Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_GENERIC_PGTABLE_H
3#define _ASM_GENERIC_PGTABLE_H
4
5#include <linux/pfn.h>
6
7#ifndef __ASSEMBLY__
8#ifdef CONFIG_MMU
9
10#include <linux/mm_types.h>
11#include <linux/bug.h>
12#include <linux/errno.h>
13
14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
17#endif
18
19/*
20 * On almost all architectures and configurations, 0 can be used as the
21 * upper ceiling to free_pgtables(): on many architectures it has the same
22 * effect as using TASK_SIZE. However, there is one configuration which
23 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 */
25#ifndef USER_PGTABLES_CEILING
26#define USER_PGTABLES_CEILING 0UL
27#endif
28
29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
30extern int ptep_set_access_flags(struct vm_area_struct *vma,
31 unsigned long address, pte_t *ptep,
32 pte_t entry, int dirty);
33#endif
34
35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
38 unsigned long address, pmd_t *pmdp,
39 pmd_t entry, int dirty);
40extern int pudp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pud_t *pudp,
42 pud_t entry, int dirty);
43#else
44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
45 unsigned long address, pmd_t *pmdp,
46 pmd_t entry, int dirty)
47{
48 BUILD_BUG();
49 return 0;
50}
51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
52 unsigned long address, pud_t *pudp,
53 pud_t entry, int dirty)
54{
55 BUILD_BUG();
56 return 0;
57}
58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
59#endif
60
61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pte_t *ptep)
65{
66 pte_t pte = *ptep;
67 int r = 1;
68 if (!pte_young(pte))
69 r = 0;
70 else
71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
72 return r;
73}
74#endif
75
76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 unsigned long address,
80 pmd_t *pmdp)
81{
82 pmd_t pmd = *pmdp;
83 int r = 1;
84 if (!pmd_young(pmd))
85 r = 0;
86 else
87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
88 return r;
89}
90#else
91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
92 unsigned long address,
93 pmd_t *pmdp)
94{
95 BUILD_BUG();
96 return 0;
97}
98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
99#endif
100
101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
102int ptep_clear_flush_young(struct vm_area_struct *vma,
103 unsigned long address, pte_t *ptep);
104#endif
105
106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
109 unsigned long address, pmd_t *pmdp);
110#else
111/*
112 * Despite relevant to THP only, this API is called from generic rmap code
113 * under PageTransHuge(), hence needs a dummy implementation for !THP
114 */
115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
116 unsigned long address, pmd_t *pmdp)
117{
118 BUILD_BUG();
119 return 0;
120}
121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
122#endif
123
124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
126 unsigned long address,
127 pte_t *ptep)
128{
129 pte_t pte = *ptep;
130 pte_clear(mm, address, ptep);
131 return pte;
132}
133#endif
134
135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
138 unsigned long address,
139 pmd_t *pmdp)
140{
141 pmd_t pmd = *pmdp;
142 pmd_clear(pmdp);
143 return pmd;
144}
145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
148 unsigned long address,
149 pud_t *pudp)
150{
151 pud_t pud = *pudp;
152
153 pud_clear(pudp);
154 return pud;
155}
156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158
159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
162 unsigned long address, pmd_t *pmdp,
163 int full)
164{
165 return pmdp_huge_get_and_clear(mm, address, pmdp);
166}
167#endif
168
169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
171 unsigned long address, pud_t *pudp,
172 int full)
173{
174 return pudp_huge_get_and_clear(mm, address, pudp);
175}
176#endif
177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178
179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
181 unsigned long address, pte_t *ptep,
182 int full)
183{
184 pte_t pte;
185 pte = ptep_get_and_clear(mm, address, ptep);
186 return pte;
187}
188#endif
189
190/*
191 * Some architectures may be able to avoid expensive synchronization
192 * primitives when modifications are made to PTE's which are already
193 * not present, or in the process of an address space destruction.
194 */
195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
196static inline void pte_clear_not_present_full(struct mm_struct *mm,
197 unsigned long address,
198 pte_t *ptep,
199 int full)
200{
201 pte_clear(mm, address, ptep);
202}
203#endif
204
205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
207 unsigned long address,
208 pte_t *ptep);
209#endif
210
211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
213 unsigned long address,
214 pmd_t *pmdp);
215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
216 unsigned long address,
217 pud_t *pudp);
218#endif
219
220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
221struct mm_struct;
222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223{
224 pte_t old_pte = *ptep;
225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226}
227#endif
228
229#ifndef pte_savedwrite
230#define pte_savedwrite pte_write
231#endif
232
233#ifndef pte_mk_savedwrite
234#define pte_mk_savedwrite pte_mkwrite
235#endif
236
237#ifndef pte_clear_savedwrite
238#define pte_clear_savedwrite pte_wrprotect
239#endif
240
241#ifndef pmd_savedwrite
242#define pmd_savedwrite pmd_write
243#endif
244
245#ifndef pmd_mk_savedwrite
246#define pmd_mk_savedwrite pmd_mkwrite
247#endif
248
249#ifndef pmd_clear_savedwrite
250#define pmd_clear_savedwrite pmd_wrprotect
251#endif
252
253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
256 unsigned long address, pmd_t *pmdp)
257{
258 pmd_t old_pmd = *pmdp;
259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260}
261#else
262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
263 unsigned long address, pmd_t *pmdp)
264{
265 BUILD_BUG();
266}
267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268#endif
269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
271static inline void pudp_set_wrprotect(struct mm_struct *mm,
272 unsigned long address, pud_t *pudp)
273{
274 pud_t old_pud = *pudp;
275
276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277}
278#else
279static inline void pudp_set_wrprotect(struct mm_struct *mm,
280 unsigned long address, pud_t *pudp)
281{
282 BUILD_BUG();
283}
284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
285#endif
286
287#ifndef pmdp_collapse_flush
288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
290 unsigned long address, pmd_t *pmdp);
291#else
292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
293 unsigned long address,
294 pmd_t *pmdp)
295{
296 BUILD_BUG();
297 return *pmdp;
298}
299#define pmdp_collapse_flush pmdp_collapse_flush
300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301#endif
302
303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
305 pgtable_t pgtable);
306#endif
307
308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
310#endif
311
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313/*
314 * This is an implementation of pmdp_establish() that is only suitable for an
315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
317 */
318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp, pmd_t pmd)
320{
321 pmd_t old_pmd = *pmdp;
322 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
323 return old_pmd;
324}
325#endif
326
327#ifndef __HAVE_ARCH_PMDP_INVALIDATE
328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
329 pmd_t *pmdp);
330#endif
331
332#ifndef __HAVE_ARCH_PTE_SAME
333static inline int pte_same(pte_t pte_a, pte_t pte_b)
334{
335 return pte_val(pte_a) == pte_val(pte_b);
336}
337#endif
338
339#ifndef __HAVE_ARCH_PTE_UNUSED
340/*
341 * Some architectures provide facilities to virtualization guests
342 * so that they can flag allocated pages as unused. This allows the
343 * host to transparently reclaim unused pages. This function returns
344 * whether the pte's page is unused.
345 */
346static inline int pte_unused(pte_t pte)
347{
348 return 0;
349}
350#endif
351
352#ifndef pte_access_permitted
353#define pte_access_permitted(pte, write) \
354 (pte_present(pte) && (!(write) || pte_write(pte)))
355#endif
356
357#ifndef pmd_access_permitted
358#define pmd_access_permitted(pmd, write) \
359 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
360#endif
361
362#ifndef pud_access_permitted
363#define pud_access_permitted(pud, write) \
364 (pud_present(pud) && (!(write) || pud_write(pud)))
365#endif
366
367#ifndef p4d_access_permitted
368#define p4d_access_permitted(p4d, write) \
369 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
370#endif
371
372#ifndef pgd_access_permitted
373#define pgd_access_permitted(pgd, write) \
374 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
375#endif
376
377#ifndef __HAVE_ARCH_PMD_SAME
378static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
379{
380 return pmd_val(pmd_a) == pmd_val(pmd_b);
381}
382
383static inline int pud_same(pud_t pud_a, pud_t pud_b)
384{
385 return pud_val(pud_a) == pud_val(pud_b);
386}
387#endif
388
389#ifndef __HAVE_ARCH_P4D_SAME
390static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
391{
392 return p4d_val(p4d_a) == p4d_val(p4d_b);
393}
394#endif
395
396#ifndef __HAVE_ARCH_PGD_SAME
397static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
398{
399 return pgd_val(pgd_a) == pgd_val(pgd_b);
400}
401#endif
402
403/*
404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
405 * TLB flush will be required as a result of the "set". For example, use
406 * in scenarios where it is known ahead of time that the routine is
407 * setting non-present entries, or re-setting an existing entry to the
408 * same value. Otherwise, use the typical "set" helpers and flush the
409 * TLB.
410 */
411#define set_pte_safe(ptep, pte) \
412({ \
413 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
414 set_pte(ptep, pte); \
415})
416
417#define set_pmd_safe(pmdp, pmd) \
418({ \
419 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
420 set_pmd(pmdp, pmd); \
421})
422
423#define set_pud_safe(pudp, pud) \
424({ \
425 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
426 set_pud(pudp, pud); \
427})
428
429#define set_p4d_safe(p4dp, p4d) \
430({ \
431 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
432 set_p4d(p4dp, p4d); \
433})
434
435#define set_pgd_safe(pgdp, pgd) \
436({ \
437 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
438 set_pgd(pgdp, pgd); \
439})
440
441#ifndef __HAVE_ARCH_DO_SWAP_PAGE
442/*
443 * Some architectures support metadata associated with a page. When a
444 * page is being swapped out, this metadata must be saved so it can be
445 * restored when the page is swapped back in. SPARC M7 and newer
446 * processors support an ADI (Application Data Integrity) tag for the
447 * page as metadata for the page. arch_do_swap_page() can restore this
448 * metadata when a page is swapped back in.
449 */
450static inline void arch_do_swap_page(struct mm_struct *mm,
451 struct vm_area_struct *vma,
452 unsigned long addr,
453 pte_t pte, pte_t oldpte)
454{
455
456}
457#endif
458
459#ifndef __HAVE_ARCH_UNMAP_ONE
460/*
461 * Some architectures support metadata associated with a page. When a
462 * page is being swapped out, this metadata must be saved so it can be
463 * restored when the page is swapped back in. SPARC M7 and newer
464 * processors support an ADI (Application Data Integrity) tag for the
465 * page as metadata for the page. arch_unmap_one() can save this
466 * metadata on a swap-out of a page.
467 */
468static inline int arch_unmap_one(struct mm_struct *mm,
469 struct vm_area_struct *vma,
470 unsigned long addr,
471 pte_t orig_pte)
472{
473 return 0;
474}
475#endif
476
477#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
478#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
479#endif
480
481#ifndef __HAVE_ARCH_MOVE_PTE
482#define move_pte(pte, prot, old_addr, new_addr) (pte)
483#endif
484
485#ifndef pte_accessible
486# define pte_accessible(mm, pte) ((void)(pte), 1)
487#endif
488
489#ifndef flush_tlb_fix_spurious_fault
490#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
491#endif
492
493#ifndef pgprot_noncached
494#define pgprot_noncached(prot) (prot)
495#endif
496
497#ifndef pgprot_writecombine
498#define pgprot_writecombine pgprot_noncached
499#endif
500
501#ifndef pgprot_writethrough
502#define pgprot_writethrough pgprot_noncached
503#endif
504
505#ifndef pgprot_device
506#define pgprot_device pgprot_noncached
507#endif
508
509#ifndef pgprot_modify
510#define pgprot_modify pgprot_modify
511static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
512{
513 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
514 newprot = pgprot_noncached(newprot);
515 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
516 newprot = pgprot_writecombine(newprot);
517 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
518 newprot = pgprot_device(newprot);
519 return newprot;
520}
521#endif
522
523/*
524 * When walking page tables, get the address of the next boundary,
525 * or the end address of the range if that comes earlier. Although no
526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
527 */
528
529#define pgd_addr_end(addr, end) \
530({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
531 (__boundary - 1 < (end) - 1)? __boundary: (end); \
532})
533
534#ifndef p4d_addr_end
535#define p4d_addr_end(addr, end) \
536({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
537 (__boundary - 1 < (end) - 1)? __boundary: (end); \
538})
539#endif
540
541#ifndef pud_addr_end
542#define pud_addr_end(addr, end) \
543({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
544 (__boundary - 1 < (end) - 1)? __boundary: (end); \
545})
546#endif
547
548#ifndef pmd_addr_end
549#define pmd_addr_end(addr, end) \
550({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
551 (__boundary - 1 < (end) - 1)? __boundary: (end); \
552})
553#endif
554
555/*
556 * When walking page tables, we usually want to skip any p?d_none entries;
557 * and any p?d_bad entries - reporting the error before resetting to none.
558 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
559 */
560void pgd_clear_bad(pgd_t *);
561
562#ifndef __PAGETABLE_P4D_FOLDED
563void p4d_clear_bad(p4d_t *);
564#else
565#define p4d_clear_bad(p4d) do { } while (0)
566#endif
567
568#ifndef __PAGETABLE_PUD_FOLDED
569void pud_clear_bad(pud_t *);
570#else
571#define pud_clear_bad(p4d) do { } while (0)
572#endif
573
574void pmd_clear_bad(pmd_t *);
575
576static inline int pgd_none_or_clear_bad(pgd_t *pgd)
577{
578 if (pgd_none(*pgd))
579 return 1;
580 if (unlikely(pgd_bad(*pgd))) {
581 pgd_clear_bad(pgd);
582 return 1;
583 }
584 return 0;
585}
586
587static inline int p4d_none_or_clear_bad(p4d_t *p4d)
588{
589 if (p4d_none(*p4d))
590 return 1;
591 if (unlikely(p4d_bad(*p4d))) {
592 p4d_clear_bad(p4d);
593 return 1;
594 }
595 return 0;
596}
597
598static inline int pud_none_or_clear_bad(pud_t *pud)
599{
600 if (pud_none(*pud))
601 return 1;
602 if (unlikely(pud_bad(*pud))) {
603 pud_clear_bad(pud);
604 return 1;
605 }
606 return 0;
607}
608
609static inline int pmd_none_or_clear_bad(pmd_t *pmd)
610{
611 if (pmd_none(*pmd))
612 return 1;
613 if (unlikely(pmd_bad(*pmd))) {
614 pmd_clear_bad(pmd);
615 return 1;
616 }
617 return 0;
618}
619
620static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
621 unsigned long addr,
622 pte_t *ptep)
623{
624 /*
625 * Get the current pte state, but zero it out to make it
626 * non-present, preventing the hardware from asynchronously
627 * updating it.
628 */
629 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
630}
631
632static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
633 unsigned long addr,
634 pte_t *ptep, pte_t pte)
635{
636 /*
637 * The pte is non-present, so there's no hardware state to
638 * preserve.
639 */
640 set_pte_at(vma->vm_mm, addr, ptep, pte);
641}
642
643#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
644/*
645 * Start a pte protection read-modify-write transaction, which
646 * protects against asynchronous hardware modifications to the pte.
647 * The intention is not to prevent the hardware from making pte
648 * updates, but to prevent any updates it may make from being lost.
649 *
650 * This does not protect against other software modifications of the
651 * pte; the appropriate pte lock must be held over the transation.
652 *
653 * Note that this interface is intended to be batchable, meaning that
654 * ptep_modify_prot_commit may not actually update the pte, but merely
655 * queue the update to be done at some later time. The update must be
656 * actually committed before the pte lock is released, however.
657 */
658static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
659 unsigned long addr,
660 pte_t *ptep)
661{
662 return __ptep_modify_prot_start(vma, addr, ptep);
663}
664
665/*
666 * Commit an update to a pte, leaving any hardware-controlled bits in
667 * the PTE unmodified.
668 */
669static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
670 unsigned long addr,
671 pte_t *ptep, pte_t old_pte, pte_t pte)
672{
673 __ptep_modify_prot_commit(vma, addr, ptep, pte);
674}
675#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
676#endif /* CONFIG_MMU */
677
678/*
679 * No-op macros that just return the current protection value. Defined here
680 * because these macros can be used used even if CONFIG_MMU is not defined.
681 */
682#ifndef pgprot_encrypted
683#define pgprot_encrypted(prot) (prot)
684#endif
685
686#ifndef pgprot_decrypted
687#define pgprot_decrypted(prot) (prot)
688#endif
689
690/*
691 * A facility to provide lazy MMU batching. This allows PTE updates and
692 * page invalidations to be delayed until a call to leave lazy MMU mode
693 * is issued. Some architectures may benefit from doing this, and it is
694 * beneficial for both shadow and direct mode hypervisors, which may batch
695 * the PTE updates which happen during this window. Note that using this
696 * interface requires that read hazards be removed from the code. A read
697 * hazard could result in the direct mode hypervisor case, since the actual
698 * write to the page tables may not yet have taken place, so reads though
699 * a raw PTE pointer after it has been modified are not guaranteed to be
700 * up to date. This mode can only be entered and left under the protection of
701 * the page table locks for all page tables which may be modified. In the UP
702 * case, this is required so that preemption is disabled, and in the SMP case,
703 * it must synchronize the delayed page table writes properly on other CPUs.
704 */
705#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
706#define arch_enter_lazy_mmu_mode() do {} while (0)
707#define arch_leave_lazy_mmu_mode() do {} while (0)
708#define arch_flush_lazy_mmu_mode() do {} while (0)
709#endif
710
711/*
712 * A facility to provide batching of the reload of page tables and
713 * other process state with the actual context switch code for
714 * paravirtualized guests. By convention, only one of the batched
715 * update (lazy) modes (CPU, MMU) should be active at any given time,
716 * entry should never be nested, and entry and exits should always be
717 * paired. This is for sanity of maintaining and reasoning about the
718 * kernel code. In this case, the exit (end of the context switch) is
719 * in architecture-specific code, and so doesn't need a generic
720 * definition.
721 */
722#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
723#define arch_start_context_switch(prev) do {} while (0)
724#endif
725
726#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
727#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
728static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
729{
730 return pmd;
731}
732
733static inline int pmd_swp_soft_dirty(pmd_t pmd)
734{
735 return 0;
736}
737
738static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
739{
740 return pmd;
741}
742#endif
743#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
744static inline int pte_soft_dirty(pte_t pte)
745{
746 return 0;
747}
748
749static inline int pmd_soft_dirty(pmd_t pmd)
750{
751 return 0;
752}
753
754static inline pte_t pte_mksoft_dirty(pte_t pte)
755{
756 return pte;
757}
758
759static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
760{
761 return pmd;
762}
763
764static inline pte_t pte_clear_soft_dirty(pte_t pte)
765{
766 return pte;
767}
768
769static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
770{
771 return pmd;
772}
773
774static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
775{
776 return pte;
777}
778
779static inline int pte_swp_soft_dirty(pte_t pte)
780{
781 return 0;
782}
783
784static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
785{
786 return pte;
787}
788
789static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
790{
791 return pmd;
792}
793
794static inline int pmd_swp_soft_dirty(pmd_t pmd)
795{
796 return 0;
797}
798
799static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
800{
801 return pmd;
802}
803#endif
804
805#ifndef __HAVE_PFNMAP_TRACKING
806/*
807 * Interfaces that can be used by architecture code to keep track of
808 * memory type of pfn mappings specified by the remap_pfn_range,
809 * vmf_insert_pfn.
810 */
811
812/*
813 * track_pfn_remap is called when a _new_ pfn mapping is being established
814 * by remap_pfn_range() for physical range indicated by pfn and size.
815 */
816static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
817 unsigned long pfn, unsigned long addr,
818 unsigned long size)
819{
820 return 0;
821}
822
823/*
824 * track_pfn_insert is called when a _new_ single pfn is established
825 * by vmf_insert_pfn().
826 */
827static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
828 pfn_t pfn)
829{
830}
831
832/*
833 * track_pfn_copy is called when vma that is covering the pfnmap gets
834 * copied through copy_page_range().
835 */
836static inline int track_pfn_copy(struct vm_area_struct *vma)
837{
838 return 0;
839}
840
841/*
842 * untrack_pfn is called while unmapping a pfnmap for a region.
843 * untrack can be called for a specific region indicated by pfn and size or
844 * can be for the entire vma (in which case pfn, size are zero).
845 */
846static inline void untrack_pfn(struct vm_area_struct *vma,
847 unsigned long pfn, unsigned long size)
848{
849}
850
851/*
852 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
853 */
854static inline void untrack_pfn_moved(struct vm_area_struct *vma)
855{
856}
857#else
858extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
859 unsigned long pfn, unsigned long addr,
860 unsigned long size);
861extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
862 pfn_t pfn);
863extern int track_pfn_copy(struct vm_area_struct *vma);
864extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
865 unsigned long size);
866extern void untrack_pfn_moved(struct vm_area_struct *vma);
867#endif
868
869#ifdef __HAVE_COLOR_ZERO_PAGE
870static inline int is_zero_pfn(unsigned long pfn)
871{
872 extern unsigned long zero_pfn;
873 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
874 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
875}
876
877#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
878
879#else
880static inline int is_zero_pfn(unsigned long pfn)
881{
882 extern unsigned long zero_pfn;
883 return pfn == zero_pfn;
884}
885
886static inline unsigned long my_zero_pfn(unsigned long addr)
887{
888 extern unsigned long zero_pfn;
889 return zero_pfn;
890}
891#endif
892
893#ifdef CONFIG_MMU
894
895#ifndef CONFIG_TRANSPARENT_HUGEPAGE
896static inline int pmd_trans_huge(pmd_t pmd)
897{
898 return 0;
899}
900#ifndef pmd_write
901static inline int pmd_write(pmd_t pmd)
902{
903 BUG();
904 return 0;
905}
906#endif /* pmd_write */
907#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
908
909#ifndef pud_write
910static inline int pud_write(pud_t pud)
911{
912 BUG();
913 return 0;
914}
915#endif /* pud_write */
916
917#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
918static inline int pmd_devmap(pmd_t pmd)
919{
920 return 0;
921}
922static inline int pud_devmap(pud_t pud)
923{
924 return 0;
925}
926static inline int pgd_devmap(pgd_t pgd)
927{
928 return 0;
929}
930#endif
931
932#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
933 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
934 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
935static inline int pud_trans_huge(pud_t pud)
936{
937 return 0;
938}
939#endif
940
941/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
942static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
943{
944 pud_t pudval = READ_ONCE(*pud);
945
946 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
947 return 1;
948 if (unlikely(pud_bad(pudval))) {
949 pud_clear_bad(pud);
950 return 1;
951 }
952 return 0;
953}
954
955/* See pmd_trans_unstable for discussion. */
956static inline int pud_trans_unstable(pud_t *pud)
957{
958#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
959 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
960 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
961#else
962 return 0;
963#endif
964}
965
966#ifndef pmd_read_atomic
967static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
968{
969 /*
970 * Depend on compiler for an atomic pmd read. NOTE: this is
971 * only going to work, if the pmdval_t isn't larger than
972 * an unsigned long.
973 */
974 return *pmdp;
975}
976#endif
977
978#ifndef arch_needs_pgtable_deposit
979#define arch_needs_pgtable_deposit() (false)
980#endif
981/*
982 * This function is meant to be used by sites walking pagetables with
983 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
984 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
985 * into a null pmd and the transhuge page fault can convert a null pmd
986 * into an hugepmd or into a regular pmd (if the hugepage allocation
987 * fails). While holding the mmap_sem in read mode the pmd becomes
988 * stable and stops changing under us only if it's not null and not a
989 * transhuge pmd. When those races occurs and this function makes a
990 * difference vs the standard pmd_none_or_clear_bad, the result is
991 * undefined so behaving like if the pmd was none is safe (because it
992 * can return none anyway). The compiler level barrier() is critically
993 * important to compute the two checks atomically on the same pmdval.
994 *
995 * For 32bit kernels with a 64bit large pmd_t this automatically takes
996 * care of reading the pmd atomically to avoid SMP race conditions
997 * against pmd_populate() when the mmap_sem is hold for reading by the
998 * caller (a special atomic read not done by "gcc" as in the generic
999 * version above, is also needed when THP is disabled because the page
1000 * fault can populate the pmd from under us).
1001 */
1002static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1003{
1004 pmd_t pmdval = pmd_read_atomic(pmd);
1005 /*
1006 * The barrier will stabilize the pmdval in a register or on
1007 * the stack so that it will stop changing under the code.
1008 *
1009 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1010 * pmd_read_atomic is allowed to return a not atomic pmdval
1011 * (for example pointing to an hugepage that has never been
1012 * mapped in the pmd). The below checks will only care about
1013 * the low part of the pmd with 32bit PAE x86 anyway, with the
1014 * exception of pmd_none(). So the important thing is that if
1015 * the low part of the pmd is found null, the high part will
1016 * be also null or the pmd_none() check below would be
1017 * confused.
1018 */
1019#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1020 barrier();
1021#endif
1022 /*
1023 * !pmd_present() checks for pmd migration entries
1024 *
1025 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1026 * But using that requires moving current function and pmd_trans_unstable()
1027 * to linux/swapops.h to resovle dependency, which is too much code move.
1028 *
1029 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1030 * because !pmd_present() pages can only be under migration not swapped
1031 * out.
1032 *
1033 * pmd_none() is preseved for future condition checks on pmd migration
1034 * entries and not confusing with this function name, although it is
1035 * redundant with !pmd_present().
1036 */
1037 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1038 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1039 return 1;
1040 if (unlikely(pmd_bad(pmdval))) {
1041 pmd_clear_bad(pmd);
1042 return 1;
1043 }
1044 return 0;
1045}
1046
1047/*
1048 * This is a noop if Transparent Hugepage Support is not built into
1049 * the kernel. Otherwise it is equivalent to
1050 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1051 * places that already verified the pmd is not none and they want to
1052 * walk ptes while holding the mmap sem in read mode (write mode don't
1053 * need this). If THP is not enabled, the pmd can't go away under the
1054 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1055 * run a pmd_trans_unstable before walking the ptes after
1056 * split_huge_pmd returns (because it may have run when the pmd become
1057 * null, but then a page fault can map in a THP and not a regular page).
1058 */
1059static inline int pmd_trans_unstable(pmd_t *pmd)
1060{
1061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1062 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1063#else
1064 return 0;
1065#endif
1066}
1067
1068#ifndef CONFIG_NUMA_BALANCING
1069/*
1070 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1071 * the only case the kernel cares is for NUMA balancing and is only ever set
1072 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1073 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1074 * is the responsibility of the caller to distinguish between PROT_NONE
1075 * protections and NUMA hinting fault protections.
1076 */
1077static inline int pte_protnone(pte_t pte)
1078{
1079 return 0;
1080}
1081
1082static inline int pmd_protnone(pmd_t pmd)
1083{
1084 return 0;
1085}
1086#endif /* CONFIG_NUMA_BALANCING */
1087
1088#endif /* CONFIG_MMU */
1089
1090#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1091
1092#ifndef __PAGETABLE_P4D_FOLDED
1093int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1094int p4d_clear_huge(p4d_t *p4d);
1095#else
1096static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1097{
1098 return 0;
1099}
1100static inline int p4d_clear_huge(p4d_t *p4d)
1101{
1102 return 0;
1103}
1104#endif /* !__PAGETABLE_P4D_FOLDED */
1105
1106int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1107int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1108int pud_clear_huge(pud_t *pud);
1109int pmd_clear_huge(pmd_t *pmd);
1110int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1111int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1112int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1113#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1114static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1115{
1116 return 0;
1117}
1118static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1119{
1120 return 0;
1121}
1122static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1123{
1124 return 0;
1125}
1126static inline int p4d_clear_huge(p4d_t *p4d)
1127{
1128 return 0;
1129}
1130static inline int pud_clear_huge(pud_t *pud)
1131{
1132 return 0;
1133}
1134static inline int pmd_clear_huge(pmd_t *pmd)
1135{
1136 return 0;
1137}
1138static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1139{
1140 return 0;
1141}
1142static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1143{
1144 return 0;
1145}
1146static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1147{
1148 return 0;
1149}
1150#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1151
1152#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1153#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1154/*
1155 * ARCHes with special requirements for evicting THP backing TLB entries can
1156 * implement this. Otherwise also, it can help optimize normal TLB flush in
1157 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1158 * entire TLB TLB if flush span is greater than a threshold, which will
1159 * likely be true for a single huge page. Thus a single thp flush will
1160 * invalidate the entire TLB which is not desitable.
1161 * e.g. see arch/arc: flush_pmd_tlb_range
1162 */
1163#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1164#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1165#else
1166#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1167#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1168#endif
1169#endif
1170
1171struct file;
1172int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1173 unsigned long size, pgprot_t *vma_prot);
1174
1175#ifndef CONFIG_X86_ESPFIX64
1176static inline void init_espfix_bsp(void) { }
1177#endif
1178
1179extern void __init pgtable_cache_init(void);
1180
1181#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1182static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1183{
1184 return true;
1185}
1186
1187static inline bool arch_has_pfn_modify_check(void)
1188{
1189 return false;
1190}
1191#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1192
1193/*
1194 * Architecture PAGE_KERNEL_* fallbacks
1195 *
1196 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1197 * because they really don't support them, or the port needs to be updated to
1198 * reflect the required functionality. Below are a set of relatively safe
1199 * fallbacks, as best effort, which we can count on in lieu of the architectures
1200 * not defining them on their own yet.
1201 */
1202
1203#ifndef PAGE_KERNEL_RO
1204# define PAGE_KERNEL_RO PAGE_KERNEL
1205#endif
1206
1207#ifndef PAGE_KERNEL_EXEC
1208# define PAGE_KERNEL_EXEC PAGE_KERNEL
1209#endif
1210
1211#endif /* !__ASSEMBLY__ */
1212
1213#ifndef io_remap_pfn_range
1214#define io_remap_pfn_range remap_pfn_range
1215#endif
1216
1217#ifndef has_transparent_hugepage
1218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219#define has_transparent_hugepage() 1
1220#else
1221#define has_transparent_hugepage() 0
1222#endif
1223#endif
1224
1225/*
1226 * On some architectures it depends on the mm if the p4d/pud or pmd
1227 * layer of the page table hierarchy is folded or not.
1228 */
1229#ifndef mm_p4d_folded
1230#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1231#endif
1232
1233#ifndef mm_pud_folded
1234#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1235#endif
1236
1237#ifndef mm_pmd_folded
1238#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1239#endif
1240
1241/*
1242 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1243 * This differs from p?d_huge() by the fact that they are always available (if
1244 * the architecture supports large pages at the appropriate level) even
1245 * if CONFIG_HUGETLB_PAGE is not defined.
1246 * Only meaningful when called on a valid entry.
1247 */
1248#ifndef pgd_leaf
1249#define pgd_leaf(x) 0
1250#endif
1251#ifndef p4d_leaf
1252#define p4d_leaf(x) 0
1253#endif
1254#ifndef pud_leaf
1255#define pud_leaf(x) 0
1256#endif
1257#ifndef pmd_leaf
1258#define pmd_leaf(x) 0
1259#endif
1260
1261#endif /* _ASM_GENERIC_PGTABLE_H */