Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Intel Corporation. All rights reserved.
4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/module.h>
37#include <linux/errno.h>
38#include <linux/slab.h>
39#include <linux/workqueue.h>
40#include <linux/netdevice.h>
41#include <net/addrconf.h>
42
43#include <rdma/ib_cache.h>
44
45#include "core_priv.h"
46
47struct ib_pkey_cache {
48 int table_len;
49 u16 table[0];
50};
51
52struct ib_update_work {
53 struct work_struct work;
54 struct ib_event event;
55 bool enforce_security;
56};
57
58union ib_gid zgid;
59EXPORT_SYMBOL(zgid);
60
61enum gid_attr_find_mask {
62 GID_ATTR_FIND_MASK_GID = 1UL << 0,
63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3,
66};
67
68enum gid_table_entry_state {
69 GID_TABLE_ENTRY_INVALID = 1,
70 GID_TABLE_ENTRY_VALID = 2,
71 /*
72 * Indicates that entry is pending to be removed, there may
73 * be active users of this GID entry.
74 * When last user of the GID entry releases reference to it,
75 * GID entry is detached from the table.
76 */
77 GID_TABLE_ENTRY_PENDING_DEL = 3,
78};
79
80struct roce_gid_ndev_storage {
81 struct rcu_head rcu_head;
82 struct net_device *ndev;
83};
84
85struct ib_gid_table_entry {
86 struct kref kref;
87 struct work_struct del_work;
88 struct ib_gid_attr attr;
89 void *context;
90 /* Store the ndev pointer to release reference later on in
91 * call_rcu context because by that time gid_table_entry
92 * and attr might be already freed. So keep a copy of it.
93 * ndev_storage is freed by rcu callback.
94 */
95 struct roce_gid_ndev_storage *ndev_storage;
96 enum gid_table_entry_state state;
97};
98
99struct ib_gid_table {
100 int sz;
101 /* In RoCE, adding a GID to the table requires:
102 * (a) Find if this GID is already exists.
103 * (b) Find a free space.
104 * (c) Write the new GID
105 *
106 * Delete requires different set of operations:
107 * (a) Find the GID
108 * (b) Delete it.
109 *
110 **/
111 /* Any writer to data_vec must hold this lock and the write side of
112 * rwlock. Readers must hold only rwlock. All writers must be in a
113 * sleepable context.
114 */
115 struct mutex lock;
116 /* rwlock protects data_vec[ix]->state and entry pointer.
117 */
118 rwlock_t rwlock;
119 struct ib_gid_table_entry **data_vec;
120 /* bit field, each bit indicates the index of default GID */
121 u32 default_gid_indices;
122};
123
124static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
125{
126 struct ib_event event;
127
128 event.device = ib_dev;
129 event.element.port_num = port;
130 event.event = IB_EVENT_GID_CHANGE;
131
132 ib_dispatch_event_clients(&event);
133}
134
135static const char * const gid_type_str[] = {
136 [IB_GID_TYPE_IB] = "IB/RoCE v1",
137 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2",
138};
139
140const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
141{
142 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
143 return gid_type_str[gid_type];
144
145 return "Invalid GID type";
146}
147EXPORT_SYMBOL(ib_cache_gid_type_str);
148
149/** rdma_is_zero_gid - Check if given GID is zero or not.
150 * @gid: GID to check
151 * Returns true if given GID is zero, returns false otherwise.
152 */
153bool rdma_is_zero_gid(const union ib_gid *gid)
154{
155 return !memcmp(gid, &zgid, sizeof(*gid));
156}
157EXPORT_SYMBOL(rdma_is_zero_gid);
158
159/** is_gid_index_default - Check if a given index belongs to
160 * reserved default GIDs or not.
161 * @table: GID table pointer
162 * @index: Index to check in GID table
163 * Returns true if index is one of the reserved default GID index otherwise
164 * returns false.
165 */
166static bool is_gid_index_default(const struct ib_gid_table *table,
167 unsigned int index)
168{
169 return index < 32 && (BIT(index) & table->default_gid_indices);
170}
171
172int ib_cache_gid_parse_type_str(const char *buf)
173{
174 unsigned int i;
175 size_t len;
176 int err = -EINVAL;
177
178 len = strlen(buf);
179 if (len == 0)
180 return -EINVAL;
181
182 if (buf[len - 1] == '\n')
183 len--;
184
185 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
186 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
187 len == strlen(gid_type_str[i])) {
188 err = i;
189 break;
190 }
191
192 return err;
193}
194EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
195
196static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
197{
198 return device->port_data[port].cache.gid;
199}
200
201static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
202{
203 return !entry;
204}
205
206static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
207{
208 return entry && entry->state == GID_TABLE_ENTRY_VALID;
209}
210
211static void schedule_free_gid(struct kref *kref)
212{
213 struct ib_gid_table_entry *entry =
214 container_of(kref, struct ib_gid_table_entry, kref);
215
216 queue_work(ib_wq, &entry->del_work);
217}
218
219static void put_gid_ndev(struct rcu_head *head)
220{
221 struct roce_gid_ndev_storage *storage =
222 container_of(head, struct roce_gid_ndev_storage, rcu_head);
223
224 WARN_ON(!storage->ndev);
225 /* At this point its safe to release netdev reference,
226 * as all callers working on gid_attr->ndev are done
227 * using this netdev.
228 */
229 dev_put(storage->ndev);
230 kfree(storage);
231}
232
233static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
234{
235 struct ib_device *device = entry->attr.device;
236 u8 port_num = entry->attr.port_num;
237 struct ib_gid_table *table = rdma_gid_table(device, port_num);
238
239 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
240 port_num, entry->attr.index, entry->attr.gid.raw);
241
242 write_lock_irq(&table->rwlock);
243
244 /*
245 * The only way to avoid overwriting NULL in table is
246 * by comparing if it is same entry in table or not!
247 * If new entry in table is added by the time we free here,
248 * don't overwrite the table entry.
249 */
250 if (entry == table->data_vec[entry->attr.index])
251 table->data_vec[entry->attr.index] = NULL;
252 /* Now this index is ready to be allocated */
253 write_unlock_irq(&table->rwlock);
254
255 if (entry->ndev_storage)
256 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
257 kfree(entry);
258}
259
260static void free_gid_entry(struct kref *kref)
261{
262 struct ib_gid_table_entry *entry =
263 container_of(kref, struct ib_gid_table_entry, kref);
264
265 free_gid_entry_locked(entry);
266}
267
268/**
269 * free_gid_work - Release reference to the GID entry
270 * @work: Work structure to refer to GID entry which needs to be
271 * deleted.
272 *
273 * free_gid_work() frees the entry from the HCA's hardware table
274 * if provider supports it. It releases reference to netdevice.
275 */
276static void free_gid_work(struct work_struct *work)
277{
278 struct ib_gid_table_entry *entry =
279 container_of(work, struct ib_gid_table_entry, del_work);
280 struct ib_device *device = entry->attr.device;
281 u8 port_num = entry->attr.port_num;
282 struct ib_gid_table *table = rdma_gid_table(device, port_num);
283
284 mutex_lock(&table->lock);
285 free_gid_entry_locked(entry);
286 mutex_unlock(&table->lock);
287}
288
289static struct ib_gid_table_entry *
290alloc_gid_entry(const struct ib_gid_attr *attr)
291{
292 struct ib_gid_table_entry *entry;
293 struct net_device *ndev;
294
295 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
296 if (!entry)
297 return NULL;
298
299 ndev = rcu_dereference_protected(attr->ndev, 1);
300 if (ndev) {
301 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
302 GFP_KERNEL);
303 if (!entry->ndev_storage) {
304 kfree(entry);
305 return NULL;
306 }
307 dev_hold(ndev);
308 entry->ndev_storage->ndev = ndev;
309 }
310 kref_init(&entry->kref);
311 memcpy(&entry->attr, attr, sizeof(*attr));
312 INIT_WORK(&entry->del_work, free_gid_work);
313 entry->state = GID_TABLE_ENTRY_INVALID;
314 return entry;
315}
316
317static void store_gid_entry(struct ib_gid_table *table,
318 struct ib_gid_table_entry *entry)
319{
320 entry->state = GID_TABLE_ENTRY_VALID;
321
322 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
323 __func__, entry->attr.port_num, entry->attr.index,
324 entry->attr.gid.raw);
325
326 lockdep_assert_held(&table->lock);
327 write_lock_irq(&table->rwlock);
328 table->data_vec[entry->attr.index] = entry;
329 write_unlock_irq(&table->rwlock);
330}
331
332static void get_gid_entry(struct ib_gid_table_entry *entry)
333{
334 kref_get(&entry->kref);
335}
336
337static void put_gid_entry(struct ib_gid_table_entry *entry)
338{
339 kref_put(&entry->kref, schedule_free_gid);
340}
341
342static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
343{
344 kref_put(&entry->kref, free_gid_entry);
345}
346
347static int add_roce_gid(struct ib_gid_table_entry *entry)
348{
349 const struct ib_gid_attr *attr = &entry->attr;
350 int ret;
351
352 if (!attr->ndev) {
353 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
354 __func__, attr->port_num, attr->index);
355 return -EINVAL;
356 }
357 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
358 ret = attr->device->ops.add_gid(attr, &entry->context);
359 if (ret) {
360 dev_err(&attr->device->dev,
361 "%s GID add failed port=%d index=%d\n",
362 __func__, attr->port_num, attr->index);
363 return ret;
364 }
365 }
366 return 0;
367}
368
369/**
370 * del_gid - Delete GID table entry
371 *
372 * @ib_dev: IB device whose GID entry to be deleted
373 * @port: Port number of the IB device
374 * @table: GID table of the IB device for a port
375 * @ix: GID entry index to delete
376 *
377 */
378static void del_gid(struct ib_device *ib_dev, u8 port,
379 struct ib_gid_table *table, int ix)
380{
381 struct roce_gid_ndev_storage *ndev_storage;
382 struct ib_gid_table_entry *entry;
383
384 lockdep_assert_held(&table->lock);
385
386 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
387 ix, table->data_vec[ix]->attr.gid.raw);
388
389 write_lock_irq(&table->rwlock);
390 entry = table->data_vec[ix];
391 entry->state = GID_TABLE_ENTRY_PENDING_DEL;
392 /*
393 * For non RoCE protocol, GID entry slot is ready to use.
394 */
395 if (!rdma_protocol_roce(ib_dev, port))
396 table->data_vec[ix] = NULL;
397 write_unlock_irq(&table->rwlock);
398
399 ndev_storage = entry->ndev_storage;
400 if (ndev_storage) {
401 entry->ndev_storage = NULL;
402 rcu_assign_pointer(entry->attr.ndev, NULL);
403 call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
404 }
405
406 if (rdma_cap_roce_gid_table(ib_dev, port))
407 ib_dev->ops.del_gid(&entry->attr, &entry->context);
408
409 put_gid_entry_locked(entry);
410}
411
412/**
413 * add_modify_gid - Add or modify GID table entry
414 *
415 * @table: GID table in which GID to be added or modified
416 * @attr: Attributes of the GID
417 *
418 * Returns 0 on success or appropriate error code. It accepts zero
419 * GID addition for non RoCE ports for HCA's who report them as valid
420 * GID. However such zero GIDs are not added to the cache.
421 */
422static int add_modify_gid(struct ib_gid_table *table,
423 const struct ib_gid_attr *attr)
424{
425 struct ib_gid_table_entry *entry;
426 int ret = 0;
427
428 /*
429 * Invalidate any old entry in the table to make it safe to write to
430 * this index.
431 */
432 if (is_gid_entry_valid(table->data_vec[attr->index]))
433 del_gid(attr->device, attr->port_num, table, attr->index);
434
435 /*
436 * Some HCA's report multiple GID entries with only one valid GID, and
437 * leave other unused entries as the zero GID. Convert zero GIDs to
438 * empty table entries instead of storing them.
439 */
440 if (rdma_is_zero_gid(&attr->gid))
441 return 0;
442
443 entry = alloc_gid_entry(attr);
444 if (!entry)
445 return -ENOMEM;
446
447 if (rdma_protocol_roce(attr->device, attr->port_num)) {
448 ret = add_roce_gid(entry);
449 if (ret)
450 goto done;
451 }
452
453 store_gid_entry(table, entry);
454 return 0;
455
456done:
457 put_gid_entry(entry);
458 return ret;
459}
460
461/* rwlock should be read locked, or lock should be held */
462static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
463 const struct ib_gid_attr *val, bool default_gid,
464 unsigned long mask, int *pempty)
465{
466 int i = 0;
467 int found = -1;
468 int empty = pempty ? -1 : 0;
469
470 while (i < table->sz && (found < 0 || empty < 0)) {
471 struct ib_gid_table_entry *data = table->data_vec[i];
472 struct ib_gid_attr *attr;
473 int curr_index = i;
474
475 i++;
476
477 /* find_gid() is used during GID addition where it is expected
478 * to return a free entry slot which is not duplicate.
479 * Free entry slot is requested and returned if pempty is set,
480 * so lookup free slot only if requested.
481 */
482 if (pempty && empty < 0) {
483 if (is_gid_entry_free(data) &&
484 default_gid ==
485 is_gid_index_default(table, curr_index)) {
486 /*
487 * Found an invalid (free) entry; allocate it.
488 * If default GID is requested, then our
489 * found slot must be one of the DEFAULT
490 * reserved slots or we fail.
491 * This ensures that only DEFAULT reserved
492 * slots are used for default property GIDs.
493 */
494 empty = curr_index;
495 }
496 }
497
498 /*
499 * Additionally find_gid() is used to find valid entry during
500 * lookup operation; so ignore the entries which are marked as
501 * pending for removal and the entries which are marked as
502 * invalid.
503 */
504 if (!is_gid_entry_valid(data))
505 continue;
506
507 if (found >= 0)
508 continue;
509
510 attr = &data->attr;
511 if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
512 attr->gid_type != val->gid_type)
513 continue;
514
515 if (mask & GID_ATTR_FIND_MASK_GID &&
516 memcmp(gid, &data->attr.gid, sizeof(*gid)))
517 continue;
518
519 if (mask & GID_ATTR_FIND_MASK_NETDEV &&
520 attr->ndev != val->ndev)
521 continue;
522
523 if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
524 is_gid_index_default(table, curr_index) != default_gid)
525 continue;
526
527 found = curr_index;
528 }
529
530 if (pempty)
531 *pempty = empty;
532
533 return found;
534}
535
536static void make_default_gid(struct net_device *dev, union ib_gid *gid)
537{
538 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
539 addrconf_ifid_eui48(&gid->raw[8], dev);
540}
541
542static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
543 union ib_gid *gid, struct ib_gid_attr *attr,
544 unsigned long mask, bool default_gid)
545{
546 struct ib_gid_table *table;
547 int ret = 0;
548 int empty;
549 int ix;
550
551 /* Do not allow adding zero GID in support of
552 * IB spec version 1.3 section 4.1.1 point (6) and
553 * section 12.7.10 and section 12.7.20
554 */
555 if (rdma_is_zero_gid(gid))
556 return -EINVAL;
557
558 table = rdma_gid_table(ib_dev, port);
559
560 mutex_lock(&table->lock);
561
562 ix = find_gid(table, gid, attr, default_gid, mask, &empty);
563 if (ix >= 0)
564 goto out_unlock;
565
566 if (empty < 0) {
567 ret = -ENOSPC;
568 goto out_unlock;
569 }
570 attr->device = ib_dev;
571 attr->index = empty;
572 attr->port_num = port;
573 attr->gid = *gid;
574 ret = add_modify_gid(table, attr);
575 if (!ret)
576 dispatch_gid_change_event(ib_dev, port);
577
578out_unlock:
579 mutex_unlock(&table->lock);
580 if (ret)
581 pr_warn("%s: unable to add gid %pI6 error=%d\n",
582 __func__, gid->raw, ret);
583 return ret;
584}
585
586int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
587 union ib_gid *gid, struct ib_gid_attr *attr)
588{
589 unsigned long mask = GID_ATTR_FIND_MASK_GID |
590 GID_ATTR_FIND_MASK_GID_TYPE |
591 GID_ATTR_FIND_MASK_NETDEV;
592
593 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
594}
595
596static int
597_ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
598 union ib_gid *gid, struct ib_gid_attr *attr,
599 unsigned long mask, bool default_gid)
600{
601 struct ib_gid_table *table;
602 int ret = 0;
603 int ix;
604
605 table = rdma_gid_table(ib_dev, port);
606
607 mutex_lock(&table->lock);
608
609 ix = find_gid(table, gid, attr, default_gid, mask, NULL);
610 if (ix < 0) {
611 ret = -EINVAL;
612 goto out_unlock;
613 }
614
615 del_gid(ib_dev, port, table, ix);
616 dispatch_gid_change_event(ib_dev, port);
617
618out_unlock:
619 mutex_unlock(&table->lock);
620 if (ret)
621 pr_debug("%s: can't delete gid %pI6 error=%d\n",
622 __func__, gid->raw, ret);
623 return ret;
624}
625
626int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
627 union ib_gid *gid, struct ib_gid_attr *attr)
628{
629 unsigned long mask = GID_ATTR_FIND_MASK_GID |
630 GID_ATTR_FIND_MASK_GID_TYPE |
631 GID_ATTR_FIND_MASK_DEFAULT |
632 GID_ATTR_FIND_MASK_NETDEV;
633
634 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
635}
636
637int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
638 struct net_device *ndev)
639{
640 struct ib_gid_table *table;
641 int ix;
642 bool deleted = false;
643
644 table = rdma_gid_table(ib_dev, port);
645
646 mutex_lock(&table->lock);
647
648 for (ix = 0; ix < table->sz; ix++) {
649 if (is_gid_entry_valid(table->data_vec[ix]) &&
650 table->data_vec[ix]->attr.ndev == ndev) {
651 del_gid(ib_dev, port, table, ix);
652 deleted = true;
653 }
654 }
655
656 mutex_unlock(&table->lock);
657
658 if (deleted)
659 dispatch_gid_change_event(ib_dev, port);
660
661 return 0;
662}
663
664/**
665 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
666 * a valid GID entry for given search parameters. It searches for the specified
667 * GID value in the local software cache.
668 * @device: The device to query.
669 * @gid: The GID value to search for.
670 * @gid_type: The GID type to search for.
671 * @port_num: The port number of the device where the GID value should be
672 * searched.
673 * @ndev: In RoCE, the net device of the device. NULL means ignore.
674 *
675 * Returns sgid attributes if the GID is found with valid reference or
676 * returns ERR_PTR for the error.
677 * The caller must invoke rdma_put_gid_attr() to release the reference.
678 */
679const struct ib_gid_attr *
680rdma_find_gid_by_port(struct ib_device *ib_dev,
681 const union ib_gid *gid,
682 enum ib_gid_type gid_type,
683 u8 port, struct net_device *ndev)
684{
685 int local_index;
686 struct ib_gid_table *table;
687 unsigned long mask = GID_ATTR_FIND_MASK_GID |
688 GID_ATTR_FIND_MASK_GID_TYPE;
689 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
690 const struct ib_gid_attr *attr;
691 unsigned long flags;
692
693 if (!rdma_is_port_valid(ib_dev, port))
694 return ERR_PTR(-ENOENT);
695
696 table = rdma_gid_table(ib_dev, port);
697
698 if (ndev)
699 mask |= GID_ATTR_FIND_MASK_NETDEV;
700
701 read_lock_irqsave(&table->rwlock, flags);
702 local_index = find_gid(table, gid, &val, false, mask, NULL);
703 if (local_index >= 0) {
704 get_gid_entry(table->data_vec[local_index]);
705 attr = &table->data_vec[local_index]->attr;
706 read_unlock_irqrestore(&table->rwlock, flags);
707 return attr;
708 }
709
710 read_unlock_irqrestore(&table->rwlock, flags);
711 return ERR_PTR(-ENOENT);
712}
713EXPORT_SYMBOL(rdma_find_gid_by_port);
714
715/**
716 * rdma_find_gid_by_filter - Returns the GID table attribute where a
717 * specified GID value occurs
718 * @device: The device to query.
719 * @gid: The GID value to search for.
720 * @port: The port number of the device where the GID value could be
721 * searched.
722 * @filter: The filter function is executed on any matching GID in the table.
723 * If the filter function returns true, the corresponding index is returned,
724 * otherwise, we continue searching the GID table. It's guaranteed that
725 * while filter is executed, ndev field is valid and the structure won't
726 * change. filter is executed in an atomic context. filter must not be NULL.
727 *
728 * rdma_find_gid_by_filter() searches for the specified GID value
729 * of which the filter function returns true in the port's GID table.
730 *
731 */
732const struct ib_gid_attr *rdma_find_gid_by_filter(
733 struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
734 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
735 void *),
736 void *context)
737{
738 const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
739 struct ib_gid_table *table;
740 unsigned long flags;
741 unsigned int i;
742
743 if (!rdma_is_port_valid(ib_dev, port))
744 return ERR_PTR(-EINVAL);
745
746 table = rdma_gid_table(ib_dev, port);
747
748 read_lock_irqsave(&table->rwlock, flags);
749 for (i = 0; i < table->sz; i++) {
750 struct ib_gid_table_entry *entry = table->data_vec[i];
751
752 if (!is_gid_entry_valid(entry))
753 continue;
754
755 if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
756 continue;
757
758 if (filter(gid, &entry->attr, context)) {
759 get_gid_entry(entry);
760 res = &entry->attr;
761 break;
762 }
763 }
764 read_unlock_irqrestore(&table->rwlock, flags);
765 return res;
766}
767
768static struct ib_gid_table *alloc_gid_table(int sz)
769{
770 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
771
772 if (!table)
773 return NULL;
774
775 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
776 if (!table->data_vec)
777 goto err_free_table;
778
779 mutex_init(&table->lock);
780
781 table->sz = sz;
782 rwlock_init(&table->rwlock);
783 return table;
784
785err_free_table:
786 kfree(table);
787 return NULL;
788}
789
790static void release_gid_table(struct ib_device *device,
791 struct ib_gid_table *table)
792{
793 bool leak = false;
794 int i;
795
796 if (!table)
797 return;
798
799 for (i = 0; i < table->sz; i++) {
800 if (is_gid_entry_free(table->data_vec[i]))
801 continue;
802 if (kref_read(&table->data_vec[i]->kref) > 1) {
803 dev_err(&device->dev,
804 "GID entry ref leak for index %d ref=%d\n", i,
805 kref_read(&table->data_vec[i]->kref));
806 leak = true;
807 }
808 }
809 if (leak)
810 return;
811
812 mutex_destroy(&table->lock);
813 kfree(table->data_vec);
814 kfree(table);
815}
816
817static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
818 struct ib_gid_table *table)
819{
820 int i;
821
822 if (!table)
823 return;
824
825 mutex_lock(&table->lock);
826 for (i = 0; i < table->sz; ++i) {
827 if (is_gid_entry_valid(table->data_vec[i]))
828 del_gid(ib_dev, port, table, i);
829 }
830 mutex_unlock(&table->lock);
831}
832
833void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
834 struct net_device *ndev,
835 unsigned long gid_type_mask,
836 enum ib_cache_gid_default_mode mode)
837{
838 union ib_gid gid = { };
839 struct ib_gid_attr gid_attr;
840 unsigned int gid_type;
841 unsigned long mask;
842
843 mask = GID_ATTR_FIND_MASK_GID_TYPE |
844 GID_ATTR_FIND_MASK_DEFAULT |
845 GID_ATTR_FIND_MASK_NETDEV;
846 memset(&gid_attr, 0, sizeof(gid_attr));
847 gid_attr.ndev = ndev;
848
849 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
850 if (1UL << gid_type & ~gid_type_mask)
851 continue;
852
853 gid_attr.gid_type = gid_type;
854
855 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
856 make_default_gid(ndev, &gid);
857 __ib_cache_gid_add(ib_dev, port, &gid,
858 &gid_attr, mask, true);
859 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
860 _ib_cache_gid_del(ib_dev, port, &gid,
861 &gid_attr, mask, true);
862 }
863 }
864}
865
866static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
867 struct ib_gid_table *table)
868{
869 unsigned int i;
870 unsigned long roce_gid_type_mask;
871 unsigned int num_default_gids;
872
873 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
874 num_default_gids = hweight_long(roce_gid_type_mask);
875 /* Reserve starting indices for default GIDs */
876 for (i = 0; i < num_default_gids && i < table->sz; i++)
877 table->default_gid_indices |= BIT(i);
878}
879
880
881static void gid_table_release_one(struct ib_device *ib_dev)
882{
883 unsigned int p;
884
885 rdma_for_each_port (ib_dev, p) {
886 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
887 ib_dev->port_data[p].cache.gid = NULL;
888 }
889}
890
891static int _gid_table_setup_one(struct ib_device *ib_dev)
892{
893 struct ib_gid_table *table;
894 unsigned int rdma_port;
895
896 rdma_for_each_port (ib_dev, rdma_port) {
897 table = alloc_gid_table(
898 ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
899 if (!table)
900 goto rollback_table_setup;
901
902 gid_table_reserve_default(ib_dev, rdma_port, table);
903 ib_dev->port_data[rdma_port].cache.gid = table;
904 }
905 return 0;
906
907rollback_table_setup:
908 gid_table_release_one(ib_dev);
909 return -ENOMEM;
910}
911
912static void gid_table_cleanup_one(struct ib_device *ib_dev)
913{
914 unsigned int p;
915
916 rdma_for_each_port (ib_dev, p)
917 cleanup_gid_table_port(ib_dev, p,
918 ib_dev->port_data[p].cache.gid);
919}
920
921static int gid_table_setup_one(struct ib_device *ib_dev)
922{
923 int err;
924
925 err = _gid_table_setup_one(ib_dev);
926
927 if (err)
928 return err;
929
930 rdma_roce_rescan_device(ib_dev);
931
932 return err;
933}
934
935/**
936 * rdma_query_gid - Read the GID content from the GID software cache
937 * @device: Device to query the GID
938 * @port_num: Port number of the device
939 * @index: Index of the GID table entry to read
940 * @gid: Pointer to GID where to store the entry's GID
941 *
942 * rdma_query_gid() only reads the GID entry content for requested device,
943 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't
944 * hold any reference to the GID table entry in the HCA or software cache.
945 *
946 * Returns 0 on success or appropriate error code.
947 *
948 */
949int rdma_query_gid(struct ib_device *device, u8 port_num,
950 int index, union ib_gid *gid)
951{
952 struct ib_gid_table *table;
953 unsigned long flags;
954 int res = -EINVAL;
955
956 if (!rdma_is_port_valid(device, port_num))
957 return -EINVAL;
958
959 table = rdma_gid_table(device, port_num);
960 read_lock_irqsave(&table->rwlock, flags);
961
962 if (index < 0 || index >= table->sz ||
963 !is_gid_entry_valid(table->data_vec[index]))
964 goto done;
965
966 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
967 res = 0;
968
969done:
970 read_unlock_irqrestore(&table->rwlock, flags);
971 return res;
972}
973EXPORT_SYMBOL(rdma_query_gid);
974
975/**
976 * rdma_find_gid - Returns SGID attributes if the matching GID is found.
977 * @device: The device to query.
978 * @gid: The GID value to search for.
979 * @gid_type: The GID type to search for.
980 * @ndev: In RoCE, the net device of the device. NULL means ignore.
981 *
982 * rdma_find_gid() searches for the specified GID value in the software cache.
983 *
984 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
985 * error. The caller must invoke rdma_put_gid_attr() to release the reference.
986 *
987 */
988const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
989 const union ib_gid *gid,
990 enum ib_gid_type gid_type,
991 struct net_device *ndev)
992{
993 unsigned long mask = GID_ATTR_FIND_MASK_GID |
994 GID_ATTR_FIND_MASK_GID_TYPE;
995 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
996 unsigned int p;
997
998 if (ndev)
999 mask |= GID_ATTR_FIND_MASK_NETDEV;
1000
1001 rdma_for_each_port(device, p) {
1002 struct ib_gid_table *table;
1003 unsigned long flags;
1004 int index;
1005
1006 table = device->port_data[p].cache.gid;
1007 read_lock_irqsave(&table->rwlock, flags);
1008 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1009 if (index >= 0) {
1010 const struct ib_gid_attr *attr;
1011
1012 get_gid_entry(table->data_vec[index]);
1013 attr = &table->data_vec[index]->attr;
1014 read_unlock_irqrestore(&table->rwlock, flags);
1015 return attr;
1016 }
1017 read_unlock_irqrestore(&table->rwlock, flags);
1018 }
1019
1020 return ERR_PTR(-ENOENT);
1021}
1022EXPORT_SYMBOL(rdma_find_gid);
1023
1024int ib_get_cached_pkey(struct ib_device *device,
1025 u8 port_num,
1026 int index,
1027 u16 *pkey)
1028{
1029 struct ib_pkey_cache *cache;
1030 unsigned long flags;
1031 int ret = 0;
1032
1033 if (!rdma_is_port_valid(device, port_num))
1034 return -EINVAL;
1035
1036 read_lock_irqsave(&device->cache_lock, flags);
1037
1038 cache = device->port_data[port_num].cache.pkey;
1039
1040 if (index < 0 || index >= cache->table_len)
1041 ret = -EINVAL;
1042 else
1043 *pkey = cache->table[index];
1044
1045 read_unlock_irqrestore(&device->cache_lock, flags);
1046
1047 return ret;
1048}
1049EXPORT_SYMBOL(ib_get_cached_pkey);
1050
1051int ib_get_cached_subnet_prefix(struct ib_device *device,
1052 u8 port_num,
1053 u64 *sn_pfx)
1054{
1055 unsigned long flags;
1056
1057 if (!rdma_is_port_valid(device, port_num))
1058 return -EINVAL;
1059
1060 read_lock_irqsave(&device->cache_lock, flags);
1061 *sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1062 read_unlock_irqrestore(&device->cache_lock, flags);
1063
1064 return 0;
1065}
1066EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1067
1068int ib_find_cached_pkey(struct ib_device *device,
1069 u8 port_num,
1070 u16 pkey,
1071 u16 *index)
1072{
1073 struct ib_pkey_cache *cache;
1074 unsigned long flags;
1075 int i;
1076 int ret = -ENOENT;
1077 int partial_ix = -1;
1078
1079 if (!rdma_is_port_valid(device, port_num))
1080 return -EINVAL;
1081
1082 read_lock_irqsave(&device->cache_lock, flags);
1083
1084 cache = device->port_data[port_num].cache.pkey;
1085
1086 *index = -1;
1087
1088 for (i = 0; i < cache->table_len; ++i)
1089 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1090 if (cache->table[i] & 0x8000) {
1091 *index = i;
1092 ret = 0;
1093 break;
1094 } else
1095 partial_ix = i;
1096 }
1097
1098 if (ret && partial_ix >= 0) {
1099 *index = partial_ix;
1100 ret = 0;
1101 }
1102
1103 read_unlock_irqrestore(&device->cache_lock, flags);
1104
1105 return ret;
1106}
1107EXPORT_SYMBOL(ib_find_cached_pkey);
1108
1109int ib_find_exact_cached_pkey(struct ib_device *device,
1110 u8 port_num,
1111 u16 pkey,
1112 u16 *index)
1113{
1114 struct ib_pkey_cache *cache;
1115 unsigned long flags;
1116 int i;
1117 int ret = -ENOENT;
1118
1119 if (!rdma_is_port_valid(device, port_num))
1120 return -EINVAL;
1121
1122 read_lock_irqsave(&device->cache_lock, flags);
1123
1124 cache = device->port_data[port_num].cache.pkey;
1125
1126 *index = -1;
1127
1128 for (i = 0; i < cache->table_len; ++i)
1129 if (cache->table[i] == pkey) {
1130 *index = i;
1131 ret = 0;
1132 break;
1133 }
1134
1135 read_unlock_irqrestore(&device->cache_lock, flags);
1136
1137 return ret;
1138}
1139EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1140
1141int ib_get_cached_lmc(struct ib_device *device,
1142 u8 port_num,
1143 u8 *lmc)
1144{
1145 unsigned long flags;
1146 int ret = 0;
1147
1148 if (!rdma_is_port_valid(device, port_num))
1149 return -EINVAL;
1150
1151 read_lock_irqsave(&device->cache_lock, flags);
1152 *lmc = device->port_data[port_num].cache.lmc;
1153 read_unlock_irqrestore(&device->cache_lock, flags);
1154
1155 return ret;
1156}
1157EXPORT_SYMBOL(ib_get_cached_lmc);
1158
1159int ib_get_cached_port_state(struct ib_device *device,
1160 u8 port_num,
1161 enum ib_port_state *port_state)
1162{
1163 unsigned long flags;
1164 int ret = 0;
1165
1166 if (!rdma_is_port_valid(device, port_num))
1167 return -EINVAL;
1168
1169 read_lock_irqsave(&device->cache_lock, flags);
1170 *port_state = device->port_data[port_num].cache.port_state;
1171 read_unlock_irqrestore(&device->cache_lock, flags);
1172
1173 return ret;
1174}
1175EXPORT_SYMBOL(ib_get_cached_port_state);
1176
1177/**
1178 * rdma_get_gid_attr - Returns GID attributes for a port of a device
1179 * at a requested gid_index, if a valid GID entry exists.
1180 * @device: The device to query.
1181 * @port_num: The port number on the device where the GID value
1182 * is to be queried.
1183 * @index: Index of the GID table entry whose attributes are to
1184 * be queried.
1185 *
1186 * rdma_get_gid_attr() acquires reference count of gid attributes from the
1187 * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1188 * reference to gid attribute regardless of link layer.
1189 *
1190 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1191 * code.
1192 */
1193const struct ib_gid_attr *
1194rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
1195{
1196 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL);
1197 struct ib_gid_table *table;
1198 unsigned long flags;
1199
1200 if (!rdma_is_port_valid(device, port_num))
1201 return ERR_PTR(-EINVAL);
1202
1203 table = rdma_gid_table(device, port_num);
1204 if (index < 0 || index >= table->sz)
1205 return ERR_PTR(-EINVAL);
1206
1207 read_lock_irqsave(&table->rwlock, flags);
1208 if (!is_gid_entry_valid(table->data_vec[index]))
1209 goto done;
1210
1211 get_gid_entry(table->data_vec[index]);
1212 attr = &table->data_vec[index]->attr;
1213done:
1214 read_unlock_irqrestore(&table->rwlock, flags);
1215 return attr;
1216}
1217EXPORT_SYMBOL(rdma_get_gid_attr);
1218
1219/**
1220 * rdma_put_gid_attr - Release reference to the GID attribute
1221 * @attr: Pointer to the GID attribute whose reference
1222 * needs to be released.
1223 *
1224 * rdma_put_gid_attr() must be used to release reference whose
1225 * reference is acquired using rdma_get_gid_attr() or any APIs
1226 * which returns a pointer to the ib_gid_attr regardless of link layer
1227 * of IB or RoCE.
1228 *
1229 */
1230void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1231{
1232 struct ib_gid_table_entry *entry =
1233 container_of(attr, struct ib_gid_table_entry, attr);
1234
1235 put_gid_entry(entry);
1236}
1237EXPORT_SYMBOL(rdma_put_gid_attr);
1238
1239/**
1240 * rdma_hold_gid_attr - Get reference to existing GID attribute
1241 *
1242 * @attr: Pointer to the GID attribute whose reference
1243 * needs to be taken.
1244 *
1245 * Increase the reference count to a GID attribute to keep it from being
1246 * freed. Callers are required to already be holding a reference to attribute.
1247 *
1248 */
1249void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1250{
1251 struct ib_gid_table_entry *entry =
1252 container_of(attr, struct ib_gid_table_entry, attr);
1253
1254 get_gid_entry(entry);
1255}
1256EXPORT_SYMBOL(rdma_hold_gid_attr);
1257
1258/**
1259 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1260 * which must be in UP state.
1261 *
1262 * @attr:Pointer to the GID attribute
1263 *
1264 * Returns pointer to netdevice if the netdevice was attached to GID and
1265 * netdevice is in UP state. Caller must hold RCU lock as this API
1266 * reads the netdev flags which can change while netdevice migrates to
1267 * different net namespace. Returns ERR_PTR with error code otherwise.
1268 *
1269 */
1270struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1271{
1272 struct ib_gid_table_entry *entry =
1273 container_of(attr, struct ib_gid_table_entry, attr);
1274 struct ib_device *device = entry->attr.device;
1275 struct net_device *ndev = ERR_PTR(-ENODEV);
1276 u8 port_num = entry->attr.port_num;
1277 struct ib_gid_table *table;
1278 unsigned long flags;
1279 bool valid;
1280
1281 table = rdma_gid_table(device, port_num);
1282
1283 read_lock_irqsave(&table->rwlock, flags);
1284 valid = is_gid_entry_valid(table->data_vec[attr->index]);
1285 if (valid) {
1286 ndev = rcu_dereference(attr->ndev);
1287 if (!ndev ||
1288 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0)))
1289 ndev = ERR_PTR(-ENODEV);
1290 }
1291 read_unlock_irqrestore(&table->rwlock, flags);
1292 return ndev;
1293}
1294EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1295
1296static int get_lower_dev_vlan(struct net_device *lower_dev, void *data)
1297{
1298 u16 *vlan_id = data;
1299
1300 if (is_vlan_dev(lower_dev))
1301 *vlan_id = vlan_dev_vlan_id(lower_dev);
1302
1303 /* We are interested only in first level vlan device, so
1304 * always return 1 to stop iterating over next level devices.
1305 */
1306 return 1;
1307}
1308
1309/**
1310 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1311 * of a GID entry.
1312 *
1313 * @attr: GID attribute pointer whose L2 fields to be read
1314 * @vlan_id: Pointer to vlan id to fill up if the GID entry has
1315 * vlan id. It is optional.
1316 * @smac: Pointer to smac to fill up for a GID entry. It is optional.
1317 *
1318 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1319 * (if gid entry has vlan) and source MAC, or returns error.
1320 */
1321int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1322 u16 *vlan_id, u8 *smac)
1323{
1324 struct net_device *ndev;
1325
1326 rcu_read_lock();
1327 ndev = rcu_dereference(attr->ndev);
1328 if (!ndev) {
1329 rcu_read_unlock();
1330 return -ENODEV;
1331 }
1332 if (smac)
1333 ether_addr_copy(smac, ndev->dev_addr);
1334 if (vlan_id) {
1335 *vlan_id = 0xffff;
1336 if (is_vlan_dev(ndev)) {
1337 *vlan_id = vlan_dev_vlan_id(ndev);
1338 } else {
1339 /* If the netdev is upper device and if it's lower
1340 * device is vlan device, consider vlan id of the
1341 * the lower vlan device for this gid entry.
1342 */
1343 netdev_walk_all_lower_dev_rcu(attr->ndev,
1344 get_lower_dev_vlan, vlan_id);
1345 }
1346 }
1347 rcu_read_unlock();
1348 return 0;
1349}
1350EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1351
1352static int config_non_roce_gid_cache(struct ib_device *device,
1353 u8 port, int gid_tbl_len)
1354{
1355 struct ib_gid_attr gid_attr = {};
1356 struct ib_gid_table *table;
1357 int ret = 0;
1358 int i;
1359
1360 gid_attr.device = device;
1361 gid_attr.port_num = port;
1362 table = rdma_gid_table(device, port);
1363
1364 mutex_lock(&table->lock);
1365 for (i = 0; i < gid_tbl_len; ++i) {
1366 if (!device->ops.query_gid)
1367 continue;
1368 ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1369 if (ret) {
1370 dev_warn(&device->dev,
1371 "query_gid failed (%d) for index %d\n", ret,
1372 i);
1373 goto err;
1374 }
1375 gid_attr.index = i;
1376 add_modify_gid(table, &gid_attr);
1377 }
1378err:
1379 mutex_unlock(&table->lock);
1380 return ret;
1381}
1382
1383static int
1384ib_cache_update(struct ib_device *device, u8 port, bool enforce_security)
1385{
1386 struct ib_port_attr *tprops = NULL;
1387 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache;
1388 int i;
1389 int ret;
1390
1391 if (!rdma_is_port_valid(device, port))
1392 return -EINVAL;
1393
1394 tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1395 if (!tprops)
1396 return -ENOMEM;
1397
1398 ret = ib_query_port(device, port, tprops);
1399 if (ret) {
1400 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1401 goto err;
1402 }
1403
1404 if (!rdma_protocol_roce(device, port)) {
1405 ret = config_non_roce_gid_cache(device, port,
1406 tprops->gid_tbl_len);
1407 if (ret)
1408 goto err;
1409 }
1410
1411 pkey_cache = kmalloc(struct_size(pkey_cache, table,
1412 tprops->pkey_tbl_len),
1413 GFP_KERNEL);
1414 if (!pkey_cache) {
1415 ret = -ENOMEM;
1416 goto err;
1417 }
1418
1419 pkey_cache->table_len = tprops->pkey_tbl_len;
1420
1421 for (i = 0; i < pkey_cache->table_len; ++i) {
1422 ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
1423 if (ret) {
1424 dev_warn(&device->dev,
1425 "ib_query_pkey failed (%d) for index %d\n",
1426 ret, i);
1427 goto err;
1428 }
1429 }
1430
1431 write_lock_irq(&device->cache_lock);
1432
1433 old_pkey_cache = device->port_data[port].cache.pkey;
1434
1435 device->port_data[port].cache.pkey = pkey_cache;
1436 device->port_data[port].cache.lmc = tprops->lmc;
1437 device->port_data[port].cache.port_state = tprops->state;
1438
1439 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1440 write_unlock_irq(&device->cache_lock);
1441
1442 if (enforce_security)
1443 ib_security_cache_change(device,
1444 port,
1445 tprops->subnet_prefix);
1446
1447 kfree(old_pkey_cache);
1448 kfree(tprops);
1449 return 0;
1450
1451err:
1452 kfree(pkey_cache);
1453 kfree(tprops);
1454 return ret;
1455}
1456
1457static void ib_cache_event_task(struct work_struct *_work)
1458{
1459 struct ib_update_work *work =
1460 container_of(_work, struct ib_update_work, work);
1461 int ret;
1462
1463 /* Before distributing the cache update event, first sync
1464 * the cache.
1465 */
1466 ret = ib_cache_update(work->event.device, work->event.element.port_num,
1467 work->enforce_security);
1468
1469 /* GID event is notified already for individual GID entries by
1470 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1471 * events.
1472 */
1473 if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1474 ib_dispatch_event_clients(&work->event);
1475
1476 kfree(work);
1477}
1478
1479static void ib_generic_event_task(struct work_struct *_work)
1480{
1481 struct ib_update_work *work =
1482 container_of(_work, struct ib_update_work, work);
1483
1484 ib_dispatch_event_clients(&work->event);
1485 kfree(work);
1486}
1487
1488static bool is_cache_update_event(const struct ib_event *event)
1489{
1490 return (event->event == IB_EVENT_PORT_ERR ||
1491 event->event == IB_EVENT_PORT_ACTIVE ||
1492 event->event == IB_EVENT_LID_CHANGE ||
1493 event->event == IB_EVENT_PKEY_CHANGE ||
1494 event->event == IB_EVENT_CLIENT_REREGISTER ||
1495 event->event == IB_EVENT_GID_CHANGE);
1496}
1497
1498/**
1499 * ib_dispatch_event - Dispatch an asynchronous event
1500 * @event:Event to dispatch
1501 *
1502 * Low-level drivers must call ib_dispatch_event() to dispatch the
1503 * event to all registered event handlers when an asynchronous event
1504 * occurs.
1505 */
1506void ib_dispatch_event(const struct ib_event *event)
1507{
1508 struct ib_update_work *work;
1509
1510 work = kzalloc(sizeof(*work), GFP_ATOMIC);
1511 if (!work)
1512 return;
1513
1514 if (is_cache_update_event(event))
1515 INIT_WORK(&work->work, ib_cache_event_task);
1516 else
1517 INIT_WORK(&work->work, ib_generic_event_task);
1518
1519 work->event = *event;
1520 if (event->event == IB_EVENT_PKEY_CHANGE ||
1521 event->event == IB_EVENT_GID_CHANGE)
1522 work->enforce_security = true;
1523
1524 queue_work(ib_wq, &work->work);
1525}
1526EXPORT_SYMBOL(ib_dispatch_event);
1527
1528int ib_cache_setup_one(struct ib_device *device)
1529{
1530 unsigned int p;
1531 int err;
1532
1533 rwlock_init(&device->cache_lock);
1534
1535 err = gid_table_setup_one(device);
1536 if (err)
1537 return err;
1538
1539 rdma_for_each_port (device, p)
1540 ib_cache_update(device, p, true);
1541
1542 return 0;
1543}
1544
1545void ib_cache_release_one(struct ib_device *device)
1546{
1547 unsigned int p;
1548
1549 /*
1550 * The release function frees all the cache elements.
1551 * This function should be called as part of freeing
1552 * all the device's resources when the cache could no
1553 * longer be accessed.
1554 */
1555 rdma_for_each_port (device, p)
1556 kfree(device->port_data[p].cache.pkey);
1557
1558 gid_table_release_one(device);
1559}
1560
1561void ib_cache_cleanup_one(struct ib_device *device)
1562{
1563 /* The cleanup function waits for all in-progress workqueue
1564 * elements and cleans up the GID cache. This function should be
1565 * called after the device was removed from the devices list and
1566 * all clients were removed, so the cache exists but is
1567 * non-functional and shouldn't be updated anymore.
1568 */
1569 flush_workqueue(ib_wq);
1570 gid_table_cleanup_one(device);
1571
1572 /*
1573 * Flush the wq second time for any pending GID delete work.
1574 */
1575 flush_workqueue(ib_wq);
1576}