at v5.6 58 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/block_dev.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 7 */ 8 9#include <linux/init.h> 10#include <linux/mm.h> 11#include <linux/fcntl.h> 12#include <linux/slab.h> 13#include <linux/kmod.h> 14#include <linux/major.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/backing-dev.h> 19#include <linux/module.h> 20#include <linux/blkpg.h> 21#include <linux/magic.h> 22#include <linux/dax.h> 23#include <linux/buffer_head.h> 24#include <linux/swap.h> 25#include <linux/pagevec.h> 26#include <linux/writeback.h> 27#include <linux/mpage.h> 28#include <linux/mount.h> 29#include <linux/pseudo_fs.h> 30#include <linux/uio.h> 31#include <linux/namei.h> 32#include <linux/log2.h> 33#include <linux/cleancache.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107static void set_init_blocksize(struct block_device *bdev) 108{ 109 unsigned bsize = bdev_logical_block_size(bdev); 110 loff_t size = i_size_read(bdev->bd_inode); 111 112 while (bsize < PAGE_SIZE) { 113 if (size & bsize) 114 break; 115 bsize <<= 1; 116 } 117 bdev->bd_block_size = bsize; 118 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 119} 120 121int set_blocksize(struct block_device *bdev, int size) 122{ 123 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 125 return -EINVAL; 126 127 /* Size cannot be smaller than the size supported by the device */ 128 if (size < bdev_logical_block_size(bdev)) 129 return -EINVAL; 130 131 /* Don't change the size if it is same as current */ 132 if (bdev->bd_block_size != size) { 133 sync_blockdev(bdev); 134 bdev->bd_block_size = size; 135 bdev->bd_inode->i_blkbits = blksize_bits(size); 136 kill_bdev(bdev); 137 } 138 return 0; 139} 140 141EXPORT_SYMBOL(set_blocksize); 142 143int sb_set_blocksize(struct super_block *sb, int size) 144{ 145 if (set_blocksize(sb->s_bdev, size)) 146 return 0; 147 /* If we get here, we know size is power of two 148 * and it's value is between 512 and PAGE_SIZE */ 149 sb->s_blocksize = size; 150 sb->s_blocksize_bits = blksize_bits(size); 151 return sb->s_blocksize; 152} 153 154EXPORT_SYMBOL(sb_set_blocksize); 155 156int sb_min_blocksize(struct super_block *sb, int size) 157{ 158 int minsize = bdev_logical_block_size(sb->s_bdev); 159 if (size < minsize) 160 size = minsize; 161 return sb_set_blocksize(sb, size); 162} 163 164EXPORT_SYMBOL(sb_min_blocksize); 165 166static int 167blkdev_get_block(struct inode *inode, sector_t iblock, 168 struct buffer_head *bh, int create) 169{ 170 bh->b_bdev = I_BDEV(inode); 171 bh->b_blocknr = iblock; 172 set_buffer_mapped(bh); 173 return 0; 174} 175 176static struct inode *bdev_file_inode(struct file *file) 177{ 178 return file->f_mapping->host; 179} 180 181static unsigned int dio_bio_write_op(struct kiocb *iocb) 182{ 183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 184 185 /* avoid the need for a I/O completion work item */ 186 if (iocb->ki_flags & IOCB_DSYNC) 187 op |= REQ_FUA; 188 return op; 189} 190 191#define DIO_INLINE_BIO_VECS 4 192 193static void blkdev_bio_end_io_simple(struct bio *bio) 194{ 195 struct task_struct *waiter = bio->bi_private; 196 197 WRITE_ONCE(bio->bi_private, NULL); 198 blk_wake_io_task(waiter); 199} 200 201static ssize_t 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 203 int nr_pages) 204{ 205 struct file *file = iocb->ki_filp; 206 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; 208 loff_t pos = iocb->ki_pos; 209 bool should_dirty = false; 210 struct bio bio; 211 ssize_t ret; 212 blk_qc_t qc; 213 214 if ((pos | iov_iter_alignment(iter)) & 215 (bdev_logical_block_size(bdev) - 1)) 216 return -EINVAL; 217 218 if (nr_pages <= DIO_INLINE_BIO_VECS) 219 vecs = inline_vecs; 220 else { 221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 222 GFP_KERNEL); 223 if (!vecs) 224 return -ENOMEM; 225 } 226 227 bio_init(&bio, vecs, nr_pages); 228 bio_set_dev(&bio, bdev); 229 bio.bi_iter.bi_sector = pos >> 9; 230 bio.bi_write_hint = iocb->ki_hint; 231 bio.bi_private = current; 232 bio.bi_end_io = blkdev_bio_end_io_simple; 233 bio.bi_ioprio = iocb->ki_ioprio; 234 235 ret = bio_iov_iter_get_pages(&bio, iter); 236 if (unlikely(ret)) 237 goto out; 238 ret = bio.bi_iter.bi_size; 239 240 if (iov_iter_rw(iter) == READ) { 241 bio.bi_opf = REQ_OP_READ; 242 if (iter_is_iovec(iter)) 243 should_dirty = true; 244 } else { 245 bio.bi_opf = dio_bio_write_op(iocb); 246 task_io_account_write(ret); 247 } 248 if (iocb->ki_flags & IOCB_HIPRI) 249 bio_set_polled(&bio, iocb); 250 251 qc = submit_bio(&bio); 252 for (;;) { 253 set_current_state(TASK_UNINTERRUPTIBLE); 254 if (!READ_ONCE(bio.bi_private)) 255 break; 256 if (!(iocb->ki_flags & IOCB_HIPRI) || 257 !blk_poll(bdev_get_queue(bdev), qc, true)) 258 io_schedule(); 259 } 260 __set_current_state(TASK_RUNNING); 261 262 bio_release_pages(&bio, should_dirty); 263 if (unlikely(bio.bi_status)) 264 ret = blk_status_to_errno(bio.bi_status); 265 266out: 267 if (vecs != inline_vecs) 268 kfree(vecs); 269 270 bio_uninit(&bio); 271 272 return ret; 273} 274 275struct blkdev_dio { 276 union { 277 struct kiocb *iocb; 278 struct task_struct *waiter; 279 }; 280 size_t size; 281 atomic_t ref; 282 bool multi_bio : 1; 283 bool should_dirty : 1; 284 bool is_sync : 1; 285 struct bio bio; 286}; 287 288static struct bio_set blkdev_dio_pool; 289 290static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 291{ 292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 293 struct request_queue *q = bdev_get_queue(bdev); 294 295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 296} 297 298static void blkdev_bio_end_io(struct bio *bio) 299{ 300 struct blkdev_dio *dio = bio->bi_private; 301 bool should_dirty = dio->should_dirty; 302 303 if (bio->bi_status && !dio->bio.bi_status) 304 dio->bio.bi_status = bio->bi_status; 305 306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 307 if (!dio->is_sync) { 308 struct kiocb *iocb = dio->iocb; 309 ssize_t ret; 310 311 if (likely(!dio->bio.bi_status)) { 312 ret = dio->size; 313 iocb->ki_pos += ret; 314 } else { 315 ret = blk_status_to_errno(dio->bio.bi_status); 316 } 317 318 dio->iocb->ki_complete(iocb, ret, 0); 319 if (dio->multi_bio) 320 bio_put(&dio->bio); 321 } else { 322 struct task_struct *waiter = dio->waiter; 323 324 WRITE_ONCE(dio->waiter, NULL); 325 blk_wake_io_task(waiter); 326 } 327 } 328 329 if (should_dirty) { 330 bio_check_pages_dirty(bio); 331 } else { 332 bio_release_pages(bio, false); 333 bio_put(bio); 334 } 335} 336 337static ssize_t 338__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 339{ 340 struct file *file = iocb->ki_filp; 341 struct inode *inode = bdev_file_inode(file); 342 struct block_device *bdev = I_BDEV(inode); 343 struct blk_plug plug; 344 struct blkdev_dio *dio; 345 struct bio *bio; 346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 347 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 348 loff_t pos = iocb->ki_pos; 349 blk_qc_t qc = BLK_QC_T_NONE; 350 int ret = 0; 351 352 if ((pos | iov_iter_alignment(iter)) & 353 (bdev_logical_block_size(bdev) - 1)) 354 return -EINVAL; 355 356 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 357 358 dio = container_of(bio, struct blkdev_dio, bio); 359 dio->is_sync = is_sync = is_sync_kiocb(iocb); 360 if (dio->is_sync) { 361 dio->waiter = current; 362 bio_get(bio); 363 } else { 364 dio->iocb = iocb; 365 } 366 367 dio->size = 0; 368 dio->multi_bio = false; 369 dio->should_dirty = is_read && iter_is_iovec(iter); 370 371 /* 372 * Don't plug for HIPRI/polled IO, as those should go straight 373 * to issue 374 */ 375 if (!is_poll) 376 blk_start_plug(&plug); 377 378 for (;;) { 379 bio_set_dev(bio, bdev); 380 bio->bi_iter.bi_sector = pos >> 9; 381 bio->bi_write_hint = iocb->ki_hint; 382 bio->bi_private = dio; 383 bio->bi_end_io = blkdev_bio_end_io; 384 bio->bi_ioprio = iocb->ki_ioprio; 385 386 ret = bio_iov_iter_get_pages(bio, iter); 387 if (unlikely(ret)) { 388 bio->bi_status = BLK_STS_IOERR; 389 bio_endio(bio); 390 break; 391 } 392 393 if (is_read) { 394 bio->bi_opf = REQ_OP_READ; 395 if (dio->should_dirty) 396 bio_set_pages_dirty(bio); 397 } else { 398 bio->bi_opf = dio_bio_write_op(iocb); 399 task_io_account_write(bio->bi_iter.bi_size); 400 } 401 402 dio->size += bio->bi_iter.bi_size; 403 pos += bio->bi_iter.bi_size; 404 405 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 406 if (!nr_pages) { 407 bool polled = false; 408 409 if (iocb->ki_flags & IOCB_HIPRI) { 410 bio_set_polled(bio, iocb); 411 polled = true; 412 } 413 414 qc = submit_bio(bio); 415 416 if (polled) 417 WRITE_ONCE(iocb->ki_cookie, qc); 418 break; 419 } 420 421 if (!dio->multi_bio) { 422 /* 423 * AIO needs an extra reference to ensure the dio 424 * structure which is embedded into the first bio 425 * stays around. 426 */ 427 if (!is_sync) 428 bio_get(bio); 429 dio->multi_bio = true; 430 atomic_set(&dio->ref, 2); 431 } else { 432 atomic_inc(&dio->ref); 433 } 434 435 submit_bio(bio); 436 bio = bio_alloc(GFP_KERNEL, nr_pages); 437 } 438 439 if (!is_poll) 440 blk_finish_plug(&plug); 441 442 if (!is_sync) 443 return -EIOCBQUEUED; 444 445 for (;;) { 446 set_current_state(TASK_UNINTERRUPTIBLE); 447 if (!READ_ONCE(dio->waiter)) 448 break; 449 450 if (!(iocb->ki_flags & IOCB_HIPRI) || 451 !blk_poll(bdev_get_queue(bdev), qc, true)) 452 io_schedule(); 453 } 454 __set_current_state(TASK_RUNNING); 455 456 if (!ret) 457 ret = blk_status_to_errno(dio->bio.bi_status); 458 if (likely(!ret)) 459 ret = dio->size; 460 461 bio_put(&dio->bio); 462 return ret; 463} 464 465static ssize_t 466blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 467{ 468 int nr_pages; 469 470 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 471 if (!nr_pages) 472 return 0; 473 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 474 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 475 476 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 477} 478 479static __init int blkdev_init(void) 480{ 481 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 482} 483module_init(blkdev_init); 484 485int __sync_blockdev(struct block_device *bdev, int wait) 486{ 487 if (!bdev) 488 return 0; 489 if (!wait) 490 return filemap_flush(bdev->bd_inode->i_mapping); 491 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 492} 493 494/* 495 * Write out and wait upon all the dirty data associated with a block 496 * device via its mapping. Does not take the superblock lock. 497 */ 498int sync_blockdev(struct block_device *bdev) 499{ 500 return __sync_blockdev(bdev, 1); 501} 502EXPORT_SYMBOL(sync_blockdev); 503 504/* 505 * Write out and wait upon all dirty data associated with this 506 * device. Filesystem data as well as the underlying block 507 * device. Takes the superblock lock. 508 */ 509int fsync_bdev(struct block_device *bdev) 510{ 511 struct super_block *sb = get_super(bdev); 512 if (sb) { 513 int res = sync_filesystem(sb); 514 drop_super(sb); 515 return res; 516 } 517 return sync_blockdev(bdev); 518} 519EXPORT_SYMBOL(fsync_bdev); 520 521/** 522 * freeze_bdev -- lock a filesystem and force it into a consistent state 523 * @bdev: blockdevice to lock 524 * 525 * If a superblock is found on this device, we take the s_umount semaphore 526 * on it to make sure nobody unmounts until the snapshot creation is done. 527 * The reference counter (bd_fsfreeze_count) guarantees that only the last 528 * unfreeze process can unfreeze the frozen filesystem actually when multiple 529 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 530 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 531 * actually. 532 */ 533struct super_block *freeze_bdev(struct block_device *bdev) 534{ 535 struct super_block *sb; 536 int error = 0; 537 538 mutex_lock(&bdev->bd_fsfreeze_mutex); 539 if (++bdev->bd_fsfreeze_count > 1) { 540 /* 541 * We don't even need to grab a reference - the first call 542 * to freeze_bdev grab an active reference and only the last 543 * thaw_bdev drops it. 544 */ 545 sb = get_super(bdev); 546 if (sb) 547 drop_super(sb); 548 mutex_unlock(&bdev->bd_fsfreeze_mutex); 549 return sb; 550 } 551 552 sb = get_active_super(bdev); 553 if (!sb) 554 goto out; 555 if (sb->s_op->freeze_super) 556 error = sb->s_op->freeze_super(sb); 557 else 558 error = freeze_super(sb); 559 if (error) { 560 deactivate_super(sb); 561 bdev->bd_fsfreeze_count--; 562 mutex_unlock(&bdev->bd_fsfreeze_mutex); 563 return ERR_PTR(error); 564 } 565 deactivate_super(sb); 566 out: 567 sync_blockdev(bdev); 568 mutex_unlock(&bdev->bd_fsfreeze_mutex); 569 return sb; /* thaw_bdev releases s->s_umount */ 570} 571EXPORT_SYMBOL(freeze_bdev); 572 573/** 574 * thaw_bdev -- unlock filesystem 575 * @bdev: blockdevice to unlock 576 * @sb: associated superblock 577 * 578 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 579 */ 580int thaw_bdev(struct block_device *bdev, struct super_block *sb) 581{ 582 int error = -EINVAL; 583 584 mutex_lock(&bdev->bd_fsfreeze_mutex); 585 if (!bdev->bd_fsfreeze_count) 586 goto out; 587 588 error = 0; 589 if (--bdev->bd_fsfreeze_count > 0) 590 goto out; 591 592 if (!sb) 593 goto out; 594 595 if (sb->s_op->thaw_super) 596 error = sb->s_op->thaw_super(sb); 597 else 598 error = thaw_super(sb); 599 if (error) 600 bdev->bd_fsfreeze_count++; 601out: 602 mutex_unlock(&bdev->bd_fsfreeze_mutex); 603 return error; 604} 605EXPORT_SYMBOL(thaw_bdev); 606 607static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 608{ 609 return block_write_full_page(page, blkdev_get_block, wbc); 610} 611 612static int blkdev_readpage(struct file * file, struct page * page) 613{ 614 return block_read_full_page(page, blkdev_get_block); 615} 616 617static int blkdev_readpages(struct file *file, struct address_space *mapping, 618 struct list_head *pages, unsigned nr_pages) 619{ 620 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 621} 622 623static int blkdev_write_begin(struct file *file, struct address_space *mapping, 624 loff_t pos, unsigned len, unsigned flags, 625 struct page **pagep, void **fsdata) 626{ 627 return block_write_begin(mapping, pos, len, flags, pagep, 628 blkdev_get_block); 629} 630 631static int blkdev_write_end(struct file *file, struct address_space *mapping, 632 loff_t pos, unsigned len, unsigned copied, 633 struct page *page, void *fsdata) 634{ 635 int ret; 636 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 637 638 unlock_page(page); 639 put_page(page); 640 641 return ret; 642} 643 644/* 645 * private llseek: 646 * for a block special file file_inode(file)->i_size is zero 647 * so we compute the size by hand (just as in block_read/write above) 648 */ 649static loff_t block_llseek(struct file *file, loff_t offset, int whence) 650{ 651 struct inode *bd_inode = bdev_file_inode(file); 652 loff_t retval; 653 654 inode_lock(bd_inode); 655 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 656 inode_unlock(bd_inode); 657 return retval; 658} 659 660int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 661{ 662 struct inode *bd_inode = bdev_file_inode(filp); 663 struct block_device *bdev = I_BDEV(bd_inode); 664 int error; 665 666 error = file_write_and_wait_range(filp, start, end); 667 if (error) 668 return error; 669 670 /* 671 * There is no need to serialise calls to blkdev_issue_flush with 672 * i_mutex and doing so causes performance issues with concurrent 673 * O_SYNC writers to a block device. 674 */ 675 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 676 if (error == -EOPNOTSUPP) 677 error = 0; 678 679 return error; 680} 681EXPORT_SYMBOL(blkdev_fsync); 682 683/** 684 * bdev_read_page() - Start reading a page from a block device 685 * @bdev: The device to read the page from 686 * @sector: The offset on the device to read the page to (need not be aligned) 687 * @page: The page to read 688 * 689 * On entry, the page should be locked. It will be unlocked when the page 690 * has been read. If the block driver implements rw_page synchronously, 691 * that will be true on exit from this function, but it need not be. 692 * 693 * Errors returned by this function are usually "soft", eg out of memory, or 694 * queue full; callers should try a different route to read this page rather 695 * than propagate an error back up the stack. 696 * 697 * Return: negative errno if an error occurs, 0 if submission was successful. 698 */ 699int bdev_read_page(struct block_device *bdev, sector_t sector, 700 struct page *page) 701{ 702 const struct block_device_operations *ops = bdev->bd_disk->fops; 703 int result = -EOPNOTSUPP; 704 705 if (!ops->rw_page || bdev_get_integrity(bdev)) 706 return result; 707 708 result = blk_queue_enter(bdev->bd_queue, 0); 709 if (result) 710 return result; 711 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 712 REQ_OP_READ); 713 blk_queue_exit(bdev->bd_queue); 714 return result; 715} 716EXPORT_SYMBOL_GPL(bdev_read_page); 717 718/** 719 * bdev_write_page() - Start writing a page to a block device 720 * @bdev: The device to write the page to 721 * @sector: The offset on the device to write the page to (need not be aligned) 722 * @page: The page to write 723 * @wbc: The writeback_control for the write 724 * 725 * On entry, the page should be locked and not currently under writeback. 726 * On exit, if the write started successfully, the page will be unlocked and 727 * under writeback. If the write failed already (eg the driver failed to 728 * queue the page to the device), the page will still be locked. If the 729 * caller is a ->writepage implementation, it will need to unlock the page. 730 * 731 * Errors returned by this function are usually "soft", eg out of memory, or 732 * queue full; callers should try a different route to write this page rather 733 * than propagate an error back up the stack. 734 * 735 * Return: negative errno if an error occurs, 0 if submission was successful. 736 */ 737int bdev_write_page(struct block_device *bdev, sector_t sector, 738 struct page *page, struct writeback_control *wbc) 739{ 740 int result; 741 const struct block_device_operations *ops = bdev->bd_disk->fops; 742 743 if (!ops->rw_page || bdev_get_integrity(bdev)) 744 return -EOPNOTSUPP; 745 result = blk_queue_enter(bdev->bd_queue, 0); 746 if (result) 747 return result; 748 749 set_page_writeback(page); 750 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 751 REQ_OP_WRITE); 752 if (result) { 753 end_page_writeback(page); 754 } else { 755 clean_page_buffers(page); 756 unlock_page(page); 757 } 758 blk_queue_exit(bdev->bd_queue); 759 return result; 760} 761EXPORT_SYMBOL_GPL(bdev_write_page); 762 763/* 764 * pseudo-fs 765 */ 766 767static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 768static struct kmem_cache * bdev_cachep __read_mostly; 769 770static struct inode *bdev_alloc_inode(struct super_block *sb) 771{ 772 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 773 if (!ei) 774 return NULL; 775 return &ei->vfs_inode; 776} 777 778static void bdev_free_inode(struct inode *inode) 779{ 780 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 781} 782 783static void init_once(void *foo) 784{ 785 struct bdev_inode *ei = (struct bdev_inode *) foo; 786 struct block_device *bdev = &ei->bdev; 787 788 memset(bdev, 0, sizeof(*bdev)); 789 mutex_init(&bdev->bd_mutex); 790 INIT_LIST_HEAD(&bdev->bd_list); 791#ifdef CONFIG_SYSFS 792 INIT_LIST_HEAD(&bdev->bd_holder_disks); 793#endif 794 bdev->bd_bdi = &noop_backing_dev_info; 795 inode_init_once(&ei->vfs_inode); 796 /* Initialize mutex for freeze. */ 797 mutex_init(&bdev->bd_fsfreeze_mutex); 798} 799 800static void bdev_evict_inode(struct inode *inode) 801{ 802 struct block_device *bdev = &BDEV_I(inode)->bdev; 803 truncate_inode_pages_final(&inode->i_data); 804 invalidate_inode_buffers(inode); /* is it needed here? */ 805 clear_inode(inode); 806 spin_lock(&bdev_lock); 807 list_del_init(&bdev->bd_list); 808 spin_unlock(&bdev_lock); 809 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 810 inode_detach_wb(inode); 811 if (bdev->bd_bdi != &noop_backing_dev_info) { 812 bdi_put(bdev->bd_bdi); 813 bdev->bd_bdi = &noop_backing_dev_info; 814 } 815} 816 817static const struct super_operations bdev_sops = { 818 .statfs = simple_statfs, 819 .alloc_inode = bdev_alloc_inode, 820 .free_inode = bdev_free_inode, 821 .drop_inode = generic_delete_inode, 822 .evict_inode = bdev_evict_inode, 823}; 824 825static int bd_init_fs_context(struct fs_context *fc) 826{ 827 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); 828 if (!ctx) 829 return -ENOMEM; 830 fc->s_iflags |= SB_I_CGROUPWB; 831 ctx->ops = &bdev_sops; 832 return 0; 833} 834 835static struct file_system_type bd_type = { 836 .name = "bdev", 837 .init_fs_context = bd_init_fs_context, 838 .kill_sb = kill_anon_super, 839}; 840 841struct super_block *blockdev_superblock __read_mostly; 842EXPORT_SYMBOL_GPL(blockdev_superblock); 843 844void __init bdev_cache_init(void) 845{ 846 int err; 847 static struct vfsmount *bd_mnt; 848 849 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 850 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 851 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 852 init_once); 853 err = register_filesystem(&bd_type); 854 if (err) 855 panic("Cannot register bdev pseudo-fs"); 856 bd_mnt = kern_mount(&bd_type); 857 if (IS_ERR(bd_mnt)) 858 panic("Cannot create bdev pseudo-fs"); 859 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 860} 861 862/* 863 * Most likely _very_ bad one - but then it's hardly critical for small 864 * /dev and can be fixed when somebody will need really large one. 865 * Keep in mind that it will be fed through icache hash function too. 866 */ 867static inline unsigned long hash(dev_t dev) 868{ 869 return MAJOR(dev)+MINOR(dev); 870} 871 872static int bdev_test(struct inode *inode, void *data) 873{ 874 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 875} 876 877static int bdev_set(struct inode *inode, void *data) 878{ 879 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 880 return 0; 881} 882 883static LIST_HEAD(all_bdevs); 884 885/* 886 * If there is a bdev inode for this device, unhash it so that it gets evicted 887 * as soon as last inode reference is dropped. 888 */ 889void bdev_unhash_inode(dev_t dev) 890{ 891 struct inode *inode; 892 893 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 894 if (inode) { 895 remove_inode_hash(inode); 896 iput(inode); 897 } 898} 899 900struct block_device *bdget(dev_t dev) 901{ 902 struct block_device *bdev; 903 struct inode *inode; 904 905 inode = iget5_locked(blockdev_superblock, hash(dev), 906 bdev_test, bdev_set, &dev); 907 908 if (!inode) 909 return NULL; 910 911 bdev = &BDEV_I(inode)->bdev; 912 913 if (inode->i_state & I_NEW) { 914 bdev->bd_contains = NULL; 915 bdev->bd_super = NULL; 916 bdev->bd_inode = inode; 917 bdev->bd_block_size = i_blocksize(inode); 918 bdev->bd_part_count = 0; 919 bdev->bd_invalidated = 0; 920 inode->i_mode = S_IFBLK; 921 inode->i_rdev = dev; 922 inode->i_bdev = bdev; 923 inode->i_data.a_ops = &def_blk_aops; 924 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 925 spin_lock(&bdev_lock); 926 list_add(&bdev->bd_list, &all_bdevs); 927 spin_unlock(&bdev_lock); 928 unlock_new_inode(inode); 929 } 930 return bdev; 931} 932 933EXPORT_SYMBOL(bdget); 934 935/** 936 * bdgrab -- Grab a reference to an already referenced block device 937 * @bdev: Block device to grab a reference to. 938 */ 939struct block_device *bdgrab(struct block_device *bdev) 940{ 941 ihold(bdev->bd_inode); 942 return bdev; 943} 944EXPORT_SYMBOL(bdgrab); 945 946long nr_blockdev_pages(void) 947{ 948 struct block_device *bdev; 949 long ret = 0; 950 spin_lock(&bdev_lock); 951 list_for_each_entry(bdev, &all_bdevs, bd_list) { 952 ret += bdev->bd_inode->i_mapping->nrpages; 953 } 954 spin_unlock(&bdev_lock); 955 return ret; 956} 957 958void bdput(struct block_device *bdev) 959{ 960 iput(bdev->bd_inode); 961} 962 963EXPORT_SYMBOL(bdput); 964 965static struct block_device *bd_acquire(struct inode *inode) 966{ 967 struct block_device *bdev; 968 969 spin_lock(&bdev_lock); 970 bdev = inode->i_bdev; 971 if (bdev && !inode_unhashed(bdev->bd_inode)) { 972 bdgrab(bdev); 973 spin_unlock(&bdev_lock); 974 return bdev; 975 } 976 spin_unlock(&bdev_lock); 977 978 /* 979 * i_bdev references block device inode that was already shut down 980 * (corresponding device got removed). Remove the reference and look 981 * up block device inode again just in case new device got 982 * reestablished under the same device number. 983 */ 984 if (bdev) 985 bd_forget(inode); 986 987 bdev = bdget(inode->i_rdev); 988 if (bdev) { 989 spin_lock(&bdev_lock); 990 if (!inode->i_bdev) { 991 /* 992 * We take an additional reference to bd_inode, 993 * and it's released in clear_inode() of inode. 994 * So, we can access it via ->i_mapping always 995 * without igrab(). 996 */ 997 bdgrab(bdev); 998 inode->i_bdev = bdev; 999 inode->i_mapping = bdev->bd_inode->i_mapping; 1000 } 1001 spin_unlock(&bdev_lock); 1002 } 1003 return bdev; 1004} 1005 1006/* Call when you free inode */ 1007 1008void bd_forget(struct inode *inode) 1009{ 1010 struct block_device *bdev = NULL; 1011 1012 spin_lock(&bdev_lock); 1013 if (!sb_is_blkdev_sb(inode->i_sb)) 1014 bdev = inode->i_bdev; 1015 inode->i_bdev = NULL; 1016 inode->i_mapping = &inode->i_data; 1017 spin_unlock(&bdev_lock); 1018 1019 if (bdev) 1020 bdput(bdev); 1021} 1022 1023/** 1024 * bd_may_claim - test whether a block device can be claimed 1025 * @bdev: block device of interest 1026 * @whole: whole block device containing @bdev, may equal @bdev 1027 * @holder: holder trying to claim @bdev 1028 * 1029 * Test whether @bdev can be claimed by @holder. 1030 * 1031 * CONTEXT: 1032 * spin_lock(&bdev_lock). 1033 * 1034 * RETURNS: 1035 * %true if @bdev can be claimed, %false otherwise. 1036 */ 1037static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1038 void *holder) 1039{ 1040 if (bdev->bd_holder == holder) 1041 return true; /* already a holder */ 1042 else if (bdev->bd_holder != NULL) 1043 return false; /* held by someone else */ 1044 else if (whole == bdev) 1045 return true; /* is a whole device which isn't held */ 1046 1047 else if (whole->bd_holder == bd_may_claim) 1048 return true; /* is a partition of a device that is being partitioned */ 1049 else if (whole->bd_holder != NULL) 1050 return false; /* is a partition of a held device */ 1051 else 1052 return true; /* is a partition of an un-held device */ 1053} 1054 1055/** 1056 * bd_prepare_to_claim - prepare to claim a block device 1057 * @bdev: block device of interest 1058 * @whole: the whole device containing @bdev, may equal @bdev 1059 * @holder: holder trying to claim @bdev 1060 * 1061 * Prepare to claim @bdev. This function fails if @bdev is already 1062 * claimed by another holder and waits if another claiming is in 1063 * progress. This function doesn't actually claim. On successful 1064 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1065 * 1066 * CONTEXT: 1067 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1068 * it multiple times. 1069 * 1070 * RETURNS: 1071 * 0 if @bdev can be claimed, -EBUSY otherwise. 1072 */ 1073static int bd_prepare_to_claim(struct block_device *bdev, 1074 struct block_device *whole, void *holder) 1075{ 1076retry: 1077 /* if someone else claimed, fail */ 1078 if (!bd_may_claim(bdev, whole, holder)) 1079 return -EBUSY; 1080 1081 /* if claiming is already in progress, wait for it to finish */ 1082 if (whole->bd_claiming) { 1083 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1084 DEFINE_WAIT(wait); 1085 1086 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1087 spin_unlock(&bdev_lock); 1088 schedule(); 1089 finish_wait(wq, &wait); 1090 spin_lock(&bdev_lock); 1091 goto retry; 1092 } 1093 1094 /* yay, all mine */ 1095 return 0; 1096} 1097 1098static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1099{ 1100 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1101 1102 if (!disk) 1103 return NULL; 1104 /* 1105 * Now that we hold gendisk reference we make sure bdev we looked up is 1106 * not stale. If it is, it means device got removed and created before 1107 * we looked up gendisk and we fail open in such case. Associating 1108 * unhashed bdev with newly created gendisk could lead to two bdevs 1109 * (and thus two independent caches) being associated with one device 1110 * which is bad. 1111 */ 1112 if (inode_unhashed(bdev->bd_inode)) { 1113 put_disk_and_module(disk); 1114 return NULL; 1115 } 1116 return disk; 1117} 1118 1119/** 1120 * bd_start_claiming - start claiming a block device 1121 * @bdev: block device of interest 1122 * @holder: holder trying to claim @bdev 1123 * 1124 * @bdev is about to be opened exclusively. Check @bdev can be opened 1125 * exclusively and mark that an exclusive open is in progress. Each 1126 * successful call to this function must be matched with a call to 1127 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1128 * fail). 1129 * 1130 * This function is used to gain exclusive access to the block device 1131 * without actually causing other exclusive open attempts to fail. It 1132 * should be used when the open sequence itself requires exclusive 1133 * access but may subsequently fail. 1134 * 1135 * CONTEXT: 1136 * Might sleep. 1137 * 1138 * RETURNS: 1139 * Pointer to the block device containing @bdev on success, ERR_PTR() 1140 * value on failure. 1141 */ 1142struct block_device *bd_start_claiming(struct block_device *bdev, void *holder) 1143{ 1144 struct gendisk *disk; 1145 struct block_device *whole; 1146 int partno, err; 1147 1148 might_sleep(); 1149 1150 /* 1151 * @bdev might not have been initialized properly yet, look up 1152 * and grab the outer block device the hard way. 1153 */ 1154 disk = bdev_get_gendisk(bdev, &partno); 1155 if (!disk) 1156 return ERR_PTR(-ENXIO); 1157 1158 /* 1159 * Normally, @bdev should equal what's returned from bdget_disk() 1160 * if partno is 0; however, some drivers (floppy) use multiple 1161 * bdev's for the same physical device and @bdev may be one of the 1162 * aliases. Keep @bdev if partno is 0. This means claimer 1163 * tracking is broken for those devices but it has always been that 1164 * way. 1165 */ 1166 if (partno) 1167 whole = bdget_disk(disk, 0); 1168 else 1169 whole = bdgrab(bdev); 1170 1171 put_disk_and_module(disk); 1172 if (!whole) 1173 return ERR_PTR(-ENOMEM); 1174 1175 /* prepare to claim, if successful, mark claiming in progress */ 1176 spin_lock(&bdev_lock); 1177 1178 err = bd_prepare_to_claim(bdev, whole, holder); 1179 if (err == 0) { 1180 whole->bd_claiming = holder; 1181 spin_unlock(&bdev_lock); 1182 return whole; 1183 } else { 1184 spin_unlock(&bdev_lock); 1185 bdput(whole); 1186 return ERR_PTR(err); 1187 } 1188} 1189EXPORT_SYMBOL(bd_start_claiming); 1190 1191static void bd_clear_claiming(struct block_device *whole, void *holder) 1192{ 1193 lockdep_assert_held(&bdev_lock); 1194 /* tell others that we're done */ 1195 BUG_ON(whole->bd_claiming != holder); 1196 whole->bd_claiming = NULL; 1197 wake_up_bit(&whole->bd_claiming, 0); 1198} 1199 1200/** 1201 * bd_finish_claiming - finish claiming of a block device 1202 * @bdev: block device of interest 1203 * @whole: whole block device (returned from bd_start_claiming()) 1204 * @holder: holder that has claimed @bdev 1205 * 1206 * Finish exclusive open of a block device. Mark the device as exlusively 1207 * open by the holder and wake up all waiters for exclusive open to finish. 1208 */ 1209void bd_finish_claiming(struct block_device *bdev, struct block_device *whole, 1210 void *holder) 1211{ 1212 spin_lock(&bdev_lock); 1213 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1214 /* 1215 * Note that for a whole device bd_holders will be incremented twice, 1216 * and bd_holder will be set to bd_may_claim before being set to holder 1217 */ 1218 whole->bd_holders++; 1219 whole->bd_holder = bd_may_claim; 1220 bdev->bd_holders++; 1221 bdev->bd_holder = holder; 1222 bd_clear_claiming(whole, holder); 1223 spin_unlock(&bdev_lock); 1224} 1225EXPORT_SYMBOL(bd_finish_claiming); 1226 1227/** 1228 * bd_abort_claiming - abort claiming of a block device 1229 * @bdev: block device of interest 1230 * @whole: whole block device (returned from bd_start_claiming()) 1231 * @holder: holder that has claimed @bdev 1232 * 1233 * Abort claiming of a block device when the exclusive open failed. This can be 1234 * also used when exclusive open is not actually desired and we just needed 1235 * to block other exclusive openers for a while. 1236 */ 1237void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1238 void *holder) 1239{ 1240 spin_lock(&bdev_lock); 1241 bd_clear_claiming(whole, holder); 1242 spin_unlock(&bdev_lock); 1243} 1244EXPORT_SYMBOL(bd_abort_claiming); 1245 1246#ifdef CONFIG_SYSFS 1247struct bd_holder_disk { 1248 struct list_head list; 1249 struct gendisk *disk; 1250 int refcnt; 1251}; 1252 1253static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1254 struct gendisk *disk) 1255{ 1256 struct bd_holder_disk *holder; 1257 1258 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1259 if (holder->disk == disk) 1260 return holder; 1261 return NULL; 1262} 1263 1264static int add_symlink(struct kobject *from, struct kobject *to) 1265{ 1266 return sysfs_create_link(from, to, kobject_name(to)); 1267} 1268 1269static void del_symlink(struct kobject *from, struct kobject *to) 1270{ 1271 sysfs_remove_link(from, kobject_name(to)); 1272} 1273 1274/** 1275 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1276 * @bdev: the claimed slave bdev 1277 * @disk: the holding disk 1278 * 1279 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1280 * 1281 * This functions creates the following sysfs symlinks. 1282 * 1283 * - from "slaves" directory of the holder @disk to the claimed @bdev 1284 * - from "holders" directory of the @bdev to the holder @disk 1285 * 1286 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1287 * passed to bd_link_disk_holder(), then: 1288 * 1289 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1290 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1291 * 1292 * The caller must have claimed @bdev before calling this function and 1293 * ensure that both @bdev and @disk are valid during the creation and 1294 * lifetime of these symlinks. 1295 * 1296 * CONTEXT: 1297 * Might sleep. 1298 * 1299 * RETURNS: 1300 * 0 on success, -errno on failure. 1301 */ 1302int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1303{ 1304 struct bd_holder_disk *holder; 1305 int ret = 0; 1306 1307 mutex_lock(&bdev->bd_mutex); 1308 1309 WARN_ON_ONCE(!bdev->bd_holder); 1310 1311 /* FIXME: remove the following once add_disk() handles errors */ 1312 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1313 goto out_unlock; 1314 1315 holder = bd_find_holder_disk(bdev, disk); 1316 if (holder) { 1317 holder->refcnt++; 1318 goto out_unlock; 1319 } 1320 1321 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1322 if (!holder) { 1323 ret = -ENOMEM; 1324 goto out_unlock; 1325 } 1326 1327 INIT_LIST_HEAD(&holder->list); 1328 holder->disk = disk; 1329 holder->refcnt = 1; 1330 1331 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1332 if (ret) 1333 goto out_free; 1334 1335 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1336 if (ret) 1337 goto out_del; 1338 /* 1339 * bdev could be deleted beneath us which would implicitly destroy 1340 * the holder directory. Hold on to it. 1341 */ 1342 kobject_get(bdev->bd_part->holder_dir); 1343 1344 list_add(&holder->list, &bdev->bd_holder_disks); 1345 goto out_unlock; 1346 1347out_del: 1348 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1349out_free: 1350 kfree(holder); 1351out_unlock: 1352 mutex_unlock(&bdev->bd_mutex); 1353 return ret; 1354} 1355EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1356 1357/** 1358 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1359 * @bdev: the calimed slave bdev 1360 * @disk: the holding disk 1361 * 1362 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1363 * 1364 * CONTEXT: 1365 * Might sleep. 1366 */ 1367void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1368{ 1369 struct bd_holder_disk *holder; 1370 1371 mutex_lock(&bdev->bd_mutex); 1372 1373 holder = bd_find_holder_disk(bdev, disk); 1374 1375 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1376 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1377 del_symlink(bdev->bd_part->holder_dir, 1378 &disk_to_dev(disk)->kobj); 1379 kobject_put(bdev->bd_part->holder_dir); 1380 list_del_init(&holder->list); 1381 kfree(holder); 1382 } 1383 1384 mutex_unlock(&bdev->bd_mutex); 1385} 1386EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1387#endif 1388 1389/** 1390 * flush_disk - invalidates all buffer-cache entries on a disk 1391 * 1392 * @bdev: struct block device to be flushed 1393 * @kill_dirty: flag to guide handling of dirty inodes 1394 * 1395 * Invalidates all buffer-cache entries on a disk. It should be called 1396 * when a disk has been changed -- either by a media change or online 1397 * resize. 1398 */ 1399static void flush_disk(struct block_device *bdev, bool kill_dirty) 1400{ 1401 if (__invalidate_device(bdev, kill_dirty)) { 1402 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1403 "resized disk %s\n", 1404 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1405 } 1406 bdev->bd_invalidated = 1; 1407} 1408 1409/** 1410 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1411 * @disk: struct gendisk to check 1412 * @bdev: struct bdev to adjust. 1413 * @verbose: if %true log a message about a size change if there is any 1414 * 1415 * This routine checks to see if the bdev size does not match the disk size 1416 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1417 * are freed. 1418 */ 1419static void check_disk_size_change(struct gendisk *disk, 1420 struct block_device *bdev, bool verbose) 1421{ 1422 loff_t disk_size, bdev_size; 1423 1424 disk_size = (loff_t)get_capacity(disk) << 9; 1425 bdev_size = i_size_read(bdev->bd_inode); 1426 if (disk_size != bdev_size) { 1427 if (verbose) { 1428 printk(KERN_INFO 1429 "%s: detected capacity change from %lld to %lld\n", 1430 disk->disk_name, bdev_size, disk_size); 1431 } 1432 i_size_write(bdev->bd_inode, disk_size); 1433 if (bdev_size > disk_size) 1434 flush_disk(bdev, false); 1435 } 1436 bdev->bd_invalidated = 0; 1437} 1438 1439/** 1440 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1441 * @disk: struct gendisk to be revalidated 1442 * 1443 * This routine is a wrapper for lower-level driver's revalidate_disk 1444 * call-backs. It is used to do common pre and post operations needed 1445 * for all revalidate_disk operations. 1446 */ 1447int revalidate_disk(struct gendisk *disk) 1448{ 1449 int ret = 0; 1450 1451 if (disk->fops->revalidate_disk) 1452 ret = disk->fops->revalidate_disk(disk); 1453 1454 /* 1455 * Hidden disks don't have associated bdev so there's no point in 1456 * revalidating it. 1457 */ 1458 if (!(disk->flags & GENHD_FL_HIDDEN)) { 1459 struct block_device *bdev = bdget_disk(disk, 0); 1460 1461 if (!bdev) 1462 return ret; 1463 1464 mutex_lock(&bdev->bd_mutex); 1465 check_disk_size_change(disk, bdev, ret == 0); 1466 mutex_unlock(&bdev->bd_mutex); 1467 bdput(bdev); 1468 } 1469 return ret; 1470} 1471EXPORT_SYMBOL(revalidate_disk); 1472 1473/* 1474 * This routine checks whether a removable media has been changed, 1475 * and invalidates all buffer-cache-entries in that case. This 1476 * is a relatively slow routine, so we have to try to minimize using 1477 * it. Thus it is called only upon a 'mount' or 'open'. This 1478 * is the best way of combining speed and utility, I think. 1479 * People changing diskettes in the middle of an operation deserve 1480 * to lose :-) 1481 */ 1482int check_disk_change(struct block_device *bdev) 1483{ 1484 struct gendisk *disk = bdev->bd_disk; 1485 const struct block_device_operations *bdops = disk->fops; 1486 unsigned int events; 1487 1488 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1489 DISK_EVENT_EJECT_REQUEST); 1490 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1491 return 0; 1492 1493 flush_disk(bdev, true); 1494 if (bdops->revalidate_disk) 1495 bdops->revalidate_disk(bdev->bd_disk); 1496 return 1; 1497} 1498 1499EXPORT_SYMBOL(check_disk_change); 1500 1501void bd_set_size(struct block_device *bdev, loff_t size) 1502{ 1503 inode_lock(bdev->bd_inode); 1504 i_size_write(bdev->bd_inode, size); 1505 inode_unlock(bdev->bd_inode); 1506} 1507EXPORT_SYMBOL(bd_set_size); 1508 1509static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1510 1511int bdev_disk_changed(struct block_device *bdev, bool invalidate) 1512{ 1513 struct gendisk *disk = bdev->bd_disk; 1514 int ret; 1515 1516 lockdep_assert_held(&bdev->bd_mutex); 1517 1518rescan: 1519 ret = blk_drop_partitions(disk, bdev); 1520 if (ret) 1521 return ret; 1522 1523 if (invalidate) 1524 set_capacity(disk, 0); 1525 else if (disk->fops->revalidate_disk) 1526 disk->fops->revalidate_disk(disk); 1527 1528 check_disk_size_change(disk, bdev, !invalidate); 1529 1530 if (get_capacity(disk)) { 1531 ret = blk_add_partitions(disk, bdev); 1532 if (ret == -EAGAIN) 1533 goto rescan; 1534 } else if (invalidate) { 1535 /* 1536 * Tell userspace that the media / partition table may have 1537 * changed. 1538 */ 1539 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 1540 } 1541 1542 return ret; 1543} 1544/* 1545 * Only exported for for loop and dasd for historic reasons. Don't use in new 1546 * code! 1547 */ 1548EXPORT_SYMBOL_GPL(bdev_disk_changed); 1549 1550/* 1551 * bd_mutex locking: 1552 * 1553 * mutex_lock(part->bd_mutex) 1554 * mutex_lock_nested(whole->bd_mutex, 1) 1555 */ 1556 1557static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1558{ 1559 struct gendisk *disk; 1560 int ret; 1561 int partno; 1562 int perm = 0; 1563 bool first_open = false; 1564 1565 if (mode & FMODE_READ) 1566 perm |= MAY_READ; 1567 if (mode & FMODE_WRITE) 1568 perm |= MAY_WRITE; 1569 /* 1570 * hooks: /n/, see "layering violations". 1571 */ 1572 if (!for_part) { 1573 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1574 if (ret != 0) { 1575 bdput(bdev); 1576 return ret; 1577 } 1578 } 1579 1580 restart: 1581 1582 ret = -ENXIO; 1583 disk = bdev_get_gendisk(bdev, &partno); 1584 if (!disk) 1585 goto out; 1586 1587 disk_block_events(disk); 1588 mutex_lock_nested(&bdev->bd_mutex, for_part); 1589 if (!bdev->bd_openers) { 1590 first_open = true; 1591 bdev->bd_disk = disk; 1592 bdev->bd_queue = disk->queue; 1593 bdev->bd_contains = bdev; 1594 bdev->bd_partno = partno; 1595 1596 if (!partno) { 1597 ret = -ENXIO; 1598 bdev->bd_part = disk_get_part(disk, partno); 1599 if (!bdev->bd_part) 1600 goto out_clear; 1601 1602 ret = 0; 1603 if (disk->fops->open) { 1604 ret = disk->fops->open(bdev, mode); 1605 if (ret == -ERESTARTSYS) { 1606 /* Lost a race with 'disk' being 1607 * deleted, try again. 1608 * See md.c 1609 */ 1610 disk_put_part(bdev->bd_part); 1611 bdev->bd_part = NULL; 1612 bdev->bd_disk = NULL; 1613 bdev->bd_queue = NULL; 1614 mutex_unlock(&bdev->bd_mutex); 1615 disk_unblock_events(disk); 1616 put_disk_and_module(disk); 1617 goto restart; 1618 } 1619 } 1620 1621 if (!ret) { 1622 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1623 set_init_blocksize(bdev); 1624 } 1625 1626 /* 1627 * If the device is invalidated, rescan partition 1628 * if open succeeded or failed with -ENOMEDIUM. 1629 * The latter is necessary to prevent ghost 1630 * partitions on a removed medium. 1631 */ 1632 if (bdev->bd_invalidated && 1633 (!ret || ret == -ENOMEDIUM)) 1634 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1635 1636 if (ret) 1637 goto out_clear; 1638 } else { 1639 struct block_device *whole; 1640 whole = bdget_disk(disk, 0); 1641 ret = -ENOMEM; 1642 if (!whole) 1643 goto out_clear; 1644 BUG_ON(for_part); 1645 ret = __blkdev_get(whole, mode, 1); 1646 if (ret) 1647 goto out_clear; 1648 bdev->bd_contains = whole; 1649 bdev->bd_part = disk_get_part(disk, partno); 1650 if (!(disk->flags & GENHD_FL_UP) || 1651 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1652 ret = -ENXIO; 1653 goto out_clear; 1654 } 1655 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1656 set_init_blocksize(bdev); 1657 } 1658 1659 if (bdev->bd_bdi == &noop_backing_dev_info) 1660 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1661 } else { 1662 if (bdev->bd_contains == bdev) { 1663 ret = 0; 1664 if (bdev->bd_disk->fops->open) 1665 ret = bdev->bd_disk->fops->open(bdev, mode); 1666 /* the same as first opener case, read comment there */ 1667 if (bdev->bd_invalidated && 1668 (!ret || ret == -ENOMEDIUM)) 1669 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1670 if (ret) 1671 goto out_unlock_bdev; 1672 } 1673 } 1674 bdev->bd_openers++; 1675 if (for_part) 1676 bdev->bd_part_count++; 1677 mutex_unlock(&bdev->bd_mutex); 1678 disk_unblock_events(disk); 1679 /* only one opener holds refs to the module and disk */ 1680 if (!first_open) 1681 put_disk_and_module(disk); 1682 return 0; 1683 1684 out_clear: 1685 disk_put_part(bdev->bd_part); 1686 bdev->bd_disk = NULL; 1687 bdev->bd_part = NULL; 1688 bdev->bd_queue = NULL; 1689 if (bdev != bdev->bd_contains) 1690 __blkdev_put(bdev->bd_contains, mode, 1); 1691 bdev->bd_contains = NULL; 1692 out_unlock_bdev: 1693 mutex_unlock(&bdev->bd_mutex); 1694 disk_unblock_events(disk); 1695 put_disk_and_module(disk); 1696 out: 1697 bdput(bdev); 1698 1699 return ret; 1700} 1701 1702/** 1703 * blkdev_get - open a block device 1704 * @bdev: block_device to open 1705 * @mode: FMODE_* mask 1706 * @holder: exclusive holder identifier 1707 * 1708 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1709 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1710 * @holder is invalid. Exclusive opens may nest for the same @holder. 1711 * 1712 * On success, the reference count of @bdev is unchanged. On failure, 1713 * @bdev is put. 1714 * 1715 * CONTEXT: 1716 * Might sleep. 1717 * 1718 * RETURNS: 1719 * 0 on success, -errno on failure. 1720 */ 1721int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1722{ 1723 struct block_device *whole = NULL; 1724 int res; 1725 1726 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1727 1728 if ((mode & FMODE_EXCL) && holder) { 1729 whole = bd_start_claiming(bdev, holder); 1730 if (IS_ERR(whole)) { 1731 bdput(bdev); 1732 return PTR_ERR(whole); 1733 } 1734 } 1735 1736 res = __blkdev_get(bdev, mode, 0); 1737 1738 if (whole) { 1739 struct gendisk *disk = whole->bd_disk; 1740 1741 /* finish claiming */ 1742 mutex_lock(&bdev->bd_mutex); 1743 if (!res) 1744 bd_finish_claiming(bdev, whole, holder); 1745 else 1746 bd_abort_claiming(bdev, whole, holder); 1747 /* 1748 * Block event polling for write claims if requested. Any 1749 * write holder makes the write_holder state stick until 1750 * all are released. This is good enough and tracking 1751 * individual writeable reference is too fragile given the 1752 * way @mode is used in blkdev_get/put(). 1753 */ 1754 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1755 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1756 bdev->bd_write_holder = true; 1757 disk_block_events(disk); 1758 } 1759 1760 mutex_unlock(&bdev->bd_mutex); 1761 bdput(whole); 1762 } 1763 1764 return res; 1765} 1766EXPORT_SYMBOL(blkdev_get); 1767 1768/** 1769 * blkdev_get_by_path - open a block device by name 1770 * @path: path to the block device to open 1771 * @mode: FMODE_* mask 1772 * @holder: exclusive holder identifier 1773 * 1774 * Open the blockdevice described by the device file at @path. @mode 1775 * and @holder are identical to blkdev_get(). 1776 * 1777 * On success, the returned block_device has reference count of one. 1778 * 1779 * CONTEXT: 1780 * Might sleep. 1781 * 1782 * RETURNS: 1783 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1784 */ 1785struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1786 void *holder) 1787{ 1788 struct block_device *bdev; 1789 int err; 1790 1791 bdev = lookup_bdev(path); 1792 if (IS_ERR(bdev)) 1793 return bdev; 1794 1795 err = blkdev_get(bdev, mode, holder); 1796 if (err) 1797 return ERR_PTR(err); 1798 1799 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1800 blkdev_put(bdev, mode); 1801 return ERR_PTR(-EACCES); 1802 } 1803 1804 return bdev; 1805} 1806EXPORT_SYMBOL(blkdev_get_by_path); 1807 1808/** 1809 * blkdev_get_by_dev - open a block device by device number 1810 * @dev: device number of block device to open 1811 * @mode: FMODE_* mask 1812 * @holder: exclusive holder identifier 1813 * 1814 * Open the blockdevice described by device number @dev. @mode and 1815 * @holder are identical to blkdev_get(). 1816 * 1817 * Use it ONLY if you really do not have anything better - i.e. when 1818 * you are behind a truly sucky interface and all you are given is a 1819 * device number. _Never_ to be used for internal purposes. If you 1820 * ever need it - reconsider your API. 1821 * 1822 * On success, the returned block_device has reference count of one. 1823 * 1824 * CONTEXT: 1825 * Might sleep. 1826 * 1827 * RETURNS: 1828 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1829 */ 1830struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1831{ 1832 struct block_device *bdev; 1833 int err; 1834 1835 bdev = bdget(dev); 1836 if (!bdev) 1837 return ERR_PTR(-ENOMEM); 1838 1839 err = blkdev_get(bdev, mode, holder); 1840 if (err) 1841 return ERR_PTR(err); 1842 1843 return bdev; 1844} 1845EXPORT_SYMBOL(blkdev_get_by_dev); 1846 1847static int blkdev_open(struct inode * inode, struct file * filp) 1848{ 1849 struct block_device *bdev; 1850 1851 /* 1852 * Preserve backwards compatibility and allow large file access 1853 * even if userspace doesn't ask for it explicitly. Some mkfs 1854 * binary needs it. We might want to drop this workaround 1855 * during an unstable branch. 1856 */ 1857 filp->f_flags |= O_LARGEFILE; 1858 1859 filp->f_mode |= FMODE_NOWAIT; 1860 1861 if (filp->f_flags & O_NDELAY) 1862 filp->f_mode |= FMODE_NDELAY; 1863 if (filp->f_flags & O_EXCL) 1864 filp->f_mode |= FMODE_EXCL; 1865 if ((filp->f_flags & O_ACCMODE) == 3) 1866 filp->f_mode |= FMODE_WRITE_IOCTL; 1867 1868 bdev = bd_acquire(inode); 1869 if (bdev == NULL) 1870 return -ENOMEM; 1871 1872 filp->f_mapping = bdev->bd_inode->i_mapping; 1873 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1874 1875 return blkdev_get(bdev, filp->f_mode, filp); 1876} 1877 1878static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1879{ 1880 struct gendisk *disk = bdev->bd_disk; 1881 struct block_device *victim = NULL; 1882 1883 mutex_lock_nested(&bdev->bd_mutex, for_part); 1884 if (for_part) 1885 bdev->bd_part_count--; 1886 1887 if (!--bdev->bd_openers) { 1888 WARN_ON_ONCE(bdev->bd_holders); 1889 sync_blockdev(bdev); 1890 kill_bdev(bdev); 1891 1892 bdev_write_inode(bdev); 1893 } 1894 if (bdev->bd_contains == bdev) { 1895 if (disk->fops->release) 1896 disk->fops->release(disk, mode); 1897 } 1898 if (!bdev->bd_openers) { 1899 disk_put_part(bdev->bd_part); 1900 bdev->bd_part = NULL; 1901 bdev->bd_disk = NULL; 1902 if (bdev != bdev->bd_contains) 1903 victim = bdev->bd_contains; 1904 bdev->bd_contains = NULL; 1905 1906 put_disk_and_module(disk); 1907 } 1908 mutex_unlock(&bdev->bd_mutex); 1909 bdput(bdev); 1910 if (victim) 1911 __blkdev_put(victim, mode, 1); 1912} 1913 1914void blkdev_put(struct block_device *bdev, fmode_t mode) 1915{ 1916 mutex_lock(&bdev->bd_mutex); 1917 1918 if (mode & FMODE_EXCL) { 1919 bool bdev_free; 1920 1921 /* 1922 * Release a claim on the device. The holder fields 1923 * are protected with bdev_lock. bd_mutex is to 1924 * synchronize disk_holder unlinking. 1925 */ 1926 spin_lock(&bdev_lock); 1927 1928 WARN_ON_ONCE(--bdev->bd_holders < 0); 1929 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1930 1931 /* bd_contains might point to self, check in a separate step */ 1932 if ((bdev_free = !bdev->bd_holders)) 1933 bdev->bd_holder = NULL; 1934 if (!bdev->bd_contains->bd_holders) 1935 bdev->bd_contains->bd_holder = NULL; 1936 1937 spin_unlock(&bdev_lock); 1938 1939 /* 1940 * If this was the last claim, remove holder link and 1941 * unblock evpoll if it was a write holder. 1942 */ 1943 if (bdev_free && bdev->bd_write_holder) { 1944 disk_unblock_events(bdev->bd_disk); 1945 bdev->bd_write_holder = false; 1946 } 1947 } 1948 1949 /* 1950 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1951 * event. This is to ensure detection of media removal commanded 1952 * from userland - e.g. eject(1). 1953 */ 1954 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1955 1956 mutex_unlock(&bdev->bd_mutex); 1957 1958 __blkdev_put(bdev, mode, 0); 1959} 1960EXPORT_SYMBOL(blkdev_put); 1961 1962static int blkdev_close(struct inode * inode, struct file * filp) 1963{ 1964 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1965 blkdev_put(bdev, filp->f_mode); 1966 return 0; 1967} 1968 1969static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1970{ 1971 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1972 fmode_t mode = file->f_mode; 1973 1974 /* 1975 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1976 * to updated it before every ioctl. 1977 */ 1978 if (file->f_flags & O_NDELAY) 1979 mode |= FMODE_NDELAY; 1980 else 1981 mode &= ~FMODE_NDELAY; 1982 1983 return blkdev_ioctl(bdev, mode, cmd, arg); 1984} 1985 1986/* 1987 * Write data to the block device. Only intended for the block device itself 1988 * and the raw driver which basically is a fake block device. 1989 * 1990 * Does not take i_mutex for the write and thus is not for general purpose 1991 * use. 1992 */ 1993ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1994{ 1995 struct file *file = iocb->ki_filp; 1996 struct inode *bd_inode = bdev_file_inode(file); 1997 loff_t size = i_size_read(bd_inode); 1998 struct blk_plug plug; 1999 ssize_t ret; 2000 2001 if (bdev_read_only(I_BDEV(bd_inode))) 2002 return -EPERM; 2003 2004 if (IS_SWAPFILE(bd_inode)) 2005 return -ETXTBSY; 2006 2007 if (!iov_iter_count(from)) 2008 return 0; 2009 2010 if (iocb->ki_pos >= size) 2011 return -ENOSPC; 2012 2013 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 2014 return -EOPNOTSUPP; 2015 2016 iov_iter_truncate(from, size - iocb->ki_pos); 2017 2018 blk_start_plug(&plug); 2019 ret = __generic_file_write_iter(iocb, from); 2020 if (ret > 0) 2021 ret = generic_write_sync(iocb, ret); 2022 blk_finish_plug(&plug); 2023 return ret; 2024} 2025EXPORT_SYMBOL_GPL(blkdev_write_iter); 2026 2027ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 2028{ 2029 struct file *file = iocb->ki_filp; 2030 struct inode *bd_inode = bdev_file_inode(file); 2031 loff_t size = i_size_read(bd_inode); 2032 loff_t pos = iocb->ki_pos; 2033 2034 if (pos >= size) 2035 return 0; 2036 2037 size -= pos; 2038 iov_iter_truncate(to, size); 2039 return generic_file_read_iter(iocb, to); 2040} 2041EXPORT_SYMBOL_GPL(blkdev_read_iter); 2042 2043/* 2044 * Try to release a page associated with block device when the system 2045 * is under memory pressure. 2046 */ 2047static int blkdev_releasepage(struct page *page, gfp_t wait) 2048{ 2049 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 2050 2051 if (super && super->s_op->bdev_try_to_free_page) 2052 return super->s_op->bdev_try_to_free_page(super, page, wait); 2053 2054 return try_to_free_buffers(page); 2055} 2056 2057static int blkdev_writepages(struct address_space *mapping, 2058 struct writeback_control *wbc) 2059{ 2060 return generic_writepages(mapping, wbc); 2061} 2062 2063static const struct address_space_operations def_blk_aops = { 2064 .readpage = blkdev_readpage, 2065 .readpages = blkdev_readpages, 2066 .writepage = blkdev_writepage, 2067 .write_begin = blkdev_write_begin, 2068 .write_end = blkdev_write_end, 2069 .writepages = blkdev_writepages, 2070 .releasepage = blkdev_releasepage, 2071 .direct_IO = blkdev_direct_IO, 2072 .migratepage = buffer_migrate_page_norefs, 2073 .is_dirty_writeback = buffer_check_dirty_writeback, 2074}; 2075 2076#define BLKDEV_FALLOC_FL_SUPPORTED \ 2077 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2078 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2079 2080static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2081 loff_t len) 2082{ 2083 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2084 struct address_space *mapping; 2085 loff_t end = start + len - 1; 2086 loff_t isize; 2087 int error; 2088 2089 /* Fail if we don't recognize the flags. */ 2090 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2091 return -EOPNOTSUPP; 2092 2093 /* Don't go off the end of the device. */ 2094 isize = i_size_read(bdev->bd_inode); 2095 if (start >= isize) 2096 return -EINVAL; 2097 if (end >= isize) { 2098 if (mode & FALLOC_FL_KEEP_SIZE) { 2099 len = isize - start; 2100 end = start + len - 1; 2101 } else 2102 return -EINVAL; 2103 } 2104 2105 /* 2106 * Don't allow IO that isn't aligned to logical block size. 2107 */ 2108 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2109 return -EINVAL; 2110 2111 /* Invalidate the page cache, including dirty pages. */ 2112 mapping = bdev->bd_inode->i_mapping; 2113 truncate_inode_pages_range(mapping, start, end); 2114 2115 switch (mode) { 2116 case FALLOC_FL_ZERO_RANGE: 2117 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2118 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2119 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2120 break; 2121 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2122 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2123 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2124 break; 2125 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2126 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2127 GFP_KERNEL, 0); 2128 break; 2129 default: 2130 return -EOPNOTSUPP; 2131 } 2132 if (error) 2133 return error; 2134 2135 /* 2136 * Invalidate again; if someone wandered in and dirtied a page, 2137 * the caller will be given -EBUSY. The third argument is 2138 * inclusive, so the rounding here is safe. 2139 */ 2140 return invalidate_inode_pages2_range(mapping, 2141 start >> PAGE_SHIFT, 2142 end >> PAGE_SHIFT); 2143} 2144 2145const struct file_operations def_blk_fops = { 2146 .open = blkdev_open, 2147 .release = blkdev_close, 2148 .llseek = block_llseek, 2149 .read_iter = blkdev_read_iter, 2150 .write_iter = blkdev_write_iter, 2151 .iopoll = blkdev_iopoll, 2152 .mmap = generic_file_mmap, 2153 .fsync = blkdev_fsync, 2154 .unlocked_ioctl = block_ioctl, 2155#ifdef CONFIG_COMPAT 2156 .compat_ioctl = compat_blkdev_ioctl, 2157#endif 2158 .splice_read = generic_file_splice_read, 2159 .splice_write = iter_file_splice_write, 2160 .fallocate = blkdev_fallocate, 2161}; 2162 2163int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2164{ 2165 int res; 2166 mm_segment_t old_fs = get_fs(); 2167 set_fs(KERNEL_DS); 2168 res = blkdev_ioctl(bdev, 0, cmd, arg); 2169 set_fs(old_fs); 2170 return res; 2171} 2172 2173EXPORT_SYMBOL(ioctl_by_bdev); 2174 2175/** 2176 * lookup_bdev - lookup a struct block_device by name 2177 * @pathname: special file representing the block device 2178 * 2179 * Get a reference to the blockdevice at @pathname in the current 2180 * namespace if possible and return it. Return ERR_PTR(error) 2181 * otherwise. 2182 */ 2183struct block_device *lookup_bdev(const char *pathname) 2184{ 2185 struct block_device *bdev; 2186 struct inode *inode; 2187 struct path path; 2188 int error; 2189 2190 if (!pathname || !*pathname) 2191 return ERR_PTR(-EINVAL); 2192 2193 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2194 if (error) 2195 return ERR_PTR(error); 2196 2197 inode = d_backing_inode(path.dentry); 2198 error = -ENOTBLK; 2199 if (!S_ISBLK(inode->i_mode)) 2200 goto fail; 2201 error = -EACCES; 2202 if (!may_open_dev(&path)) 2203 goto fail; 2204 error = -ENOMEM; 2205 bdev = bd_acquire(inode); 2206 if (!bdev) 2207 goto fail; 2208out: 2209 path_put(&path); 2210 return bdev; 2211fail: 2212 bdev = ERR_PTR(error); 2213 goto out; 2214} 2215EXPORT_SYMBOL(lookup_bdev); 2216 2217int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2218{ 2219 struct super_block *sb = get_super(bdev); 2220 int res = 0; 2221 2222 if (sb) { 2223 /* 2224 * no need to lock the super, get_super holds the 2225 * read mutex so the filesystem cannot go away 2226 * under us (->put_super runs with the write lock 2227 * hold). 2228 */ 2229 shrink_dcache_sb(sb); 2230 res = invalidate_inodes(sb, kill_dirty); 2231 drop_super(sb); 2232 } 2233 invalidate_bdev(bdev); 2234 return res; 2235} 2236EXPORT_SYMBOL(__invalidate_device); 2237 2238void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2239{ 2240 struct inode *inode, *old_inode = NULL; 2241 2242 spin_lock(&blockdev_superblock->s_inode_list_lock); 2243 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2244 struct address_space *mapping = inode->i_mapping; 2245 struct block_device *bdev; 2246 2247 spin_lock(&inode->i_lock); 2248 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2249 mapping->nrpages == 0) { 2250 spin_unlock(&inode->i_lock); 2251 continue; 2252 } 2253 __iget(inode); 2254 spin_unlock(&inode->i_lock); 2255 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2256 /* 2257 * We hold a reference to 'inode' so it couldn't have been 2258 * removed from s_inodes list while we dropped the 2259 * s_inode_list_lock We cannot iput the inode now as we can 2260 * be holding the last reference and we cannot iput it under 2261 * s_inode_list_lock. So we keep the reference and iput it 2262 * later. 2263 */ 2264 iput(old_inode); 2265 old_inode = inode; 2266 bdev = I_BDEV(inode); 2267 2268 mutex_lock(&bdev->bd_mutex); 2269 if (bdev->bd_openers) 2270 func(bdev, arg); 2271 mutex_unlock(&bdev->bd_mutex); 2272 2273 spin_lock(&blockdev_superblock->s_inode_list_lock); 2274 } 2275 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2276 iput(old_inode); 2277}