Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8#include "lkdtm.h"
9#include <linux/list.h>
10#include <linux/sched.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/task_stack.h>
13#include <linux/uaccess.h>
14
15#ifdef CONFIG_X86_32
16#include <asm/desc.h>
17#endif
18
19struct lkdtm_list {
20 struct list_head node;
21};
22
23/*
24 * Make sure our attempts to over run the kernel stack doesn't trigger
25 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
26 * recurse past the end of THREAD_SIZE by default.
27 */
28#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
29#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
30#else
31#define REC_STACK_SIZE (THREAD_SIZE / 8)
32#endif
33#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
34
35static int recur_count = REC_NUM_DEFAULT;
36
37static DEFINE_SPINLOCK(lock_me_up);
38
39/*
40 * Make sure compiler does not optimize this function or stack frame away:
41 * - function marked noinline
42 * - stack variables are marked volatile
43 * - stack variables are written (memset()) and read (pr_info())
44 * - function has external effects (pr_info())
45 * */
46static int noinline recursive_loop(int remaining)
47{
48 volatile char buf[REC_STACK_SIZE];
49
50 memset((void *)buf, remaining & 0xFF, sizeof(buf));
51 pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
52 recur_count);
53 if (!remaining)
54 return 0;
55 else
56 return recursive_loop(remaining - 1);
57}
58
59/* If the depth is negative, use the default, otherwise keep parameter. */
60void __init lkdtm_bugs_init(int *recur_param)
61{
62 if (*recur_param < 0)
63 *recur_param = recur_count;
64 else
65 recur_count = *recur_param;
66}
67
68void lkdtm_PANIC(void)
69{
70 panic("dumptest");
71}
72
73void lkdtm_BUG(void)
74{
75 BUG();
76}
77
78static int warn_counter;
79
80void lkdtm_WARNING(void)
81{
82 WARN_ON(++warn_counter);
83}
84
85void lkdtm_WARNING_MESSAGE(void)
86{
87 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
88}
89
90void lkdtm_EXCEPTION(void)
91{
92 *((volatile int *) 0) = 0;
93}
94
95void lkdtm_LOOP(void)
96{
97 for (;;)
98 ;
99}
100
101void lkdtm_EXHAUST_STACK(void)
102{
103 pr_info("Calling function with %lu frame size to depth %d ...\n",
104 REC_STACK_SIZE, recur_count);
105 recursive_loop(recur_count);
106 pr_info("FAIL: survived without exhausting stack?!\n");
107}
108
109static noinline void __lkdtm_CORRUPT_STACK(void *stack)
110{
111 memset(stack, '\xff', 64);
112}
113
114/* This should trip the stack canary, not corrupt the return address. */
115noinline void lkdtm_CORRUPT_STACK(void)
116{
117 /* Use default char array length that triggers stack protection. */
118 char data[8] __aligned(sizeof(void *));
119
120 __lkdtm_CORRUPT_STACK(&data);
121
122 pr_info("Corrupted stack containing char array ...\n");
123}
124
125/* Same as above but will only get a canary with -fstack-protector-strong */
126noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127{
128 union {
129 unsigned short shorts[4];
130 unsigned long *ptr;
131 } data __aligned(sizeof(void *));
132
133 __lkdtm_CORRUPT_STACK(&data);
134
135 pr_info("Corrupted stack containing union ...\n");
136}
137
138void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
139{
140 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
141 u32 *p;
142 u32 val = 0x12345678;
143
144 p = (u32 *)(data + 1);
145 if (*p == 0)
146 val = 0x87654321;
147 *p = val;
148}
149
150void lkdtm_SOFTLOCKUP(void)
151{
152 preempt_disable();
153 for (;;)
154 cpu_relax();
155}
156
157void lkdtm_HARDLOCKUP(void)
158{
159 local_irq_disable();
160 for (;;)
161 cpu_relax();
162}
163
164void lkdtm_SPINLOCKUP(void)
165{
166 /* Must be called twice to trigger. */
167 spin_lock(&lock_me_up);
168 /* Let sparse know we intended to exit holding the lock. */
169 __release(&lock_me_up);
170}
171
172void lkdtm_HUNG_TASK(void)
173{
174 set_current_state(TASK_UNINTERRUPTIBLE);
175 schedule();
176}
177
178void lkdtm_CORRUPT_LIST_ADD(void)
179{
180 /*
181 * Initially, an empty list via LIST_HEAD:
182 * test_head.next = &test_head
183 * test_head.prev = &test_head
184 */
185 LIST_HEAD(test_head);
186 struct lkdtm_list good, bad;
187 void *target[2] = { };
188 void *redirection = ⌖
189
190 pr_info("attempting good list addition\n");
191
192 /*
193 * Adding to the list performs these actions:
194 * test_head.next->prev = &good.node
195 * good.node.next = test_head.next
196 * good.node.prev = test_head
197 * test_head.next = good.node
198 */
199 list_add(&good.node, &test_head);
200
201 pr_info("attempting corrupted list addition\n");
202 /*
203 * In simulating this "write what where" primitive, the "what" is
204 * the address of &bad.node, and the "where" is the address held
205 * by "redirection".
206 */
207 test_head.next = redirection;
208 list_add(&bad.node, &test_head);
209
210 if (target[0] == NULL && target[1] == NULL)
211 pr_err("Overwrite did not happen, but no BUG?!\n");
212 else
213 pr_err("list_add() corruption not detected!\n");
214}
215
216void lkdtm_CORRUPT_LIST_DEL(void)
217{
218 LIST_HEAD(test_head);
219 struct lkdtm_list item;
220 void *target[2] = { };
221 void *redirection = ⌖
222
223 list_add(&item.node, &test_head);
224
225 pr_info("attempting good list removal\n");
226 list_del(&item.node);
227
228 pr_info("attempting corrupted list removal\n");
229 list_add(&item.node, &test_head);
230
231 /* As with the list_add() test above, this corrupts "next". */
232 item.node.next = redirection;
233 list_del(&item.node);
234
235 if (target[0] == NULL && target[1] == NULL)
236 pr_err("Overwrite did not happen, but no BUG?!\n");
237 else
238 pr_err("list_del() corruption not detected!\n");
239}
240
241/* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
242void lkdtm_CORRUPT_USER_DS(void)
243{
244 pr_info("setting bad task size limit\n");
245 set_fs(KERNEL_DS);
246
247 /* Make sure we do not keep running with a KERNEL_DS! */
248 force_sig(SIGKILL);
249}
250
251/* Test that VMAP_STACK is actually allocating with a leading guard page */
252void lkdtm_STACK_GUARD_PAGE_LEADING(void)
253{
254 const unsigned char *stack = task_stack_page(current);
255 const unsigned char *ptr = stack - 1;
256 volatile unsigned char byte;
257
258 pr_info("attempting bad read from page below current stack\n");
259
260 byte = *ptr;
261
262 pr_err("FAIL: accessed page before stack!\n");
263}
264
265/* Test that VMAP_STACK is actually allocating with a trailing guard page */
266void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
267{
268 const unsigned char *stack = task_stack_page(current);
269 const unsigned char *ptr = stack + THREAD_SIZE;
270 volatile unsigned char byte;
271
272 pr_info("attempting bad read from page above current stack\n");
273
274 byte = *ptr;
275
276 pr_err("FAIL: accessed page after stack!\n");
277}
278
279void lkdtm_UNSET_SMEP(void)
280{
281#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
282#define MOV_CR4_DEPTH 64
283 void (*direct_write_cr4)(unsigned long val);
284 unsigned char *insn;
285 unsigned long cr4;
286 int i;
287
288 cr4 = native_read_cr4();
289
290 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
291 pr_err("FAIL: SMEP not in use\n");
292 return;
293 }
294 cr4 &= ~(X86_CR4_SMEP);
295
296 pr_info("trying to clear SMEP normally\n");
297 native_write_cr4(cr4);
298 if (cr4 == native_read_cr4()) {
299 pr_err("FAIL: pinning SMEP failed!\n");
300 cr4 |= X86_CR4_SMEP;
301 pr_info("restoring SMEP\n");
302 native_write_cr4(cr4);
303 return;
304 }
305 pr_info("ok: SMEP did not get cleared\n");
306
307 /*
308 * To test the post-write pinning verification we need to call
309 * directly into the middle of native_write_cr4() where the
310 * cr4 write happens, skipping any pinning. This searches for
311 * the cr4 writing instruction.
312 */
313 insn = (unsigned char *)native_write_cr4;
314 for (i = 0; i < MOV_CR4_DEPTH; i++) {
315 /* mov %rdi, %cr4 */
316 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
317 break;
318 /* mov %rdi,%rax; mov %rax, %cr4 */
319 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
320 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
321 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
322 break;
323 }
324 if (i >= MOV_CR4_DEPTH) {
325 pr_info("ok: cannot locate cr4 writing call gadget\n");
326 return;
327 }
328 direct_write_cr4 = (void *)(insn + i);
329
330 pr_info("trying to clear SMEP with call gadget\n");
331 direct_write_cr4(cr4);
332 if (native_read_cr4() & X86_CR4_SMEP) {
333 pr_info("ok: SMEP removal was reverted\n");
334 } else {
335 pr_err("FAIL: cleared SMEP not detected!\n");
336 cr4 |= X86_CR4_SMEP;
337 pr_info("restoring SMEP\n");
338 native_write_cr4(cr4);
339 }
340#else
341 pr_err("XFAIL: this test is x86_64-only\n");
342#endif
343}
344
345void lkdtm_DOUBLE_FAULT(void)
346{
347#ifdef CONFIG_X86_32
348 /*
349 * Trigger #DF by setting the stack limit to zero. This clobbers
350 * a GDT TLS slot, which is okay because the current task will die
351 * anyway due to the double fault.
352 */
353 struct desc_struct d = {
354 .type = 3, /* expand-up, writable, accessed data */
355 .p = 1, /* present */
356 .d = 1, /* 32-bit */
357 .g = 0, /* limit in bytes */
358 .s = 1, /* not system */
359 };
360
361 local_irq_disable();
362 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
363 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
364
365 /*
366 * Put our zero-limit segment in SS and then trigger a fault. The
367 * 4-byte access to (%esp) will fault with #SS, and the attempt to
368 * deliver the fault will recursively cause #SS and result in #DF.
369 * This whole process happens while NMIs and MCEs are blocked by the
370 * MOV SS window. This is nice because an NMI with an invalid SS
371 * would also double-fault, resulting in the NMI or MCE being lost.
372 */
373 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
374 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
375
376 pr_err("FAIL: tried to double fault but didn't die\n");
377#else
378 pr_err("XFAIL: this test is ia32-only\n");
379#endif
380}