at v5.6 1004 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/page.h> 20#include <asm/pgtable_types.h> 21#include <asm/percpu.h> 22#include <asm/msr.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28#include <asm/vmxfeatures.h> 29 30#include <linux/personality.h> 31#include <linux/cache.h> 32#include <linux/threads.h> 33#include <linux/math64.h> 34#include <linux/err.h> 35#include <linux/irqflags.h> 36#include <linux/mem_encrypt.h> 37 38/* 39 * We handle most unaligned accesses in hardware. On the other hand 40 * unaligned DMA can be quite expensive on some Nehalem processors. 41 * 42 * Based on this we disable the IP header alignment in network drivers. 43 */ 44#define NET_IP_ALIGN 0 45 46#define HBP_NUM 4 47 48/* 49 * These alignment constraints are for performance in the vSMP case, 50 * but in the task_struct case we must also meet hardware imposed 51 * alignment requirements of the FPU state: 52 */ 53#ifdef CONFIG_X86_VSMP 54# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 55# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 56#else 57# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 58# define ARCH_MIN_MMSTRUCT_ALIGN 0 59#endif 60 61enum tlb_infos { 62 ENTRIES, 63 NR_INFO 64}; 65 66extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 67extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 68extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 69extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 70extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 71extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 72extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 73 74/* 75 * CPU type and hardware bug flags. Kept separately for each CPU. 76 * Members of this structure are referenced in head_32.S, so think twice 77 * before touching them. [mj] 78 */ 79 80struct cpuinfo_x86 { 81 __u8 x86; /* CPU family */ 82 __u8 x86_vendor; /* CPU vendor */ 83 __u8 x86_model; 84 __u8 x86_stepping; 85#ifdef CONFIG_X86_64 86 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 87 int x86_tlbsize; 88#endif 89#ifdef CONFIG_X86_VMX_FEATURE_NAMES 90 __u32 vmx_capability[NVMXINTS]; 91#endif 92 __u8 x86_virt_bits; 93 __u8 x86_phys_bits; 94 /* CPUID returned core id bits: */ 95 __u8 x86_coreid_bits; 96 __u8 cu_id; 97 /* Max extended CPUID function supported: */ 98 __u32 extended_cpuid_level; 99 /* Maximum supported CPUID level, -1=no CPUID: */ 100 int cpuid_level; 101 /* 102 * Align to size of unsigned long because the x86_capability array 103 * is passed to bitops which require the alignment. Use unnamed 104 * union to enforce the array is aligned to size of unsigned long. 105 */ 106 union { 107 __u32 x86_capability[NCAPINTS + NBUGINTS]; 108 unsigned long x86_capability_alignment; 109 }; 110 char x86_vendor_id[16]; 111 char x86_model_id[64]; 112 /* in KB - valid for CPUS which support this call: */ 113 unsigned int x86_cache_size; 114 int x86_cache_alignment; /* In bytes */ 115 /* Cache QoS architectural values: */ 116 int x86_cache_max_rmid; /* max index */ 117 int x86_cache_occ_scale; /* scale to bytes */ 118 int x86_power; 119 unsigned long loops_per_jiffy; 120 /* cpuid returned max cores value: */ 121 u16 x86_max_cores; 122 u16 apicid; 123 u16 initial_apicid; 124 u16 x86_clflush_size; 125 /* number of cores as seen by the OS: */ 126 u16 booted_cores; 127 /* Physical processor id: */ 128 u16 phys_proc_id; 129 /* Logical processor id: */ 130 u16 logical_proc_id; 131 /* Core id: */ 132 u16 cpu_core_id; 133 u16 cpu_die_id; 134 u16 logical_die_id; 135 /* Index into per_cpu list: */ 136 u16 cpu_index; 137 u32 microcode; 138 /* Address space bits used by the cache internally */ 139 u8 x86_cache_bits; 140 unsigned initialized : 1; 141} __randomize_layout; 142 143struct cpuid_regs { 144 u32 eax, ebx, ecx, edx; 145}; 146 147enum cpuid_regs_idx { 148 CPUID_EAX = 0, 149 CPUID_EBX, 150 CPUID_ECX, 151 CPUID_EDX, 152}; 153 154#define X86_VENDOR_INTEL 0 155#define X86_VENDOR_CYRIX 1 156#define X86_VENDOR_AMD 2 157#define X86_VENDOR_UMC 3 158#define X86_VENDOR_CENTAUR 5 159#define X86_VENDOR_TRANSMETA 7 160#define X86_VENDOR_NSC 8 161#define X86_VENDOR_HYGON 9 162#define X86_VENDOR_ZHAOXIN 10 163#define X86_VENDOR_NUM 11 164 165#define X86_VENDOR_UNKNOWN 0xff 166 167/* 168 * capabilities of CPUs 169 */ 170extern struct cpuinfo_x86 boot_cpu_data; 171extern struct cpuinfo_x86 new_cpu_data; 172 173extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 174extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 175 176#ifdef CONFIG_SMP 177DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 178#define cpu_data(cpu) per_cpu(cpu_info, cpu) 179#else 180#define cpu_info boot_cpu_data 181#define cpu_data(cpu) boot_cpu_data 182#endif 183 184extern const struct seq_operations cpuinfo_op; 185 186#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 187 188extern void cpu_detect(struct cpuinfo_x86 *c); 189 190static inline unsigned long long l1tf_pfn_limit(void) 191{ 192 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 193} 194 195extern void early_cpu_init(void); 196extern void identify_boot_cpu(void); 197extern void identify_secondary_cpu(struct cpuinfo_x86 *); 198extern void print_cpu_info(struct cpuinfo_x86 *); 199void print_cpu_msr(struct cpuinfo_x86 *); 200 201#ifdef CONFIG_X86_32 202extern int have_cpuid_p(void); 203#else 204static inline int have_cpuid_p(void) 205{ 206 return 1; 207} 208#endif 209static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 210 unsigned int *ecx, unsigned int *edx) 211{ 212 /* ecx is often an input as well as an output. */ 213 asm volatile("cpuid" 214 : "=a" (*eax), 215 "=b" (*ebx), 216 "=c" (*ecx), 217 "=d" (*edx) 218 : "0" (*eax), "2" (*ecx) 219 : "memory"); 220} 221 222#define native_cpuid_reg(reg) \ 223static inline unsigned int native_cpuid_##reg(unsigned int op) \ 224{ \ 225 unsigned int eax = op, ebx, ecx = 0, edx; \ 226 \ 227 native_cpuid(&eax, &ebx, &ecx, &edx); \ 228 \ 229 return reg; \ 230} 231 232/* 233 * Native CPUID functions returning a single datum. 234 */ 235native_cpuid_reg(eax) 236native_cpuid_reg(ebx) 237native_cpuid_reg(ecx) 238native_cpuid_reg(edx) 239 240/* 241 * Friendlier CR3 helpers. 242 */ 243static inline unsigned long read_cr3_pa(void) 244{ 245 return __read_cr3() & CR3_ADDR_MASK; 246} 247 248static inline unsigned long native_read_cr3_pa(void) 249{ 250 return __native_read_cr3() & CR3_ADDR_MASK; 251} 252 253static inline void load_cr3(pgd_t *pgdir) 254{ 255 write_cr3(__sme_pa(pgdir)); 256} 257 258/* 259 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 260 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 261 * unrelated to the task-switch mechanism: 262 */ 263#ifdef CONFIG_X86_32 264/* This is the TSS defined by the hardware. */ 265struct x86_hw_tss { 266 unsigned short back_link, __blh; 267 unsigned long sp0; 268 unsigned short ss0, __ss0h; 269 unsigned long sp1; 270 271 /* 272 * We don't use ring 1, so ss1 is a convenient scratch space in 273 * the same cacheline as sp0. We use ss1 to cache the value in 274 * MSR_IA32_SYSENTER_CS. When we context switch 275 * MSR_IA32_SYSENTER_CS, we first check if the new value being 276 * written matches ss1, and, if it's not, then we wrmsr the new 277 * value and update ss1. 278 * 279 * The only reason we context switch MSR_IA32_SYSENTER_CS is 280 * that we set it to zero in vm86 tasks to avoid corrupting the 281 * stack if we were to go through the sysenter path from vm86 282 * mode. 283 */ 284 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 285 286 unsigned short __ss1h; 287 unsigned long sp2; 288 unsigned short ss2, __ss2h; 289 unsigned long __cr3; 290 unsigned long ip; 291 unsigned long flags; 292 unsigned long ax; 293 unsigned long cx; 294 unsigned long dx; 295 unsigned long bx; 296 unsigned long sp; 297 unsigned long bp; 298 unsigned long si; 299 unsigned long di; 300 unsigned short es, __esh; 301 unsigned short cs, __csh; 302 unsigned short ss, __ssh; 303 unsigned short ds, __dsh; 304 unsigned short fs, __fsh; 305 unsigned short gs, __gsh; 306 unsigned short ldt, __ldth; 307 unsigned short trace; 308 unsigned short io_bitmap_base; 309 310} __attribute__((packed)); 311#else 312struct x86_hw_tss { 313 u32 reserved1; 314 u64 sp0; 315 316 /* 317 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 318 * Linux does not use ring 1, so sp1 is not otherwise needed. 319 */ 320 u64 sp1; 321 322 /* 323 * Since Linux does not use ring 2, the 'sp2' slot is unused by 324 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 325 * the user RSP value. 326 */ 327 u64 sp2; 328 329 u64 reserved2; 330 u64 ist[7]; 331 u32 reserved3; 332 u32 reserved4; 333 u16 reserved5; 334 u16 io_bitmap_base; 335 336} __attribute__((packed)); 337#endif 338 339/* 340 * IO-bitmap sizes: 341 */ 342#define IO_BITMAP_BITS 65536 343#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 344#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 345 346#define IO_BITMAP_OFFSET_VALID_MAP \ 347 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 348 offsetof(struct tss_struct, x86_tss)) 349 350#define IO_BITMAP_OFFSET_VALID_ALL \ 351 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 352 offsetof(struct tss_struct, x86_tss)) 353 354#ifdef CONFIG_X86_IOPL_IOPERM 355/* 356 * sizeof(unsigned long) coming from an extra "long" at the end of the 357 * iobitmap. The limit is inclusive, i.e. the last valid byte. 358 */ 359# define __KERNEL_TSS_LIMIT \ 360 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 361 sizeof(unsigned long) - 1) 362#else 363# define __KERNEL_TSS_LIMIT \ 364 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 365#endif 366 367/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 368#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 369 370struct entry_stack { 371 unsigned long words[64]; 372}; 373 374struct entry_stack_page { 375 struct entry_stack stack; 376} __aligned(PAGE_SIZE); 377 378/* 379 * All IO bitmap related data stored in the TSS: 380 */ 381struct x86_io_bitmap { 382 /* The sequence number of the last active bitmap. */ 383 u64 prev_sequence; 384 385 /* 386 * Store the dirty size of the last io bitmap offender. The next 387 * one will have to do the cleanup as the switch out to a non io 388 * bitmap user will just set x86_tss.io_bitmap_base to a value 389 * outside of the TSS limit. So for sane tasks there is no need to 390 * actually touch the io_bitmap at all. 391 */ 392 unsigned int prev_max; 393 394 /* 395 * The extra 1 is there because the CPU will access an 396 * additional byte beyond the end of the IO permission 397 * bitmap. The extra byte must be all 1 bits, and must 398 * be within the limit. 399 */ 400 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 401 402 /* 403 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 404 * except the additional byte at the end. 405 */ 406 unsigned long mapall[IO_BITMAP_LONGS + 1]; 407}; 408 409struct tss_struct { 410 /* 411 * The fixed hardware portion. This must not cross a page boundary 412 * at risk of violating the SDM's advice and potentially triggering 413 * errata. 414 */ 415 struct x86_hw_tss x86_tss; 416 417 struct x86_io_bitmap io_bitmap; 418} __aligned(PAGE_SIZE); 419 420DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 421 422/* Per CPU interrupt stacks */ 423struct irq_stack { 424 char stack[IRQ_STACK_SIZE]; 425} __aligned(IRQ_STACK_SIZE); 426 427DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 428 429#ifdef CONFIG_X86_32 430DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 431#else 432/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 433#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 434#endif 435 436#ifdef CONFIG_X86_64 437struct fixed_percpu_data { 438 /* 439 * GCC hardcodes the stack canary as %gs:40. Since the 440 * irq_stack is the object at %gs:0, we reserve the bottom 441 * 48 bytes of the irq stack for the canary. 442 */ 443 char gs_base[40]; 444 unsigned long stack_canary; 445}; 446 447DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 448DECLARE_INIT_PER_CPU(fixed_percpu_data); 449 450static inline unsigned long cpu_kernelmode_gs_base(int cpu) 451{ 452 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 453} 454 455DECLARE_PER_CPU(unsigned int, irq_count); 456extern asmlinkage void ignore_sysret(void); 457 458#if IS_ENABLED(CONFIG_KVM) 459/* Save actual FS/GS selectors and bases to current->thread */ 460void save_fsgs_for_kvm(void); 461#endif 462#else /* X86_64 */ 463#ifdef CONFIG_STACKPROTECTOR 464/* 465 * Make sure stack canary segment base is cached-aligned: 466 * "For Intel Atom processors, avoid non zero segment base address 467 * that is not aligned to cache line boundary at all cost." 468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 469 */ 470struct stack_canary { 471 char __pad[20]; /* canary at %gs:20 */ 472 unsigned long canary; 473}; 474DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 475#endif 476/* Per CPU softirq stack pointer */ 477DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 478#endif /* X86_64 */ 479 480extern unsigned int fpu_kernel_xstate_size; 481extern unsigned int fpu_user_xstate_size; 482 483struct perf_event; 484 485typedef struct { 486 unsigned long seg; 487} mm_segment_t; 488 489struct thread_struct { 490 /* Cached TLS descriptors: */ 491 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 492#ifdef CONFIG_X86_32 493 unsigned long sp0; 494#endif 495 unsigned long sp; 496#ifdef CONFIG_X86_32 497 unsigned long sysenter_cs; 498#else 499 unsigned short es; 500 unsigned short ds; 501 unsigned short fsindex; 502 unsigned short gsindex; 503#endif 504 505#ifdef CONFIG_X86_64 506 unsigned long fsbase; 507 unsigned long gsbase; 508#else 509 /* 510 * XXX: this could presumably be unsigned short. Alternatively, 511 * 32-bit kernels could be taught to use fsindex instead. 512 */ 513 unsigned long fs; 514 unsigned long gs; 515#endif 516 517 /* Save middle states of ptrace breakpoints */ 518 struct perf_event *ptrace_bps[HBP_NUM]; 519 /* Debug status used for traps, single steps, etc... */ 520 unsigned long debugreg6; 521 /* Keep track of the exact dr7 value set by the user */ 522 unsigned long ptrace_dr7; 523 /* Fault info: */ 524 unsigned long cr2; 525 unsigned long trap_nr; 526 unsigned long error_code; 527#ifdef CONFIG_VM86 528 /* Virtual 86 mode info */ 529 struct vm86 *vm86; 530#endif 531 /* IO permissions: */ 532 struct io_bitmap *io_bitmap; 533 534 /* 535 * IOPL. Priviledge level dependent I/O permission which is 536 * emulated via the I/O bitmap to prevent user space from disabling 537 * interrupts. 538 */ 539 unsigned long iopl_emul; 540 541 mm_segment_t addr_limit; 542 543 unsigned int sig_on_uaccess_err:1; 544 unsigned int uaccess_err:1; /* uaccess failed */ 545 546 /* Floating point and extended processor state */ 547 struct fpu fpu; 548 /* 549 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 550 * the end. 551 */ 552}; 553 554/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 555static inline void arch_thread_struct_whitelist(unsigned long *offset, 556 unsigned long *size) 557{ 558 *offset = offsetof(struct thread_struct, fpu.state); 559 *size = fpu_kernel_xstate_size; 560} 561 562/* 563 * Thread-synchronous status. 564 * 565 * This is different from the flags in that nobody else 566 * ever touches our thread-synchronous status, so we don't 567 * have to worry about atomic accesses. 568 */ 569#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 570 571static inline void 572native_load_sp0(unsigned long sp0) 573{ 574 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 575} 576 577static inline void native_swapgs(void) 578{ 579#ifdef CONFIG_X86_64 580 asm volatile("swapgs" ::: "memory"); 581#endif 582} 583 584static inline unsigned long current_top_of_stack(void) 585{ 586 /* 587 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 588 * and around vm86 mode and sp0 on x86_64 is special because of the 589 * entry trampoline. 590 */ 591 return this_cpu_read_stable(cpu_current_top_of_stack); 592} 593 594static inline bool on_thread_stack(void) 595{ 596 return (unsigned long)(current_top_of_stack() - 597 current_stack_pointer) < THREAD_SIZE; 598} 599 600#ifdef CONFIG_PARAVIRT_XXL 601#include <asm/paravirt.h> 602#else 603#define __cpuid native_cpuid 604 605static inline void load_sp0(unsigned long sp0) 606{ 607 native_load_sp0(sp0); 608} 609 610#endif /* CONFIG_PARAVIRT_XXL */ 611 612/* Free all resources held by a thread. */ 613extern void release_thread(struct task_struct *); 614 615unsigned long get_wchan(struct task_struct *p); 616 617/* 618 * Generic CPUID function 619 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 620 * resulting in stale register contents being returned. 621 */ 622static inline void cpuid(unsigned int op, 623 unsigned int *eax, unsigned int *ebx, 624 unsigned int *ecx, unsigned int *edx) 625{ 626 *eax = op; 627 *ecx = 0; 628 __cpuid(eax, ebx, ecx, edx); 629} 630 631/* Some CPUID calls want 'count' to be placed in ecx */ 632static inline void cpuid_count(unsigned int op, int count, 633 unsigned int *eax, unsigned int *ebx, 634 unsigned int *ecx, unsigned int *edx) 635{ 636 *eax = op; 637 *ecx = count; 638 __cpuid(eax, ebx, ecx, edx); 639} 640 641/* 642 * CPUID functions returning a single datum 643 */ 644static inline unsigned int cpuid_eax(unsigned int op) 645{ 646 unsigned int eax, ebx, ecx, edx; 647 648 cpuid(op, &eax, &ebx, &ecx, &edx); 649 650 return eax; 651} 652 653static inline unsigned int cpuid_ebx(unsigned int op) 654{ 655 unsigned int eax, ebx, ecx, edx; 656 657 cpuid(op, &eax, &ebx, &ecx, &edx); 658 659 return ebx; 660} 661 662static inline unsigned int cpuid_ecx(unsigned int op) 663{ 664 unsigned int eax, ebx, ecx, edx; 665 666 cpuid(op, &eax, &ebx, &ecx, &edx); 667 668 return ecx; 669} 670 671static inline unsigned int cpuid_edx(unsigned int op) 672{ 673 unsigned int eax, ebx, ecx, edx; 674 675 cpuid(op, &eax, &ebx, &ecx, &edx); 676 677 return edx; 678} 679 680/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 681static __always_inline void rep_nop(void) 682{ 683 asm volatile("rep; nop" ::: "memory"); 684} 685 686static __always_inline void cpu_relax(void) 687{ 688 rep_nop(); 689} 690 691/* 692 * This function forces the icache and prefetched instruction stream to 693 * catch up with reality in two very specific cases: 694 * 695 * a) Text was modified using one virtual address and is about to be executed 696 * from the same physical page at a different virtual address. 697 * 698 * b) Text was modified on a different CPU, may subsequently be 699 * executed on this CPU, and you want to make sure the new version 700 * gets executed. This generally means you're calling this in a IPI. 701 * 702 * If you're calling this for a different reason, you're probably doing 703 * it wrong. 704 */ 705static inline void sync_core(void) 706{ 707 /* 708 * There are quite a few ways to do this. IRET-to-self is nice 709 * because it works on every CPU, at any CPL (so it's compatible 710 * with paravirtualization), and it never exits to a hypervisor. 711 * The only down sides are that it's a bit slow (it seems to be 712 * a bit more than 2x slower than the fastest options) and that 713 * it unmasks NMIs. The "push %cs" is needed because, in 714 * paravirtual environments, __KERNEL_CS may not be a valid CS 715 * value when we do IRET directly. 716 * 717 * In case NMI unmasking or performance ever becomes a problem, 718 * the next best option appears to be MOV-to-CR2 and an 719 * unconditional jump. That sequence also works on all CPUs, 720 * but it will fault at CPL3 (i.e. Xen PV). 721 * 722 * CPUID is the conventional way, but it's nasty: it doesn't 723 * exist on some 486-like CPUs, and it usually exits to a 724 * hypervisor. 725 * 726 * Like all of Linux's memory ordering operations, this is a 727 * compiler barrier as well. 728 */ 729#ifdef CONFIG_X86_32 730 asm volatile ( 731 "pushfl\n\t" 732 "pushl %%cs\n\t" 733 "pushl $1f\n\t" 734 "iret\n\t" 735 "1:" 736 : ASM_CALL_CONSTRAINT : : "memory"); 737#else 738 unsigned int tmp; 739 740 asm volatile ( 741 UNWIND_HINT_SAVE 742 "mov %%ss, %0\n\t" 743 "pushq %q0\n\t" 744 "pushq %%rsp\n\t" 745 "addq $8, (%%rsp)\n\t" 746 "pushfq\n\t" 747 "mov %%cs, %0\n\t" 748 "pushq %q0\n\t" 749 "pushq $1f\n\t" 750 "iretq\n\t" 751 UNWIND_HINT_RESTORE 752 "1:" 753 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 754#endif 755} 756 757extern void select_idle_routine(const struct cpuinfo_x86 *c); 758extern void amd_e400_c1e_apic_setup(void); 759 760extern unsigned long boot_option_idle_override; 761 762enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 763 IDLE_POLL}; 764 765extern void enable_sep_cpu(void); 766extern int sysenter_setup(void); 767 768 769/* Defined in head.S */ 770extern struct desc_ptr early_gdt_descr; 771 772extern void switch_to_new_gdt(int); 773extern void load_direct_gdt(int); 774extern void load_fixmap_gdt(int); 775extern void load_percpu_segment(int); 776extern void cpu_init(void); 777extern void cr4_init(void); 778 779static inline unsigned long get_debugctlmsr(void) 780{ 781 unsigned long debugctlmsr = 0; 782 783#ifndef CONFIG_X86_DEBUGCTLMSR 784 if (boot_cpu_data.x86 < 6) 785 return 0; 786#endif 787 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 788 789 return debugctlmsr; 790} 791 792static inline void update_debugctlmsr(unsigned long debugctlmsr) 793{ 794#ifndef CONFIG_X86_DEBUGCTLMSR 795 if (boot_cpu_data.x86 < 6) 796 return; 797#endif 798 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 799} 800 801extern void set_task_blockstep(struct task_struct *task, bool on); 802 803/* Boot loader type from the setup header: */ 804extern int bootloader_type; 805extern int bootloader_version; 806 807extern char ignore_fpu_irq; 808 809#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 810#define ARCH_HAS_PREFETCHW 811#define ARCH_HAS_SPINLOCK_PREFETCH 812 813#ifdef CONFIG_X86_32 814# define BASE_PREFETCH "" 815# define ARCH_HAS_PREFETCH 816#else 817# define BASE_PREFETCH "prefetcht0 %P1" 818#endif 819 820/* 821 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 822 * 823 * It's not worth to care about 3dnow prefetches for the K6 824 * because they are microcoded there and very slow. 825 */ 826static inline void prefetch(const void *x) 827{ 828 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 829 X86_FEATURE_XMM, 830 "m" (*(const char *)x)); 831} 832 833/* 834 * 3dnow prefetch to get an exclusive cache line. 835 * Useful for spinlocks to avoid one state transition in the 836 * cache coherency protocol: 837 */ 838static inline void prefetchw(const void *x) 839{ 840 alternative_input(BASE_PREFETCH, "prefetchw %P1", 841 X86_FEATURE_3DNOWPREFETCH, 842 "m" (*(const char *)x)); 843} 844 845static inline void spin_lock_prefetch(const void *x) 846{ 847 prefetchw(x); 848} 849 850#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 851 TOP_OF_KERNEL_STACK_PADDING) 852 853#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 854 855#define task_pt_regs(task) \ 856({ \ 857 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 858 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 859 ((struct pt_regs *)__ptr) - 1; \ 860}) 861 862#ifdef CONFIG_X86_32 863/* 864 * User space process size: 3GB (default). 865 */ 866#define IA32_PAGE_OFFSET PAGE_OFFSET 867#define TASK_SIZE PAGE_OFFSET 868#define TASK_SIZE_LOW TASK_SIZE 869#define TASK_SIZE_MAX TASK_SIZE 870#define DEFAULT_MAP_WINDOW TASK_SIZE 871#define STACK_TOP TASK_SIZE 872#define STACK_TOP_MAX STACK_TOP 873 874#define INIT_THREAD { \ 875 .sp0 = TOP_OF_INIT_STACK, \ 876 .sysenter_cs = __KERNEL_CS, \ 877 .addr_limit = KERNEL_DS, \ 878} 879 880#define KSTK_ESP(task) (task_pt_regs(task)->sp) 881 882#else 883/* 884 * User space process size. This is the first address outside the user range. 885 * There are a few constraints that determine this: 886 * 887 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 888 * address, then that syscall will enter the kernel with a 889 * non-canonical return address, and SYSRET will explode dangerously. 890 * We avoid this particular problem by preventing anything executable 891 * from being mapped at the maximum canonical address. 892 * 893 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 894 * CPUs malfunction if they execute code from the highest canonical page. 895 * They'll speculate right off the end of the canonical space, and 896 * bad things happen. This is worked around in the same way as the 897 * Intel problem. 898 * 899 * With page table isolation enabled, we map the LDT in ... [stay tuned] 900 */ 901#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 902 903#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 904 905/* This decides where the kernel will search for a free chunk of vm 906 * space during mmap's. 907 */ 908#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 909 0xc0000000 : 0xFFFFe000) 910 911#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 912 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 913#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 914 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 915#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 916 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 917 918#define STACK_TOP TASK_SIZE_LOW 919#define STACK_TOP_MAX TASK_SIZE_MAX 920 921#define INIT_THREAD { \ 922 .addr_limit = KERNEL_DS, \ 923} 924 925extern unsigned long KSTK_ESP(struct task_struct *task); 926 927#endif /* CONFIG_X86_64 */ 928 929extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 930 unsigned long new_sp); 931 932/* 933 * This decides where the kernel will search for a free chunk of vm 934 * space during mmap's. 935 */ 936#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 937#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 938 939#define KSTK_EIP(task) (task_pt_regs(task)->ip) 940 941/* Get/set a process' ability to use the timestamp counter instruction */ 942#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 943#define SET_TSC_CTL(val) set_tsc_mode((val)) 944 945extern int get_tsc_mode(unsigned long adr); 946extern int set_tsc_mode(unsigned int val); 947 948DECLARE_PER_CPU(u64, msr_misc_features_shadow); 949 950#ifdef CONFIG_CPU_SUP_AMD 951extern u16 amd_get_nb_id(int cpu); 952extern u32 amd_get_nodes_per_socket(void); 953#else 954static inline u16 amd_get_nb_id(int cpu) { return 0; } 955static inline u32 amd_get_nodes_per_socket(void) { return 0; } 956#endif 957 958static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 959{ 960 uint32_t base, eax, signature[3]; 961 962 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 963 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 964 965 if (!memcmp(sig, signature, 12) && 966 (leaves == 0 || ((eax - base) >= leaves))) 967 return base; 968 } 969 970 return 0; 971} 972 973extern unsigned long arch_align_stack(unsigned long sp); 974void free_init_pages(const char *what, unsigned long begin, unsigned long end); 975extern void free_kernel_image_pages(const char *what, void *begin, void *end); 976 977void default_idle(void); 978#ifdef CONFIG_XEN 979bool xen_set_default_idle(void); 980#else 981#define xen_set_default_idle 0 982#endif 983 984void stop_this_cpu(void *dummy); 985void microcode_check(void); 986 987enum l1tf_mitigations { 988 L1TF_MITIGATION_OFF, 989 L1TF_MITIGATION_FLUSH_NOWARN, 990 L1TF_MITIGATION_FLUSH, 991 L1TF_MITIGATION_FLUSH_NOSMT, 992 L1TF_MITIGATION_FULL, 993 L1TF_MITIGATION_FULL_FORCE 994}; 995 996extern enum l1tf_mitigations l1tf_mitigation; 997 998enum mds_mitigations { 999 MDS_MITIGATION_OFF, 1000 MDS_MITIGATION_FULL, 1001 MDS_MITIGATION_VMWERV, 1002}; 1003 1004#endif /* _ASM_X86_PROCESSOR_H */