caller.
1038 * 2. Define @ndo_get_stats to update a net_device_stats structure
1039 * (which should normally be dev->stats) and return a pointer to
1040 * it. The structure may be changed asynchronously only if each
1041 * field is written atomically.
1042 * 3. Update dev->stats asynchronously and atomically, and define
1043 * neither operation.
1044 *
1045 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1046 * Return true if this device supports offload stats of this attr_id.
1047 *
1048 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1049 * void *attr_data)
1050 * Get statistics for offload operations by attr_id. Write it into the
1051 * attr_data pointer.
1052 *
1053 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1054 * If device supports VLAN filtering this function is called when a
1055 * VLAN id is registered.
1056 *
1057 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058 * If device supports VLAN filtering this function is called when a
1059 * VLAN id is unregistered.
1060 *
1061 * void (*ndo_poll_controller)(struct net_device *dev);
1062 *
1063 * SR-IOV management functions.
1064 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1065 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1066 * u8 qos, __be16 proto);
1067 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1068 * int max_tx_rate);
1069 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1070 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1071 * int (*ndo_get_vf_config)(struct net_device *dev,
1072 * int vf, struct ifla_vf_info *ivf);
1073 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1074 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1075 * struct nlattr *port[]);
1076 *
1077 * Enable or disable the VF ability to query its RSS Redirection Table and
1078 * Hash Key. This is needed since on some devices VF share this information
1079 * with PF and querying it may introduce a theoretical security risk.
1080 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1081 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1082 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1083 * void *type_data);
1084 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1085 * This is always called from the stack with the rtnl lock held and netif
1086 * tx queues stopped. This allows the netdevice to perform queue
1087 * management safely.
1088 *
1089 * Fiber Channel over Ethernet (FCoE) offload functions.
1090 * int (*ndo_fcoe_enable)(struct net_device *dev);
1091 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1092 * so the underlying device can perform whatever needed configuration or
1093 * initialization to support acceleration of FCoE traffic.
1094 *
1095 * int (*ndo_fcoe_disable)(struct net_device *dev);
1096 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1097 * so the underlying device can perform whatever needed clean-ups to
1098 * stop supporting acceleration of FCoE traffic.
1099 *
1100 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1101 * struct scatterlist *sgl, unsigned int sgc);
1102 * Called when the FCoE Initiator wants to initialize an I/O that
1103 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1104 * perform necessary setup and returns 1 to indicate the device is set up
1105 * successfully to perform DDP on this I/O, otherwise this returns 0.
1106 *
1107 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1108 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1109 * indicated by the FC exchange id 'xid', so the underlying device can
1110 * clean up and reuse resources for later DDP requests.
1111 *
1112 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1113 * struct scatterlist *sgl, unsigned int sgc);
1114 * Called when the FCoE Target wants to initialize an I/O that
1115 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1116 * perform necessary setup and returns 1 to indicate the device is set up
1117 * successfully to perform DDP on this I/O, otherwise this returns 0.
1118 *
1119 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1120 * struct netdev_fcoe_hbainfo *hbainfo);
1121 * Called when the FCoE Protocol stack wants information on the underlying
1122 * device. This information is utilized by the FCoE protocol stack to
1123 * register attributes with Fiber Channel management service as per the
1124 * FC-GS Fabric Device Management Information(FDMI) specification.
1125 *
1126 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1127 * Called when the underlying device wants to override default World Wide
1128 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1129 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1130 * protocol stack to use.
1131 *
1132 * RFS acceleration.
1133 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1134 * u16 rxq_index, u32 flow_id);
1135 * Set hardware filter for RFS. rxq_index is the target queue index;
1136 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1137 * Return the filter ID on success, or a negative error code.
1138 *
1139 * Slave management functions (for bridge, bonding, etc).
1140 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1141 * Called to make another netdev an underling.
1142 *
1143 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1144 * Called to release previously enslaved netdev.
1145 *
1146 * Feature/offload setting functions.
1147 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1148 * netdev_features_t features);
1149 * Adjusts the requested feature flags according to device-specific
1150 * constraints, and returns the resulting flags. Must not modify
1151 * the device state.
1152 *
1153 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1154 * Called to update device configuration to new features. Passed
1155 * feature set might be less than what was returned by ndo_fix_features()).
1156 * Must return >0 or -errno if it changed dev->features itself.
1157 *
1158 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1159 * struct net_device *dev,
1160 * const unsigned char *addr, u16 vid, u16 flags,
1161 * struct netlink_ext_ack *extack);
1162 * Adds an FDB entry to dev for addr.
1163 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1164 * struct net_device *dev,
1165 * const unsigned char *addr, u16 vid)
1166 * Deletes the FDB entry from dev coresponding to addr.
1167 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1168 * struct net_device *dev, struct net_device *filter_dev,
1169 * int *idx)
1170 * Used to add FDB entries to dump requests. Implementers should add
1171 * entries to skb and update idx with the number of entries.
1172 *
1173 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1174 * u16 flags, struct netlink_ext_ack *extack)
1175 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1176 * struct net_device *dev, u32 filter_mask,
1177 * int nlflags)
1178 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1179 * u16 flags);
1180 *
1181 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1182 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1183 * which do not represent real hardware may define this to allow their
1184 * userspace components to manage their virtual carrier state. Devices
1185 * that determine carrier state from physical hardware properties (eg
1186 * network cables) or protocol-dependent mechanisms (eg
1187 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1188 *
1189 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1190 * struct netdev_phys_item_id *ppid);
1191 * Called to get ID of physical port of this device. If driver does
1192 * not implement this, it is assumed that the hw is not able to have
1193 * multiple net devices on single physical port.
1194 *
1195 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1196 * struct netdev_phys_item_id *ppid)
1197 * Called to get the parent ID of the physical port of this device.
1198 *
1199 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1200 * struct udp_tunnel_info *ti);
1201 * Called by UDP tunnel to notify a driver about the UDP port and socket
1202 * address family that a UDP tunnel is listnening to. It is called only
1203 * when a new port starts listening. The operation is protected by the
1204 * RTNL.
1205 *
1206 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1207 * struct udp_tunnel_info *ti);
1208 * Called by UDP tunnel to notify the driver about a UDP port and socket
1209 * address family that the UDP tunnel is not listening to anymore. The
1210 * operation is protected by the RTNL.
1211 *
1212 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213 * struct net_device *dev)
1214 * Called by upper layer devices to accelerate switching or other
1215 * station functionality into hardware. 'pdev is the lowerdev
1216 * to use for the offload and 'dev' is the net device that will
1217 * back the offload. Returns a pointer to the private structure
1218 * the upper layer will maintain.
1219 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1220 * Called by upper layer device to delete the station created
1221 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1222 * the station and priv is the structure returned by the add
1223 * operation.
1224 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225 * int queue_index, u32 maxrate);
1226 * Called when a user wants to set a max-rate limitation of specific
1227 * TX queue.
1228 * int (*ndo_get_iflink)(const struct net_device *dev);
1229 * Called to get the iflink value of this device.
1230 * void (*ndo_change_proto_down)(struct net_device *dev,
1231 * bool proto_down);
1232 * This function is used to pass protocol port error state information
1233 * to the switch driver. The switch driver can react to the proto_down
1234 * by doing a phys down on the associated switch port.
1235 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1236 * This function is used to get egress tunnel information for given skb.
1237 * This is useful for retrieving outer tunnel header parameters while
1238 * sampling packet.
1239 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1240 * This function is used to specify the headroom that the skb must
1241 * consider when allocation skb during packet reception. Setting
1242 * appropriate rx headroom value allows avoiding skb head copy on
1243 * forward. Setting a negative value resets the rx headroom to the
1244 * default value.
1245 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1246 * This function is used to set or query state related to XDP on the
1247 * netdevice and manage BPF offload. See definition of
1248 * enum bpf_netdev_command for details.
1249 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1250 * u32 flags);
1251 * This function is used to submit @n XDP packets for transmit on a
1252 * netdevice. Returns number of frames successfully transmitted, frames
1253 * that got dropped are freed/returned via xdp_return_frame().
1254 * Returns negative number, means general error invoking ndo, meaning
1255 * no frames were xmit'ed and core-caller will free all frames.
1256 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1257 * This function is used to wake up the softirq, ksoftirqd or kthread
1258 * responsible for sending and/or receiving packets on a specific
1259 * queue id bound to an AF_XDP socket. The flags field specifies if
1260 * only RX, only Tx, or both should be woken up using the flags
1261 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1262 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1263 * Get devlink port instance associated with a given netdev.
1264 * Called with a reference on the netdevice and devlink locks only,
1265 * rtnl_lock is not held.
1266 */
1267struct net_device_ops {
1268 int (*ndo_init)(struct net_device *dev);
1269 void (*ndo_uninit)(struct net_device *dev);
1270 int (*ndo_open)(struct net_device *dev);
1271 int (*ndo_stop)(struct net_device *dev);
1272 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1273 struct net_device *dev);
1274 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1275 struct net_device *dev,
1276 netdev_features_t features);
1277 u16 (*ndo_select_queue)(struct net_device *dev,
1278 struct sk_buff *skb,
1279 struct net_device *sb_dev);
1280 void (*ndo_change_rx_flags)(struct net_device *dev,
1281 int flags);
1282 void (*ndo_set_rx_mode)(struct net_device *dev);
1283 int (*ndo_set_mac_address)(struct net_device *dev,
1284 void *addr);
1285 int (*ndo_validate_addr)(struct net_device *dev);
1286 int (*ndo_do_ioctl)(struct net_device *dev,
1287 struct ifreq *ifr, int cmd);
1288 int (*ndo_set_config)(struct net_device *dev,
1289 struct ifmap *map);
1290 int (*ndo_change_mtu)(struct net_device *dev,
1291 int new_mtu);
1292 int (*ndo_neigh_setup)(struct net_device *dev,
1293 struct neigh_parms *);
1294 void (*ndo_tx_timeout) (struct net_device *dev,
1295 unsigned int txqueue);
1296
1297 void (*ndo_get_stats64)(struct net_device *dev,
1298 struct rtnl_link_stats64 *storage);
1299 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1300 int (*ndo_get_offload_stats)(int attr_id,
1301 const struct net_device *dev,
1302 void *attr_data);
1303 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1304
1305 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1306 __be16 proto, u16 vid);
1307 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1308 __be16 proto, u16 vid);
1309#ifdef CONFIG_NET_POLL_CONTROLLER
1310 void (*ndo_poll_controller)(struct net_device *dev);
1311 int (*ndo_netpoll_setup)(struct net_device *dev,
1312 struct netpoll_info *info);
1313 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1314#endif
1315 int (*ndo_set_vf_mac)(struct net_device *dev,
1316 int queue, u8 *mac);
1317 int (*ndo_set_vf_vlan)(struct net_device *dev,
1318 int queue, u16 vlan,
1319 u8 qos, __be16 proto);
1320 int (*ndo_set_vf_rate)(struct net_device *dev,
1321 int vf, int min_tx_rate,
1322 int max_tx_rate);
1323 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1324 int vf, bool setting);
1325 int (*ndo_set_vf_trust)(struct net_device *dev,
1326 int vf, bool setting);
1327 int (*ndo_get_vf_config)(struct net_device *dev,
1328 int vf,
1329 struct ifla_vf_info *ivf);
1330 int (*ndo_set_vf_link_state)(struct net_device *dev,
1331 int vf, int link_state);
1332 int (*ndo_get_vf_stats)(struct net_device *dev,
1333 int vf,
1334 struct ifla_vf_stats
1335 *vf_stats);
1336 int (*ndo_set_vf_port)(struct net_device *dev,
1337 int vf,
1338 struct nlattr *port[]);
1339 int (*ndo_get_vf_port)(struct net_device *dev,
1340 int vf, struct sk_buff *skb);
1341 int (*ndo_get_vf_guid)(struct net_device *dev,
1342 int vf,
1343 struct ifla_vf_guid *node_guid,
1344 struct ifla_vf_guid *port_guid);
1345 int (*ndo_set_vf_guid)(struct net_device *dev,
1346 int vf, u64 guid,
1347 int guid_type);
1348 int (*ndo_set_vf_rss_query_en)(
1349 struct net_device *dev,
1350 int vf, bool setting);
1351 int (*ndo_setup_tc)(struct net_device *dev,
1352 enum tc_setup_type type,
1353 void *type_data);
1354#if IS_ENABLED(CONFIG_FCOE)
1355 int (*ndo_fcoe_enable)(struct net_device *dev);
1356 int (*ndo_fcoe_disable)(struct net_device *dev);
1357 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1358 u16 xid,
1359 struct scatterlist *sgl,
1360 unsigned int sgc);
1361 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1362 u16 xid);
1363 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1364 u16 xid,
1365 struct scatterlist *sgl,
1366 unsigned int sgc);
1367 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1368 struct netdev_fcoe_hbainfo *hbainfo);
1369#endif
1370
1371#if IS_ENABLED(CONFIG_LIBFCOE)
1372#define NETDEV_FCOE_WWNN 0
1373#define NETDEV_FCOE_WWPN 1
1374 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1375 u64 *wwn, int type);
1376#endif
1377
1378#ifdef CONFIG_RFS_ACCEL
1379 int (*ndo_rx_flow_steer)(struct net_device *dev,
1380 const struct sk_buff *skb,
1381 u16 rxq_index,
1382 u32 flow_id);
1383#endif
1384 int (*ndo_add_slave)(struct net_device *dev,
1385 struct net_device *slave_dev,
1386 struct netlink_ext_ack *extack);
1387 int (*ndo_del_slave)(struct net_device *dev,
1388 struct net_device *slave_dev);
1389 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1390 netdev_features_t features);
1391 int (*ndo_set_features)(struct net_device *dev,
1392 netdev_features_t features);
1393 int (*ndo_neigh_construct)(struct net_device *dev,
1394 struct neighbour *n);
1395 void (*ndo_neigh_destroy)(struct net_device *dev,
1396 struct neighbour *n);
1397
1398 int (*ndo_fdb_add)(struct ndmsg *ndm,
1399 struct nlattr *tb[],
1400 struct net_device *dev,
1401 const unsigned char *addr,
1402 u16 vid,
1403 u16 flags,
1404 struct netlink_ext_ack *extack);
1405 int (*ndo_fdb_del)(struct ndmsg *ndm,
1406 struct nlattr *tb[],
1407 struct net_device *dev,
1408 const unsigned char *addr,
1409 u16 vid);
1410 int (*ndo_fdb_dump)(struct sk_buff *skb,
1411 struct netlink_callback *cb,
1412 struct net_device *dev,
1413 struct net_device *filter_dev,
1414 int *idx);
1415 int (*ndo_fdb_get)(struct sk_buff *skb,
1416 struct nlattr *tb[],
1417 struct net_device *dev,
1418 const unsigned char *addr,
1419 u16 vid, u32 portid, u32 seq,
1420 struct netlink_ext_ack *extack);
1421 int (*ndo_bridge_setlink)(struct net_device *dev,
1422 struct nlmsghdr *nlh,
1423 u16 flags,
1424 struct netlink_ext_ack *extack);
1425 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1426 u32 pid, u32 seq,
1427 struct net_device *dev,
1428 u32 filter_mask,
1429 int nlflags);
1430 int (*ndo_bridge_dellink)(struct net_device *dev,
1431 struct nlmsghdr *nlh,
1432 u16 flags);
1433 int (*ndo_change_carrier)(struct net_device *dev,
1434 bool new_carrier);
1435 int (*ndo_get_phys_port_id)(struct net_device *dev,
1436 struct netdev_phys_item_id *ppid);
1437 int (*ndo_get_port_parent_id)(struct net_device *dev,
1438 struct netdev_phys_item_id *ppid);
1439 int (*ndo_get_phys_port_name)(struct net_device *dev,
1440 char *name, size_t len);
1441 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1442 struct udp_tunnel_info *ti);
1443 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1444 struct udp_tunnel_info *ti);
1445 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1446 struct net_device *dev);
1447 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1448 void *priv);
1449
1450 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1451 int queue_index,
1452 u32 maxrate);
1453 int (*ndo_get_iflink)(const struct net_device *dev);
1454 int (*ndo_change_proto_down)(struct net_device *dev,
1455 bool proto_down);
1456 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1457 struct sk_buff *skb);
1458 void (*ndo_set_rx_headroom)(struct net_device *dev,
1459 int needed_headroom);
1460 int (*ndo_bpf)(struct net_device *dev,
1461 struct netdev_bpf *bpf);
1462 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1463 struct xdp_frame **xdp,
1464 u32 flags);
1465 int (*ndo_xsk_wakeup)(struct net_device *dev,
1466 u32 queue_id, u32 flags);
1467 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1468};
1469
1470/**
1471 * enum net_device_priv_flags - &struct net_device priv_flags
1472 *
1473 * These are the &struct net_device, they are only set internally
1474 * by drivers and used in the kernel. These flags are invisible to
1475 * userspace; this means that the order of these flags can change
1476 * during any kernel release.
1477 *
1478 * You should have a pretty good reason to be extending these flags.
1479 *
1480 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1481 * @IFF_EBRIDGE: Ethernet bridging device
1482 * @IFF_BONDING: bonding master or slave
1483 * @IFF_ISATAP: ISATAP interface (RFC4214)
1484 * @IFF_WAN_HDLC: WAN HDLC device
1485 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1486 * release skb->dst
1487 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1488 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1489 * @IFF_MACVLAN_PORT: device used as macvlan port
1490 * @IFF_BRIDGE_PORT: device used as bridge port
1491 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1492 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1493 * @IFF_UNICAST_FLT: Supports unicast filtering
1494 * @IFF_TEAM_PORT: device used as team port
1495 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1496 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1497 * change when it's running
1498 * @IFF_MACVLAN: Macvlan device
1499 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1500 * underlying stacked devices
1501 * @IFF_L3MDEV_MASTER: device is an L3 master device
1502 * @IFF_NO_QUEUE: device can run without qdisc attached
1503 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1504 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1505 * @IFF_TEAM: device is a team device
1506 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1507 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1508 * entity (i.e. the master device for bridged veth)
1509 * @IFF_MACSEC: device is a MACsec device
1510 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1511 * @IFF_FAILOVER: device is a failover master device
1512 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1513 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1514 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1515 */
1516enum netdev_priv_flags {
1517 IFF_802_1Q_VLAN = 1<<0,
1518 IFF_EBRIDGE = 1<<1,
1519 IFF_BONDING = 1<<2,
1520 IFF_ISATAP = 1<<3,
1521 IFF_WAN_HDLC = 1<<4,
1522 IFF_XMIT_DST_RELEASE = 1<<5,
1523 IFF_DONT_BRIDGE = 1<<6,
1524 IFF_DISABLE_NETPOLL = 1<<7,
1525 IFF_MACVLAN_PORT = 1<<8,
1526 IFF_BRIDGE_PORT = 1<<9,
1527 IFF_OVS_DATAPATH = 1<<10,
1528 IFF_TX_SKB_SHARING = 1<<11,
1529 IFF_UNICAST_FLT = 1<<12,
1530 IFF_TEAM_PORT = 1<<13,
1531 IFF_SUPP_NOFCS = 1<<14,
1532 IFF_LIVE_ADDR_CHANGE = 1<<15,
1533 IFF_MACVLAN = 1<<16,
1534 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1535 IFF_L3MDEV_MASTER = 1<<18,
1536 IFF_NO_QUEUE = 1<<19,
1537 IFF_OPENVSWITCH = 1<<20,
1538 IFF_L3MDEV_SLAVE = 1<<21,
1539 IFF_TEAM = 1<<22,
1540 IFF_RXFH_CONFIGURED = 1<<23,
1541 IFF_PHONY_HEADROOM = 1<<24,
1542 IFF_MACSEC = 1<<25,
1543 IFF_NO_RX_HANDLER = 1<<26,
1544 IFF_FAILOVER = 1<<27,
1545 IFF_FAILOVER_SLAVE = 1<<28,
1546 IFF_L3MDEV_RX_HANDLER = 1<<29,
1547 IFF_LIVE_RENAME_OK = 1<<30,
1548};
1549
1550#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1551#define IFF_EBRIDGE IFF_EBRIDGE
1552#define IFF_BONDING IFF_BONDING
1553#define IFF_ISATAP IFF_ISATAP
1554#define IFF_WAN_HDLC IFF_WAN_HDLC
1555#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1556#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1557#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1558#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1559#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1560#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1561#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1562#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1563#define IFF_TEAM_PORT IFF_TEAM_PORT
1564#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1565#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1566#define IFF_MACVLAN IFF_MACVLAN
1567#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1568#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1569#define IFF_NO_QUEUE IFF_NO_QUEUE
1570#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1571#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1572#define IFF_TEAM IFF_TEAM
1573#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1574#define IFF_MACSEC IFF_MACSEC
1575#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1576#define IFF_FAILOVER IFF_FAILOVER
1577#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1578#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1579#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1580
1581/**
1582 * struct net_device - The DEVICE structure.
1583 *
1584 * Actually, this whole structure is a big mistake. It mixes I/O
1585 * data with strictly "high-level" data, and it has to know about
1586 * almost every data structure used in the INET module.
1587 *
1588 * @name: This is the first field of the "visible" part of this structure
1589 * (i.e. as seen by users in the "Space.c" file). It is the name
1590 * of the interface.
1591 *
1592 * @name_node: Name hashlist node
1593 * @ifalias: SNMP alias
1594 * @mem_end: Shared memory end
1595 * @mem_start: Shared memory start
1596 * @base_addr: Device I/O address
1597 * @irq: Device IRQ number
1598 *
1599 * @state: Generic network queuing layer state, see netdev_state_t
1600 * @dev_list: The global list of network devices
1601 * @napi_list: List entry used for polling NAPI devices
1602 * @unreg_list: List entry when we are unregistering the
1603 * device; see the function unregister_netdev
1604 * @close_list: List entry used when we are closing the device
1605 * @ptype_all: Device-specific packet handlers for all protocols
1606 * @ptype_specific: Device-specific, protocol-specific packet handlers
1607 *
1608 * @adj_list: Directly linked devices, like slaves for bonding
1609 * @features: Currently active device features
1610 * @hw_features: User-changeable features
1611 *
1612 * @wanted_features: User-requested features
1613 * @vlan_features: Mask of features inheritable by VLAN devices
1614 *
1615 * @hw_enc_features: Mask of features inherited by encapsulating devices
1616 * This field indicates what encapsulation
1617 * offloads the hardware is capable of doing,
1618 * and drivers will need to set them appropriately.
1619 *
1620 * @mpls_features: Mask of features inheritable by MPLS
1621 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1622 *
1623 * @ifindex: interface index
1624 * @group: The group the device belongs to
1625 *
1626 * @stats: Statistics struct, which was left as a legacy, use
1627 * rtnl_link_stats64 instead
1628 *
1629 * @rx_dropped: Dropped packets by core network,
1630 * do not use this in drivers
1631 * @tx_dropped: Dropped packets by core network,
1632 * do not use this in drivers
1633 * @rx_nohandler: nohandler dropped packets by core network on
1634 * inactive devices, do not use this in drivers
1635 * @carrier_up_count: Number of times the carrier has been up
1636 * @carrier_down_count: Number of times the carrier has been down
1637 *
1638 * @wireless_handlers: List of functions to handle Wireless Extensions,
1639 * instead of ioctl,
1640 * see <net/iw_handler.h> for details.
1641 * @wireless_data: Instance data managed by the core of wireless extensions
1642 *
1643 * @netdev_ops: Includes several pointers to callbacks,
1644 * if one wants to override the ndo_*() functions
1645 * @ethtool_ops: Management operations
1646 * @l3mdev_ops: Layer 3 master device operations
1647 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1648 * discovery handling. Necessary for e.g. 6LoWPAN.
1649 * @xfrmdev_ops: Transformation offload operations
1650 * @tlsdev_ops: Transport Layer Security offload operations
1651 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1652 * of Layer 2 headers.
1653 *
1654 * @flags: Interface flags (a la BSD)
1655 * @priv_flags: Like 'flags' but invisible to userspace,
1656 * see if.h for the definitions
1657 * @gflags: Global flags ( kept as legacy )
1658 * @padded: How much padding added by alloc_netdev()
1659 * @operstate: RFC2863 operstate
1660 * @link_mode: Mapping policy to operstate
1661 * @if_port: Selectable AUI, TP, ...
1662 * @dma: DMA channel
1663 * @mtu: Interface MTU value
1664 * @min_mtu: Interface Minimum MTU value
1665 * @max_mtu: Interface Maximum MTU value
1666 * @type: Interface hardware type
1667 * @hard_header_len: Maximum hardware header length.
1668 * @min_header_len: Minimum hardware header length
1669 *
1670 * @needed_headroom: Extra headroom the hardware may need, but not in all
1671 * cases can this be guaranteed
1672 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1673 * cases can this be guaranteed. Some cases also use
1674 * LL_MAX_HEADER instead to allocate the skb
1675 *
1676 * interface address info:
1677 *
1678 * @perm_addr: Permanent hw address
1679 * @addr_assign_type: Hw address assignment type
1680 * @addr_len: Hardware address length
1681 * @upper_level: Maximum depth level of upper devices.
1682 * @lower_level: Maximum depth level of lower devices.
1683 * @neigh_priv_len: Used in neigh_alloc()
1684 * @dev_id: Used to differentiate devices that share
1685 * the same link layer address
1686 * @dev_port: Used to differentiate devices that share
1687 * the same function
1688 * @addr_list_lock: XXX: need comments on this one
1689 * @name_assign_type: network interface name assignment type
1690 * @uc_promisc: Counter that indicates promiscuous mode
1691 * has been enabled due to the need to listen to
1692 * additional unicast addresses in a device that
1693 * does not implement ndo_set_rx_mode()
1694 * @uc: unicast mac addresses
1695 * @mc: multicast mac addresses
1696 * @dev_addrs: list of device hw addresses
1697 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1698 * @promiscuity: Number of times the NIC is told to work in
1699 * promiscuous mode; if it becomes 0 the NIC will
1700 * exit promiscuous mode
1701 * @allmulti: Counter, enables or disables allmulticast mode
1702 *
1703 * @vlan_info: VLAN info
1704 * @dsa_ptr: dsa specific data
1705 * @tipc_ptr: TIPC specific data
1706 * @atalk_ptr: AppleTalk link
1707 * @ip_ptr: IPv4 specific data
1708 * @dn_ptr: DECnet specific data
1709 * @ip6_ptr: IPv6 specific data
1710 * @ax25_ptr: AX.25 specific data
1711 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1712 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1713 * device struct
1714 * @mpls_ptr: mpls_dev struct pointer
1715 *
1716 * @dev_addr: Hw address (before bcast,
1717 * because most packets are unicast)
1718 *
1719 * @_rx: Array of RX queues
1720 * @num_rx_queues: Number of RX queues
1721 * allocated at register_netdev() time
1722 * @real_num_rx_queues: Number of RX queues currently active in device
1723 * @xdp_prog: XDP sockets filter program pointer
1724 * @gro_flush_timeout: timeout for GRO layer in NAPI
1725 *
1726 * @rx_handler: handler for received packets
1727 * @rx_handler_data: XXX: need comments on this one
1728 * @miniq_ingress: ingress/clsact qdisc specific data for
1729 * ingress processing
1730 * @ingress_queue: XXX: need comments on this one
1731 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1732 * @broadcast: hw bcast address
1733 *
1734 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1735 * indexed by RX queue number. Assigned by driver.
1736 * This must only be set if the ndo_rx_flow_steer
1737 * operation is defined
1738 * @index_hlist: Device index hash chain
1739 *
1740 * @_tx: Array of TX queues
1741 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1742 * @real_num_tx_queues: Number of TX queues currently active in device
1743 * @qdisc: Root qdisc from userspace point of view
1744 * @tx_queue_len: Max frames per queue allowed
1745 * @tx_global_lock: XXX: need comments on this one
1746 * @xdp_bulkq: XDP device bulk queue
1747 * @xps_cpus_map: all CPUs map for XPS device
1748 * @xps_rxqs_map: all RXQs map for XPS device
1749 *
1750 * @xps_maps: XXX: need comments on this one
1751 * @miniq_egress: clsact qdisc specific data for
1752 * egress processing
1753 * @qdisc_hash: qdisc hash table
1754 * @watchdog_timeo: Represents the timeout that is used by
1755 * the watchdog (see dev_watchdog())
1756 * @watchdog_timer: List of timers
1757 *
1758 * @pcpu_refcnt: Number of references to this device
1759 * @todo_list: Delayed register/unregister
1760 * @link_watch_list: XXX: need comments on this one
1761 *
1762 * @reg_state: Register/unregister state machine
1763 * @dismantle: Device is going to be freed
1764 * @rtnl_link_state: This enum represents the phases of creating
1765 * a new link
1766 *
1767 * @needs_free_netdev: Should unregister perform free_netdev?
1768 * @priv_destructor: Called from unregister
1769 * @npinfo: XXX: need comments on this one
1770 * @nd_net: Network namespace this network device is inside
1771 *
1772 * @ml_priv: Mid-layer private
1773 * @lstats: Loopback statistics
1774 * @tstats: Tunnel statistics
1775 * @dstats: Dummy statistics
1776 * @vstats: Virtual ethernet statistics
1777 *
1778 * @garp_port: GARP
1779 * @mrp_port: MRP
1780 *
1781 * @dev: Class/net/name entry
1782 * @sysfs_groups: Space for optional device, statistics and wireless
1783 * sysfs groups
1784 *
1785 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1786 * @rtnl_link_ops: Rtnl_link_ops
1787 *
1788 * @gso_max_size: Maximum size of generic segmentation offload
1789 * @gso_max_segs: Maximum number of segments that can be passed to the
1790 * NIC for GSO
1791 *
1792 * @dcbnl_ops: Data Center Bridging netlink ops
1793 * @num_tc: Number of traffic classes in the net device
1794 * @tc_to_txq: XXX: need comments on this one
1795 * @prio_tc_map: XXX: need comments on this one
1796 *
1797 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1798 *
1799 * @priomap: XXX: need comments on this one
1800 * @phydev: Physical device may attach itself
1801 * for hardware timestamping
1802 * @sfp_bus: attached &struct sfp_bus structure.
1803 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1804 * spinlock
1805 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1806 * @qdisc_xmit_lock_key: lockdep class annotating
1807 * netdev_queue->_xmit_lock spinlock
1808 * @addr_list_lock_key: lockdep class annotating
1809 * net_device->addr_list_lock spinlock
1810 *
1811 * @proto_down: protocol port state information can be sent to the
1812 * switch driver and used to set the phys state of the
1813 * switch port.
1814 *
1815 * @wol_enabled: Wake-on-LAN is enabled
1816 *
1817 * @net_notifier_list: List of per-net netdev notifier block
1818 * that follow this device when it is moved
1819 * to another network namespace.
1820 *
1821 * FIXME: cleanup struct net_device such that network protocol info
1822 * moves out.
1823 */
1824
1825struct net_device {
1826 char name[IFNAMSIZ];
1827 struct netdev_name_node *name_node;
1828 struct dev_ifalias __rcu *ifalias;
1829 /*
1830 * I/O specific fields
1831 * FIXME: Merge these and struct ifmap into one
1832 */
1833 unsigned long mem_end;
1834 unsigned long mem_start;
1835 unsigned long base_addr;
1836 int irq;
1837
1838 /*
1839 * Some hardware also needs these fields (state,dev_list,
1840 * napi_list,unreg_list,close_list) but they are not
1841 * part of the usual set specified in Space.c.
1842 */
1843
1844 unsigned long state;
1845
1846 struct list_head dev_list;
1847 struct list_head napi_list;
1848 struct list_head unreg_list;
1849 struct list_head close_list;
1850 struct list_head ptype_all;
1851 struct list_head ptype_specific;
1852
1853 struct {
1854 struct list_head upper;
1855 struct list_head lower;
1856 } adj_list;
1857
1858 netdev_features_t features;
1859 netdev_features_t hw_features;
1860 netdev_features_t wanted_features;
1861 netdev_features_t vlan_features;
1862 netdev_features_t hw_enc_features;
1863 netdev_features_t mpls_features;
1864 netdev_features_t gso_partial_features;
1865
1866 int ifindex;
1867 int group;
1868
1869 struct net_device_stats stats;
1870
1871 atomic_long_t rx_dropped;
1872 atomic_long_t tx_dropped;
1873 atomic_long_t rx_nohandler;
1874
1875 /* Stats to monitor link on/off, flapping */
1876 atomic_t carrier_up_count;
1877 atomic_t carrier_down_count;
1878
1879#ifdef CONFIG_WIRELESS_EXT
1880 const struct iw_handler_def *wireless_handlers;
1881 struct iw_public_data *wireless_data;
1882#endif
1883 const struct net_device_ops *netdev_ops;
1884 const struct ethtool_ops *ethtool_ops;
1885#ifdef CONFIG_NET_L3_MASTER_DEV
1886 const struct l3mdev_ops *l3mdev_ops;
1887#endif
1888#if IS_ENABLED(CONFIG_IPV6)
1889 const struct ndisc_ops *ndisc_ops;
1890#endif
1891
1892#ifdef CONFIG_XFRM_OFFLOAD
1893 const struct xfrmdev_ops *xfrmdev_ops;
1894#endif
1895
1896#if IS_ENABLED(CONFIG_TLS_DEVICE)
1897 const struct tlsdev_ops *tlsdev_ops;
1898#endif
1899
1900 const struct header_ops *header_ops;
1901
1902 unsigned int flags;
1903 unsigned int priv_flags;
1904
1905 unsigned short gflags;
1906 unsigned short padded;
1907
1908 unsigned char operstate;
1909 unsigned char link_mode;
1910
1911 unsigned char if_port;
1912 unsigned char dma;
1913
1914 /* Note : dev->mtu is often read without holding a lock.
1915 * Writers usually hold RTNL.
1916 * It is recommended to use READ_ONCE() to annotate the reads,
1917 * and to use WRITE_ONCE() to annotate the writes.
1918 */
1919 unsigned int mtu;
1920 unsigned int min_mtu;
1921 unsigned int max_mtu;
1922 unsigned short type;
1923 unsigned short hard_header_len;
1924 unsigned char min_header_len;
1925
1926 unsigned short needed_headroom;
1927 unsigned short needed_tailroom;
1928
1929 /* Interface address info. */
1930 unsigned char perm_addr[MAX_ADDR_LEN];
1931 unsigned char addr_assign_type;
1932 unsigned char addr_len;
1933 unsigned char upper_level;
1934 unsigned char lower_level;
1935 unsigned short neigh_priv_len;
1936 unsigned short dev_id;
1937 unsigned short dev_port;
1938 spinlock_t addr_list_lock;
1939 unsigned char name_assign_type;
1940 bool uc_promisc;
1941 struct netdev_hw_addr_list uc;
1942 struct netdev_hw_addr_list mc;
1943 struct netdev_hw_addr_list dev_addrs;
1944
1945#ifdef CONFIG_SYSFS
1946 struct kset *queues_kset;
1947#endif
1948 unsigned int promiscuity;
1949 unsigned int allmulti;
1950
1951
1952 /* Protocol-specific pointers */
1953
1954#if IS_ENABLED(CONFIG_VLAN_8021Q)
1955 struct vlan_info __rcu *vlan_info;
1956#endif
1957#if IS_ENABLED(CONFIG_NET_DSA)
1958 struct dsa_port *dsa_ptr;
1959#endif
1960#if IS_ENABLED(CONFIG_TIPC)
1961 struct tipc_bearer __rcu *tipc_ptr;
1962#endif
1963#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1964 void *atalk_ptr;
1965#endif
1966 struct in_device __rcu *ip_ptr;
1967#if IS_ENABLED(CONFIG_DECNET)
1968 struct dn_dev __rcu *dn_ptr;
1969#endif
1970 struct inet6_dev __rcu *ip6_ptr;
1971#if IS_ENABLED(CONFIG_AX25)
1972 void *ax25_ptr;
1973#endif
1974 struct wireless_dev *ieee80211_ptr;
1975 struct wpan_dev *ieee802154_ptr;
1976#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1977 struct mpls_dev __rcu *mpls_ptr;
1978#endif
1979
1980/*
1981 * Cache lines mostly used on receive path (including eth_type_trans())
1982 */
1983 /* Interface address info used in eth_type_trans() */
1984 unsigned char *dev_addr;
1985
1986 struct netdev_rx_queue *_rx;
1987 unsigned int num_rx_queues;
1988 unsigned int real_num_rx_queues;
1989
1990 struct bpf_prog __rcu *xdp_prog;
1991 unsigned long gro_flush_timeout;
1992 rx_handler_func_t __rcu *rx_handler;
1993 void __rcu *rx_handler_data;
1994
1995#ifdef CONFIG_NET_CLS_ACT
1996 struct mini_Qdisc __rcu *miniq_ingress;
1997#endif
1998 struct netdev_queue __rcu *ingress_queue;
1999#ifdef CONFIG_NETFILTER_INGRESS
2000 struct nf_hook_entries __rcu *nf_hooks_ingress;
2001#endif
2002
2003 unsigned char broadcast[MAX_ADDR_LEN];
2004#ifdef CONFIG_RFS_ACCEL
2005 struct cpu_rmap *rx_cpu_rmap;
2006#endif
2007 struct hlist_node index_hlist;
2008
2009/*
2010 * Cache lines mostly used on transmit path
2011 */
2012 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2013 unsigned int num_tx_queues;
2014 unsigned int real_num_tx_queues;
2015 struct Qdisc *qdisc;
2016 unsigned int tx_queue_len;
2017 spinlock_t tx_global_lock;
2018
2019 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2020
2021#ifdef CONFIG_XPS
2022 struct xps_dev_maps __rcu *xps_cpus_map;
2023 struct xps_dev_maps __rcu *xps_rxqs_map;
2024#endif
2025#ifdef CONFIG_NET_CLS_ACT
2026 struct mini_Qdisc __rcu *miniq_egress;
2027#endif
2028
2029#ifdef CONFIG_NET_SCHED
2030 DECLARE_HASHTABLE (qdisc_hash, 4);
2031#endif
2032 /* These may be needed for future network-power-down code. */
2033 struct timer_list watchdog_timer;
2034 int watchdog_timeo;
2035
2036 struct list_head todo_list;
2037 int __percpu *pcpu_refcnt;
2038
2039 struct list_head link_watch_list;
2040
2041 enum { NETREG_UNINITIALIZED=0,
2042 NETREG_REGISTERED, /* completed register_netdevice */
2043 NETREG_UNREGISTERING, /* called unregister_netdevice */
2044 NETREG_UNREGISTERED, /* completed unregister todo */
2045 NETREG_RELEASED, /* called free_netdev */
2046 NETREG_DUMMY, /* dummy device for NAPI poll */
2047 } reg_state:8;
2048
2049 bool dismantle;
2050
2051 enum {
2052 RTNL_LINK_INITIALIZED,
2053 RTNL_LINK_INITIALIZING,
2054 } rtnl_link_state:16;
2055
2056 bool needs_free_netdev;
2057 void (*priv_destructor)(struct net_device *dev);
2058
2059#ifdef CONFIG_NETPOLL
2060 struct netpoll_info __rcu *npinfo;
2061#endif
2062
2063 possible_net_t nd_net;
2064
2065 /* mid-layer private */
2066 union {
2067 void *ml_priv;
2068 struct pcpu_lstats __percpu *lstats;
2069 struct pcpu_sw_netstats __percpu *tstats;
2070 struct pcpu_dstats __percpu *dstats;
2071 };
2072
2073#if IS_ENABLED(CONFIG_GARP)
2074 struct garp_port __rcu *garp_port;
2075#endif
2076#if IS_ENABLED(CONFIG_MRP)
2077 struct mrp_port __rcu *mrp_port;
2078#endif
2079
2080 struct device dev;
2081 const struct attribute_group *sysfs_groups[4];
2082 const struct attribute_group *sysfs_rx_queue_group;
2083
2084 const struct rtnl_link_ops *rtnl_link_ops;
2085
2086 /* for setting kernel sock attribute on TCP connection setup */
2087#define GSO_MAX_SIZE 65536
2088 unsigned int gso_max_size;
2089#define GSO_MAX_SEGS 65535
2090 u16 gso_max_segs;
2091
2092#ifdef CONFIG_DCB
2093 const struct dcbnl_rtnl_ops *dcbnl_ops;
2094#endif
2095 s16 num_tc;
2096 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2097 u8 prio_tc_map[TC_BITMASK + 1];
2098
2099#if IS_ENABLED(CONFIG_FCOE)
2100 unsigned int fcoe_ddp_xid;
2101#endif
2102#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2103 struct netprio_map __rcu *priomap;
2104#endif
2105 struct phy_device *phydev;
2106 struct sfp_bus *sfp_bus;
2107 struct lock_class_key qdisc_tx_busylock_key;
2108 struct lock_class_key qdisc_running_key;
2109 struct lock_class_key qdisc_xmit_lock_key;
2110 struct lock_class_key addr_list_lock_key;
2111 bool proto_down;
2112 unsigned wol_enabled:1;
2113
2114 struct list_head net_notifier_list;
2115};
2116#define to_net_dev(d) container_of(d, struct net_device, dev)
2117
2118static inline bool netif_elide_gro(const struct net_device *dev)
2119{
2120 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2121 return true;
2122 return false;
2123}
2124
2125#define NETDEV_ALIGN 32
2126
2127static inline
2128int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2129{
2130 return dev->prio_tc_map[prio & TC_BITMASK];
2131}
2132
2133static inline
2134int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2135{
2136 if (tc >= dev->num_tc)
2137 return -EINVAL;
2138
2139 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2140 return 0;
2141}
2142
2143int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2144void netdev_reset_tc(struct net_device *dev);
2145int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2146int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2147
2148static inline
2149int netdev_get_num_tc(struct net_device *dev)
2150{
2151 return dev->num_tc;
2152}
2153
2154void netdev_unbind_sb_channel(struct net_device *dev,
2155 struct net_device *sb_dev);
2156int netdev_bind_sb_channel_queue(struct net_device *dev,
2157 struct net_device *sb_dev,
2158 u8 tc, u16 count, u16 offset);
2159int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2160static inline int netdev_get_sb_channel(struct net_device *dev)
2161{
2162 return max_t(int, -dev->num_tc, 0);
2163}
2164
2165static inline
2166struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2167 unsigned int index)
2168{
2169 return &dev->_tx[index];
2170}
2171
2172static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2173 const struct sk_buff *skb)
2174{
2175 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2176}
2177
2178static inline void netdev_for_each_tx_queue(struct net_device *dev,
2179 void (*f)(struct net_device *,
2180 struct netdev_queue *,
2181 void *),
2182 void *arg)
2183{
2184 unsigned int i;
2185
2186 for (i = 0; i < dev->num_tx_queues; i++)
2187 f(dev, &dev->_tx[i], arg);
2188}
2189
2190u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2191 struct net_device *sb_dev);
2192struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2193 struct sk_buff *skb,
2194 struct net_device *sb_dev);
2195
2196/* returns the headroom that the master device needs to take in account
2197 * when forwarding to this dev
2198 */
2199static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2200{
2201 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2202}
2203
2204static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2205{
2206 if (dev->netdev_ops->ndo_set_rx_headroom)
2207 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2208}
2209
2210/* set the device rx headroom to the dev's default */
2211static inline void netdev_reset_rx_headroom(struct net_device *dev)
2212{
2213 netdev_set_rx_headroom(dev, -1);
2214}
2215
2216/*
2217 * Net namespace inlines
2218 */
2219static inline
2220struct net *dev_net(const struct net_device *dev)
2221{
2222 return read_pnet(&dev->nd_net);
2223}
2224
2225static inline
2226void dev_net_set(struct net_device *dev, struct net *net)
2227{
2228 write_pnet(&dev->nd_net, net);
2229}
2230
2231/**
2232 * netdev_priv - access network device private data
2233 * @dev: network device
2234 *
2235 * Get network device private data
2236 */
2237static inline void *netdev_priv(const struct net_device *dev)
2238{
2239 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2240}
2241
2242/* Set the sysfs physical device reference for the network logical device
2243 * if set prior to registration will cause a symlink during initialization.
2244 */
2245#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2246
2247/* Set the sysfs device type for the network logical device to allow
2248 * fine-grained identification of different network device types. For
2249 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2250 */
2251#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2252
2253/* Default NAPI poll() weight
2254 * Device drivers are strongly advised to not use bigger value
2255 */
2256#define NAPI_POLL_WEIGHT 64
2257
2258/**
2259 * netif_napi_add - initialize a NAPI context
2260 * @dev: network device
2261 * @napi: NAPI context
2262 * @poll: polling function
2263 * @weight: default weight
2264 *
2265 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2266 * *any* of the other NAPI-related functions.
2267 */
2268void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2269 int (*poll)(struct napi_struct *, int), int weight);
2270
2271/**
2272 * netif_tx_napi_add - initialize a NAPI context
2273 * @dev: network device
2274 * @napi: NAPI context
2275 * @poll: polling function
2276 * @weight: default weight
2277 *
2278 * This variant of netif_napi_add() should be used from drivers using NAPI
2279 * to exclusively poll a TX queue.
2280 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2281 */
2282static inline void netif_tx_napi_add(struct net_device *dev,
2283 struct napi_struct *napi,
2284 int (*poll)(struct napi_struct *, int),
2285 int weight)
2286{
2287 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2288 netif_napi_add(dev, napi, poll, weight);
2289}
2290
2291/**
2292 * netif_napi_del - remove a NAPI context
2293 * @napi: NAPI context
2294 *
2295 * netif_napi_del() removes a NAPI context from the network device NAPI list
2296 */
2297void netif_napi_del(struct napi_struct *napi);
2298
2299struct napi_gro_cb {
2300 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2301 void *frag0;
2302
2303 /* Length of frag0. */
2304 unsigned int frag0_len;
2305
2306 /* This indicates where we are processing relative to skb->data. */
2307 int data_offset;
2308
2309 /* This is non-zero if the packet cannot be merged with the new skb. */
2310 u16 flush;
2311
2312 /* Save the IP ID here and check when we get to the transport layer */
2313 u16 flush_id;
2314
2315 /* Number of segments aggregated. */
2316 u16 count;
2317
2318 /* Start offset for remote checksum offload */
2319 u16 gro_remcsum_start;
2320
2321 /* jiffies when first packet was created/queued */
2322 unsigned long age;
2323
2324 /* Used in ipv6_gro_receive() and foo-over-udp */
2325 u16 proto;
2326
2327 /* This is non-zero if the packet may be of the same flow. */
2328 u8 same_flow:1;
2329
2330 /* Used in tunnel GRO receive */
2331 u8 encap_mark:1;
2332
2333 /* GRO checksum is valid */
2334 u8 csum_valid:1;
2335
2336 /* Number of checksums via CHECKSUM_UNNECESSARY */
2337 u8 csum_cnt:3;
2338
2339 /* Free the skb? */
2340 u8 free:2;
2341#define NAPI_GRO_FREE 1
2342#define NAPI_GRO_FREE_STOLEN_HEAD 2
2343
2344 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2345 u8 is_ipv6:1;
2346
2347 /* Used in GRE, set in fou/gue_gro_receive */
2348 u8 is_fou:1;
2349
2350 /* Used to determine if flush_id can be ignored */
2351 u8 is_atomic:1;
2352
2353 /* Number of gro_receive callbacks this packet already went through */
2354 u8 recursion_counter:4;
2355
2356 /* GRO is done by frag_list pointer chaining. */
2357 u8 is_flist:1;
2358
2359 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2360 __wsum csum;
2361
2362 /* used in skb_gro_receive() slow path */
2363 struct sk_buff *last;
2364};
2365
2366#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2367
2368#define GRO_RECURSION_LIMIT 15
2369static inline int gro_recursion_inc_test(struct sk_buff *skb)
2370{
2371 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2372}
2373
2374typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2375static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2376 struct list_head *head,
2377 struct sk_buff *skb)
2378{
2379 if (unlikely(gro_recursion_inc_test(skb))) {
2380 NAPI_GRO_CB(skb)->flush |= 1;
2381 return NULL;
2382 }
2383
2384 return cb(head, skb);
2385}
2386
2387typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2388 struct sk_buff *);
2389static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2390 struct sock *sk,
2391 struct list_head *head,
2392 struct sk_buff *skb)
2393{
2394 if (unlikely(gro_recursion_inc_test(skb))) {
2395 NAPI_GRO_CB(skb)->flush |= 1;
2396 return NULL;
2397 }
2398
2399 return cb(sk, head, skb);
2400}
2401
2402struct packet_type {
2403 __be16 type; /* This is really htons(ether_type). */
2404 bool ignore_outgoing;
2405 struct net_device *dev; /* NULL is wildcarded here */
2406 int (*func) (struct sk_buff *,
2407 struct net_device *,
2408 struct packet_type *,
2409 struct net_device *);
2410 void (*list_func) (struct list_head *,
2411 struct packet_type *,
2412 struct net_device *);
2413 bool (*id_match)(struct packet_type *ptype,
2414 struct sock *sk);
2415 void *af_packet_priv;
2416 struct list_head list;
2417};
2418
2419struct offload_callbacks {
2420 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2421 netdev_features_t features);
2422 struct sk_buff *(*gro_receive)(struct list_head *head,
2423 struct sk_buff *skb);
2424 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2425};
2426
2427struct packet_offload {
2428 __be16 type; /* This is really htons(ether_type). */
2429 u16 priority;
2430 struct offload_callbacks callbacks;
2431 struct list_head list;
2432};
2433
2434/* often modified stats are per-CPU, other are shared (netdev->stats) */
2435struct pcpu_sw_netstats {
2436 u64 rx_packets;
2437 u64 rx_bytes;
2438 u64 tx_packets;
2439 u64 tx_bytes;
2440 struct u64_stats_sync syncp;
2441} __aligned(4 * sizeof(u64));
2442
2443struct pcpu_lstats {
2444 u64_stats_t packets;
2445 u64_stats_t bytes;
2446 struct u64_stats_sync syncp;
2447} __aligned(2 * sizeof(u64));
2448
2449void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2450
2451static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2452{
2453 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2454
2455 u64_stats_update_begin(&lstats->syncp);
2456 u64_stats_add(&lstats->bytes, len);
2457 u64_stats_inc(&lstats->packets);
2458 u64_stats_update_end(&lstats->syncp);
2459}
2460
2461#define __netdev_alloc_pcpu_stats(type, gfp) \
2462({ \
2463 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2464 if (pcpu_stats) { \
2465 int __cpu; \
2466 for_each_possible_cpu(__cpu) { \
2467 typeof(type) *stat; \
2468 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2469 u64_stats_init(&stat->syncp); \
2470 } \
2471 } \
2472 pcpu_stats; \
2473})
2474
2475#define netdev_alloc_pcpu_stats(type) \
2476 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2477
2478enum netdev_lag_tx_type {
2479 NETDEV_LAG_TX_TYPE_UNKNOWN,
2480 NETDEV_LAG_TX_TYPE_RANDOM,
2481 NETDEV_LAG_TX_TYPE_BROADCAST,
2482 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2483 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2484 NETDEV_LAG_TX_TYPE_HASH,
2485};
2486
2487enum netdev_lag_hash {
2488 NETDEV_LAG_HASH_NONE,
2489 NETDEV_LAG_HASH_L2,
2490 NETDEV_LAG_HASH_L34,
2491 NETDEV_LAG_HASH_L23,
2492 NETDEV_LAG_HASH_E23,
2493 NETDEV_LAG_HASH_E34,
2494 NETDEV_LAG_HASH_UNKNOWN,
2495};
2496
2497struct netdev_lag_upper_info {
2498 enum netdev_lag_tx_type tx_type;
2499 enum netdev_lag_hash hash_type;
2500};
2501
2502struct netdev_lag_lower_state_info {
2503 u8 link_up : 1,
2504 tx_enabled : 1;
2505};
2506
2507#include <linux/notifier.h>
2508
2509/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2510 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2511 * adding new types.
2512 */
2513enum netdev_cmd {
2514 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2515 NETDEV_DOWN,
2516 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2517 detected a hardware crash and restarted
2518 - we can use this eg to kick tcp sessions
2519 once done */
2520 NETDEV_CHANGE, /* Notify device state change */
2521 NETDEV_REGISTER,
2522 NETDEV_UNREGISTER,
2523 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2524 NETDEV_CHANGEADDR, /* notify after the address change */
2525 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2526 NETDEV_GOING_DOWN,
2527 NETDEV_CHANGENAME,
2528 NETDEV_FEAT_CHANGE,
2529 NETDEV_BONDING_FAILOVER,
2530 NETDEV_PRE_UP,
2531 NETDEV_PRE_TYPE_CHANGE,
2532 NETDEV_POST_TYPE_CHANGE,
2533 NETDEV_POST_INIT,
2534 NETDEV_RELEASE,
2535 NETDEV_NOTIFY_PEERS,
2536 NETDEV_JOIN,
2537 NETDEV_CHANGEUPPER,
2538 NETDEV_RESEND_IGMP,
2539 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2540 NETDEV_CHANGEINFODATA,
2541 NETDEV_BONDING_INFO,
2542 NETDEV_PRECHANGEUPPER,
2543 NETDEV_CHANGELOWERSTATE,
2544 NETDEV_UDP_TUNNEL_PUSH_INFO,
2545 NETDEV_UDP_TUNNEL_DROP_INFO,
2546 NETDEV_CHANGE_TX_QUEUE_LEN,
2547 NETDEV_CVLAN_FILTER_PUSH_INFO,
2548 NETDEV_CVLAN_FILTER_DROP_INFO,
2549 NETDEV_SVLAN_FILTER_PUSH_INFO,
2550 NETDEV_SVLAN_FILTER_DROP_INFO,
2551};
2552const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2553
2554int register_netdevice_notifier(struct notifier_block *nb);
2555int unregister_netdevice_notifier(struct notifier_block *nb);
2556int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2557int unregister_netdevice_notifier_net(struct net *net,
2558 struct notifier_block *nb);
2559int register_netdevice_notifier_dev_net(struct net_device *dev,
2560 struct notifier_block *nb,
2561 struct netdev_net_notifier *nn);
2562int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2563 struct notifier_block *nb,
2564 struct netdev_net_notifier *nn);
2565
2566struct netdev_notifier_info {
2567 struct net_device *dev;
2568 struct netlink_ext_ack *extack;
2569};
2570
2571struct netdev_notifier_info_ext {
2572 struct netdev_notifier_info info; /* must be first */
2573 union {
2574 u32 mtu;
2575 } ext;
2576};
2577
2578struct netdev_notifier_change_info {
2579 struct netdev_notifier_info info; /* must be first */
2580 unsigned int flags_changed;
2581};
2582
2583struct netdev_notifier_changeupper_info {
2584 struct netdev_notifier_info info; /* must be first */
2585 struct net_device *upper_dev; /* new upper dev */
2586 bool master; /* is upper dev master */
2587 bool linking; /* is the notification for link or unlink */
2588 void *upper_info; /* upper dev info */
2589};
2590
2591struct netdev_notifier_changelowerstate_info {
2592 struct netdev_notifier_info info; /* must be first */
2593 void *lower_state_info; /* is lower dev state */
2594};
2595
2596struct netdev_notifier_pre_changeaddr_info {
2597 struct netdev_notifier_info info; /* must be first */
2598 const unsigned char *dev_addr;
2599};
2600
2601static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2602 struct net_device *dev)
2603{
2604 info->dev = dev;
2605 info->extack = NULL;
2606}
2607
2608static inline struct net_device *
2609netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2610{
2611 return info->dev;
2612}
2613
2614static inline struct netlink_ext_ack *
2615netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2616{
2617 return info->extack;
2618}
2619
2620int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2621
2622
2623extern rwlock_t dev_base_lock; /* Device list lock */
2624
2625#define for_each_netdev(net, d) \
2626 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2627#define for_each_netdev_reverse(net, d) \
2628 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2629#define for_each_netdev_rcu(net, d) \
2630 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2631#define for_each_netdev_safe(net, d, n) \
2632 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2633#define for_each_netdev_continue(net, d) \
2634 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2635#define for_each_netdev_continue_reverse(net, d) \
2636 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2637 dev_list)
2638#define for_each_netdev_continue_rcu(net, d) \
2639 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2640#define for_each_netdev_in_bond_rcu(bond, slave) \
2641 for_each_netdev_rcu(&init_net, slave) \
2642 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2643#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2644
2645static inline struct net_device *next_net_device(struct net_device *dev)
2646{
2647 struct list_head *lh;
2648 struct net *net;
2649
2650 net = dev_net(dev);
2651 lh = dev->dev_list.next;
2652 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2653}
2654
2655static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2656{
2657 struct list_head *lh;
2658 struct net *net;
2659
2660 net = dev_net(dev);
2661 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2662 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2663}
2664
2665static inline struct net_device *first_net_device(struct net *net)
2666{
2667 return list_empty(&net->dev_base_head) ? NULL :
2668 net_device_entry(net->dev_base_head.next);
2669}
2670
2671static inline struct net_device *first_net_device_rcu(struct net *net)
2672{
2673 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2674
2675 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2676}
2677
2678int netdev_boot_setup_check(struct net_device *dev);
2679unsigned long netdev_boot_base(const char *prefix, int unit);
2680struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2681 const char *hwaddr);
2682struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2683struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2684void dev_add_pack(struct packet_type *pt);
2685void dev_remove_pack(struct packet_type *pt);
2686void __dev_remove_pack(struct packet_type *pt);
2687void dev_add_offload(struct packet_offload *po);
2688void dev_remove_offload(struct packet_offload *po);
2689
2690int dev_get_iflink(const struct net_device *dev);
2691int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2692struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2693 unsigned short mask);
2694struct net_device *dev_get_by_name(struct net *net, const char *name);
2695struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2696struct net_device *__dev_get_by_name(struct net *net, const char *name);
2697int dev_alloc_name(struct net_device *dev, const char *name);
2698int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2699void dev_close(struct net_device *dev);
2700void dev_close_many(struct list_head *head, bool unlink);
2701void dev_disable_lro(struct net_device *dev);
2702int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2703u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2704 struct net_device *sb_dev);
2705u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2706 struct net_device *sb_dev);
2707int dev_queue_xmit(struct sk_buff *skb);
2708int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2709int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2710int register_netdevice(struct net_device *dev);
2711void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2712void unregister_netdevice_many(struct list_head *head);
2713static inline void unregister_netdevice(struct net_device *dev)
2714{
2715 unregister_netdevice_queue(dev, NULL);
2716}
2717
2718int netdev_refcnt_read(const struct net_device *dev);
2719void free_netdev(struct net_device *dev);
2720void netdev_freemem(struct net_device *dev);
2721void synchronize_net(void);
2722int init_dummy_netdev(struct net_device *dev);
2723
2724struct net_device *dev_get_by_index(struct net *net, int ifindex);
2725struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2726struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2727struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2728int netdev_get_name(struct net *net, char *name, int ifindex);
2729int dev_restart(struct net_device *dev);
2730int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2731int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2732
2733static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2734{
2735 return NAPI_GRO_CB(skb)->data_offset;
2736}
2737
2738static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2739{
2740 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2741}
2742
2743static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2744{
2745 NAPI_GRO_CB(skb)->data_offset += len;
2746}
2747
2748static inline void *skb_gro_header_fast(struct sk_buff *skb,
2749 unsigned int offset)
2750{
2751 return NAPI_GRO_CB(skb)->frag0 + offset;
2752}
2753
2754static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2755{
2756 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2757}
2758
2759static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2760{
2761 NAPI_GRO_CB(skb)->frag0 = NULL;
2762 NAPI_GRO_CB(skb)->frag0_len = 0;
2763}
2764
2765static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2766 unsigned int offset)
2767{
2768 if (!pskb_may_pull(skb, hlen))
2769 return NULL;
2770
2771 skb_gro_frag0_invalidate(skb);
2772 return skb->data + offset;
2773}
2774
2775static inline void *skb_gro_network_header(struct sk_buff *skb)
2776{
2777 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2778 skb_network_offset(skb);
2779}
2780
2781static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2782 const void *start, unsigned int len)
2783{
2784 if (NAPI_GRO_CB(skb)->csum_valid)
2785 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2786 csum_partial(start, len, 0));
2787}
2788
2789/* GRO checksum functions. These are logical equivalents of the normal
2790 * checksum functions (in skbuff.h) except that they operate on the GRO
2791 * offsets and fields in sk_buff.
2792 */
2793
2794__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2795
2796static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2797{
2798 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2799}
2800
2801static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2802 bool zero_okay,
2803 __sum16 check)
2804{
2805 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2806 skb_checksum_start_offset(skb) <
2807 skb_gro_offset(skb)) &&
2808 !skb_at_gro_remcsum_start(skb) &&
2809 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2810 (!zero_okay || check));
2811}
2812
2813static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2814 __wsum psum)
2815{
2816 if (NAPI_GRO_CB(skb)->csum_valid &&
2817 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2818 return 0;
2819
2820 NAPI_GRO_CB(skb)->csum = psum;
2821
2822 return __skb_gro_checksum_complete(skb);
2823}
2824
2825static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2826{
2827 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2828 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2829 NAPI_GRO_CB(skb)->csum_cnt--;
2830 } else {
2831 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2832 * verified a new top level checksum or an encapsulated one
2833 * during GRO. This saves work if we fallback to normal path.
2834 */
2835 __skb_incr_checksum_unnecessary(skb);
2836 }
2837}
2838
2839#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2840 compute_pseudo) \
2841({ \
2842 __sum16 __ret = 0; \
2843 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2844 __ret = __skb_gro_checksum_validate_complete(skb, \
2845 compute_pseudo(skb, proto)); \
2846 if (!__ret) \
2847 skb_gro_incr_csum_unnecessary(skb); \
2848 __ret; \
2849})
2850
2851#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2852 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2853
2854#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2855 compute_pseudo) \
2856 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2857
2858#define skb_gro_checksum_simple_validate(skb) \
2859 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2860
2861static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2862{
2863 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2864 !NAPI_GRO_CB(skb)->csum_valid);
2865}
2866
2867static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2868 __wsum pseudo)
2869{
2870 NAPI_GRO_CB(skb)->csum = ~pseudo;
2871 NAPI_GRO_CB(skb)->csum_valid = 1;
2872}
2873
2874#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2875do { \
2876 if (__skb_gro_checksum_convert_check(skb)) \
2877 __skb_gro_checksum_convert(skb, \
2878 compute_pseudo(skb, proto)); \
2879} while (0)
2880
2881struct gro_remcsum {
2882 int offset;
2883 __wsum delta;
2884};
2885
2886static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2887{
2888 grc->offset = 0;
2889 grc->delta = 0;
2890}
2891
2892static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2893 unsigned int off, size_t hdrlen,
2894 int start, int offset,
2895 struct gro_remcsum *grc,
2896 bool nopartial)
2897{
2898 __wsum delta;
2899 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2900
2901 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2902
2903 if (!nopartial) {
2904 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2905 return ptr;
2906 }
2907
2908 ptr = skb_gro_header_fast(skb, off);
2909 if (skb_gro_header_hard(skb, off + plen)) {
2910 ptr = skb_gro_header_slow(skb, off + plen, off);
2911 if (!ptr)
2912 return NULL;
2913 }
2914
2915 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2916 start, offset);
2917
2918 /* Adjust skb->csum since we changed the packet */
2919 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2920
2921 grc->offset = off + hdrlen + offset;
2922 grc->delta = delta;
2923
2924 return ptr;
2925}
2926
2927static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2928 struct gro_remcsum *grc)
2929{
2930 void *ptr;
2931 size_t plen = grc->offset + sizeof(u16);
2932
2933 if (!grc->delta)
2934 return;
2935
2936 ptr = skb_gro_header_fast(skb, grc->offset);
2937 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2938 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2939 if (!ptr)
2940 return;
2941 }
2942
2943 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2944}
2945
2946#ifdef CONFIG_XFRM_OFFLOAD
2947static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2948{
2949 if (PTR_ERR(pp) != -EINPROGRESS)
2950 NAPI_GRO_CB(skb)->flush |= flush;
2951}
2952static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2953 struct sk_buff *pp,
2954 int flush,
2955 struct gro_remcsum *grc)
2956{
2957 if (PTR_ERR(pp) != -EINPROGRESS) {
2958 NAPI_GRO_CB(skb)->flush |= flush;
2959 skb_gro_remcsum_cleanup(skb, grc);
2960 skb->remcsum_offload = 0;
2961 }
2962}
2963#else
2964static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2965{
2966 NAPI_GRO_CB(skb)->flush |= flush;
2967}
2968static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2969 struct sk_buff *pp,
2970 int flush,
2971 struct gro_remcsum *grc)
2972{
2973 NAPI_GRO_CB(skb)->flush |= flush;
2974 skb_gro_remcsum_cleanup(skb, grc);
2975 skb->remcsum_offload = 0;
2976}
2977#endif
2978
2979static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2980 unsigned short type,
2981 const void *daddr, const void *saddr,
2982 unsigned int len)
2983{
2984 if (!dev->header_ops || !dev->header_ops->create)
2985 return 0;
2986
2987 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2988}
2989
2990static inline int dev_parse_header(const struct sk_buff *skb,
2991 unsigned char *haddr)
2992{
2993 const struct net_device *dev = skb->dev;
2994
2995 if (!dev->header_ops || !dev->header_ops->parse)
2996 return 0;
2997 return dev->header_ops->parse(skb, haddr);
2998}
2999
3000static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3001{
3002 const struct net_device *dev = skb->dev;
3003
3004 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3005 return 0;
3006 return dev->header_ops->parse_protocol(skb);
3007}
3008
3009/* ll_header must have at least hard_header_len allocated */
3010static inline bool dev_validate_header(const struct net_device *dev,
3011 char *ll_header, int len)
3012{
3013 if (likely(len >= dev->hard_header_len))
3014 return true;
3015 if (len < dev->min_header_len)
3016 return false;
3017
3018 if (capable(CAP_SYS_RAWIO)) {
3019 memset(ll_header + len, 0, dev->hard_header_len - len);
3020 return true;
3021 }
3022
3023 if (dev->header_ops && dev->header_ops->validate)
3024 return dev->header_ops->validate(ll_header, len);
3025
3026 return false;
3027}
3028
3029typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3030 int len, int size);
3031int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3032static inline int unregister_gifconf(unsigned int family)
3033{
3034 return register_gifconf(family, NULL);
3035}
3036
3037#ifdef CONFIG_NET_FLOW_LIMIT
3038#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3039struct sd_flow_limit {
3040 u64 count;
3041 unsigned int num_buckets;
3042 unsigned int history_head;
3043 u16 history[FLOW_LIMIT_HISTORY];
3044 u8 buckets[];
3045};
3046
3047extern int netdev_flow_limit_table_len;
3048#endif /* CONFIG_NET_FLOW_LIMIT */
3049
3050/*
3051 * Incoming packets are placed on per-CPU queues
3052 */
3053struct softnet_data {
3054 struct list_head poll_list;
3055 struct sk_buff_head process_queue;
3056
3057 /* stats */
3058 unsigned int processed;
3059 unsigned int time_squeeze;
3060 unsigned int received_rps;
3061#ifdef CONFIG_RPS
3062 struct softnet_data *rps_ipi_list;
3063#endif
3064#ifdef CONFIG_NET_FLOW_LIMIT
3065 struct sd_flow_limit __rcu *flow_limit;
3066#endif
3067 struct Qdisc *output_queue;
3068 struct Qdisc **output_queue_tailp;
3069 struct sk_buff *completion_queue;
3070#ifdef CONFIG_XFRM_OFFLOAD
3071 struct sk_buff_head xfrm_backlog;
3072#endif
3073 /* written and read only by owning cpu: */
3074 struct {
3075 u16 recursion;
3076 u8 more;
3077 } xmit;
3078#ifdef CONFIG_RPS
3079 /* input_queue_head should be written by cpu owning this struct,
3080 * and only read by other cpus. Worth using a cache line.
3081 */
3082 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3083
3084 /* Elements below can be accessed between CPUs for RPS/RFS */
3085 call_single_data_t csd ____cacheline_aligned_in_smp;
3086 struct softnet_data *rps_ipi_next;
3087 unsigned int cpu;
3088 unsigned int input_queue_tail;
3089#endif
3090 unsigned int dropped;
3091 struct sk_buff_head input_pkt_queue;
3092 struct napi_struct backlog;
3093
3094};
3095
3096static inline void input_queue_head_incr(struct softnet_data *sd)
3097{
3098#ifdef CONFIG_RPS
3099 sd->input_queue_head++;
3100#endif
3101}
3102
3103static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3104 unsigned int *qtail)
3105{
3106#ifdef CONFIG_RPS
3107 *qtail = ++sd->input_queue_tail;
3108#endif
3109}
3110
3111DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3112
3113static inline int dev_recursion_level(void)
3114{
3115 return this_cpu_read(softnet_data.xmit.recursion);
3116}
3117
3118#define XMIT_RECURSION_LIMIT 10
3119static inline bool dev_xmit_recursion(void)
3120{
3121 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3122 XMIT_RECURSION_LIMIT);
3123}
3124
3125static inline void dev_xmit_recursion_inc(void)
3126{
3127 __this_cpu_inc(softnet_data.xmit.recursion);
3128}
3129
3130static inline void dev_xmit_recursion_dec(void)
3131{
3132 __this_cpu_dec(softnet_data.xmit.recursion);
3133}
3134
3135void __netif_schedule(struct Qdisc *q);
3136void netif_schedule_queue(struct netdev_queue *txq);
3137
3138static inline void netif_tx_schedule_all(struct net_device *dev)
3139{
3140 unsigned int i;
3141
3142 for (i = 0; i < dev->num_tx_queues; i++)
3143 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3144}
3145
3146static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3147{
3148 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3149}
3150
3151/**
3152 * netif_start_queue - allow transmit
3153 * @dev: network device
3154 *
3155 * Allow upper layers to call the device hard_start_xmit routine.
3156 */
3157static inline void netif_start_queue(struct net_device *dev)
3158{
3159 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3160}
3161
3162static inline void netif_tx_start_all_queues(struct net_device *dev)
3163{
3164 unsigned int i;
3165
3166 for (i = 0; i < dev->num_tx_queues; i++) {
3167 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3168 netif_tx_start_queue(txq);
3169 }
3170}
3171
3172void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3173
3174/**
3175 * netif_wake_queue - restart transmit
3176 * @dev: network device
3177 *
3178 * Allow upper layers to call the device hard_start_xmit routine.
3179 * Used for flow control when transmit resources are available.
3180 */
3181static inline void netif_wake_queue(struct net_device *dev)
3182{
3183 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3184}
3185
3186static inline void netif_tx_wake_all_queues(struct net_device *dev)
3187{
3188 unsigned int i;
3189
3190 for (i = 0; i < dev->num_tx_queues; i++) {
3191 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3192 netif_tx_wake_queue(txq);
3193 }
3194}
3195
3196static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3197{
3198 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3199}
3200
3201/**
3202 * netif_stop_queue - stop transmitted packets
3203 * @dev: network device
3204 *
3205 * Stop upper layers calling the device hard_start_xmit routine.
3206 * Used for flow control when transmit resources are unavailable.
3207 */
3208static inline void netif_stop_queue(struct net_device *dev)
3209{
3210 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3211}
3212
3213void netif_tx_stop_all_queues(struct net_device *dev);
3214void netdev_update_lockdep_key(struct net_device *dev);
3215
3216static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3217{
3218 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3219}
3220
3221/**
3222 * netif_queue_stopped - test if transmit queue is flowblocked
3223 * @dev: network device
3224 *
3225 * Test if transmit queue on device is currently unable to send.
3226 */
3227static inline bool netif_queue_stopped(const struct net_device *dev)
3228{
3229 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3230}
3231
3232static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3233{
3234 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3235}
3236
3237static inline bool
3238netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3239{
3240 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3241}
3242
3243static inline bool
3244netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3245{
3246 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3247}
3248
3249/**
3250 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3251 * @dev_queue: pointer to transmit queue
3252 *
3253 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3254 * to give appropriate hint to the CPU.
3255 */
3256static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3257{
3258#ifdef CONFIG_BQL
3259 prefetchw(&dev_queue->dql.num_queued);
3260#endif
3261}
3262
3263/**
3264 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3265 * @dev_queue: pointer to transmit queue
3266 *
3267 * BQL enabled drivers might use this helper in their TX completion path,
3268 * to give appropriate hint to the CPU.
3269 */
3270static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3271{
3272#ifdef CONFIG_BQL
3273 prefetchw(&dev_queue->dql.limit);
3274#endif
3275}
3276
3277static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3278 unsigned int bytes)
3279{
3280#ifdef CONFIG_BQL
3281 dql_queued(&dev_queue->dql, bytes);
3282
3283 if (likely(dql_avail(&dev_queue->dql) >= 0))
3284 return;
3285
3286 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3287
3288 /*
3289 * The XOFF flag must be set before checking the dql_avail below,
3290 * because in netdev_tx_completed_queue we update the dql_completed
3291 * before checking the XOFF flag.
3292 */
3293 smp_mb();
3294
3295 /* check again in case another CPU has just made room avail */
3296 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3297 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3298#endif
3299}
3300
3301/* Variant of netdev_tx_sent_queue() for drivers that are aware
3302 * that they should not test BQL status themselves.
3303 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3304 * skb of a batch.
3305 * Returns true if the doorbell must be used to kick the NIC.
3306 */
3307static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3308 unsigned int bytes,
3309 bool xmit_more)
3310{
3311 if (xmit_more) {
3312#ifdef CONFIG_BQL
3313 dql_queued(&dev_queue->dql, bytes);
3314#endif
3315 return netif_tx_queue_stopped(dev_queue);
3316 }
3317 netdev_tx_sent_queue(dev_queue, bytes);
3318 return true;
3319}
3320
3321/**
3322 * netdev_sent_queue - report the number of bytes queued to hardware
3323 * @dev: network device
3324 * @bytes: number of bytes queued to the hardware device queue
3325 *
3326 * Report the number of bytes queued for sending/completion to the network
3327 * device hardware queue. @bytes should be a good approximation and should
3328 * exactly match netdev_completed_queue() @bytes
3329 */
3330static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3331{
3332 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3333}
3334
3335static inline bool __netdev_sent_queue(struct net_device *dev,
3336 unsigned int bytes,
3337 bool xmit_more)
3338{
3339 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3340 xmit_more);
3341}
3342
3343static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3344 unsigned int pkts, unsigned int bytes)
3345{
3346#ifdef CONFIG_BQL
3347 if (unlikely(!bytes))
3348 return;
3349
3350 dql_completed(&dev_queue->dql, bytes);
3351
3352 /*
3353 * Without the memory barrier there is a small possiblity that
3354 * netdev_tx_sent_queue will miss the update and cause the queue to
3355 * be stopped forever
3356 */
3357 smp_mb();
3358
3359 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3360 return;
3361
3362 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3363 netif_schedule_queue(dev_queue);
3364#endif
3365}
3366
3367/**
3368 * netdev_completed_queue - report bytes and packets completed by device
3369 * @dev: network device
3370 * @pkts: actual number of packets sent over the medium
3371 * @bytes: actual number of bytes sent over the medium
3372 *
3373 * Report the number of bytes and packets transmitted by the network device
3374 * hardware queue over the physical medium, @bytes must exactly match the
3375 * @bytes amount passed to netdev_sent_queue()
3376 */
3377static inline void netdev_completed_queue(struct net_device *dev,
3378 unsigned int pkts, unsigned int bytes)
3379{
3380 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3381}
3382
3383static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3384{
3385#ifdef CONFIG_BQL
3386 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3387 dql_reset(&q->dql);
3388#endif
3389}
3390
3391/**
3392 * netdev_reset_queue - reset the packets and bytes count of a network device
3393 * @dev_queue: network device
3394 *
3395 * Reset the bytes and packet count of a network device and clear the
3396 * software flow control OFF bit for this network device
3397 */
3398static inline void netdev_reset_queue(struct net_device *dev_queue)
3399{
3400 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3401}
3402
3403/**
3404 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3405 * @dev: network device
3406 * @queue_index: given tx queue index
3407 *
3408 * Returns 0 if given tx queue index >= number of device tx queues,
3409 * otherwise returns the originally passed tx queue index.
3410 */
3411static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3412{
3413 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3414 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3415 dev->name, queue_index,
3416 dev->real_num_tx_queues);
3417 return 0;
3418 }
3419
3420 return queue_index;
3421}
3422
3423/**
3424 * netif_running - test if up
3425 * @dev: network device
3426 *
3427 * Test if the device has been brought up.
3428 */
3429static inline bool netif_running(const struct net_device *dev)
3430{
3431 return test_bit(__LINK_STATE_START, &dev->state);
3432}
3433
3434/*
3435 * Routines to manage the subqueues on a device. We only need start,
3436 * stop, and a check if it's stopped. All other device management is
3437 * done at the overall netdevice level.
3438 * Also test the device if we're multiqueue.
3439 */
3440
3441/**
3442 * netif_start_subqueue - allow sending packets on subqueue
3443 * @dev: network device
3444 * @queue_index: sub queue index
3445 *
3446 * Start individual transmit queue of a device with multiple transmit queues.
3447 */
3448static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3449{
3450 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3451
3452 netif_tx_start_queue(txq);
3453}
3454
3455/**
3456 * netif_stop_subqueue - stop sending packets on subqueue
3457 * @dev: network device
3458 * @queue_index: sub queue index
3459 *
3460 * Stop individual transmit queue of a device with multiple transmit queues.
3461 */
3462static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3463{
3464 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3465 netif_tx_stop_queue(txq);
3466}
3467
3468/**
3469 * netif_subqueue_stopped - test status of subqueue
3470 * @dev: network device
3471 * @queue_index: sub queue index
3472 *
3473 * Check individual transmit queue of a device with multiple transmit queues.
3474 */
3475static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3476 u16 queue_index)
3477{
3478 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3479
3480 return netif_tx_queue_stopped(txq);
3481}
3482
3483static inline bool netif_subqueue_stopped(const struct net_device *dev,
3484 struct sk_buff *skb)
3485{
3486 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3487}
3488
3489/**
3490 * netif_wake_subqueue - allow sending packets on subqueue
3491 * @dev: network device
3492 * @queue_index: sub queue index
3493 *
3494 * Resume individual transmit queue of a device with multiple transmit queues.
3495 */
3496static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3497{
3498 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3499
3500 netif_tx_wake_queue(txq);
3501}
3502
3503#ifdef CONFIG_XPS
3504int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3505 u16 index);
3506int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3507 u16 index, bool is_rxqs_map);
3508
3509/**
3510 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3511 * @j: CPU/Rx queue index
3512 * @mask: bitmask of all cpus/rx queues
3513 * @nr_bits: number of bits in the bitmask
3514 *
3515 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3516 */
3517static inline bool netif_attr_test_mask(unsigned long j,
3518 const unsigned long *mask,
3519 unsigned int nr_bits)
3520{
3521 cpu_max_bits_warn(j, nr_bits);
3522 return test_bit(j, mask);
3523}
3524
3525/**
3526 * netif_attr_test_online - Test for online CPU/Rx queue
3527 * @j: CPU/Rx queue index
3528 * @online_mask: bitmask for CPUs/Rx queues that are online
3529 * @nr_bits: number of bits in the bitmask
3530 *
3531 * Returns true if a CPU/Rx queue is online.
3532 */
3533static inline bool netif_attr_test_online(unsigned long j,
3534 const unsigned long *online_mask,
3535 unsigned int nr_bits)
3536{
3537 cpu_max_bits_warn(j, nr_bits);
3538
3539 if (online_mask)
3540 return test_bit(j, online_mask);
3541
3542 return (j < nr_bits);
3543}
3544
3545/**
3546 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3547 * @n: CPU/Rx queue index
3548 * @srcp: the cpumask/Rx queue mask pointer
3549 * @nr_bits: number of bits in the bitmask
3550 *
3551 * Returns >= nr_bits if no further CPUs/Rx queues set.
3552 */
3553static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3554 unsigned int nr_bits)
3555{
3556 /* -1 is a legal arg here. */
3557 if (n != -1)
3558 cpu_max_bits_warn(n, nr_bits);
3559
3560 if (srcp)
3561 return find_next_bit(srcp, nr_bits, n + 1);
3562
3563 return n + 1;
3564}
3565
3566/**
3567 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3568 * @n: CPU/Rx queue index
3569 * @src1p: the first CPUs/Rx queues mask pointer
3570 * @src2p: the second CPUs/Rx queues mask pointer
3571 * @nr_bits: number of bits in the bitmask
3572 *
3573 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3574 */
3575static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3576 const unsigned long *src2p,
3577 unsigned int nr_bits)
3578{
3579 /* -1 is a legal arg here. */
3580 if (n != -1)
3581 cpu_max_bits_warn(n, nr_bits);
3582
3583 if (src1p && src2p)
3584 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3585 else if (src1p)
3586 return find_next_bit(src1p, nr_bits, n + 1);
3587 else if (src2p)
3588 return find_next_bit(src2p, nr_bits, n + 1);
3589
3590 return n + 1;
3591}
3592#else
3593static inline int netif_set_xps_queue(struct net_device *dev,
3594 const struct cpumask *mask,
3595 u16 index)
3596{
3597 return 0;
3598}
3599
3600static inline int __netif_set_xps_queue(struct net_device *dev,
3601 const unsigned long *mask,
3602 u16 index, bool is_rxqs_map)
3603{
3604 return 0;
3605}
3606#endif
3607
3608/**
3609 * netif_is_multiqueue - test if device has multiple transmit queues
3610 * @dev: network device
3611 *
3612 * Check if device has multiple transmit queues
3613 */
3614static inline bool netif_is_multiqueue(const struct net_device *dev)
3615{
3616 return dev->num_tx_queues > 1;
3617}
3618
3619int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3620
3621#ifdef CONFIG_SYSFS
3622int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3623#else
3624static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3625 unsigned int rxqs)
3626{
3627 dev->real_num_rx_queues = rxqs;
3628 return 0;
3629}
3630#endif
3631
3632static inline struct netdev_rx_queue *
3633__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3634{
3635 return dev->_rx + rxq;
3636}
3637
3638#ifdef CONFIG_SYSFS
3639static inline unsigned int get_netdev_rx_queue_index(
3640 struct netdev_rx_queue *queue)
3641{
3642 struct net_device *dev = queue->dev;
3643 int index = queue - dev->_rx;
3644
3645 BUG_ON(index >= dev->num_rx_queues);
3646 return index;
3647}
3648#endif
3649
3650#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3651int netif_get_num_default_rss_queues(void);
3652
3653enum skb_free_reason {
3654 SKB_REASON_CONSUMED,
3655 SKB_REASON_DROPPED,
3656};
3657
3658void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3659void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3660
3661/*
3662 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3663 * interrupt context or with hardware interrupts being disabled.
3664 * (in_irq() || irqs_disabled())
3665 *
3666 * We provide four helpers that can be used in following contexts :
3667 *
3668 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3669 * replacing kfree_skb(skb)
3670 *
3671 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3672 * Typically used in place of consume_skb(skb) in TX completion path
3673 *
3674 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3675 * replacing kfree_skb(skb)
3676 *
3677 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3678 * and consumed a packet. Used in place of consume_skb(skb)
3679 */
3680static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3681{
3682 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3683}
3684
3685static inline void dev_consume_skb_irq(struct sk_buff *skb)
3686{
3687 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3688}
3689
3690static inline void dev_kfree_skb_any(struct sk_buff *skb)
3691{
3692 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3693}
3694
3695static inline void dev_consume_skb_any(struct sk_buff *skb)
3696{
3697 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3698}
3699
3700void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3701int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3702int netif_rx(struct sk_buff *skb);
3703int netif_rx_ni(struct sk_buff *skb);
3704int netif_receive_skb(struct sk_buff *skb);
3705int netif_receive_skb_core(struct sk_buff *skb);
3706void netif_receive_skb_list(struct list_head *head);
3707gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3708void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3709struct sk_buff *napi_get_frags(struct napi_struct *napi);
3710gro_result_t napi_gro_frags(struct napi_struct *napi);
3711struct packet_offload *gro_find_receive_by_type(__be16 type);
3712struct packet_offload *gro_find_complete_by_type(__be16 type);
3713
3714static inline void napi_free_frags(struct napi_struct *napi)
3715{
3716 kfree_skb(napi->skb);
3717 napi->skb = NULL;
3718}
3719
3720bool netdev_is_rx_handler_busy(struct net_device *dev);
3721int netdev_rx_handler_register(struct net_device *dev,
3722 rx_handler_func_t *rx_handler,
3723 void *rx_handler_data);
3724void netdev_rx_handler_unregister(struct net_device *dev);
3725
3726bool dev_valid_name(const char *name);
3727int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3728 bool *need_copyout);
3729int dev_ifconf(struct net *net, struct ifconf *, int);
3730int dev_ethtool(struct net *net, struct ifreq *);
3731unsigned int dev_get_flags(const struct net_device *);
3732int __dev_change_flags(struct net_device *dev, unsigned int flags,
3733 struct netlink_ext_ack *extack);
3734int dev_change_flags(struct net_device *dev, unsigned int flags,
3735 struct netlink_ext_ack *extack);
3736void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3737 unsigned int gchanges);
3738int dev_change_name(struct net_device *, const char *);
3739int dev_set_alias(struct net_device *, const char *, size_t);
3740int dev_get_alias(const struct net_device *, char *, size_t);
3741int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3742int __dev_set_mtu(struct net_device *, int);
3743int dev_validate_mtu(struct net_device *dev, int mtu,
3744 struct netlink_ext_ack *extack);
3745int dev_set_mtu_ext(struct net_device *dev, int mtu,
3746 struct netlink_ext_ack *extack);
3747int dev_set_mtu(struct net_device *, int);
3748int dev_change_tx_queue_len(struct net_device *, unsigned long);
3749void dev_set_group(struct net_device *, int);
3750int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3751 struct netlink_ext_ack *extack);
3752int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3753 struct netlink_ext_ack *extack);
3754int dev_change_carrier(struct net_device *, bool new_carrier);
3755int dev_get_phys_port_id(struct net_device *dev,
3756 struct netdev_phys_item_id *ppid);
3757int dev_get_phys_port_name(struct net_device *dev,
3758 char *name, size_t len);
3759int dev_get_port_parent_id(struct net_device *dev,
3760 struct netdev_phys_item_id *ppid, bool recurse);
3761bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3762int dev_change_proto_down(struct net_device *dev, bool proto_down);
3763int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3764struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3765struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3766 struct netdev_queue *txq, int *ret);
3767
3768typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3769int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3770 int fd, u32 flags);
3771u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3772 enum bpf_netdev_command cmd);
3773int xdp_umem_query(struct net_device *dev, u16 queue_id);
3774
3775int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3776int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3777bool is_skb_forwardable(const struct net_device *dev,
3778 const struct sk_buff *skb);
3779
3780static __always_inline int ____dev_forward_skb(struct net_device *dev,
3781 struct sk_buff *skb)
3782{
3783 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3784 unlikely(!is_skb_forwardable(dev, skb))) {
3785 atomic_long_inc(&dev->rx_dropped);
3786 kfree_skb(skb);
3787 return NET_RX_DROP;
3788 }
3789
3790 skb_scrub_packet(skb, true);
3791 skb->priority = 0;
3792 return 0;
3793}
3794
3795bool dev_nit_active(struct net_device *dev);
3796void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3797
3798extern int netdev_budget;
3799extern unsigned int netdev_budget_usecs;
3800
3801/* Called by rtnetlink.c:rtnl_unlock() */
3802void netdev_run_todo(void);
3803
3804/**
3805 * dev_put - release reference to device
3806 * @dev: network device
3807 *
3808 * Release reference to device to allow it to be freed.
3809 */
3810static inline void dev_put(struct net_device *dev)
3811{
3812 this_cpu_dec(*dev->pcpu_refcnt);
3813}
3814
3815/**
3816 * dev_hold - get reference to device
3817 * @dev: network device
3818 *
3819 * Hold reference to device to keep it from being freed.
3820 */
3821static inline void dev_hold(struct net_device *dev)
3822{
3823 this_cpu_inc(*dev->pcpu_refcnt);
3824}
3825
3826/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3827 * and _off may be called from IRQ context, but it is caller
3828 * who is responsible for serialization of these calls.
3829 *
3830 * The name carrier is inappropriate, these functions should really be
3831 * called netif_lowerlayer_*() because they represent the state of any
3832 * kind of lower layer not just hardware media.
3833 */
3834
3835void linkwatch_init_dev(struct net_device *dev);
3836void linkwatch_fire_event(struct net_device *dev);
3837void linkwatch_forget_dev(struct net_device *dev);
3838
3839/**
3840 * netif_carrier_ok - test if carrier present
3841 * @dev: network device
3842 *
3843 * Check if carrier is present on device
3844 */
3845static inline bool netif_carrier_ok(const struct net_device *dev)
3846{
3847 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3848}
3849
3850unsigned long dev_trans_start(struct net_device *dev);
3851
3852void __netdev_watchdog_up(struct net_device *dev);
3853
3854void netif_carrier_on(struct net_device *dev);
3855
3856void netif_carrier_off(struct net_device *dev);
3857
3858/**
3859 * netif_dormant_on - mark device as dormant.
3860 * @dev: network device
3861 *
3862 * Mark device as dormant (as per RFC2863).
3863 *
3864 * The dormant state indicates that the relevant interface is not
3865 * actually in a condition to pass packets (i.e., it is not 'up') but is
3866 * in a "pending" state, waiting for some external event. For "on-
3867 * demand" interfaces, this new state identifies the situation where the
3868 * interface is waiting for events to place it in the up state.
3869 */
3870static inline void netif_dormant_on(struct net_device *dev)
3871{
3872 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3873 linkwatch_fire_event(dev);
3874}
3875
3876/**
3877 * netif_dormant_off - set device as not dormant.
3878 * @dev: network device
3879 *
3880 * Device is not in dormant state.
3881 */
3882static inline void netif_dormant_off(struct net_device *dev)
3883{
3884 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3885 linkwatch_fire_event(dev);
3886}
3887
3888/**
3889 * netif_dormant - test if device is dormant
3890 * @dev: network device
3891 *
3892 * Check if device is dormant.
3893 */
3894static inline bool netif_dormant(const struct net_device *dev)
3895{
3896 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3897}
3898
3899
3900/**
3901 * netif_oper_up - test if device is operational
3902 * @dev: network device
3903 *
3904 * Check if carrier is operational
3905 */
3906static inline bool netif_oper_up(const struct net_device *dev)
3907{
3908 return (dev->operstate == IF_OPER_UP ||
3909 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3910}
3911
3912/**
3913 * netif_device_present - is device available or removed
3914 * @dev: network device
3915 *
3916 * Check if device has not been removed from system.
3917 */
3918static inline bool netif_device_present(struct net_device *dev)
3919{
3920 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3921}
3922
3923void netif_device_detach(struct net_device *dev);
3924
3925void netif_device_attach(struct net_device *dev);
3926
3927/*
3928 * Network interface message level settings
3929 */
3930
3931enum {
3932 NETIF_MSG_DRV_BIT,
3933 NETIF_MSG_PROBE_BIT,
3934 NETIF_MSG_LINK_BIT,
3935 NETIF_MSG_TIMER_BIT,
3936 NETIF_MSG_IFDOWN_BIT,
3937 NETIF_MSG_IFUP_BIT,
3938 NETIF_MSG_RX_ERR_BIT,
3939 NETIF_MSG_TX_ERR_BIT,
3940 NETIF_MSG_TX_QUEUED_BIT,
3941 NETIF_MSG_INTR_BIT,
3942 NETIF_MSG_TX_DONE_BIT,
3943 NETIF_MSG_RX_STATUS_BIT,
3944 NETIF_MSG_PKTDATA_BIT,
3945 NETIF_MSG_HW_BIT,
3946 NETIF_MSG_WOL_BIT,
3947
3948 /* When you add a new bit above, update netif_msg_class_names array
3949 * in net/ethtool/common.c
3950 */
3951 NETIF_MSG_CLASS_COUNT,
3952};
3953/* Both ethtool_ops interface and internal driver implementation use u32 */
3954static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3955
3956#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
3957#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3958
3959#define NETIF_MSG_DRV __NETIF_MSG(DRV)
3960#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
3961#define NETIF_MSG_LINK __NETIF_MSG(LINK)
3962#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
3963#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
3964#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
3965#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
3966#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
3967#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
3968#define NETIF_MSG_INTR __NETIF_MSG(INTR)
3969#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
3970#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
3971#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
3972#define NETIF_MSG_HW __NETIF_MSG(HW)
3973#define NETIF_MSG_WOL __NETIF_MSG(WOL)
3974
3975#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3976#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3977#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3978#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3979#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3980#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3981#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3982#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3983#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3984#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3985#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3986#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3987#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3988#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3989#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3990
3991static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3992{
3993 /* use default */
3994 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3995 return default_msg_enable_bits;
3996 if (debug_value == 0) /* no output */
3997 return 0;
3998 /* set low N bits */
3999 return (1U << debug_value) - 1;
4000}
4001
4002static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4003{
4004 spin_lock(&txq->_xmit_lock);
4005 txq->xmit_lock_owner = cpu;
4006}
4007
4008static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4009{
4010 __acquire(&txq->_xmit_lock);
4011 return true;
4012}
4013
4014static inline void __netif_tx_release(struct netdev_queue *txq)
4015{
4016 __release(&txq->_xmit_lock);
4017}
4018
4019static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4020{
4021 spin_lock_bh(&txq->_xmit_lock);
4022 txq->xmit_lock_owner = smp_processor_id();
4023}
4024
4025static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4026{
4027 bool ok = spin_trylock(&txq->_xmit_lock);
4028 if (likely(ok))
4029 txq->xmit_lock_owner = smp_processor_id();
4030 return ok;
4031}
4032
4033static inline void __netif_tx_unlock(struct netdev_queue *txq)
4034{
4035 txq->xmit_lock_owner = -1;
4036 spin_unlock(&txq->_xmit_lock);
4037}
4038
4039static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4040{
4041 txq->xmit_lock_owner = -1;
4042 spin_unlock_bh(&txq->_xmit_lock);
4043}
4044
4045static inline void txq_trans_update(struct netdev_queue *txq)
4046{
4047 if (txq->xmit_lock_owner != -1)
4048 txq->trans_start = jiffies;
4049}
4050
4051/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4052static inline void netif_trans_update(struct net_device *dev)
4053{
4054 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4055
4056 if (txq->trans_start != jiffies)
4057 txq->trans_start = jiffies;
4058}
4059
4060/**
4061 * netif_tx_lock - grab network device transmit lock
4062 * @dev: network device
4063 *
4064 * Get network device transmit lock
4065 */
4066static inline void netif_tx_lock(struct net_device *dev)
4067{
4068 unsigned int i;
4069 int cpu;
4070
4071 spin_lock(&dev->tx_global_lock);
4072 cpu = smp_processor_id();
4073 for (i = 0; i < dev->num_tx_queues; i++) {
4074 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4075
4076 /* We are the only thread of execution doing a
4077 * freeze, but we have to grab the _xmit_lock in
4078 * order to synchronize with threads which are in
4079 * the ->hard_start_xmit() handler and already
4080 * checked the frozen bit.
4081 */
4082 __netif_tx_lock(txq, cpu);
4083 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4084 __netif_tx_unlock(txq);
4085 }
4086}
4087
4088static inline void netif_tx_lock_bh(struct net_device *dev)
4089{
4090 local_bh_disable();
4091 netif_tx_lock(dev);
4092}
4093
4094static inline void netif_tx_unlock(struct net_device *dev)
4095{
4096 unsigned int i;
4097
4098 for (i = 0; i < dev->num_tx_queues; i++) {
4099 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4100
4101 /* No need to grab the _xmit_lock here. If the
4102 * queue is not stopped for another reason, we
4103 * force a schedule.
4104 */
4105 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4106 netif_schedule_queue(txq);
4107 }
4108 spin_unlock(&dev->tx_global_lock);
4109}
4110
4111static inline void netif_tx_unlock_bh(struct net_device *dev)
4112{
4113 netif_tx_unlock(dev);
4114 local_bh_enable();
4115}
4116
4117#define HARD_TX_LOCK(dev, txq, cpu) { \
4118 if ((dev->features & NETIF_F_LLTX) == 0) { \
4119 __netif_tx_lock(txq, cpu); \
4120 } else { \
4121 __netif_tx_acquire(txq); \
4122 } \
4123}
4124
4125#define HARD_TX_TRYLOCK(dev, txq) \
4126 (((dev->features & NETIF_F_LLTX) == 0) ? \
4127 __netif_tx_trylock(txq) : \
4128 __netif_tx_acquire(txq))
4129
4130#define HARD_TX_UNLOCK(dev, txq) { \
4131 if ((dev->features & NETIF_F_LLTX) == 0) { \
4132 __netif_tx_unlock(txq); \
4133 } else { \
4134 __netif_tx_release(txq); \
4135 } \
4136}
4137
4138static inline void netif_tx_disable(struct net_device *dev)
4139{
4140 unsigned int i;
4141 int cpu;
4142
4143 local_bh_disable();
4144 cpu = smp_processor_id();
4145 for (i = 0; i < dev->num_tx_queues; i++) {
4146 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4147
4148 __netif_tx_lock(txq, cpu);
4149 netif_tx_stop_queue(txq);
4150 __netif_tx_unlock(txq);
4151 }
4152 local_bh_enable();
4153}
4154
4155static inline void netif_addr_lock(struct net_device *dev)
4156{
4157 spin_lock(&dev->addr_list_lock);
4158}
4159
4160static inline void netif_addr_lock_bh(struct net_device *dev)
4161{
4162 spin_lock_bh(&dev->addr_list_lock);
4163}
4164
4165static inline void netif_addr_unlock(struct net_device *dev)
4166{
4167 spin_unlock(&dev->addr_list_lock);
4168}
4169
4170static inline void netif_addr_unlock_bh(struct net_device *dev)
4171{
4172 spin_unlock_bh(&dev->addr_list_lock);
4173}
4174
4175/*
4176 * dev_addrs walker. Should be used only for read access. Call with
4177 * rcu_read_lock held.
4178 */
4179#define for_each_dev_addr(dev, ha) \
4180 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4181
4182/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4183
4184void ether_setup(struct net_device *dev);
4185
4186/* Support for loadable net-drivers */
4187struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4188 unsigned char name_assign_type,
4189 void (*setup)(struct net_device *),
4190 unsigned int txqs, unsigned int rxqs);
4191#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4192 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4193
4194#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4195 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4196 count)
4197
4198int register_netdev(struct net_device *dev);
4199void unregister_netdev(struct net_device *dev);
4200
4201/* General hardware address lists handling functions */
4202int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4203 struct netdev_hw_addr_list *from_list, int addr_len);
4204void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4205 struct netdev_hw_addr_list *from_list, int addr_len);
4206int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4207 struct net_device *dev,
4208 int (*sync)(struct net_device *, const unsigned char *),
4209 int (*unsync)(struct net_device *,
4210 const unsigned char *));
4211int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4212 struct net_device *dev,
4213 int (*sync)(struct net_device *,
4214 const unsigned char *, int),
4215 int (*unsync)(struct net_device *,
4216 const unsigned char *, int));
4217void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4218 struct net_device *dev,
4219 int (*unsync)(struct net_device *,
4220 const unsigned char *, int));
4221void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4222 struct net_device *dev,
4223 int (*unsync)(struct net_device *,
4224 const unsigned char *));
4225void __hw_addr_init(struct netdev_hw_addr_list *list);
4226
4227/* Functions used for device addresses handling */
4228int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4229 unsigned char addr_type);
4230int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4231 unsigned char addr_type);
4232void dev_addr_flush(struct net_device *dev);
4233int dev_addr_init(struct net_device *dev);
4234
4235/* Functions used for unicast addresses handling */
4236int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4237int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4238int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4239int dev_uc_sync(struct net_device *to, struct net_device *from);
4240int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4241void dev_uc_unsync(struct net_device *to, struct net_device *from);
4242void dev_uc_flush(struct net_device *dev);
4243void dev_uc_init(struct net_device *dev);
4244
4245/**
4246 * __dev_uc_sync - Synchonize device's unicast list
4247 * @dev: device to sync
4248 * @sync: function to call if address should be added
4249 * @unsync: function to call if address should be removed
4250 *
4251 * Add newly added addresses to the interface, and release
4252 * addresses that have been deleted.
4253 */
4254static inline int __dev_uc_sync(struct net_device *dev,
4255 int (*sync)(struct net_device *,
4256 const unsigned char *),
4257 int (*unsync)(struct net_device *,
4258 const unsigned char *))
4259{
4260 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4261}
4262
4263/**
4264 * __dev_uc_unsync - Remove synchronized addresses from device
4265 * @dev: device to sync
4266 * @unsync: function to call if address should be removed
4267 *
4268 * Remove all addresses that were added to the device by dev_uc_sync().
4269 */
4270static inline void __dev_uc_unsync(struct net_device *dev,
4271 int (*unsync)(struct net_device *,
4272 const unsigned char *))
4273{
4274 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4275}
4276
4277/* Functions used for multicast addresses handling */
4278int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4279int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4280int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4281int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4282int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4283int dev_mc_sync(struct net_device *to, struct net_device *from);
4284int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4285void dev_mc_unsync(struct net_device *to, struct net_device *from);
4286void dev_mc_flush(struct net_device *dev);
4287void dev_mc_init(struct net_device *dev);
4288
4289/**
4290 * __dev_mc_sync - Synchonize device's multicast list
4291 * @dev: device to sync
4292 * @sync: function to call if address should be added
4293 * @unsync: function to call if address should be removed
4294 *
4295 * Add newly added addresses to the interface, and release
4296 * addresses that have been deleted.
4297 */
4298static inline int __dev_mc_sync(struct net_device *dev,
4299 int (*sync)(struct net_device *,
4300 const unsigned char *),
4301 int (*unsync)(struct net_device *,
4302 const unsigned char *))
4303{
4304 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4305}
4306
4307/**
4308 * __dev_mc_unsync - Remove synchronized addresses from device
4309 * @dev: device to sync
4310 * @unsync: function to call if address should be removed
4311 *
4312 * Remove all addresses that were added to the device by dev_mc_sync().
4313 */
4314static inline void __dev_mc_unsync(struct net_device *dev,
4315 int (*unsync)(struct net_device *,
4316 const unsigned char *))
4317{
4318 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4319}
4320
4321/* Functions used for secondary unicast and multicast support */
4322void dev_set_rx_mode(struct net_device *dev);
4323void __dev_set_rx_mode(struct net_device *dev);
4324int dev_set_promiscuity(struct net_device *dev, int inc);
4325int dev_set_allmulti(struct net_device *dev, int inc);
4326void netdev_state_change(struct net_device *dev);
4327void netdev_notify_peers(struct net_device *dev);
4328void netdev_features_change(struct net_device *dev);
4329/* Load a device via the kmod */
4330void dev_load(struct net *net, const char *name);
4331struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4332 struct rtnl_link_stats64 *storage);
4333void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4334 const struct net_device_stats *netdev_stats);
4335
4336extern int netdev_max_backlog;
4337extern int netdev_tstamp_prequeue;
4338extern int weight_p;
4339extern int dev_weight_rx_bias;
4340extern int dev_weight_tx_bias;
4341extern int dev_rx_weight;
4342extern int dev_tx_weight;
4343extern int gro_normal_batch;
4344
4345bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4346struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4347 struct list_head **iter);
4348struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4349 struct list_head **iter);
4350
4351/* iterate through upper list, must be called under RCU read lock */
4352#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4353 for (iter = &(dev)->adj_list.upper, \
4354 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4355 updev; \
4356 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4357
4358int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4359 int (*fn)(struct net_device *upper_dev,
4360 void *data),
4361 void *data);
4362
4363bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4364 struct net_device *upper_dev);
4365
4366bool netdev_has_any_upper_dev(struct net_device *dev);
4367
4368void *netdev_lower_get_next_private(struct net_device *dev,
4369 struct list_head **iter);
4370void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4371 struct list_head **iter);
4372
4373#define netdev_for_each_lower_private(dev, priv, iter) \
4374 for (iter = (dev)->adj_list.lower.next, \
4375 priv = netdev_lower_get_next_private(dev, &(iter)); \
4376 priv; \
4377 priv = netdev_lower_get_next_private(dev, &(iter)))
4378
4379#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4380 for (iter = &(dev)->adj_list.lower, \
4381 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4382 priv; \
4383 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4384
4385void *netdev_lower_get_next(struct net_device *dev,
4386 struct list_head **iter);
4387
4388#define netdev_for_each_lower_dev(dev, ldev, iter) \
4389 for (iter = (dev)->adj_list.lower.next, \
4390 ldev = netdev_lower_get_next(dev, &(iter)); \
4391 ldev; \
4392 ldev = netdev_lower_get_next(dev, &(iter)))
4393
4394struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4395 struct list_head **iter);
4396int netdev_walk_all_lower_dev(struct net_device *dev,
4397 int (*fn)(struct net_device *lower_dev,
4398 void *data),
4399 void *data);
4400int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4401 int (*fn)(struct net_device *lower_dev,
4402 void *data),
4403 void *data);
4404
4405void *netdev_adjacent_get_private(struct list_head *adj_list);
4406void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4407struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4408struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4409int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4410 struct netlink_ext_ack *extack);
4411int netdev_master_upper_dev_link(struct net_device *dev,
4412 struct net_device *upper_dev,
4413 void *upper_priv, void *upper_info,
4414 struct netlink_ext_ack *extack);
4415void netdev_upper_dev_unlink(struct net_device *dev,
4416 struct net_device *upper_dev);
4417int netdev_adjacent_change_prepare(struct net_device *old_dev,
4418 struct net_device *new_dev,
4419 struct net_device *dev,
4420 struct netlink_ext_ack *extack);
4421void netdev_adjacent_change_commit(struct net_device *old_dev,
4422 struct net_device *new_dev,
4423 struct net_device *dev);
4424void netdev_adjacent_change_abort(struct net_device *old_dev,
4425 struct net_device *new_dev,
4426 struct net_device *dev);
4427void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4428void *netdev_lower_dev_get_private(struct net_device *dev,
4429 struct net_device *lower_dev);
4430void netdev_lower_state_changed(struct net_device *lower_dev,
4431 void *lower_state_info);
4432
4433/* RSS keys are 40 or 52 bytes long */
4434#define NETDEV_RSS_KEY_LEN 52
4435extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4436void netdev_rss_key_fill(void *buffer, size_t len);
4437
4438int skb_checksum_help(struct sk_buff *skb);
4439int skb_crc32c_csum_help(struct sk_buff *skb);
4440int skb_csum_hwoffload_help(struct sk_buff *skb,
4441 const netdev_features_t features);
4442
4443struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4444 netdev_features_t features, bool tx_path);
4445struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4446 netdev_features_t features);
4447
4448struct netdev_bonding_info {
4449 ifslave slave;
4450 ifbond master;
4451};
4452
4453struct netdev_notifier_bonding_info {
4454 struct netdev_notifier_info info; /* must be first */
4455 struct netdev_bonding_info bonding_info;
4456};
4457
4458void netdev_bonding_info_change(struct net_device *dev,
4459 struct netdev_bonding_info *bonding_info);
4460
4461#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4462void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4463#else
4464static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4465 const void *data)
4466{
4467}
4468#endif
4469
4470static inline
4471struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4472{
4473 return __skb_gso_segment(skb, features, true);
4474}
4475__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4476
4477static inline bool can_checksum_protocol(netdev_features_t features,
4478 __be16 protocol)
4479{
4480 if (protocol == htons(ETH_P_FCOE))
4481 return !!(features & NETIF_F_FCOE_CRC);
4482
4483 /* Assume this is an IP checksum (not SCTP CRC) */
4484
4485 if (features & NETIF_F_HW_CSUM) {
4486 /* Can checksum everything */
4487 return true;
4488 }
4489
4490 switch (protocol) {
4491 case htons(ETH_P_IP):
4492 return !!(features & NETIF_F_IP_CSUM);
4493 case htons(ETH_P_IPV6):
4494 return !!(features & NETIF_F_IPV6_CSUM);
4495 default:
4496 return false;
4497 }
4498}
4499
4500#ifdef CONFIG_BUG
4501void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4502#else
4503static inline void netdev_rx_csum_fault(struct net_device *dev,
4504 struct sk_buff *skb)
4505{
4506}
4507#endif
4508/* rx skb timestamps */
4509void net_enable_timestamp(void);
4510void net_disable_timestamp(void);
4511
4512#ifdef CONFIG_PROC_FS
4513int __init dev_proc_init(void);
4514#else
4515#define dev_proc_init() 0
4516#endif
4517
4518static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4519 struct sk_buff *skb, struct net_device *dev,
4520 bool more)
4521{
4522 __this_cpu_write(softnet_data.xmit.more, more);
4523 return ops->ndo_start_xmit(skb, dev);
4524}
4525
4526static inline bool netdev_xmit_more(void)
4527{
4528 return __this_cpu_read(softnet_data.xmit.more);
4529}
4530
4531static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4532 struct netdev_queue *txq, bool more)
4533{
4534 const struct net_device_ops *ops = dev->netdev_ops;
4535 netdev_tx_t rc;
4536
4537 rc = __netdev_start_xmit(ops, skb, dev, more);
4538 if (rc == NETDEV_TX_OK)
4539 txq_trans_update(txq);
4540
4541 return rc;
4542}
4543
4544int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4545 const void *ns);
4546void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4547 const void *ns);
4548
4549static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4550{
4551 return netdev_class_create_file_ns(class_attr, NULL);
4552}
4553
4554static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4555{
4556 netdev_class_remove_file_ns(class_attr, NULL);
4557}
4558
4559extern const struct kobj_ns_type_operations net_ns_type_operations;
4560
4561const char *netdev_drivername(const struct net_device *dev);
4562
4563void linkwatch_run_queue(void);
4564
4565static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4566 netdev_features_t f2)
4567{
4568 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4569 if (f1 & NETIF_F_HW_CSUM)
4570 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4571 else
4572 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4573 }
4574
4575 return f1 & f2;
4576}
4577
4578static inline netdev_features_t netdev_get_wanted_features(
4579 struct net_device *dev)
4580{
4581 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4582}
4583netdev_features_t netdev_increment_features(netdev_features_t all,
4584 netdev_features_t one, netdev_features_t mask);
4585
4586/* Allow TSO being used on stacked device :
4587 * Performing the GSO segmentation before last device
4588 * is a performance improvement.
4589 */
4590static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4591 netdev_features_t mask)
4592{
4593 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4594}
4595
4596int __netdev_update_features(struct net_device *dev);
4597void netdev_update_features(struct net_device *dev);
4598void netdev_change_features(struct net_device *dev);
4599
4600void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4601 struct net_device *dev);
4602
4603netdev_features_t passthru_features_check(struct sk_buff *skb,
4604 struct net_device *dev,
4605 netdev_features_t features);
4606netdev_features_t netif_skb_features(struct sk_buff *skb);
4607
4608static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4609{
4610 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4611
4612 /* check flags correspondence */
4613 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4614 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4615 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4616 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4617 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4618 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4619 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4620 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4621 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4622 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4623 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4624 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4625 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4626 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4627 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4628 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4629 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4630 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4631 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4632
4633 return (features & feature) == feature;
4634}
4635
4636static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4637{
4638 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4639 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4640}
4641
4642static inline bool netif_needs_gso(struct sk_buff *skb,
4643 netdev_features_t features)
4644{
4645 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4646 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4647 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4648}
4649
4650static inline void netif_set_gso_max_size(struct net_device *dev,
4651 unsigned int size)
4652{
4653 dev->gso_max_size = size;
4654}
4655
4656static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4657 int pulled_hlen, u16 mac_offset,
4658 int mac_len)
4659{
4660 skb->protocol = protocol;
4661 skb->encapsulation = 1;
4662 skb_push(skb, pulled_hlen);
4663 skb_reset_transport_header(skb);
4664 skb->mac_header = mac_offset;
4665 skb->network_header = skb->mac_header + mac_len;
4666 skb->mac_len = mac_len;
4667}
4668
4669static inline bool netif_is_macsec(const struct net_device *dev)
4670{
4671 return dev->priv_flags & IFF_MACSEC;
4672}
4673
4674static inline bool netif_is_macvlan(const struct net_device *dev)
4675{
4676 return dev->priv_flags & IFF_MACVLAN;
4677}
4678
4679static inline bool netif_is_macvlan_port(const struct net_device *dev)
4680{
4681 return dev->priv_flags & IFF_MACVLAN_PORT;
4682}
4683
4684static inline bool netif_is_bond_master(const struct net_device *dev)
4685{
4686 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4687}
4688
4689static inline bool netif_is_bond_slave(const struct net_device *dev)
4690{
4691 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4692}
4693
4694static inline bool netif_supports_nofcs(struct net_device *dev)
4695{
4696 return dev->priv_flags & IFF_SUPP_NOFCS;
4697}
4698
4699static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4700{
4701 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4702}
4703
4704static inline bool netif_is_l3_master(const struct net_device *dev)
4705{
4706 return dev->priv_flags & IFF_L3MDEV_MASTER;
4707}
4708
4709static inline bool netif_is_l3_slave(const struct net_device *dev)
4710{
4711 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4712}
4713
4714static inline bool netif_is_bridge_master(const struct net_device *dev)
4715{
4716 return dev->priv_flags & IFF_EBRIDGE;
4717}
4718
4719static inline bool netif_is_bridge_port(const struct net_device *dev)
4720{
4721 return dev->priv_flags & IFF_BRIDGE_PORT;
4722}
4723
4724static inline bool netif_is_ovs_master(const struct net_device *dev)
4725{
4726 return dev->priv_flags & IFF_OPENVSWITCH;
4727}
4728
4729static inline bool netif_is_ovs_port(const struct net_device *dev)
4730{
4731 return dev->priv_flags & IFF_OVS_DATAPATH;
4732}
4733
4734static inline bool netif_is_team_master(const struct net_device *dev)
4735{
4736 return dev->priv_flags & IFF_TEAM;
4737}
4738
4739static inline bool netif_is_team_port(const struct net_device *dev)
4740{
4741 return dev->priv_flags & IFF_TEAM_PORT;
4742}
4743
4744static inline bool netif_is_lag_master(const struct net_device *dev)
4745{
4746 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4747}
4748
4749static inline bool netif_is_lag_port(const struct net_device *dev)
4750{
4751 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4752}
4753
4754static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4755{
4756 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4757}
4758
4759static inline bool netif_is_failover(const struct net_device *dev)
4760{
4761 return dev->priv_flags & IFF_FAILOVER;
4762}
4763
4764static inline bool netif_is_failover_slave(const struct net_device *dev)
4765{
4766 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4767}
4768
4769/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4770static inline void netif_keep_dst(struct net_device *dev)
4771{
4772 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4773}
4774
4775/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4776static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4777{
4778 /* TODO: reserve and use an additional IFF bit, if we get more users */
4779 return dev->priv_flags & IFF_MACSEC;
4780}
4781
4782extern struct pernet_operations __net_initdata loopback_net_ops;
4783
4784/* Logging, debugging and troubleshooting/diagnostic helpers. */
4785
4786/* netdev_printk helpers, similar to dev_printk */
4787
4788static inline const char *netdev_name(const struct net_device *dev)
4789{
4790 if (!dev->name[0] || strchr(dev->name, '%'))
4791 return "(unnamed net_device)";
4792 return dev->name;
4793}
4794
4795static inline bool netdev_unregistering(const struct net_device *dev)
4796{
4797 return dev->reg_state == NETREG_UNREGISTERING;
4798}
4799
4800static inline const char *netdev_reg_state(const struct net_device *dev)
4801{
4802 switch (dev->reg_state) {
4803 case NETREG_UNINITIALIZED: return " (uninitialized)";
4804 case NETREG_REGISTERED: return "";
4805 case NETREG_UNREGISTERING: return " (unregistering)";
4806 case NETREG_UNREGISTERED: return " (unregistered)";
4807 case NETREG_RELEASED: return " (released)";
4808 case NETREG_DUMMY: return " (dummy)";
4809 }
4810
4811 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4812 return " (unknown)";
4813}
4814
4815__printf(3, 4) __cold
4816void netdev_printk(const char *level, const struct net_device *dev,
4817 const char *format, ...);
4818__printf(2, 3) __cold
4819void netdev_emerg(const struct net_device *dev, const char *format, ...);
4820__printf(2, 3) __cold
4821void netdev_alert(const struct net_device *dev, const char *format, ...);
4822__printf(2, 3) __cold
4823void netdev_crit(const struct net_device *dev, const char *format, ...);
4824__printf(2, 3) __cold
4825void netdev_err(const struct net_device *dev, const char *format, ...);
4826__printf(2, 3) __cold
4827void netdev_warn(const struct net_device *dev, const char *format, ...);
4828__printf(2, 3) __cold
4829void netdev_notice(const struct net_device *dev, const char *format, ...);
4830__printf(2, 3) __cold
4831void netdev_info(const struct net_device *dev, const char *format, ...);
4832
4833#define netdev_level_once(level, dev, fmt, ...) \
4834do { \
4835 static bool __print_once __read_mostly; \
4836 \
4837 if (!__print_once) { \
4838 __print_once = true; \
4839 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4840 } \
4841} while (0)
4842
4843#define netdev_emerg_once(dev, fmt, ...) \
4844 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4845#define netdev_alert_once(dev, fmt, ...) \
4846 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4847#define netdev_crit_once(dev, fmt, ...) \
4848 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4849#define netdev_err_once(dev, fmt, ...) \
4850 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4851#define netdev_warn_once(dev, fmt, ...) \
4852 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4853#define netdev_notice_once(dev, fmt, ...) \
4854 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4855#define netdev_info_once(dev, fmt, ...) \
4856 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4857
4858#define MODULE_ALIAS_NETDEV(device) \
4859 MODULE_ALIAS("netdev-" device)
4860
4861#if defined(CONFIG_DYNAMIC_DEBUG)
4862#define netdev_dbg(__dev, format, args...) \
4863do { \
4864 dynamic_netdev_dbg(__dev, format, ##args); \
4865} while (0)
4866#elif defined(DEBUG)
4867#define netdev_dbg(__dev, format, args...) \
4868 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4869#else
4870#define netdev_dbg(__dev, format, args...) \
4871({ \
4872 if (0) \
4873 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4874})
4875#endif
4876
4877#if defined(VERBOSE_DEBUG)
4878#define netdev_vdbg netdev_dbg
4879#else
4880
4881#define netdev_vdbg(dev, format, args...) \
4882({ \
4883 if (0) \
4884 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4885 0; \
4886})
4887#endif
4888
4889/*
4890 * netdev_WARN() acts like dev_printk(), but with the key difference
4891 * of using a WARN/WARN_ON to get the message out, including the
4892 * file/line information and a backtrace.
4893 */
4894#define netdev_WARN(dev, format, args...) \
4895 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4896 netdev_reg_state(dev), ##args)
4897
4898#define netdev_WARN_ONCE(dev, format, args...) \
4899 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4900 netdev_reg_state(dev), ##args)
4901
4902/* netif printk helpers, similar to netdev_printk */
4903
4904#define netif_printk(priv, type, level, dev, fmt, args...) \
4905do { \
4906 if (netif_msg_##type(priv)) \
4907 netdev_printk(level, (dev), fmt, ##args); \
4908} while (0)
4909
4910#define netif_level(level, priv, type, dev, fmt, args...) \
4911do { \
4912 if (netif_msg_##type(priv)) \
4913 netdev_##level(dev, fmt, ##args); \
4914} while (0)
4915
4916#define netif_emerg(priv, type, dev, fmt, args...) \
4917 netif_level(emerg, priv, type, dev, fmt, ##args)
4918#define netif_alert(priv, type, dev, fmt, args...) \
4919 netif_level(alert, priv, type, dev, fmt, ##args)
4920#define netif_crit(priv, type, dev, fmt, args...) \
4921 netif_level(crit, priv, type, dev, fmt, ##args)
4922#define netif_err(priv, type, dev, fmt, args...) \
4923 netif_level(err, priv, type, dev, fmt, ##args)
4924#define netif_warn(priv, type, dev, fmt, args...) \
4925 netif_level(warn, priv, type, dev, fmt, ##args)
4926#define netif_notice(priv, type, dev, fmt, args...) \
4927 netif_level(notice, priv, type, dev, fmt, ##args)
4928#define netif_info(priv, type, dev, fmt, args...) \
4929 netif_level(info, priv, type, dev, fmt, ##args)
4930
4931#if defined(CONFIG_DYNAMIC_DEBUG)
4932#define netif_dbg(priv, type, netdev, format, args...) \
4933do { \
4934 if (netif_msg_##type(priv)) \
4935 dynamic_netdev_dbg(netdev, format, ##args); \
4936} while (0)
4937#elif defined(DEBUG)
4938#define netif_dbg(priv, type, dev, format, args...) \
4939 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4940#else
4941#define netif_dbg(priv, type, dev, format, args...) \
4942({ \
4943 if (0) \
4944 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4945 0; \
4946})
4947#endif
4948
4949/* if @cond then downgrade to debug, else print at @level */
4950#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4951 do { \
4952 if (cond) \
4953 netif_dbg(priv, type, netdev, fmt, ##args); \
4954 else \
4955 netif_ ## level(priv, type, netdev, fmt, ##args); \
4956 } while (0)
4957
4958#if defined(VERBOSE_DEBUG)
4959#define netif_vdbg netif_dbg
4960#else
4961#define netif_vdbg(priv, type, dev, format, args...) \
4962({ \
4963 if (0) \
4964 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4965 0; \
4966})
4967#endif
4968
4969/*
4970 * The list of packet types we will receive (as opposed to discard)
4971 * and the routines to invoke.
4972 *
4973 * Why 16. Because with 16 the only overlap we get on a hash of the
4974 * low nibble of the protocol value is RARP/SNAP/X.25.
4975 *
4976 * 0800 IP
4977 * 0001 802.3
4978 * 0002 AX.25
4979 * 0004 802.2
4980 * 8035 RARP
4981 * 0005 SNAP
4982 * 0805 X.25
4983 * 0806 ARP
4984 * 8137 IPX
4985 * 0009 Localtalk
4986 * 86DD IPv6
4987 */
4988#define PTYPE_HASH_SIZE (16)
4989#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4990
4991extern struct net_device *blackhole_netdev;
4992
4993#endif /* _LINUX_NETDEVICE_H */