Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/page.h>
20#include <asm/pgtable_types.h>
21#include <asm/percpu.h>
22#include <asm/msr.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29
30#include <linux/personality.h>
31#include <linux/cache.h>
32#include <linux/threads.h>
33#include <linux/math64.h>
34#include <linux/err.h>
35#include <linux/irqflags.h>
36#include <linux/mem_encrypt.h>
37
38/*
39 * We handle most unaligned accesses in hardware. On the other hand
40 * unaligned DMA can be quite expensive on some Nehalem processors.
41 *
42 * Based on this we disable the IP header alignment in network drivers.
43 */
44#define NET_IP_ALIGN 0
45
46#define HBP_NUM 4
47
48/*
49 * These alignment constraints are for performance in the vSMP case,
50 * but in the task_struct case we must also meet hardware imposed
51 * alignment requirements of the FPU state:
52 */
53#ifdef CONFIG_X86_VSMP
54# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
55# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
56#else
57# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
58# define ARCH_MIN_MMSTRUCT_ALIGN 0
59#endif
60
61enum tlb_infos {
62 ENTRIES,
63 NR_INFO
64};
65
66extern u16 __read_mostly tlb_lli_4k[NR_INFO];
67extern u16 __read_mostly tlb_lli_2m[NR_INFO];
68extern u16 __read_mostly tlb_lli_4m[NR_INFO];
69extern u16 __read_mostly tlb_lld_4k[NR_INFO];
70extern u16 __read_mostly tlb_lld_2m[NR_INFO];
71extern u16 __read_mostly tlb_lld_4m[NR_INFO];
72extern u16 __read_mostly tlb_lld_1g[NR_INFO];
73
74/*
75 * CPU type and hardware bug flags. Kept separately for each CPU.
76 * Members of this structure are referenced in head_32.S, so think twice
77 * before touching them. [mj]
78 */
79
80struct cpuinfo_x86 {
81 __u8 x86; /* CPU family */
82 __u8 x86_vendor; /* CPU vendor */
83 __u8 x86_model;
84 __u8 x86_stepping;
85#ifdef CONFIG_X86_64
86 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
87 int x86_tlbsize;
88#endif
89#ifdef CONFIG_X86_VMX_FEATURE_NAMES
90 __u32 vmx_capability[NVMXINTS];
91#endif
92 __u8 x86_virt_bits;
93 __u8 x86_phys_bits;
94 /* CPUID returned core id bits: */
95 __u8 x86_coreid_bits;
96 __u8 cu_id;
97 /* Max extended CPUID function supported: */
98 __u32 extended_cpuid_level;
99 /* Maximum supported CPUID level, -1=no CPUID: */
100 int cpuid_level;
101 /*
102 * Align to size of unsigned long because the x86_capability array
103 * is passed to bitops which require the alignment. Use unnamed
104 * union to enforce the array is aligned to size of unsigned long.
105 */
106 union {
107 __u32 x86_capability[NCAPINTS + NBUGINTS];
108 unsigned long x86_capability_alignment;
109 };
110 char x86_vendor_id[16];
111 char x86_model_id[64];
112 /* in KB - valid for CPUS which support this call: */
113 unsigned int x86_cache_size;
114 int x86_cache_alignment; /* In bytes */
115 /* Cache QoS architectural values: */
116 int x86_cache_max_rmid; /* max index */
117 int x86_cache_occ_scale; /* scale to bytes */
118 int x86_power;
119 unsigned long loops_per_jiffy;
120 /* cpuid returned max cores value: */
121 u16 x86_max_cores;
122 u16 apicid;
123 u16 initial_apicid;
124 u16 x86_clflush_size;
125 /* number of cores as seen by the OS: */
126 u16 booted_cores;
127 /* Physical processor id: */
128 u16 phys_proc_id;
129 /* Logical processor id: */
130 u16 logical_proc_id;
131 /* Core id: */
132 u16 cpu_core_id;
133 u16 cpu_die_id;
134 u16 logical_die_id;
135 /* Index into per_cpu list: */
136 u16 cpu_index;
137 u32 microcode;
138 /* Address space bits used by the cache internally */
139 u8 x86_cache_bits;
140 unsigned initialized : 1;
141} __randomize_layout;
142
143struct cpuid_regs {
144 u32 eax, ebx, ecx, edx;
145};
146
147enum cpuid_regs_idx {
148 CPUID_EAX = 0,
149 CPUID_EBX,
150 CPUID_ECX,
151 CPUID_EDX,
152};
153
154#define X86_VENDOR_INTEL 0
155#define X86_VENDOR_CYRIX 1
156#define X86_VENDOR_AMD 2
157#define X86_VENDOR_UMC 3
158#define X86_VENDOR_CENTAUR 5
159#define X86_VENDOR_TRANSMETA 7
160#define X86_VENDOR_NSC 8
161#define X86_VENDOR_HYGON 9
162#define X86_VENDOR_ZHAOXIN 10
163#define X86_VENDOR_NUM 11
164
165#define X86_VENDOR_UNKNOWN 0xff
166
167/*
168 * capabilities of CPUs
169 */
170extern struct cpuinfo_x86 boot_cpu_data;
171extern struct cpuinfo_x86 new_cpu_data;
172
173extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
174extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
175
176#ifdef CONFIG_SMP
177DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
178#define cpu_data(cpu) per_cpu(cpu_info, cpu)
179#else
180#define cpu_info boot_cpu_data
181#define cpu_data(cpu) boot_cpu_data
182#endif
183
184extern const struct seq_operations cpuinfo_op;
185
186#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
187
188extern void cpu_detect(struct cpuinfo_x86 *c);
189
190static inline unsigned long long l1tf_pfn_limit(void)
191{
192 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
193}
194
195extern void early_cpu_init(void);
196extern void identify_boot_cpu(void);
197extern void identify_secondary_cpu(struct cpuinfo_x86 *);
198extern void print_cpu_info(struct cpuinfo_x86 *);
199void print_cpu_msr(struct cpuinfo_x86 *);
200
201#ifdef CONFIG_X86_32
202extern int have_cpuid_p(void);
203#else
204static inline int have_cpuid_p(void)
205{
206 return 1;
207}
208#endif
209static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
210 unsigned int *ecx, unsigned int *edx)
211{
212 /* ecx is often an input as well as an output. */
213 asm volatile("cpuid"
214 : "=a" (*eax),
215 "=b" (*ebx),
216 "=c" (*ecx),
217 "=d" (*edx)
218 : "0" (*eax), "2" (*ecx)
219 : "memory");
220}
221
222#define native_cpuid_reg(reg) \
223static inline unsigned int native_cpuid_##reg(unsigned int op) \
224{ \
225 unsigned int eax = op, ebx, ecx = 0, edx; \
226 \
227 native_cpuid(&eax, &ebx, &ecx, &edx); \
228 \
229 return reg; \
230}
231
232/*
233 * Native CPUID functions returning a single datum.
234 */
235native_cpuid_reg(eax)
236native_cpuid_reg(ebx)
237native_cpuid_reg(ecx)
238native_cpuid_reg(edx)
239
240/*
241 * Friendlier CR3 helpers.
242 */
243static inline unsigned long read_cr3_pa(void)
244{
245 return __read_cr3() & CR3_ADDR_MASK;
246}
247
248static inline unsigned long native_read_cr3_pa(void)
249{
250 return __native_read_cr3() & CR3_ADDR_MASK;
251}
252
253static inline void load_cr3(pgd_t *pgdir)
254{
255 write_cr3(__sme_pa(pgdir));
256}
257
258/*
259 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
260 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
261 * unrelated to the task-switch mechanism:
262 */
263#ifdef CONFIG_X86_32
264/* This is the TSS defined by the hardware. */
265struct x86_hw_tss {
266 unsigned short back_link, __blh;
267 unsigned long sp0;
268 unsigned short ss0, __ss0h;
269 unsigned long sp1;
270
271 /*
272 * We don't use ring 1, so ss1 is a convenient scratch space in
273 * the same cacheline as sp0. We use ss1 to cache the value in
274 * MSR_IA32_SYSENTER_CS. When we context switch
275 * MSR_IA32_SYSENTER_CS, we first check if the new value being
276 * written matches ss1, and, if it's not, then we wrmsr the new
277 * value and update ss1.
278 *
279 * The only reason we context switch MSR_IA32_SYSENTER_CS is
280 * that we set it to zero in vm86 tasks to avoid corrupting the
281 * stack if we were to go through the sysenter path from vm86
282 * mode.
283 */
284 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
285
286 unsigned short __ss1h;
287 unsigned long sp2;
288 unsigned short ss2, __ss2h;
289 unsigned long __cr3;
290 unsigned long ip;
291 unsigned long flags;
292 unsigned long ax;
293 unsigned long cx;
294 unsigned long dx;
295 unsigned long bx;
296 unsigned long sp;
297 unsigned long bp;
298 unsigned long si;
299 unsigned long di;
300 unsigned short es, __esh;
301 unsigned short cs, __csh;
302 unsigned short ss, __ssh;
303 unsigned short ds, __dsh;
304 unsigned short fs, __fsh;
305 unsigned short gs, __gsh;
306 unsigned short ldt, __ldth;
307 unsigned short trace;
308 unsigned short io_bitmap_base;
309
310} __attribute__((packed));
311#else
312struct x86_hw_tss {
313 u32 reserved1;
314 u64 sp0;
315
316 /*
317 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
318 * Linux does not use ring 1, so sp1 is not otherwise needed.
319 */
320 u64 sp1;
321
322 /*
323 * Since Linux does not use ring 2, the 'sp2' slot is unused by
324 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
325 * the user RSP value.
326 */
327 u64 sp2;
328
329 u64 reserved2;
330 u64 ist[7];
331 u32 reserved3;
332 u32 reserved4;
333 u16 reserved5;
334 u16 io_bitmap_base;
335
336} __attribute__((packed));
337#endif
338
339/*
340 * IO-bitmap sizes:
341 */
342#define IO_BITMAP_BITS 65536
343#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
344#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
345
346#define IO_BITMAP_OFFSET_VALID_MAP \
347 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
348 offsetof(struct tss_struct, x86_tss))
349
350#define IO_BITMAP_OFFSET_VALID_ALL \
351 (offsetof(struct tss_struct, io_bitmap.mapall) - \
352 offsetof(struct tss_struct, x86_tss))
353
354#ifdef CONFIG_X86_IOPL_IOPERM
355/*
356 * sizeof(unsigned long) coming from an extra "long" at the end of the
357 * iobitmap. The limit is inclusive, i.e. the last valid byte.
358 */
359# define __KERNEL_TSS_LIMIT \
360 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
361 sizeof(unsigned long) - 1)
362#else
363# define __KERNEL_TSS_LIMIT \
364 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
365#endif
366
367/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
368#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
369
370struct entry_stack {
371 unsigned long words[64];
372};
373
374struct entry_stack_page {
375 struct entry_stack stack;
376} __aligned(PAGE_SIZE);
377
378/*
379 * All IO bitmap related data stored in the TSS:
380 */
381struct x86_io_bitmap {
382 /* The sequence number of the last active bitmap. */
383 u64 prev_sequence;
384
385 /*
386 * Store the dirty size of the last io bitmap offender. The next
387 * one will have to do the cleanup as the switch out to a non io
388 * bitmap user will just set x86_tss.io_bitmap_base to a value
389 * outside of the TSS limit. So for sane tasks there is no need to
390 * actually touch the io_bitmap at all.
391 */
392 unsigned int prev_max;
393
394 /*
395 * The extra 1 is there because the CPU will access an
396 * additional byte beyond the end of the IO permission
397 * bitmap. The extra byte must be all 1 bits, and must
398 * be within the limit.
399 */
400 unsigned long bitmap[IO_BITMAP_LONGS + 1];
401
402 /*
403 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
404 * except the additional byte at the end.
405 */
406 unsigned long mapall[IO_BITMAP_LONGS + 1];
407};
408
409struct tss_struct {
410 /*
411 * The fixed hardware portion. This must not cross a page boundary
412 * at risk of violating the SDM's advice and potentially triggering
413 * errata.
414 */
415 struct x86_hw_tss x86_tss;
416
417 struct x86_io_bitmap io_bitmap;
418} __aligned(PAGE_SIZE);
419
420DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
421
422/* Per CPU interrupt stacks */
423struct irq_stack {
424 char stack[IRQ_STACK_SIZE];
425} __aligned(IRQ_STACK_SIZE);
426
427DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
428
429#ifdef CONFIG_X86_32
430DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
431#else
432/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
433#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
434#endif
435
436#ifdef CONFIG_X86_64
437struct fixed_percpu_data {
438 /*
439 * GCC hardcodes the stack canary as %gs:40. Since the
440 * irq_stack is the object at %gs:0, we reserve the bottom
441 * 48 bytes of the irq stack for the canary.
442 */
443 char gs_base[40];
444 unsigned long stack_canary;
445};
446
447DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
448DECLARE_INIT_PER_CPU(fixed_percpu_data);
449
450static inline unsigned long cpu_kernelmode_gs_base(int cpu)
451{
452 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
453}
454
455DECLARE_PER_CPU(unsigned int, irq_count);
456extern asmlinkage void ignore_sysret(void);
457
458#if IS_ENABLED(CONFIG_KVM)
459/* Save actual FS/GS selectors and bases to current->thread */
460void save_fsgs_for_kvm(void);
461#endif
462#else /* X86_64 */
463#ifdef CONFIG_STACKPROTECTOR
464/*
465 * Make sure stack canary segment base is cached-aligned:
466 * "For Intel Atom processors, avoid non zero segment base address
467 * that is not aligned to cache line boundary at all cost."
468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
469 */
470struct stack_canary {
471 char __pad[20]; /* canary at %gs:20 */
472 unsigned long canary;
473};
474DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
475#endif
476/* Per CPU softirq stack pointer */
477DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
478#endif /* X86_64 */
479
480extern unsigned int fpu_kernel_xstate_size;
481extern unsigned int fpu_user_xstate_size;
482
483struct perf_event;
484
485typedef struct {
486 unsigned long seg;
487} mm_segment_t;
488
489struct thread_struct {
490 /* Cached TLS descriptors: */
491 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
492#ifdef CONFIG_X86_32
493 unsigned long sp0;
494#endif
495 unsigned long sp;
496#ifdef CONFIG_X86_32
497 unsigned long sysenter_cs;
498#else
499 unsigned short es;
500 unsigned short ds;
501 unsigned short fsindex;
502 unsigned short gsindex;
503#endif
504
505#ifdef CONFIG_X86_64
506 unsigned long fsbase;
507 unsigned long gsbase;
508#else
509 /*
510 * XXX: this could presumably be unsigned short. Alternatively,
511 * 32-bit kernels could be taught to use fsindex instead.
512 */
513 unsigned long fs;
514 unsigned long gs;
515#endif
516
517 /* Save middle states of ptrace breakpoints */
518 struct perf_event *ptrace_bps[HBP_NUM];
519 /* Debug status used for traps, single steps, etc... */
520 unsigned long debugreg6;
521 /* Keep track of the exact dr7 value set by the user */
522 unsigned long ptrace_dr7;
523 /* Fault info: */
524 unsigned long cr2;
525 unsigned long trap_nr;
526 unsigned long error_code;
527#ifdef CONFIG_VM86
528 /* Virtual 86 mode info */
529 struct vm86 *vm86;
530#endif
531 /* IO permissions: */
532 struct io_bitmap *io_bitmap;
533
534 /*
535 * IOPL. Priviledge level dependent I/O permission which is
536 * emulated via the I/O bitmap to prevent user space from disabling
537 * interrupts.
538 */
539 unsigned long iopl_emul;
540
541 mm_segment_t addr_limit;
542
543 unsigned int sig_on_uaccess_err:1;
544 unsigned int uaccess_err:1; /* uaccess failed */
545
546 /* Floating point and extended processor state */
547 struct fpu fpu;
548 /*
549 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
550 * the end.
551 */
552};
553
554/* Whitelist the FPU state from the task_struct for hardened usercopy. */
555static inline void arch_thread_struct_whitelist(unsigned long *offset,
556 unsigned long *size)
557{
558 *offset = offsetof(struct thread_struct, fpu.state);
559 *size = fpu_kernel_xstate_size;
560}
561
562/*
563 * Thread-synchronous status.
564 *
565 * This is different from the flags in that nobody else
566 * ever touches our thread-synchronous status, so we don't
567 * have to worry about atomic accesses.
568 */
569#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
570
571static inline void
572native_load_sp0(unsigned long sp0)
573{
574 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
575}
576
577static inline void native_swapgs(void)
578{
579#ifdef CONFIG_X86_64
580 asm volatile("swapgs" ::: "memory");
581#endif
582}
583
584static inline unsigned long current_top_of_stack(void)
585{
586 /*
587 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
588 * and around vm86 mode and sp0 on x86_64 is special because of the
589 * entry trampoline.
590 */
591 return this_cpu_read_stable(cpu_current_top_of_stack);
592}
593
594static inline bool on_thread_stack(void)
595{
596 return (unsigned long)(current_top_of_stack() -
597 current_stack_pointer) < THREAD_SIZE;
598}
599
600#ifdef CONFIG_PARAVIRT_XXL
601#include <asm/paravirt.h>
602#else
603#define __cpuid native_cpuid
604
605static inline void load_sp0(unsigned long sp0)
606{
607 native_load_sp0(sp0);
608}
609
610#endif /* CONFIG_PARAVIRT_XXL */
611
612/* Free all resources held by a thread. */
613extern void release_thread(struct task_struct *);
614
615unsigned long get_wchan(struct task_struct *p);
616
617/*
618 * Generic CPUID function
619 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
620 * resulting in stale register contents being returned.
621 */
622static inline void cpuid(unsigned int op,
623 unsigned int *eax, unsigned int *ebx,
624 unsigned int *ecx, unsigned int *edx)
625{
626 *eax = op;
627 *ecx = 0;
628 __cpuid(eax, ebx, ecx, edx);
629}
630
631/* Some CPUID calls want 'count' to be placed in ecx */
632static inline void cpuid_count(unsigned int op, int count,
633 unsigned int *eax, unsigned int *ebx,
634 unsigned int *ecx, unsigned int *edx)
635{
636 *eax = op;
637 *ecx = count;
638 __cpuid(eax, ebx, ecx, edx);
639}
640
641/*
642 * CPUID functions returning a single datum
643 */
644static inline unsigned int cpuid_eax(unsigned int op)
645{
646 unsigned int eax, ebx, ecx, edx;
647
648 cpuid(op, &eax, &ebx, &ecx, &edx);
649
650 return eax;
651}
652
653static inline unsigned int cpuid_ebx(unsigned int op)
654{
655 unsigned int eax, ebx, ecx, edx;
656
657 cpuid(op, &eax, &ebx, &ecx, &edx);
658
659 return ebx;
660}
661
662static inline unsigned int cpuid_ecx(unsigned int op)
663{
664 unsigned int eax, ebx, ecx, edx;
665
666 cpuid(op, &eax, &ebx, &ecx, &edx);
667
668 return ecx;
669}
670
671static inline unsigned int cpuid_edx(unsigned int op)
672{
673 unsigned int eax, ebx, ecx, edx;
674
675 cpuid(op, &eax, &ebx, &ecx, &edx);
676
677 return edx;
678}
679
680/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
681static __always_inline void rep_nop(void)
682{
683 asm volatile("rep; nop" ::: "memory");
684}
685
686static __always_inline void cpu_relax(void)
687{
688 rep_nop();
689}
690
691/*
692 * This function forces the icache and prefetched instruction stream to
693 * catch up with reality in two very specific cases:
694 *
695 * a) Text was modified using one virtual address and is about to be executed
696 * from the same physical page at a different virtual address.
697 *
698 * b) Text was modified on a different CPU, may subsequently be
699 * executed on this CPU, and you want to make sure the new version
700 * gets executed. This generally means you're calling this in a IPI.
701 *
702 * If you're calling this for a different reason, you're probably doing
703 * it wrong.
704 */
705static inline void sync_core(void)
706{
707 /*
708 * There are quite a few ways to do this. IRET-to-self is nice
709 * because it works on every CPU, at any CPL (so it's compatible
710 * with paravirtualization), and it never exits to a hypervisor.
711 * The only down sides are that it's a bit slow (it seems to be
712 * a bit more than 2x slower than the fastest options) and that
713 * it unmasks NMIs. The "push %cs" is needed because, in
714 * paravirtual environments, __KERNEL_CS may not be a valid CS
715 * value when we do IRET directly.
716 *
717 * In case NMI unmasking or performance ever becomes a problem,
718 * the next best option appears to be MOV-to-CR2 and an
719 * unconditional jump. That sequence also works on all CPUs,
720 * but it will fault at CPL3 (i.e. Xen PV).
721 *
722 * CPUID is the conventional way, but it's nasty: it doesn't
723 * exist on some 486-like CPUs, and it usually exits to a
724 * hypervisor.
725 *
726 * Like all of Linux's memory ordering operations, this is a
727 * compiler barrier as well.
728 */
729#ifdef CONFIG_X86_32
730 asm volatile (
731 "pushfl\n\t"
732 "pushl %%cs\n\t"
733 "pushl $1f\n\t"
734 "iret\n\t"
735 "1:"
736 : ASM_CALL_CONSTRAINT : : "memory");
737#else
738 unsigned int tmp;
739
740 asm volatile (
741 UNWIND_HINT_SAVE
742 "mov %%ss, %0\n\t"
743 "pushq %q0\n\t"
744 "pushq %%rsp\n\t"
745 "addq $8, (%%rsp)\n\t"
746 "pushfq\n\t"
747 "mov %%cs, %0\n\t"
748 "pushq %q0\n\t"
749 "pushq $1f\n\t"
750 "iretq\n\t"
751 UNWIND_HINT_RESTORE
752 "1:"
753 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
754#endif
755}
756
757extern void select_idle_routine(const struct cpuinfo_x86 *c);
758extern void amd_e400_c1e_apic_setup(void);
759
760extern unsigned long boot_option_idle_override;
761
762enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
763 IDLE_POLL};
764
765extern void enable_sep_cpu(void);
766extern int sysenter_setup(void);
767
768
769/* Defined in head.S */
770extern struct desc_ptr early_gdt_descr;
771
772extern void switch_to_new_gdt(int);
773extern void load_direct_gdt(int);
774extern void load_fixmap_gdt(int);
775extern void load_percpu_segment(int);
776extern void cpu_init(void);
777extern void cr4_init(void);
778
779static inline unsigned long get_debugctlmsr(void)
780{
781 unsigned long debugctlmsr = 0;
782
783#ifndef CONFIG_X86_DEBUGCTLMSR
784 if (boot_cpu_data.x86 < 6)
785 return 0;
786#endif
787 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
788
789 return debugctlmsr;
790}
791
792static inline void update_debugctlmsr(unsigned long debugctlmsr)
793{
794#ifndef CONFIG_X86_DEBUGCTLMSR
795 if (boot_cpu_data.x86 < 6)
796 return;
797#endif
798 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
799}
800
801extern void set_task_blockstep(struct task_struct *task, bool on);
802
803/* Boot loader type from the setup header: */
804extern int bootloader_type;
805extern int bootloader_version;
806
807extern char ignore_fpu_irq;
808
809#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
810#define ARCH_HAS_PREFETCHW
811#define ARCH_HAS_SPINLOCK_PREFETCH
812
813#ifdef CONFIG_X86_32
814# define BASE_PREFETCH ""
815# define ARCH_HAS_PREFETCH
816#else
817# define BASE_PREFETCH "prefetcht0 %P1"
818#endif
819
820/*
821 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
822 *
823 * It's not worth to care about 3dnow prefetches for the K6
824 * because they are microcoded there and very slow.
825 */
826static inline void prefetch(const void *x)
827{
828 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
829 X86_FEATURE_XMM,
830 "m" (*(const char *)x));
831}
832
833/*
834 * 3dnow prefetch to get an exclusive cache line.
835 * Useful for spinlocks to avoid one state transition in the
836 * cache coherency protocol:
837 */
838static inline void prefetchw(const void *x)
839{
840 alternative_input(BASE_PREFETCH, "prefetchw %P1",
841 X86_FEATURE_3DNOWPREFETCH,
842 "m" (*(const char *)x));
843}
844
845static inline void spin_lock_prefetch(const void *x)
846{
847 prefetchw(x);
848}
849
850#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
851 TOP_OF_KERNEL_STACK_PADDING)
852
853#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
854
855#define task_pt_regs(task) \
856({ \
857 unsigned long __ptr = (unsigned long)task_stack_page(task); \
858 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
859 ((struct pt_regs *)__ptr) - 1; \
860})
861
862#ifdef CONFIG_X86_32
863/*
864 * User space process size: 3GB (default).
865 */
866#define IA32_PAGE_OFFSET PAGE_OFFSET
867#define TASK_SIZE PAGE_OFFSET
868#define TASK_SIZE_LOW TASK_SIZE
869#define TASK_SIZE_MAX TASK_SIZE
870#define DEFAULT_MAP_WINDOW TASK_SIZE
871#define STACK_TOP TASK_SIZE
872#define STACK_TOP_MAX STACK_TOP
873
874#define INIT_THREAD { \
875 .sp0 = TOP_OF_INIT_STACK, \
876 .sysenter_cs = __KERNEL_CS, \
877 .addr_limit = KERNEL_DS, \
878}
879
880#define KSTK_ESP(task) (task_pt_regs(task)->sp)
881
882#else
883/*
884 * User space process size. This is the first address outside the user range.
885 * There are a few constraints that determine this:
886 *
887 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
888 * address, then that syscall will enter the kernel with a
889 * non-canonical return address, and SYSRET will explode dangerously.
890 * We avoid this particular problem by preventing anything executable
891 * from being mapped at the maximum canonical address.
892 *
893 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
894 * CPUs malfunction if they execute code from the highest canonical page.
895 * They'll speculate right off the end of the canonical space, and
896 * bad things happen. This is worked around in the same way as the
897 * Intel problem.
898 *
899 * With page table isolation enabled, we map the LDT in ... [stay tuned]
900 */
901#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
902
903#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
904
905/* This decides where the kernel will search for a free chunk of vm
906 * space during mmap's.
907 */
908#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
909 0xc0000000 : 0xFFFFe000)
910
911#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
912 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
913#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
914 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
915#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
916 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
917
918#define STACK_TOP TASK_SIZE_LOW
919#define STACK_TOP_MAX TASK_SIZE_MAX
920
921#define INIT_THREAD { \
922 .addr_limit = KERNEL_DS, \
923}
924
925extern unsigned long KSTK_ESP(struct task_struct *task);
926
927#endif /* CONFIG_X86_64 */
928
929extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
930 unsigned long new_sp);
931
932/*
933 * This decides where the kernel will search for a free chunk of vm
934 * space during mmap's.
935 */
936#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
937#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
938
939#define KSTK_EIP(task) (task_pt_regs(task)->ip)
940
941/* Get/set a process' ability to use the timestamp counter instruction */
942#define GET_TSC_CTL(adr) get_tsc_mode((adr))
943#define SET_TSC_CTL(val) set_tsc_mode((val))
944
945extern int get_tsc_mode(unsigned long adr);
946extern int set_tsc_mode(unsigned int val);
947
948DECLARE_PER_CPU(u64, msr_misc_features_shadow);
949
950#ifdef CONFIG_CPU_SUP_AMD
951extern u16 amd_get_nb_id(int cpu);
952extern u32 amd_get_nodes_per_socket(void);
953#else
954static inline u16 amd_get_nb_id(int cpu) { return 0; }
955static inline u32 amd_get_nodes_per_socket(void) { return 0; }
956#endif
957
958static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
959{
960 uint32_t base, eax, signature[3];
961
962 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
963 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
964
965 if (!memcmp(sig, signature, 12) &&
966 (leaves == 0 || ((eax - base) >= leaves)))
967 return base;
968 }
969
970 return 0;
971}
972
973extern unsigned long arch_align_stack(unsigned long sp);
974void free_init_pages(const char *what, unsigned long begin, unsigned long end);
975extern void free_kernel_image_pages(const char *what, void *begin, void *end);
976
977void default_idle(void);
978#ifdef CONFIG_XEN
979bool xen_set_default_idle(void);
980#else
981#define xen_set_default_idle 0
982#endif
983
984void stop_this_cpu(void *dummy);
985void microcode_check(void);
986
987enum l1tf_mitigations {
988 L1TF_MITIGATION_OFF,
989 L1TF_MITIGATION_FLUSH_NOWARN,
990 L1TF_MITIGATION_FLUSH,
991 L1TF_MITIGATION_FLUSH_NOSMT,
992 L1TF_MITIGATION_FULL,
993 L1TF_MITIGATION_FULL_FORCE
994};
995
996extern enum l1tf_mitigations l1tf_mitigation;
997
998enum mds_mitigations {
999 MDS_MITIGATION_OFF,
1000 MDS_MITIGATION_FULL,
1001 MDS_MITIGATION_VMWERV,
1002};
1003
1004#endif /* _ASM_X86_PROCESSOR_H */