at v5.6 726 lines 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMU_NOTIFIER_H 3#define _LINUX_MMU_NOTIFIER_H 4 5#include <linux/list.h> 6#include <linux/spinlock.h> 7#include <linux/mm_types.h> 8#include <linux/srcu.h> 9#include <linux/interval_tree.h> 10 11struct mmu_notifier_subscriptions; 12struct mmu_notifier; 13struct mmu_notifier_range; 14struct mmu_interval_notifier; 15 16/** 17 * enum mmu_notifier_event - reason for the mmu notifier callback 18 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that 19 * move the range 20 * 21 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like 22 * madvise() or replacing a page by another one, ...). 23 * 24 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range 25 * ie using the vma access permission (vm_page_prot) to update the whole range 26 * is enough no need to inspect changes to the CPU page table (mprotect() 27 * syscall) 28 * 29 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for 30 * pages in the range so to mirror those changes the user must inspect the CPU 31 * page table (from the end callback). 32 * 33 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same 34 * access flags). User should soft dirty the page in the end callback to make 35 * sure that anyone relying on soft dirtyness catch pages that might be written 36 * through non CPU mappings. 37 * 38 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal 39 * that the mm refcount is zero and the range is no longer accessible. 40 */ 41enum mmu_notifier_event { 42 MMU_NOTIFY_UNMAP = 0, 43 MMU_NOTIFY_CLEAR, 44 MMU_NOTIFY_PROTECTION_VMA, 45 MMU_NOTIFY_PROTECTION_PAGE, 46 MMU_NOTIFY_SOFT_DIRTY, 47 MMU_NOTIFY_RELEASE, 48}; 49 50#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) 51 52struct mmu_notifier_ops { 53 /* 54 * Called either by mmu_notifier_unregister or when the mm is 55 * being destroyed by exit_mmap, always before all pages are 56 * freed. This can run concurrently with other mmu notifier 57 * methods (the ones invoked outside the mm context) and it 58 * should tear down all secondary mmu mappings and freeze the 59 * secondary mmu. If this method isn't implemented you've to 60 * be sure that nothing could possibly write to the pages 61 * through the secondary mmu by the time the last thread with 62 * tsk->mm == mm exits. 63 * 64 * As side note: the pages freed after ->release returns could 65 * be immediately reallocated by the gart at an alias physical 66 * address with a different cache model, so if ->release isn't 67 * implemented because all _software_ driven memory accesses 68 * through the secondary mmu are terminated by the time the 69 * last thread of this mm quits, you've also to be sure that 70 * speculative _hardware_ operations can't allocate dirty 71 * cachelines in the cpu that could not be snooped and made 72 * coherent with the other read and write operations happening 73 * through the gart alias address, so leading to memory 74 * corruption. 75 */ 76 void (*release)(struct mmu_notifier *subscription, 77 struct mm_struct *mm); 78 79 /* 80 * clear_flush_young is called after the VM is 81 * test-and-clearing the young/accessed bitflag in the 82 * pte. This way the VM will provide proper aging to the 83 * accesses to the page through the secondary MMUs and not 84 * only to the ones through the Linux pte. 85 * Start-end is necessary in case the secondary MMU is mapping the page 86 * at a smaller granularity than the primary MMU. 87 */ 88 int (*clear_flush_young)(struct mmu_notifier *subscription, 89 struct mm_struct *mm, 90 unsigned long start, 91 unsigned long end); 92 93 /* 94 * clear_young is a lightweight version of clear_flush_young. Like the 95 * latter, it is supposed to test-and-clear the young/accessed bitflag 96 * in the secondary pte, but it may omit flushing the secondary tlb. 97 */ 98 int (*clear_young)(struct mmu_notifier *subscription, 99 struct mm_struct *mm, 100 unsigned long start, 101 unsigned long end); 102 103 /* 104 * test_young is called to check the young/accessed bitflag in 105 * the secondary pte. This is used to know if the page is 106 * frequently used without actually clearing the flag or tearing 107 * down the secondary mapping on the page. 108 */ 109 int (*test_young)(struct mmu_notifier *subscription, 110 struct mm_struct *mm, 111 unsigned long address); 112 113 /* 114 * change_pte is called in cases that pte mapping to page is changed: 115 * for example, when ksm remaps pte to point to a new shared page. 116 */ 117 void (*change_pte)(struct mmu_notifier *subscription, 118 struct mm_struct *mm, 119 unsigned long address, 120 pte_t pte); 121 122 /* 123 * invalidate_range_start() and invalidate_range_end() must be 124 * paired and are called only when the mmap_sem and/or the 125 * locks protecting the reverse maps are held. If the subsystem 126 * can't guarantee that no additional references are taken to 127 * the pages in the range, it has to implement the 128 * invalidate_range() notifier to remove any references taken 129 * after invalidate_range_start(). 130 * 131 * Invalidation of multiple concurrent ranges may be 132 * optionally permitted by the driver. Either way the 133 * establishment of sptes is forbidden in the range passed to 134 * invalidate_range_begin/end for the whole duration of the 135 * invalidate_range_begin/end critical section. 136 * 137 * invalidate_range_start() is called when all pages in the 138 * range are still mapped and have at least a refcount of one. 139 * 140 * invalidate_range_end() is called when all pages in the 141 * range have been unmapped and the pages have been freed by 142 * the VM. 143 * 144 * The VM will remove the page table entries and potentially 145 * the page between invalidate_range_start() and 146 * invalidate_range_end(). If the page must not be freed 147 * because of pending I/O or other circumstances then the 148 * invalidate_range_start() callback (or the initial mapping 149 * by the driver) must make sure that the refcount is kept 150 * elevated. 151 * 152 * If the driver increases the refcount when the pages are 153 * initially mapped into an address space then either 154 * invalidate_range_start() or invalidate_range_end() may 155 * decrease the refcount. If the refcount is decreased on 156 * invalidate_range_start() then the VM can free pages as page 157 * table entries are removed. If the refcount is only 158 * droppped on invalidate_range_end() then the driver itself 159 * will drop the last refcount but it must take care to flush 160 * any secondary tlb before doing the final free on the 161 * page. Pages will no longer be referenced by the linux 162 * address space but may still be referenced by sptes until 163 * the last refcount is dropped. 164 * 165 * If blockable argument is set to false then the callback cannot 166 * sleep and has to return with -EAGAIN. 0 should be returned 167 * otherwise. Please note that if invalidate_range_start approves 168 * a non-blocking behavior then the same applies to 169 * invalidate_range_end. 170 * 171 */ 172 int (*invalidate_range_start)(struct mmu_notifier *subscription, 173 const struct mmu_notifier_range *range); 174 void (*invalidate_range_end)(struct mmu_notifier *subscription, 175 const struct mmu_notifier_range *range); 176 177 /* 178 * invalidate_range() is either called between 179 * invalidate_range_start() and invalidate_range_end() when the 180 * VM has to free pages that where unmapped, but before the 181 * pages are actually freed, or outside of _start()/_end() when 182 * a (remote) TLB is necessary. 183 * 184 * If invalidate_range() is used to manage a non-CPU TLB with 185 * shared page-tables, it not necessary to implement the 186 * invalidate_range_start()/end() notifiers, as 187 * invalidate_range() alread catches the points in time when an 188 * external TLB range needs to be flushed. For more in depth 189 * discussion on this see Documentation/vm/mmu_notifier.rst 190 * 191 * Note that this function might be called with just a sub-range 192 * of what was passed to invalidate_range_start()/end(), if 193 * called between those functions. 194 */ 195 void (*invalidate_range)(struct mmu_notifier *subscription, 196 struct mm_struct *mm, 197 unsigned long start, 198 unsigned long end); 199 200 /* 201 * These callbacks are used with the get/put interface to manage the 202 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new 203 * notifier for use with the mm. 204 * 205 * free_notifier() is only called after the mmu_notifier has been 206 * fully put, calls to any ops callback are prevented and no ops 207 * callbacks are currently running. It is called from a SRCU callback 208 * and cannot sleep. 209 */ 210 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); 211 void (*free_notifier)(struct mmu_notifier *subscription); 212}; 213 214/* 215 * The notifier chains are protected by mmap_sem and/or the reverse map 216 * semaphores. Notifier chains are only changed when all reverse maps and 217 * the mmap_sem locks are taken. 218 * 219 * Therefore notifier chains can only be traversed when either 220 * 221 * 1. mmap_sem is held. 222 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 223 * 3. No other concurrent thread can access the list (release) 224 */ 225struct mmu_notifier { 226 struct hlist_node hlist; 227 const struct mmu_notifier_ops *ops; 228 struct mm_struct *mm; 229 struct rcu_head rcu; 230 unsigned int users; 231}; 232 233/** 234 * struct mmu_interval_notifier_ops 235 * @invalidate: Upon return the caller must stop using any SPTEs within this 236 * range. This function can sleep. Return false only if sleeping 237 * was required but mmu_notifier_range_blockable(range) is false. 238 */ 239struct mmu_interval_notifier_ops { 240 bool (*invalidate)(struct mmu_interval_notifier *interval_sub, 241 const struct mmu_notifier_range *range, 242 unsigned long cur_seq); 243}; 244 245struct mmu_interval_notifier { 246 struct interval_tree_node interval_tree; 247 const struct mmu_interval_notifier_ops *ops; 248 struct mm_struct *mm; 249 struct hlist_node deferred_item; 250 unsigned long invalidate_seq; 251}; 252 253#ifdef CONFIG_MMU_NOTIFIER 254 255#ifdef CONFIG_LOCKDEP 256extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; 257#endif 258 259struct mmu_notifier_range { 260 struct vm_area_struct *vma; 261 struct mm_struct *mm; 262 unsigned long start; 263 unsigned long end; 264 unsigned flags; 265 enum mmu_notifier_event event; 266}; 267 268static inline int mm_has_notifiers(struct mm_struct *mm) 269{ 270 return unlikely(mm->notifier_subscriptions); 271} 272 273struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 274 struct mm_struct *mm); 275static inline struct mmu_notifier * 276mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) 277{ 278 struct mmu_notifier *ret; 279 280 down_write(&mm->mmap_sem); 281 ret = mmu_notifier_get_locked(ops, mm); 282 up_write(&mm->mmap_sem); 283 return ret; 284} 285void mmu_notifier_put(struct mmu_notifier *subscription); 286void mmu_notifier_synchronize(void); 287 288extern int mmu_notifier_register(struct mmu_notifier *subscription, 289 struct mm_struct *mm); 290extern int __mmu_notifier_register(struct mmu_notifier *subscription, 291 struct mm_struct *mm); 292extern void mmu_notifier_unregister(struct mmu_notifier *subscription, 293 struct mm_struct *mm); 294 295unsigned long 296mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); 297int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 298 struct mm_struct *mm, unsigned long start, 299 unsigned long length, 300 const struct mmu_interval_notifier_ops *ops); 301int mmu_interval_notifier_insert_locked( 302 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 303 unsigned long start, unsigned long length, 304 const struct mmu_interval_notifier_ops *ops); 305void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); 306 307/** 308 * mmu_interval_set_seq - Save the invalidation sequence 309 * @interval_sub - The subscription passed to invalidate 310 * @cur_seq - The cur_seq passed to the invalidate() callback 311 * 312 * This must be called unconditionally from the invalidate callback of a 313 * struct mmu_interval_notifier_ops under the same lock that is used to call 314 * mmu_interval_read_retry(). It updates the sequence number for later use by 315 * mmu_interval_read_retry(). The provided cur_seq will always be odd. 316 * 317 * If the caller does not call mmu_interval_read_begin() or 318 * mmu_interval_read_retry() then this call is not required. 319 */ 320static inline void 321mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, 322 unsigned long cur_seq) 323{ 324 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); 325} 326 327/** 328 * mmu_interval_read_retry - End a read side critical section against a VA range 329 * interval_sub: The subscription 330 * seq: The return of the paired mmu_interval_read_begin() 331 * 332 * This MUST be called under a user provided lock that is also held 333 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). 334 * 335 * Each call should be paired with a single mmu_interval_read_begin() and 336 * should be used to conclude the read side. 337 * 338 * Returns true if an invalidation collided with this critical section, and 339 * the caller should retry. 340 */ 341static inline bool 342mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, 343 unsigned long seq) 344{ 345 return interval_sub->invalidate_seq != seq; 346} 347 348/** 349 * mmu_interval_check_retry - Test if a collision has occurred 350 * interval_sub: The subscription 351 * seq: The return of the matching mmu_interval_read_begin() 352 * 353 * This can be used in the critical section between mmu_interval_read_begin() 354 * and mmu_interval_read_retry(). A return of true indicates an invalidation 355 * has collided with this critical region and a future 356 * mmu_interval_read_retry() will return true. 357 * 358 * False is not reliable and only suggests a collision may not have 359 * occured. It can be called many times and does not have to hold the user 360 * provided lock. 361 * 362 * This call can be used as part of loops and other expensive operations to 363 * expedite a retry. 364 */ 365static inline bool 366mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, 367 unsigned long seq) 368{ 369 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 370 return READ_ONCE(interval_sub->invalidate_seq) != seq; 371} 372 373extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); 374extern void __mmu_notifier_release(struct mm_struct *mm); 375extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 376 unsigned long start, 377 unsigned long end); 378extern int __mmu_notifier_clear_young(struct mm_struct *mm, 379 unsigned long start, 380 unsigned long end); 381extern int __mmu_notifier_test_young(struct mm_struct *mm, 382 unsigned long address); 383extern void __mmu_notifier_change_pte(struct mm_struct *mm, 384 unsigned long address, pte_t pte); 385extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 386extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, 387 bool only_end); 388extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 389 unsigned long start, unsigned long end); 390extern bool 391mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); 392 393static inline bool 394mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 395{ 396 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); 397} 398 399static inline void mmu_notifier_release(struct mm_struct *mm) 400{ 401 if (mm_has_notifiers(mm)) 402 __mmu_notifier_release(mm); 403} 404 405static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 406 unsigned long start, 407 unsigned long end) 408{ 409 if (mm_has_notifiers(mm)) 410 return __mmu_notifier_clear_flush_young(mm, start, end); 411 return 0; 412} 413 414static inline int mmu_notifier_clear_young(struct mm_struct *mm, 415 unsigned long start, 416 unsigned long end) 417{ 418 if (mm_has_notifiers(mm)) 419 return __mmu_notifier_clear_young(mm, start, end); 420 return 0; 421} 422 423static inline int mmu_notifier_test_young(struct mm_struct *mm, 424 unsigned long address) 425{ 426 if (mm_has_notifiers(mm)) 427 return __mmu_notifier_test_young(mm, address); 428 return 0; 429} 430 431static inline void mmu_notifier_change_pte(struct mm_struct *mm, 432 unsigned long address, pte_t pte) 433{ 434 if (mm_has_notifiers(mm)) 435 __mmu_notifier_change_pte(mm, address, pte); 436} 437 438static inline void 439mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 440{ 441 might_sleep(); 442 443 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 444 if (mm_has_notifiers(range->mm)) { 445 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; 446 __mmu_notifier_invalidate_range_start(range); 447 } 448 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 449} 450 451static inline int 452mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 453{ 454 int ret = 0; 455 456 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 457 if (mm_has_notifiers(range->mm)) { 458 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; 459 ret = __mmu_notifier_invalidate_range_start(range); 460 } 461 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 462 return ret; 463} 464 465static inline void 466mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 467{ 468 if (mmu_notifier_range_blockable(range)) 469 might_sleep(); 470 471 if (mm_has_notifiers(range->mm)) 472 __mmu_notifier_invalidate_range_end(range, false); 473} 474 475static inline void 476mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 477{ 478 if (mm_has_notifiers(range->mm)) 479 __mmu_notifier_invalidate_range_end(range, true); 480} 481 482static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 483 unsigned long start, unsigned long end) 484{ 485 if (mm_has_notifiers(mm)) 486 __mmu_notifier_invalidate_range(mm, start, end); 487} 488 489static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 490{ 491 mm->notifier_subscriptions = NULL; 492} 493 494static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 495{ 496 if (mm_has_notifiers(mm)) 497 __mmu_notifier_subscriptions_destroy(mm); 498} 499 500 501static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 502 enum mmu_notifier_event event, 503 unsigned flags, 504 struct vm_area_struct *vma, 505 struct mm_struct *mm, 506 unsigned long start, 507 unsigned long end) 508{ 509 range->vma = vma; 510 range->event = event; 511 range->mm = mm; 512 range->start = start; 513 range->end = end; 514 range->flags = flags; 515} 516 517#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 518({ \ 519 int __young; \ 520 struct vm_area_struct *___vma = __vma; \ 521 unsigned long ___address = __address; \ 522 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 523 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 524 ___address, \ 525 ___address + \ 526 PAGE_SIZE); \ 527 __young; \ 528}) 529 530#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 531({ \ 532 int __young; \ 533 struct vm_area_struct *___vma = __vma; \ 534 unsigned long ___address = __address; \ 535 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 536 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 537 ___address, \ 538 ___address + \ 539 PMD_SIZE); \ 540 __young; \ 541}) 542 543#define ptep_clear_young_notify(__vma, __address, __ptep) \ 544({ \ 545 int __young; \ 546 struct vm_area_struct *___vma = __vma; \ 547 unsigned long ___address = __address; \ 548 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 549 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 550 ___address + PAGE_SIZE); \ 551 __young; \ 552}) 553 554#define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 555({ \ 556 int __young; \ 557 struct vm_area_struct *___vma = __vma; \ 558 unsigned long ___address = __address; \ 559 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 560 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 561 ___address + PMD_SIZE); \ 562 __young; \ 563}) 564 565#define ptep_clear_flush_notify(__vma, __address, __ptep) \ 566({ \ 567 unsigned long ___addr = __address & PAGE_MASK; \ 568 struct mm_struct *___mm = (__vma)->vm_mm; \ 569 pte_t ___pte; \ 570 \ 571 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 572 mmu_notifier_invalidate_range(___mm, ___addr, \ 573 ___addr + PAGE_SIZE); \ 574 \ 575 ___pte; \ 576}) 577 578#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 579({ \ 580 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 581 struct mm_struct *___mm = (__vma)->vm_mm; \ 582 pmd_t ___pmd; \ 583 \ 584 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 585 mmu_notifier_invalidate_range(___mm, ___haddr, \ 586 ___haddr + HPAGE_PMD_SIZE); \ 587 \ 588 ___pmd; \ 589}) 590 591#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 592({ \ 593 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 594 struct mm_struct *___mm = (__vma)->vm_mm; \ 595 pud_t ___pud; \ 596 \ 597 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 598 mmu_notifier_invalidate_range(___mm, ___haddr, \ 599 ___haddr + HPAGE_PUD_SIZE); \ 600 \ 601 ___pud; \ 602}) 603 604/* 605 * set_pte_at_notify() sets the pte _after_ running the notifier. 606 * This is safe to start by updating the secondary MMUs, because the primary MMU 607 * pte invalidate must have already happened with a ptep_clear_flush() before 608 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 609 * required when we change both the protection of the mapping from read-only to 610 * read-write and the pfn (like during copy on write page faults). Otherwise the 611 * old page would remain mapped readonly in the secondary MMUs after the new 612 * page is already writable by some CPU through the primary MMU. 613 */ 614#define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 615({ \ 616 struct mm_struct *___mm = __mm; \ 617 unsigned long ___address = __address; \ 618 pte_t ___pte = __pte; \ 619 \ 620 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 621 set_pte_at(___mm, ___address, __ptep, ___pte); \ 622}) 623 624#else /* CONFIG_MMU_NOTIFIER */ 625 626struct mmu_notifier_range { 627 unsigned long start; 628 unsigned long end; 629}; 630 631static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 632 unsigned long start, 633 unsigned long end) 634{ 635 range->start = start; 636 range->end = end; 637} 638 639#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ 640 _mmu_notifier_range_init(range, start, end) 641 642static inline bool 643mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 644{ 645 return true; 646} 647 648static inline int mm_has_notifiers(struct mm_struct *mm) 649{ 650 return 0; 651} 652 653static inline void mmu_notifier_release(struct mm_struct *mm) 654{ 655} 656 657static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 658 unsigned long start, 659 unsigned long end) 660{ 661 return 0; 662} 663 664static inline int mmu_notifier_test_young(struct mm_struct *mm, 665 unsigned long address) 666{ 667 return 0; 668} 669 670static inline void mmu_notifier_change_pte(struct mm_struct *mm, 671 unsigned long address, pte_t pte) 672{ 673} 674 675static inline void 676mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 677{ 678} 679 680static inline int 681mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 682{ 683 return 0; 684} 685 686static inline 687void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 688{ 689} 690 691static inline void 692mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 693{ 694} 695 696static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 697 unsigned long start, unsigned long end) 698{ 699} 700 701static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 702{ 703} 704 705static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 706{ 707} 708 709#define mmu_notifier_range_update_to_read_only(r) false 710 711#define ptep_clear_flush_young_notify ptep_clear_flush_young 712#define pmdp_clear_flush_young_notify pmdp_clear_flush_young 713#define ptep_clear_young_notify ptep_test_and_clear_young 714#define pmdp_clear_young_notify pmdp_test_and_clear_young 715#define ptep_clear_flush_notify ptep_clear_flush 716#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 717#define pudp_huge_clear_flush_notify pudp_huge_clear_flush 718#define set_pte_at_notify set_pte_at 719 720static inline void mmu_notifier_synchronize(void) 721{ 722} 723 724#endif /* CONFIG_MMU_NOTIFIER */ 725 726#endif /* _LINUX_MMU_NOTIFIER_H */