at v5.6 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_GENERIC_PGTABLE_H 3#define _ASM_GENERIC_PGTABLE_H 4 5#include <linux/pfn.h> 6 7#ifndef __ASSEMBLY__ 8#ifdef CONFIG_MMU 9 10#include <linux/mm_types.h> 11#include <linux/bug.h> 12#include <linux/errno.h> 13 14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 17#endif 18 19/* 20 * On almost all architectures and configurations, 0 can be used as the 21 * upper ceiling to free_pgtables(): on many architectures it has the same 22 * effect as using TASK_SIZE. However, there is one configuration which 23 * must impose a more careful limit, to avoid freeing kernel pgtables. 24 */ 25#ifndef USER_PGTABLES_CEILING 26#define USER_PGTABLES_CEILING 0UL 27#endif 28 29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 30extern int ptep_set_access_flags(struct vm_area_struct *vma, 31 unsigned long address, pte_t *ptep, 32 pte_t entry, int dirty); 33#endif 34 35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 36#ifdef CONFIG_TRANSPARENT_HUGEPAGE 37extern int pmdp_set_access_flags(struct vm_area_struct *vma, 38 unsigned long address, pmd_t *pmdp, 39 pmd_t entry, int dirty); 40extern int pudp_set_access_flags(struct vm_area_struct *vma, 41 unsigned long address, pud_t *pudp, 42 pud_t entry, int dirty); 43#else 44static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 45 unsigned long address, pmd_t *pmdp, 46 pmd_t entry, int dirty) 47{ 48 BUILD_BUG(); 49 return 0; 50} 51static inline int pudp_set_access_flags(struct vm_area_struct *vma, 52 unsigned long address, pud_t *pudp, 53 pud_t entry, int dirty) 54{ 55 BUILD_BUG(); 56 return 0; 57} 58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 59#endif 60 61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pte_t *ptep) 65{ 66 pte_t pte = *ptep; 67 int r = 1; 68 if (!pte_young(pte)) 69 r = 0; 70 else 71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 72 return r; 73} 74#endif 75 76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 77#ifdef CONFIG_TRANSPARENT_HUGEPAGE 78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 79 unsigned long address, 80 pmd_t *pmdp) 81{ 82 pmd_t pmd = *pmdp; 83 int r = 1; 84 if (!pmd_young(pmd)) 85 r = 0; 86 else 87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 88 return r; 89} 90#else 91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 92 unsigned long address, 93 pmd_t *pmdp) 94{ 95 BUILD_BUG(); 96 return 0; 97} 98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 99#endif 100 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 102int ptep_clear_flush_young(struct vm_area_struct *vma, 103 unsigned long address, pte_t *ptep); 104#endif 105 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 109 unsigned long address, pmd_t *pmdp); 110#else 111/* 112 * Despite relevant to THP only, this API is called from generic rmap code 113 * under PageTransHuge(), hence needs a dummy implementation for !THP 114 */ 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 116 unsigned long address, pmd_t *pmdp) 117{ 118 BUILD_BUG(); 119 return 0; 120} 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 122#endif 123 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 126 unsigned long address, 127 pte_t *ptep) 128{ 129 pte_t pte = *ptep; 130 pte_clear(mm, address, ptep); 131 return pte; 132} 133#endif 134 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 138 unsigned long address, 139 pmd_t *pmdp) 140{ 141 pmd_t pmd = *pmdp; 142 pmd_clear(pmdp); 143 return pmd; 144} 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 148 unsigned long address, 149 pud_t *pudp) 150{ 151 pud_t pud = *pudp; 152 153 pud_clear(pudp); 154 return pud; 155} 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 158 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 162 unsigned long address, pmd_t *pmdp, 163 int full) 164{ 165 return pmdp_huge_get_and_clear(mm, address, pmdp); 166} 167#endif 168 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 171 unsigned long address, pud_t *pudp, 172 int full) 173{ 174 return pudp_huge_get_and_clear(mm, address, pudp); 175} 176#endif 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 181 unsigned long address, pte_t *ptep, 182 int full) 183{ 184 pte_t pte; 185 pte = ptep_get_and_clear(mm, address, ptep); 186 return pte; 187} 188#endif 189 190/* 191 * Some architectures may be able to avoid expensive synchronization 192 * primitives when modifications are made to PTE's which are already 193 * not present, or in the process of an address space destruction. 194 */ 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 196static inline void pte_clear_not_present_full(struct mm_struct *mm, 197 unsigned long address, 198 pte_t *ptep, 199 int full) 200{ 201 pte_clear(mm, address, ptep); 202} 203#endif 204 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 207 unsigned long address, 208 pte_t *ptep); 209#endif 210 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 213 unsigned long address, 214 pmd_t *pmdp); 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 216 unsigned long address, 217 pud_t *pudp); 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 221struct mm_struct; 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 223{ 224 pte_t old_pte = *ptep; 225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 226} 227#endif 228 229#ifndef pte_savedwrite 230#define pte_savedwrite pte_write 231#endif 232 233#ifndef pte_mk_savedwrite 234#define pte_mk_savedwrite pte_mkwrite 235#endif 236 237#ifndef pte_clear_savedwrite 238#define pte_clear_savedwrite pte_wrprotect 239#endif 240 241#ifndef pmd_savedwrite 242#define pmd_savedwrite pmd_write 243#endif 244 245#ifndef pmd_mk_savedwrite 246#define pmd_mk_savedwrite pmd_mkwrite 247#endif 248 249#ifndef pmd_clear_savedwrite 250#define pmd_clear_savedwrite pmd_wrprotect 251#endif 252 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE 255static inline void pmdp_set_wrprotect(struct mm_struct *mm, 256 unsigned long address, pmd_t *pmdp) 257{ 258 pmd_t old_pmd = *pmdp; 259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 260} 261#else 262static inline void pmdp_set_wrprotect(struct mm_struct *mm, 263 unsigned long address, pmd_t *pmdp) 264{ 265 BUILD_BUG(); 266} 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 268#endif 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 271static inline void pudp_set_wrprotect(struct mm_struct *mm, 272 unsigned long address, pud_t *pudp) 273{ 274 pud_t old_pud = *pudp; 275 276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 277} 278#else 279static inline void pudp_set_wrprotect(struct mm_struct *mm, 280 unsigned long address, pud_t *pudp) 281{ 282 BUILD_BUG(); 283} 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 285#endif 286 287#ifndef pmdp_collapse_flush 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 290 unsigned long address, pmd_t *pmdp); 291#else 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 293 unsigned long address, 294 pmd_t *pmdp) 295{ 296 BUILD_BUG(); 297 return *pmdp; 298} 299#define pmdp_collapse_flush pmdp_collapse_flush 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301#endif 302 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 305 pgtable_t pgtable); 306#endif 307 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 310#endif 311 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE 313/* 314 * This is an implementation of pmdp_establish() that is only suitable for an 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we 316 * can't race with CPU which sets these bits and non-atomic aproach is fine. 317 */ 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 319 unsigned long address, pmd_t *pmdp, pmd_t pmd) 320{ 321 pmd_t old_pmd = *pmdp; 322 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 323 return old_pmd; 324} 325#endif 326 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 329 pmd_t *pmdp); 330#endif 331 332#ifndef __HAVE_ARCH_PTE_SAME 333static inline int pte_same(pte_t pte_a, pte_t pte_b) 334{ 335 return pte_val(pte_a) == pte_val(pte_b); 336} 337#endif 338 339#ifndef __HAVE_ARCH_PTE_UNUSED 340/* 341 * Some architectures provide facilities to virtualization guests 342 * so that they can flag allocated pages as unused. This allows the 343 * host to transparently reclaim unused pages. This function returns 344 * whether the pte's page is unused. 345 */ 346static inline int pte_unused(pte_t pte) 347{ 348 return 0; 349} 350#endif 351 352#ifndef pte_access_permitted 353#define pte_access_permitted(pte, write) \ 354 (pte_present(pte) && (!(write) || pte_write(pte))) 355#endif 356 357#ifndef pmd_access_permitted 358#define pmd_access_permitted(pmd, write) \ 359 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 360#endif 361 362#ifndef pud_access_permitted 363#define pud_access_permitted(pud, write) \ 364 (pud_present(pud) && (!(write) || pud_write(pud))) 365#endif 366 367#ifndef p4d_access_permitted 368#define p4d_access_permitted(p4d, write) \ 369 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 370#endif 371 372#ifndef pgd_access_permitted 373#define pgd_access_permitted(pgd, write) \ 374 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 375#endif 376 377#ifndef __HAVE_ARCH_PMD_SAME 378static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 379{ 380 return pmd_val(pmd_a) == pmd_val(pmd_b); 381} 382 383static inline int pud_same(pud_t pud_a, pud_t pud_b) 384{ 385 return pud_val(pud_a) == pud_val(pud_b); 386} 387#endif 388 389#ifndef __HAVE_ARCH_P4D_SAME 390static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 391{ 392 return p4d_val(p4d_a) == p4d_val(p4d_b); 393} 394#endif 395 396#ifndef __HAVE_ARCH_PGD_SAME 397static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 398{ 399 return pgd_val(pgd_a) == pgd_val(pgd_b); 400} 401#endif 402 403/* 404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 405 * TLB flush will be required as a result of the "set". For example, use 406 * in scenarios where it is known ahead of time that the routine is 407 * setting non-present entries, or re-setting an existing entry to the 408 * same value. Otherwise, use the typical "set" helpers and flush the 409 * TLB. 410 */ 411#define set_pte_safe(ptep, pte) \ 412({ \ 413 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 414 set_pte(ptep, pte); \ 415}) 416 417#define set_pmd_safe(pmdp, pmd) \ 418({ \ 419 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 420 set_pmd(pmdp, pmd); \ 421}) 422 423#define set_pud_safe(pudp, pud) \ 424({ \ 425 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 426 set_pud(pudp, pud); \ 427}) 428 429#define set_p4d_safe(p4dp, p4d) \ 430({ \ 431 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 432 set_p4d(p4dp, p4d); \ 433}) 434 435#define set_pgd_safe(pgdp, pgd) \ 436({ \ 437 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 438 set_pgd(pgdp, pgd); \ 439}) 440 441#ifndef __HAVE_ARCH_DO_SWAP_PAGE 442/* 443 * Some architectures support metadata associated with a page. When a 444 * page is being swapped out, this metadata must be saved so it can be 445 * restored when the page is swapped back in. SPARC M7 and newer 446 * processors support an ADI (Application Data Integrity) tag for the 447 * page as metadata for the page. arch_do_swap_page() can restore this 448 * metadata when a page is swapped back in. 449 */ 450static inline void arch_do_swap_page(struct mm_struct *mm, 451 struct vm_area_struct *vma, 452 unsigned long addr, 453 pte_t pte, pte_t oldpte) 454{ 455 456} 457#endif 458 459#ifndef __HAVE_ARCH_UNMAP_ONE 460/* 461 * Some architectures support metadata associated with a page. When a 462 * page is being swapped out, this metadata must be saved so it can be 463 * restored when the page is swapped back in. SPARC M7 and newer 464 * processors support an ADI (Application Data Integrity) tag for the 465 * page as metadata for the page. arch_unmap_one() can save this 466 * metadata on a swap-out of a page. 467 */ 468static inline int arch_unmap_one(struct mm_struct *mm, 469 struct vm_area_struct *vma, 470 unsigned long addr, 471 pte_t orig_pte) 472{ 473 return 0; 474} 475#endif 476 477#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 478#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 479#endif 480 481#ifndef __HAVE_ARCH_MOVE_PTE 482#define move_pte(pte, prot, old_addr, new_addr) (pte) 483#endif 484 485#ifndef pte_accessible 486# define pte_accessible(mm, pte) ((void)(pte), 1) 487#endif 488 489#ifndef flush_tlb_fix_spurious_fault 490#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 491#endif 492 493#ifndef pgprot_noncached 494#define pgprot_noncached(prot) (prot) 495#endif 496 497#ifndef pgprot_writecombine 498#define pgprot_writecombine pgprot_noncached 499#endif 500 501#ifndef pgprot_writethrough 502#define pgprot_writethrough pgprot_noncached 503#endif 504 505#ifndef pgprot_device 506#define pgprot_device pgprot_noncached 507#endif 508 509#ifndef pgprot_modify 510#define pgprot_modify pgprot_modify 511static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 512{ 513 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 514 newprot = pgprot_noncached(newprot); 515 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 516 newprot = pgprot_writecombine(newprot); 517 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 518 newprot = pgprot_device(newprot); 519 return newprot; 520} 521#endif 522 523/* 524 * When walking page tables, get the address of the next boundary, 525 * or the end address of the range if that comes earlier. Although no 526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 527 */ 528 529#define pgd_addr_end(addr, end) \ 530({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 531 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 532}) 533 534#ifndef p4d_addr_end 535#define p4d_addr_end(addr, end) \ 536({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 537 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 538}) 539#endif 540 541#ifndef pud_addr_end 542#define pud_addr_end(addr, end) \ 543({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 544 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 545}) 546#endif 547 548#ifndef pmd_addr_end 549#define pmd_addr_end(addr, end) \ 550({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 551 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 552}) 553#endif 554 555/* 556 * When walking page tables, we usually want to skip any p?d_none entries; 557 * and any p?d_bad entries - reporting the error before resetting to none. 558 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 559 */ 560void pgd_clear_bad(pgd_t *); 561 562#ifndef __PAGETABLE_P4D_FOLDED 563void p4d_clear_bad(p4d_t *); 564#else 565#define p4d_clear_bad(p4d) do { } while (0) 566#endif 567 568#ifndef __PAGETABLE_PUD_FOLDED 569void pud_clear_bad(pud_t *); 570#else 571#define pud_clear_bad(p4d) do { } while (0) 572#endif 573 574void pmd_clear_bad(pmd_t *); 575 576static inline int pgd_none_or_clear_bad(pgd_t *pgd) 577{ 578 if (pgd_none(*pgd)) 579 return 1; 580 if (unlikely(pgd_bad(*pgd))) { 581 pgd_clear_bad(pgd); 582 return 1; 583 } 584 return 0; 585} 586 587static inline int p4d_none_or_clear_bad(p4d_t *p4d) 588{ 589 if (p4d_none(*p4d)) 590 return 1; 591 if (unlikely(p4d_bad(*p4d))) { 592 p4d_clear_bad(p4d); 593 return 1; 594 } 595 return 0; 596} 597 598static inline int pud_none_or_clear_bad(pud_t *pud) 599{ 600 if (pud_none(*pud)) 601 return 1; 602 if (unlikely(pud_bad(*pud))) { 603 pud_clear_bad(pud); 604 return 1; 605 } 606 return 0; 607} 608 609static inline int pmd_none_or_clear_bad(pmd_t *pmd) 610{ 611 if (pmd_none(*pmd)) 612 return 1; 613 if (unlikely(pmd_bad(*pmd))) { 614 pmd_clear_bad(pmd); 615 return 1; 616 } 617 return 0; 618} 619 620static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 621 unsigned long addr, 622 pte_t *ptep) 623{ 624 /* 625 * Get the current pte state, but zero it out to make it 626 * non-present, preventing the hardware from asynchronously 627 * updating it. 628 */ 629 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 630} 631 632static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 633 unsigned long addr, 634 pte_t *ptep, pte_t pte) 635{ 636 /* 637 * The pte is non-present, so there's no hardware state to 638 * preserve. 639 */ 640 set_pte_at(vma->vm_mm, addr, ptep, pte); 641} 642 643#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 644/* 645 * Start a pte protection read-modify-write transaction, which 646 * protects against asynchronous hardware modifications to the pte. 647 * The intention is not to prevent the hardware from making pte 648 * updates, but to prevent any updates it may make from being lost. 649 * 650 * This does not protect against other software modifications of the 651 * pte; the appropriate pte lock must be held over the transation. 652 * 653 * Note that this interface is intended to be batchable, meaning that 654 * ptep_modify_prot_commit may not actually update the pte, but merely 655 * queue the update to be done at some later time. The update must be 656 * actually committed before the pte lock is released, however. 657 */ 658static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 659 unsigned long addr, 660 pte_t *ptep) 661{ 662 return __ptep_modify_prot_start(vma, addr, ptep); 663} 664 665/* 666 * Commit an update to a pte, leaving any hardware-controlled bits in 667 * the PTE unmodified. 668 */ 669static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 670 unsigned long addr, 671 pte_t *ptep, pte_t old_pte, pte_t pte) 672{ 673 __ptep_modify_prot_commit(vma, addr, ptep, pte); 674} 675#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 676#endif /* CONFIG_MMU */ 677 678/* 679 * No-op macros that just return the current protection value. Defined here 680 * because these macros can be used used even if CONFIG_MMU is not defined. 681 */ 682#ifndef pgprot_encrypted 683#define pgprot_encrypted(prot) (prot) 684#endif 685 686#ifndef pgprot_decrypted 687#define pgprot_decrypted(prot) (prot) 688#endif 689 690/* 691 * A facility to provide lazy MMU batching. This allows PTE updates and 692 * page invalidations to be delayed until a call to leave lazy MMU mode 693 * is issued. Some architectures may benefit from doing this, and it is 694 * beneficial for both shadow and direct mode hypervisors, which may batch 695 * the PTE updates which happen during this window. Note that using this 696 * interface requires that read hazards be removed from the code. A read 697 * hazard could result in the direct mode hypervisor case, since the actual 698 * write to the page tables may not yet have taken place, so reads though 699 * a raw PTE pointer after it has been modified are not guaranteed to be 700 * up to date. This mode can only be entered and left under the protection of 701 * the page table locks for all page tables which may be modified. In the UP 702 * case, this is required so that preemption is disabled, and in the SMP case, 703 * it must synchronize the delayed page table writes properly on other CPUs. 704 */ 705#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 706#define arch_enter_lazy_mmu_mode() do {} while (0) 707#define arch_leave_lazy_mmu_mode() do {} while (0) 708#define arch_flush_lazy_mmu_mode() do {} while (0) 709#endif 710 711/* 712 * A facility to provide batching of the reload of page tables and 713 * other process state with the actual context switch code for 714 * paravirtualized guests. By convention, only one of the batched 715 * update (lazy) modes (CPU, MMU) should be active at any given time, 716 * entry should never be nested, and entry and exits should always be 717 * paired. This is for sanity of maintaining and reasoning about the 718 * kernel code. In this case, the exit (end of the context switch) is 719 * in architecture-specific code, and so doesn't need a generic 720 * definition. 721 */ 722#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 723#define arch_start_context_switch(prev) do {} while (0) 724#endif 725 726#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 727#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 728static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 729{ 730 return pmd; 731} 732 733static inline int pmd_swp_soft_dirty(pmd_t pmd) 734{ 735 return 0; 736} 737 738static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 739{ 740 return pmd; 741} 742#endif 743#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 744static inline int pte_soft_dirty(pte_t pte) 745{ 746 return 0; 747} 748 749static inline int pmd_soft_dirty(pmd_t pmd) 750{ 751 return 0; 752} 753 754static inline pte_t pte_mksoft_dirty(pte_t pte) 755{ 756 return pte; 757} 758 759static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 760{ 761 return pmd; 762} 763 764static inline pte_t pte_clear_soft_dirty(pte_t pte) 765{ 766 return pte; 767} 768 769static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 770{ 771 return pmd; 772} 773 774static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 775{ 776 return pte; 777} 778 779static inline int pte_swp_soft_dirty(pte_t pte) 780{ 781 return 0; 782} 783 784static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 785{ 786 return pte; 787} 788 789static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 790{ 791 return pmd; 792} 793 794static inline int pmd_swp_soft_dirty(pmd_t pmd) 795{ 796 return 0; 797} 798 799static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 800{ 801 return pmd; 802} 803#endif 804 805#ifndef __HAVE_PFNMAP_TRACKING 806/* 807 * Interfaces that can be used by architecture code to keep track of 808 * memory type of pfn mappings specified by the remap_pfn_range, 809 * vmf_insert_pfn. 810 */ 811 812/* 813 * track_pfn_remap is called when a _new_ pfn mapping is being established 814 * by remap_pfn_range() for physical range indicated by pfn and size. 815 */ 816static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 817 unsigned long pfn, unsigned long addr, 818 unsigned long size) 819{ 820 return 0; 821} 822 823/* 824 * track_pfn_insert is called when a _new_ single pfn is established 825 * by vmf_insert_pfn(). 826 */ 827static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 828 pfn_t pfn) 829{ 830} 831 832/* 833 * track_pfn_copy is called when vma that is covering the pfnmap gets 834 * copied through copy_page_range(). 835 */ 836static inline int track_pfn_copy(struct vm_area_struct *vma) 837{ 838 return 0; 839} 840 841/* 842 * untrack_pfn is called while unmapping a pfnmap for a region. 843 * untrack can be called for a specific region indicated by pfn and size or 844 * can be for the entire vma (in which case pfn, size are zero). 845 */ 846static inline void untrack_pfn(struct vm_area_struct *vma, 847 unsigned long pfn, unsigned long size) 848{ 849} 850 851/* 852 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 853 */ 854static inline void untrack_pfn_moved(struct vm_area_struct *vma) 855{ 856} 857#else 858extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 859 unsigned long pfn, unsigned long addr, 860 unsigned long size); 861extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 862 pfn_t pfn); 863extern int track_pfn_copy(struct vm_area_struct *vma); 864extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 865 unsigned long size); 866extern void untrack_pfn_moved(struct vm_area_struct *vma); 867#endif 868 869#ifdef __HAVE_COLOR_ZERO_PAGE 870static inline int is_zero_pfn(unsigned long pfn) 871{ 872 extern unsigned long zero_pfn; 873 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 874 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 875} 876 877#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 878 879#else 880static inline int is_zero_pfn(unsigned long pfn) 881{ 882 extern unsigned long zero_pfn; 883 return pfn == zero_pfn; 884} 885 886static inline unsigned long my_zero_pfn(unsigned long addr) 887{ 888 extern unsigned long zero_pfn; 889 return zero_pfn; 890} 891#endif 892 893#ifdef CONFIG_MMU 894 895#ifndef CONFIG_TRANSPARENT_HUGEPAGE 896static inline int pmd_trans_huge(pmd_t pmd) 897{ 898 return 0; 899} 900#ifndef pmd_write 901static inline int pmd_write(pmd_t pmd) 902{ 903 BUG(); 904 return 0; 905} 906#endif /* pmd_write */ 907#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 908 909#ifndef pud_write 910static inline int pud_write(pud_t pud) 911{ 912 BUG(); 913 return 0; 914} 915#endif /* pud_write */ 916 917#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 918static inline int pmd_devmap(pmd_t pmd) 919{ 920 return 0; 921} 922static inline int pud_devmap(pud_t pud) 923{ 924 return 0; 925} 926static inline int pgd_devmap(pgd_t pgd) 927{ 928 return 0; 929} 930#endif 931 932#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 933 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 934 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 935static inline int pud_trans_huge(pud_t pud) 936{ 937 return 0; 938} 939#endif 940 941/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 942static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 943{ 944 pud_t pudval = READ_ONCE(*pud); 945 946 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 947 return 1; 948 if (unlikely(pud_bad(pudval))) { 949 pud_clear_bad(pud); 950 return 1; 951 } 952 return 0; 953} 954 955/* See pmd_trans_unstable for discussion. */ 956static inline int pud_trans_unstable(pud_t *pud) 957{ 958#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 959 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 960 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 961#else 962 return 0; 963#endif 964} 965 966#ifndef pmd_read_atomic 967static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 968{ 969 /* 970 * Depend on compiler for an atomic pmd read. NOTE: this is 971 * only going to work, if the pmdval_t isn't larger than 972 * an unsigned long. 973 */ 974 return *pmdp; 975} 976#endif 977 978#ifndef arch_needs_pgtable_deposit 979#define arch_needs_pgtable_deposit() (false) 980#endif 981/* 982 * This function is meant to be used by sites walking pagetables with 983 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 984 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 985 * into a null pmd and the transhuge page fault can convert a null pmd 986 * into an hugepmd or into a regular pmd (if the hugepage allocation 987 * fails). While holding the mmap_sem in read mode the pmd becomes 988 * stable and stops changing under us only if it's not null and not a 989 * transhuge pmd. When those races occurs and this function makes a 990 * difference vs the standard pmd_none_or_clear_bad, the result is 991 * undefined so behaving like if the pmd was none is safe (because it 992 * can return none anyway). The compiler level barrier() is critically 993 * important to compute the two checks atomically on the same pmdval. 994 * 995 * For 32bit kernels with a 64bit large pmd_t this automatically takes 996 * care of reading the pmd atomically to avoid SMP race conditions 997 * against pmd_populate() when the mmap_sem is hold for reading by the 998 * caller (a special atomic read not done by "gcc" as in the generic 999 * version above, is also needed when THP is disabled because the page 1000 * fault can populate the pmd from under us). 1001 */ 1002static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1003{ 1004 pmd_t pmdval = pmd_read_atomic(pmd); 1005 /* 1006 * The barrier will stabilize the pmdval in a register or on 1007 * the stack so that it will stop changing under the code. 1008 * 1009 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1010 * pmd_read_atomic is allowed to return a not atomic pmdval 1011 * (for example pointing to an hugepage that has never been 1012 * mapped in the pmd). The below checks will only care about 1013 * the low part of the pmd with 32bit PAE x86 anyway, with the 1014 * exception of pmd_none(). So the important thing is that if 1015 * the low part of the pmd is found null, the high part will 1016 * be also null or the pmd_none() check below would be 1017 * confused. 1018 */ 1019#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1020 barrier(); 1021#endif 1022 /* 1023 * !pmd_present() checks for pmd migration entries 1024 * 1025 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1026 * But using that requires moving current function and pmd_trans_unstable() 1027 * to linux/swapops.h to resovle dependency, which is too much code move. 1028 * 1029 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1030 * because !pmd_present() pages can only be under migration not swapped 1031 * out. 1032 * 1033 * pmd_none() is preseved for future condition checks on pmd migration 1034 * entries and not confusing with this function name, although it is 1035 * redundant with !pmd_present(). 1036 */ 1037 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1038 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1039 return 1; 1040 if (unlikely(pmd_bad(pmdval))) { 1041 pmd_clear_bad(pmd); 1042 return 1; 1043 } 1044 return 0; 1045} 1046 1047/* 1048 * This is a noop if Transparent Hugepage Support is not built into 1049 * the kernel. Otherwise it is equivalent to 1050 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1051 * places that already verified the pmd is not none and they want to 1052 * walk ptes while holding the mmap sem in read mode (write mode don't 1053 * need this). If THP is not enabled, the pmd can't go away under the 1054 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1055 * run a pmd_trans_unstable before walking the ptes after 1056 * split_huge_pmd returns (because it may have run when the pmd become 1057 * null, but then a page fault can map in a THP and not a regular page). 1058 */ 1059static inline int pmd_trans_unstable(pmd_t *pmd) 1060{ 1061#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1062 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1063#else 1064 return 0; 1065#endif 1066} 1067 1068#ifndef CONFIG_NUMA_BALANCING 1069/* 1070 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1071 * the only case the kernel cares is for NUMA balancing and is only ever set 1072 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1073 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 1074 * is the responsibility of the caller to distinguish between PROT_NONE 1075 * protections and NUMA hinting fault protections. 1076 */ 1077static inline int pte_protnone(pte_t pte) 1078{ 1079 return 0; 1080} 1081 1082static inline int pmd_protnone(pmd_t pmd) 1083{ 1084 return 0; 1085} 1086#endif /* CONFIG_NUMA_BALANCING */ 1087 1088#endif /* CONFIG_MMU */ 1089 1090#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1091 1092#ifndef __PAGETABLE_P4D_FOLDED 1093int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1094int p4d_clear_huge(p4d_t *p4d); 1095#else 1096static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1097{ 1098 return 0; 1099} 1100static inline int p4d_clear_huge(p4d_t *p4d) 1101{ 1102 return 0; 1103} 1104#endif /* !__PAGETABLE_P4D_FOLDED */ 1105 1106int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1107int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1108int pud_clear_huge(pud_t *pud); 1109int pmd_clear_huge(pmd_t *pmd); 1110int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1111int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1112int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1113#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1114static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1115{ 1116 return 0; 1117} 1118static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1119{ 1120 return 0; 1121} 1122static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1123{ 1124 return 0; 1125} 1126static inline int p4d_clear_huge(p4d_t *p4d) 1127{ 1128 return 0; 1129} 1130static inline int pud_clear_huge(pud_t *pud) 1131{ 1132 return 0; 1133} 1134static inline int pmd_clear_huge(pmd_t *pmd) 1135{ 1136 return 0; 1137} 1138static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1139{ 1140 return 0; 1141} 1142static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1143{ 1144 return 0; 1145} 1146static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1147{ 1148 return 0; 1149} 1150#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1151 1152#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1153#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1154/* 1155 * ARCHes with special requirements for evicting THP backing TLB entries can 1156 * implement this. Otherwise also, it can help optimize normal TLB flush in 1157 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1158 * entire TLB TLB if flush span is greater than a threshold, which will 1159 * likely be true for a single huge page. Thus a single thp flush will 1160 * invalidate the entire TLB which is not desitable. 1161 * e.g. see arch/arc: flush_pmd_tlb_range 1162 */ 1163#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1164#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1165#else 1166#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1167#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1168#endif 1169#endif 1170 1171struct file; 1172int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1173 unsigned long size, pgprot_t *vma_prot); 1174 1175#ifndef CONFIG_X86_ESPFIX64 1176static inline void init_espfix_bsp(void) { } 1177#endif 1178 1179extern void __init pgtable_cache_init(void); 1180 1181#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1182static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1183{ 1184 return true; 1185} 1186 1187static inline bool arch_has_pfn_modify_check(void) 1188{ 1189 return false; 1190} 1191#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1192 1193/* 1194 * Architecture PAGE_KERNEL_* fallbacks 1195 * 1196 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1197 * because they really don't support them, or the port needs to be updated to 1198 * reflect the required functionality. Below are a set of relatively safe 1199 * fallbacks, as best effort, which we can count on in lieu of the architectures 1200 * not defining them on their own yet. 1201 */ 1202 1203#ifndef PAGE_KERNEL_RO 1204# define PAGE_KERNEL_RO PAGE_KERNEL 1205#endif 1206 1207#ifndef PAGE_KERNEL_EXEC 1208# define PAGE_KERNEL_EXEC PAGE_KERNEL 1209#endif 1210 1211#endif /* !__ASSEMBLY__ */ 1212 1213#ifndef io_remap_pfn_range 1214#define io_remap_pfn_range remap_pfn_range 1215#endif 1216 1217#ifndef has_transparent_hugepage 1218#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1219#define has_transparent_hugepage() 1 1220#else 1221#define has_transparent_hugepage() 0 1222#endif 1223#endif 1224 1225/* 1226 * On some architectures it depends on the mm if the p4d/pud or pmd 1227 * layer of the page table hierarchy is folded or not. 1228 */ 1229#ifndef mm_p4d_folded 1230#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1231#endif 1232 1233#ifndef mm_pud_folded 1234#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1235#endif 1236 1237#ifndef mm_pmd_folded 1238#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1239#endif 1240 1241/* 1242 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1243 * This differs from p?d_huge() by the fact that they are always available (if 1244 * the architecture supports large pages at the appropriate level) even 1245 * if CONFIG_HUGETLB_PAGE is not defined. 1246 * Only meaningful when called on a valid entry. 1247 */ 1248#ifndef pgd_leaf 1249#define pgd_leaf(x) 0 1250#endif 1251#ifndef p4d_leaf 1252#define p4d_leaf(x) 0 1253#endif 1254#ifndef pud_leaf 1255#define pud_leaf(x) 0 1256#endif 1257#ifndef pmd_leaf 1258#define pmd_leaf(x) 0 1259#endif 1260 1261#endif /* _ASM_GENERIC_PGTABLE_H */