Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/swait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct mutex kvm_lock;
161extern struct list_head vm_list;
162
163struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167};
168
169#define NR_IOBUS_DEVS 1000
170
171struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175};
176
177enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183};
184
185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198#ifdef CONFIG_KVM_ASYNC_PF
199struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209};
210
211void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
212void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
213int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
214 unsigned long hva, struct kvm_arch_async_pf *arch);
215int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
216#endif
217
218enum {
219 OUTSIDE_GUEST_MODE,
220 IN_GUEST_MODE,
221 EXITING_GUEST_MODE,
222 READING_SHADOW_PAGE_TABLES,
223};
224
225#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
226
227struct kvm_host_map {
228 /*
229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
230 * a 'struct page' for it. When using mem= kernel parameter some memory
231 * can be used as guest memory but they are not managed by host
232 * kernel).
233 * If 'pfn' is not managed by the host kernel, this field is
234 * initialized to KVM_UNMAPPED_PAGE.
235 */
236 struct page *page;
237 void *hva;
238 kvm_pfn_t pfn;
239 kvm_pfn_t gfn;
240};
241
242/*
243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
244 * directly to check for that.
245 */
246static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
247{
248 return !!map->hva;
249}
250
251/*
252 * Sometimes a large or cross-page mmio needs to be broken up into separate
253 * exits for userspace servicing.
254 */
255struct kvm_mmio_fragment {
256 gpa_t gpa;
257 void *data;
258 unsigned len;
259};
260
261struct kvm_vcpu {
262 struct kvm *kvm;
263#ifdef CONFIG_PREEMPT_NOTIFIERS
264 struct preempt_notifier preempt_notifier;
265#endif
266 int cpu;
267 int vcpu_id; /* id given by userspace at creation */
268 int vcpu_idx; /* index in kvm->vcpus array */
269 int srcu_idx;
270 int mode;
271 u64 requests;
272 unsigned long guest_debug;
273
274 int pre_pcpu;
275 struct list_head blocked_vcpu_list;
276
277 struct mutex mutex;
278 struct kvm_run *run;
279
280 struct swait_queue_head wq;
281 struct pid __rcu *pid;
282 int sigset_active;
283 sigset_t sigset;
284 struct kvm_vcpu_stat stat;
285 unsigned int halt_poll_ns;
286 bool valid_wakeup;
287
288#ifdef CONFIG_HAS_IOMEM
289 int mmio_needed;
290 int mmio_read_completed;
291 int mmio_is_write;
292 int mmio_cur_fragment;
293 int mmio_nr_fragments;
294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
295#endif
296
297#ifdef CONFIG_KVM_ASYNC_PF
298 struct {
299 u32 queued;
300 struct list_head queue;
301 struct list_head done;
302 spinlock_t lock;
303 } async_pf;
304#endif
305
306#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
307 /*
308 * Cpu relax intercept or pause loop exit optimization
309 * in_spin_loop: set when a vcpu does a pause loop exit
310 * or cpu relax intercepted.
311 * dy_eligible: indicates whether vcpu is eligible for directed yield.
312 */
313 struct {
314 bool in_spin_loop;
315 bool dy_eligible;
316 } spin_loop;
317#endif
318 bool preempted;
319 bool ready;
320 struct kvm_vcpu_arch arch;
321 struct dentry *debugfs_dentry;
322};
323
324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325{
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333}
334
335/*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349};
350
351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352{
353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354}
355
356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357{
358 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359
360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361}
362
363struct kvm_s390_adapter_int {
364 u64 ind_addr;
365 u64 summary_addr;
366 u64 ind_offset;
367 u32 summary_offset;
368 u32 adapter_id;
369};
370
371struct kvm_hv_sint {
372 u32 vcpu;
373 u32 sint;
374};
375
376struct kvm_kernel_irq_routing_entry {
377 u32 gsi;
378 u32 type;
379 int (*set)(struct kvm_kernel_irq_routing_entry *e,
380 struct kvm *kvm, int irq_source_id, int level,
381 bool line_status);
382 union {
383 struct {
384 unsigned irqchip;
385 unsigned pin;
386 } irqchip;
387 struct {
388 u32 address_lo;
389 u32 address_hi;
390 u32 data;
391 u32 flags;
392 u32 devid;
393 } msi;
394 struct kvm_s390_adapter_int adapter;
395 struct kvm_hv_sint hv_sint;
396 };
397 struct hlist_node link;
398};
399
400#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
401struct kvm_irq_routing_table {
402 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
403 u32 nr_rt_entries;
404 /*
405 * Array indexed by gsi. Each entry contains list of irq chips
406 * the gsi is connected to.
407 */
408 struct hlist_head map[0];
409};
410#endif
411
412#ifndef KVM_PRIVATE_MEM_SLOTS
413#define KVM_PRIVATE_MEM_SLOTS 0
414#endif
415
416#ifndef KVM_MEM_SLOTS_NUM
417#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
418#endif
419
420#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
421static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
422{
423 return 0;
424}
425#endif
426
427/*
428 * Note:
429 * memslots are not sorted by id anymore, please use id_to_memslot()
430 * to get the memslot by its id.
431 */
432struct kvm_memslots {
433 u64 generation;
434 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
435 /* The mapping table from slot id to the index in memslots[]. */
436 short id_to_index[KVM_MEM_SLOTS_NUM];
437 atomic_t lru_slot;
438 int used_slots;
439};
440
441struct kvm {
442 spinlock_t mmu_lock;
443 struct mutex slots_lock;
444 struct mm_struct *mm; /* userspace tied to this vm */
445 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
446 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
447
448 /*
449 * created_vcpus is protected by kvm->lock, and is incremented
450 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
451 * incremented after storing the kvm_vcpu pointer in vcpus,
452 * and is accessed atomically.
453 */
454 atomic_t online_vcpus;
455 int created_vcpus;
456 int last_boosted_vcpu;
457 struct list_head vm_list;
458 struct mutex lock;
459 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
460#ifdef CONFIG_HAVE_KVM_EVENTFD
461 struct {
462 spinlock_t lock;
463 struct list_head items;
464 struct list_head resampler_list;
465 struct mutex resampler_lock;
466 } irqfds;
467 struct list_head ioeventfds;
468#endif
469 struct kvm_vm_stat stat;
470 struct kvm_arch arch;
471 refcount_t users_count;
472#ifdef CONFIG_KVM_MMIO
473 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
474 spinlock_t ring_lock;
475 struct list_head coalesced_zones;
476#endif
477
478 struct mutex irq_lock;
479#ifdef CONFIG_HAVE_KVM_IRQCHIP
480 /*
481 * Update side is protected by irq_lock.
482 */
483 struct kvm_irq_routing_table __rcu *irq_routing;
484#endif
485#ifdef CONFIG_HAVE_KVM_IRQFD
486 struct hlist_head irq_ack_notifier_list;
487#endif
488
489#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
490 struct mmu_notifier mmu_notifier;
491 unsigned long mmu_notifier_seq;
492 long mmu_notifier_count;
493#endif
494 long tlbs_dirty;
495 struct list_head devices;
496 bool manual_dirty_log_protect;
497 struct dentry *debugfs_dentry;
498 struct kvm_stat_data **debugfs_stat_data;
499 struct srcu_struct srcu;
500 struct srcu_struct irq_srcu;
501 pid_t userspace_pid;
502};
503
504#define kvm_err(fmt, ...) \
505 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
506#define kvm_info(fmt, ...) \
507 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
508#define kvm_debug(fmt, ...) \
509 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510#define kvm_debug_ratelimited(fmt, ...) \
511 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
512 ## __VA_ARGS__)
513#define kvm_pr_unimpl(fmt, ...) \
514 pr_err_ratelimited("kvm [%i]: " fmt, \
515 task_tgid_nr(current), ## __VA_ARGS__)
516
517/* The guest did something we don't support. */
518#define vcpu_unimpl(vcpu, fmt, ...) \
519 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
520 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
521
522#define vcpu_debug(vcpu, fmt, ...) \
523 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
524#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
525 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
526 ## __VA_ARGS__)
527#define vcpu_err(vcpu, fmt, ...) \
528 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
529
530static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
531{
532 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
533 lockdep_is_held(&kvm->slots_lock) ||
534 !refcount_read(&kvm->users_count));
535}
536
537static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
538{
539 int num_vcpus = atomic_read(&kvm->online_vcpus);
540 i = array_index_nospec(i, num_vcpus);
541
542 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
543 smp_rmb();
544 return kvm->vcpus[i];
545}
546
547#define kvm_for_each_vcpu(idx, vcpup, kvm) \
548 for (idx = 0; \
549 idx < atomic_read(&kvm->online_vcpus) && \
550 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
551 idx++)
552
553static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
554{
555 struct kvm_vcpu *vcpu = NULL;
556 int i;
557
558 if (id < 0)
559 return NULL;
560 if (id < KVM_MAX_VCPUS)
561 vcpu = kvm_get_vcpu(kvm, id);
562 if (vcpu && vcpu->vcpu_id == id)
563 return vcpu;
564 kvm_for_each_vcpu(i, vcpu, kvm)
565 if (vcpu->vcpu_id == id)
566 return vcpu;
567 return NULL;
568}
569
570static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
571{
572 return vcpu->vcpu_idx;
573}
574
575#define kvm_for_each_memslot(memslot, slots) \
576 for (memslot = &slots->memslots[0]; \
577 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
578 memslot++)
579
580void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
581
582void vcpu_load(struct kvm_vcpu *vcpu);
583void vcpu_put(struct kvm_vcpu *vcpu);
584
585#ifdef __KVM_HAVE_IOAPIC
586void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
587void kvm_arch_post_irq_routing_update(struct kvm *kvm);
588#else
589static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
590{
591}
592static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
593{
594}
595#endif
596
597#ifdef CONFIG_HAVE_KVM_IRQFD
598int kvm_irqfd_init(void);
599void kvm_irqfd_exit(void);
600#else
601static inline int kvm_irqfd_init(void)
602{
603 return 0;
604}
605
606static inline void kvm_irqfd_exit(void)
607{
608}
609#endif
610int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
611 struct module *module);
612void kvm_exit(void);
613
614void kvm_get_kvm(struct kvm *kvm);
615void kvm_put_kvm(struct kvm *kvm);
616void kvm_put_kvm_no_destroy(struct kvm *kvm);
617
618static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
619{
620 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
621 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
622 lockdep_is_held(&kvm->slots_lock) ||
623 !refcount_read(&kvm->users_count));
624}
625
626static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
627{
628 return __kvm_memslots(kvm, 0);
629}
630
631static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
632{
633 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
634
635 return __kvm_memslots(vcpu->kvm, as_id);
636}
637
638static inline struct kvm_memory_slot *
639id_to_memslot(struct kvm_memslots *slots, int id)
640{
641 int index = slots->id_to_index[id];
642 struct kvm_memory_slot *slot;
643
644 slot = &slots->memslots[index];
645
646 WARN_ON(slot->id != id);
647 return slot;
648}
649
650/*
651 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
652 * - create a new memory slot
653 * - delete an existing memory slot
654 * - modify an existing memory slot
655 * -- move it in the guest physical memory space
656 * -- just change its flags
657 *
658 * Since flags can be changed by some of these operations, the following
659 * differentiation is the best we can do for __kvm_set_memory_region():
660 */
661enum kvm_mr_change {
662 KVM_MR_CREATE,
663 KVM_MR_DELETE,
664 KVM_MR_MOVE,
665 KVM_MR_FLAGS_ONLY,
666};
667
668int kvm_set_memory_region(struct kvm *kvm,
669 const struct kvm_userspace_memory_region *mem);
670int __kvm_set_memory_region(struct kvm *kvm,
671 const struct kvm_userspace_memory_region *mem);
672void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
673 struct kvm_memory_slot *dont);
674int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675 unsigned long npages);
676void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
677int kvm_arch_prepare_memory_region(struct kvm *kvm,
678 struct kvm_memory_slot *memslot,
679 const struct kvm_userspace_memory_region *mem,
680 enum kvm_mr_change change);
681void kvm_arch_commit_memory_region(struct kvm *kvm,
682 const struct kvm_userspace_memory_region *mem,
683 const struct kvm_memory_slot *old,
684 const struct kvm_memory_slot *new,
685 enum kvm_mr_change change);
686bool kvm_largepages_enabled(void);
687void kvm_disable_largepages(void);
688/* flush all memory translations */
689void kvm_arch_flush_shadow_all(struct kvm *kvm);
690/* flush memory translations pointing to 'slot' */
691void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
692 struct kvm_memory_slot *slot);
693
694int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
695 struct page **pages, int nr_pages);
696
697struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
698unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
699unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
700unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
701unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
702 bool *writable);
703void kvm_release_page_clean(struct page *page);
704void kvm_release_page_dirty(struct page *page);
705void kvm_set_page_accessed(struct page *page);
706
707kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
708kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
709kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
710 bool *writable);
711kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
712kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
713kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
714 bool atomic, bool *async, bool write_fault,
715 bool *writable);
716
717void kvm_release_pfn_clean(kvm_pfn_t pfn);
718void kvm_release_pfn_dirty(kvm_pfn_t pfn);
719void kvm_set_pfn_dirty(kvm_pfn_t pfn);
720void kvm_set_pfn_accessed(kvm_pfn_t pfn);
721void kvm_get_pfn(kvm_pfn_t pfn);
722
723void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
724int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
725 int len);
726int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
727int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
728 void *data, unsigned long len);
729int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
730 int offset, int len);
731int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
732 unsigned long len);
733int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
734 void *data, unsigned long len);
735int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 void *data, unsigned int offset,
737 unsigned long len);
738int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
739 gpa_t gpa, unsigned long len);
740
741#define __kvm_put_guest(kvm, gfn, offset, value, type) \
742({ \
743 unsigned long __addr = gfn_to_hva(kvm, gfn); \
744 type __user *__uaddr = (type __user *)(__addr + offset); \
745 int __ret = -EFAULT; \
746 \
747 if (!kvm_is_error_hva(__addr)) \
748 __ret = put_user(value, __uaddr); \
749 if (!__ret) \
750 mark_page_dirty(kvm, gfn); \
751 __ret; \
752})
753
754#define kvm_put_guest(kvm, gpa, value, type) \
755({ \
756 gpa_t __gpa = gpa; \
757 struct kvm *__kvm = kvm; \
758 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
759 offset_in_page(__gpa), (value), type); \
760})
761
762int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
763int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
764struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
765bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
766unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
767void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
768
769struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
770struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
771kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
772kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
773int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
774int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
775 struct gfn_to_pfn_cache *cache, bool atomic);
776struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
777void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
778int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
779 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
780unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
781unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
782int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
783 int len);
784int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
785 unsigned long len);
786int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
787 unsigned long len);
788int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
789 int offset, int len);
790int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
791 unsigned long len);
792void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
793
794void kvm_sigset_activate(struct kvm_vcpu *vcpu);
795void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
796
797void kvm_vcpu_block(struct kvm_vcpu *vcpu);
798void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
799void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
800bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
801void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
802int kvm_vcpu_yield_to(struct kvm_vcpu *target);
803void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
804
805void kvm_flush_remote_tlbs(struct kvm *kvm);
806void kvm_reload_remote_mmus(struct kvm *kvm);
807
808bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
809 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
810bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
811bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
812 unsigned long *vcpu_bitmap);
813
814long kvm_arch_dev_ioctl(struct file *filp,
815 unsigned int ioctl, unsigned long arg);
816long kvm_arch_vcpu_ioctl(struct file *filp,
817 unsigned int ioctl, unsigned long arg);
818vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
819
820int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
821
822int kvm_get_dirty_log(struct kvm *kvm,
823 struct kvm_dirty_log *log, int *is_dirty);
824
825int kvm_get_dirty_log_protect(struct kvm *kvm,
826 struct kvm_dirty_log *log, bool *flush);
827int kvm_clear_dirty_log_protect(struct kvm *kvm,
828 struct kvm_clear_dirty_log *log, bool *flush);
829
830void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
831 struct kvm_memory_slot *slot,
832 gfn_t gfn_offset,
833 unsigned long mask);
834
835int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
836 struct kvm_dirty_log *log);
837int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
838 struct kvm_clear_dirty_log *log);
839
840int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
841 bool line_status);
842int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
843 struct kvm_enable_cap *cap);
844long kvm_arch_vm_ioctl(struct file *filp,
845 unsigned int ioctl, unsigned long arg);
846
847int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
848int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
849
850int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
851 struct kvm_translation *tr);
852
853int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
854int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
855int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
856 struct kvm_sregs *sregs);
857int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
858 struct kvm_sregs *sregs);
859int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
860 struct kvm_mp_state *mp_state);
861int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
862 struct kvm_mp_state *mp_state);
863int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
864 struct kvm_guest_debug *dbg);
865int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
866
867int kvm_arch_init(void *opaque);
868void kvm_arch_exit(void);
869
870void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
871
872void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
873void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
874int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
875int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
876void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
877void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
878
879#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
880void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
881#endif
882
883int kvm_arch_hardware_enable(void);
884void kvm_arch_hardware_disable(void);
885int kvm_arch_hardware_setup(void);
886void kvm_arch_hardware_unsetup(void);
887int kvm_arch_check_processor_compat(void);
888int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
889bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
890int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
891bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
892int kvm_arch_post_init_vm(struct kvm *kvm);
893void kvm_arch_pre_destroy_vm(struct kvm *kvm);
894
895#ifndef __KVM_HAVE_ARCH_VM_ALLOC
896/*
897 * All architectures that want to use vzalloc currently also
898 * need their own kvm_arch_alloc_vm implementation.
899 */
900static inline struct kvm *kvm_arch_alloc_vm(void)
901{
902 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
903}
904
905static inline void kvm_arch_free_vm(struct kvm *kvm)
906{
907 kfree(kvm);
908}
909#endif
910
911#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
912static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
913{
914 return -ENOTSUPP;
915}
916#endif
917
918#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
919void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
920void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
921bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
922#else
923static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
924{
925}
926
927static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
928{
929}
930
931static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
932{
933 return false;
934}
935#endif
936#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
937void kvm_arch_start_assignment(struct kvm *kvm);
938void kvm_arch_end_assignment(struct kvm *kvm);
939bool kvm_arch_has_assigned_device(struct kvm *kvm);
940#else
941static inline void kvm_arch_start_assignment(struct kvm *kvm)
942{
943}
944
945static inline void kvm_arch_end_assignment(struct kvm *kvm)
946{
947}
948
949static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
950{
951 return false;
952}
953#endif
954
955static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
956{
957#ifdef __KVM_HAVE_ARCH_WQP
958 return vcpu->arch.wqp;
959#else
960 return &vcpu->wq;
961#endif
962}
963
964#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
965/*
966 * returns true if the virtual interrupt controller is initialized and
967 * ready to accept virtual IRQ. On some architectures the virtual interrupt
968 * controller is dynamically instantiated and this is not always true.
969 */
970bool kvm_arch_intc_initialized(struct kvm *kvm);
971#else
972static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
973{
974 return true;
975}
976#endif
977
978int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
979void kvm_arch_destroy_vm(struct kvm *kvm);
980void kvm_arch_sync_events(struct kvm *kvm);
981
982int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
983
984bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
985bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
986bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
987
988struct kvm_irq_ack_notifier {
989 struct hlist_node link;
990 unsigned gsi;
991 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
992};
993
994int kvm_irq_map_gsi(struct kvm *kvm,
995 struct kvm_kernel_irq_routing_entry *entries, int gsi);
996int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
997
998int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
999 bool line_status);
1000int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1001 int irq_source_id, int level, bool line_status);
1002int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1003 struct kvm *kvm, int irq_source_id,
1004 int level, bool line_status);
1005bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1006void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1007void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1008void kvm_register_irq_ack_notifier(struct kvm *kvm,
1009 struct kvm_irq_ack_notifier *kian);
1010void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1011 struct kvm_irq_ack_notifier *kian);
1012int kvm_request_irq_source_id(struct kvm *kvm);
1013void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1014bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1015
1016/*
1017 * search_memslots() and __gfn_to_memslot() are here because they are
1018 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1019 * gfn_to_memslot() itself isn't here as an inline because that would
1020 * bloat other code too much.
1021 */
1022static inline struct kvm_memory_slot *
1023search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1024{
1025 int start = 0, end = slots->used_slots;
1026 int slot = atomic_read(&slots->lru_slot);
1027 struct kvm_memory_slot *memslots = slots->memslots;
1028
1029 if (gfn >= memslots[slot].base_gfn &&
1030 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1031 return &memslots[slot];
1032
1033 while (start < end) {
1034 slot = start + (end - start) / 2;
1035
1036 if (gfn >= memslots[slot].base_gfn)
1037 end = slot;
1038 else
1039 start = slot + 1;
1040 }
1041
1042 if (gfn >= memslots[start].base_gfn &&
1043 gfn < memslots[start].base_gfn + memslots[start].npages) {
1044 atomic_set(&slots->lru_slot, start);
1045 return &memslots[start];
1046 }
1047
1048 return NULL;
1049}
1050
1051static inline struct kvm_memory_slot *
1052__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1053{
1054 return search_memslots(slots, gfn);
1055}
1056
1057static inline unsigned long
1058__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1059{
1060 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1061}
1062
1063static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1064{
1065 return gfn_to_memslot(kvm, gfn)->id;
1066}
1067
1068static inline gfn_t
1069hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1070{
1071 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1072
1073 return slot->base_gfn + gfn_offset;
1074}
1075
1076static inline gpa_t gfn_to_gpa(gfn_t gfn)
1077{
1078 return (gpa_t)gfn << PAGE_SHIFT;
1079}
1080
1081static inline gfn_t gpa_to_gfn(gpa_t gpa)
1082{
1083 return (gfn_t)(gpa >> PAGE_SHIFT);
1084}
1085
1086static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1087{
1088 return (hpa_t)pfn << PAGE_SHIFT;
1089}
1090
1091static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1092 gpa_t gpa)
1093{
1094 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1095}
1096
1097static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1098{
1099 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1100
1101 return kvm_is_error_hva(hva);
1102}
1103
1104enum kvm_stat_kind {
1105 KVM_STAT_VM,
1106 KVM_STAT_VCPU,
1107};
1108
1109struct kvm_stat_data {
1110 struct kvm *kvm;
1111 struct kvm_stats_debugfs_item *dbgfs_item;
1112};
1113
1114struct kvm_stats_debugfs_item {
1115 const char *name;
1116 int offset;
1117 enum kvm_stat_kind kind;
1118 int mode;
1119};
1120
1121#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1122 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1123
1124extern struct kvm_stats_debugfs_item debugfs_entries[];
1125extern struct dentry *kvm_debugfs_dir;
1126
1127#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1128static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1129{
1130 if (unlikely(kvm->mmu_notifier_count))
1131 return 1;
1132 /*
1133 * Ensure the read of mmu_notifier_count happens before the read
1134 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1135 * mmu_notifier_invalidate_range_end to make sure that the caller
1136 * either sees the old (non-zero) value of mmu_notifier_count or
1137 * the new (incremented) value of mmu_notifier_seq.
1138 * PowerPC Book3s HV KVM calls this under a per-page lock
1139 * rather than under kvm->mmu_lock, for scalability, so
1140 * can't rely on kvm->mmu_lock to keep things ordered.
1141 */
1142 smp_rmb();
1143 if (kvm->mmu_notifier_seq != mmu_seq)
1144 return 1;
1145 return 0;
1146}
1147#endif
1148
1149#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1150
1151#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1152
1153bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1154int kvm_set_irq_routing(struct kvm *kvm,
1155 const struct kvm_irq_routing_entry *entries,
1156 unsigned nr,
1157 unsigned flags);
1158int kvm_set_routing_entry(struct kvm *kvm,
1159 struct kvm_kernel_irq_routing_entry *e,
1160 const struct kvm_irq_routing_entry *ue);
1161void kvm_free_irq_routing(struct kvm *kvm);
1162
1163#else
1164
1165static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1166
1167#endif
1168
1169int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1170
1171#ifdef CONFIG_HAVE_KVM_EVENTFD
1172
1173void kvm_eventfd_init(struct kvm *kvm);
1174int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1175
1176#ifdef CONFIG_HAVE_KVM_IRQFD
1177int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1178void kvm_irqfd_release(struct kvm *kvm);
1179void kvm_irq_routing_update(struct kvm *);
1180#else
1181static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1182{
1183 return -EINVAL;
1184}
1185
1186static inline void kvm_irqfd_release(struct kvm *kvm) {}
1187#endif
1188
1189#else
1190
1191static inline void kvm_eventfd_init(struct kvm *kvm) {}
1192
1193static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1194{
1195 return -EINVAL;
1196}
1197
1198static inline void kvm_irqfd_release(struct kvm *kvm) {}
1199
1200#ifdef CONFIG_HAVE_KVM_IRQCHIP
1201static inline void kvm_irq_routing_update(struct kvm *kvm)
1202{
1203}
1204#endif
1205
1206static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1207{
1208 return -ENOSYS;
1209}
1210
1211#endif /* CONFIG_HAVE_KVM_EVENTFD */
1212
1213void kvm_arch_irq_routing_update(struct kvm *kvm);
1214
1215static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1216{
1217 /*
1218 * Ensure the rest of the request is published to kvm_check_request's
1219 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1220 */
1221 smp_wmb();
1222 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1223}
1224
1225static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1226{
1227 return READ_ONCE(vcpu->requests);
1228}
1229
1230static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1231{
1232 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1233}
1234
1235static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1236{
1237 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1238}
1239
1240static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1241{
1242 if (kvm_test_request(req, vcpu)) {
1243 kvm_clear_request(req, vcpu);
1244
1245 /*
1246 * Ensure the rest of the request is visible to kvm_check_request's
1247 * caller. Paired with the smp_wmb in kvm_make_request.
1248 */
1249 smp_mb__after_atomic();
1250 return true;
1251 } else {
1252 return false;
1253 }
1254}
1255
1256extern bool kvm_rebooting;
1257
1258extern unsigned int halt_poll_ns;
1259extern unsigned int halt_poll_ns_grow;
1260extern unsigned int halt_poll_ns_grow_start;
1261extern unsigned int halt_poll_ns_shrink;
1262
1263struct kvm_device {
1264 const struct kvm_device_ops *ops;
1265 struct kvm *kvm;
1266 void *private;
1267 struct list_head vm_node;
1268};
1269
1270/* create, destroy, and name are mandatory */
1271struct kvm_device_ops {
1272 const char *name;
1273
1274 /*
1275 * create is called holding kvm->lock and any operations not suitable
1276 * to do while holding the lock should be deferred to init (see
1277 * below).
1278 */
1279 int (*create)(struct kvm_device *dev, u32 type);
1280
1281 /*
1282 * init is called after create if create is successful and is called
1283 * outside of holding kvm->lock.
1284 */
1285 void (*init)(struct kvm_device *dev);
1286
1287 /*
1288 * Destroy is responsible for freeing dev.
1289 *
1290 * Destroy may be called before or after destructors are called
1291 * on emulated I/O regions, depending on whether a reference is
1292 * held by a vcpu or other kvm component that gets destroyed
1293 * after the emulated I/O.
1294 */
1295 void (*destroy)(struct kvm_device *dev);
1296
1297 /*
1298 * Release is an alternative method to free the device. It is
1299 * called when the device file descriptor is closed. Once
1300 * release is called, the destroy method will not be called
1301 * anymore as the device is removed from the device list of
1302 * the VM. kvm->lock is held.
1303 */
1304 void (*release)(struct kvm_device *dev);
1305
1306 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1307 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1308 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1309 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1310 unsigned long arg);
1311 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1312};
1313
1314void kvm_device_get(struct kvm_device *dev);
1315void kvm_device_put(struct kvm_device *dev);
1316struct kvm_device *kvm_device_from_filp(struct file *filp);
1317int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1318void kvm_unregister_device_ops(u32 type);
1319
1320extern struct kvm_device_ops kvm_mpic_ops;
1321extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1322extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1323
1324#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1325
1326static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1327{
1328 vcpu->spin_loop.in_spin_loop = val;
1329}
1330static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1331{
1332 vcpu->spin_loop.dy_eligible = val;
1333}
1334
1335#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1336
1337static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1338{
1339}
1340
1341static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1342{
1343}
1344#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1345
1346struct kvm_vcpu *kvm_get_running_vcpu(void);
1347struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1348
1349#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1350bool kvm_arch_has_irq_bypass(void);
1351int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1352 struct irq_bypass_producer *);
1353void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1354 struct irq_bypass_producer *);
1355void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1356void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1357int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1358 uint32_t guest_irq, bool set);
1359#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1360
1361#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1362/* If we wakeup during the poll time, was it a sucessful poll? */
1363static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1364{
1365 return vcpu->valid_wakeup;
1366}
1367
1368#else
1369static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1370{
1371 return true;
1372}
1373#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1374
1375#ifdef CONFIG_HAVE_KVM_NO_POLL
1376/* Callback that tells if we must not poll */
1377bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1378#else
1379static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1380{
1381 return false;
1382}
1383#endif /* CONFIG_HAVE_KVM_NO_POLL */
1384
1385#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1386long kvm_arch_vcpu_async_ioctl(struct file *filp,
1387 unsigned int ioctl, unsigned long arg);
1388#else
1389static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1390 unsigned int ioctl,
1391 unsigned long arg)
1392{
1393 return -ENOIOCTLCMD;
1394}
1395#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1396
1397int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1398 unsigned long start, unsigned long end, bool blockable);
1399
1400#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1401int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1402#else
1403static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1404{
1405 return 0;
1406}
1407#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1408
1409typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1410
1411int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1412 uintptr_t data, const char *name,
1413 struct task_struct **thread_ptr);
1414
1415#endif