at v5.6 1663 lines 50 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/bug.h> 21#include <asm/page.h> 22 23extern pgd_t swapper_pg_dir[]; 24extern void paging_init(void); 25 26enum { 27 PG_DIRECT_MAP_4K = 0, 28 PG_DIRECT_MAP_1M, 29 PG_DIRECT_MAP_2G, 30 PG_DIRECT_MAP_MAX 31}; 32 33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 34 35static inline void update_page_count(int level, long count) 36{ 37 if (IS_ENABLED(CONFIG_PROC_FS)) 38 atomic_long_add(count, &direct_pages_count[level]); 39} 40 41struct seq_file; 42void arch_report_meminfo(struct seq_file *m); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, ptep) do { } while (0) 49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 50 51/* 52 * ZERO_PAGE is a global shared page that is always zero; used 53 * for zero-mapped memory areas etc.. 54 */ 55 56extern unsigned long empty_zero_page; 57extern unsigned long zero_page_mask; 58 59#define ZERO_PAGE(vaddr) \ 60 (virt_to_page((void *)(empty_zero_page + \ 61 (((unsigned long)(vaddr)) &zero_page_mask)))) 62#define __HAVE_COLOR_ZERO_PAGE 63 64/* TODO: s390 cannot support io_remap_pfn_range... */ 65 66#define FIRST_USER_ADDRESS 0UL 67 68#define pte_ERROR(e) \ 69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 70#define pmd_ERROR(e) \ 71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 72#define pud_ERROR(e) \ 73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 74#define p4d_ERROR(e) \ 75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 76#define pgd_ERROR(e) \ 77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 78 79/* 80 * The vmalloc and module area will always be on the topmost area of the 81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 83 * modules will reside. That makes sure that inter module branches always 84 * happen without trampolines and in addition the placement within a 2GB frame 85 * is branch prediction unit friendly. 86 */ 87extern unsigned long VMALLOC_START; 88extern unsigned long VMALLOC_END; 89#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN) 90extern struct page *vmemmap; 91 92#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 93 94extern unsigned long MODULES_VADDR; 95extern unsigned long MODULES_END; 96#define MODULES_VADDR MODULES_VADDR 97#define MODULES_END MODULES_END 98#define MODULES_LEN (1UL << 31) 99 100static inline int is_module_addr(void *addr) 101{ 102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 103 if (addr < (void *)MODULES_VADDR) 104 return 0; 105 if (addr > (void *)MODULES_END) 106 return 0; 107 return 1; 108} 109 110/* 111 * A 64 bit pagetable entry of S390 has following format: 112 * | PFRA |0IPC| OS | 113 * 0000000000111111111122222222223333333333444444444455555555556666 114 * 0123456789012345678901234567890123456789012345678901234567890123 115 * 116 * I Page-Invalid Bit: Page is not available for address-translation 117 * P Page-Protection Bit: Store access not possible for page 118 * C Change-bit override: HW is not required to set change bit 119 * 120 * A 64 bit segmenttable entry of S390 has following format: 121 * | P-table origin | TT 122 * 0000000000111111111122222222223333333333444444444455555555556666 123 * 0123456789012345678901234567890123456789012345678901234567890123 124 * 125 * I Segment-Invalid Bit: Segment is not available for address-translation 126 * C Common-Segment Bit: Segment is not private (PoP 3-30) 127 * P Page-Protection Bit: Store access not possible for page 128 * TT Type 00 129 * 130 * A 64 bit region table entry of S390 has following format: 131 * | S-table origin | TF TTTL 132 * 0000000000111111111122222222223333333333444444444455555555556666 133 * 0123456789012345678901234567890123456789012345678901234567890123 134 * 135 * I Segment-Invalid Bit: Segment is not available for address-translation 136 * TT Type 01 137 * TF 138 * TL Table length 139 * 140 * The 64 bit regiontable origin of S390 has following format: 141 * | region table origon | DTTL 142 * 0000000000111111111122222222223333333333444444444455555555556666 143 * 0123456789012345678901234567890123456789012345678901234567890123 144 * 145 * X Space-Switch event: 146 * G Segment-Invalid Bit: 147 * P Private-Space Bit: 148 * S Storage-Alteration: 149 * R Real space 150 * TL Table-Length: 151 * 152 * A storage key has the following format: 153 * | ACC |F|R|C|0| 154 * 0 3 4 5 6 7 155 * ACC: access key 156 * F : fetch protection bit 157 * R : referenced bit 158 * C : changed bit 159 */ 160 161/* Hardware bits in the page table entry */ 162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 163#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 164#define _PAGE_INVALID 0x400 /* HW invalid bit */ 165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 166 167/* Software bits in the page table entry */ 168#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 169#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 171#define _PAGE_READ 0x010 /* SW pte read bit */ 172#define _PAGE_WRITE 0x020 /* SW pte write bit */ 173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 175 176#ifdef CONFIG_MEM_SOFT_DIRTY 177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 178#else 179#define _PAGE_SOFT_DIRTY 0x000 180#endif 181 182/* Set of bits not changed in pte_modify */ 183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 185 186/* 187 * handle_pte_fault uses pte_present and pte_none to find out the pte type 188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 189 * distinguish present from not-present ptes. It is changed only with the page 190 * table lock held. 191 * 192 * The following table gives the different possible bit combinations for 193 * the pte hardware and software bits in the last 12 bits of a pte 194 * (. unassigned bit, x don't care, t swap type): 195 * 196 * 842100000000 197 * 000084210000 198 * 000000008421 199 * .IR.uswrdy.p 200 * empty .10.00000000 201 * swap .11..ttttt.0 202 * prot-none, clean, old .11.xx0000.1 203 * prot-none, clean, young .11.xx0001.1 204 * prot-none, dirty, old .11.xx0010.1 205 * prot-none, dirty, young .11.xx0011.1 206 * read-only, clean, old .11.xx0100.1 207 * read-only, clean, young .01.xx0101.1 208 * read-only, dirty, old .11.xx0110.1 209 * read-only, dirty, young .01.xx0111.1 210 * read-write, clean, old .11.xx1100.1 211 * read-write, clean, young .01.xx1101.1 212 * read-write, dirty, old .10.xx1110.1 213 * read-write, dirty, young .00.xx1111.1 214 * HW-bits: R read-only, I invalid 215 * SW-bits: p present, y young, d dirty, r read, w write, s special, 216 * u unused, l large 217 * 218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 221 */ 222 223/* Bits in the segment/region table address-space-control-element */ 224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 228#define _ASCE_REAL_SPACE 0x20 /* real space control */ 229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 235 236/* Bits in the region table entry */ 237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 247 248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 254 255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 261 262#ifdef CONFIG_MEM_SOFT_DIRTY 263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 264#else 265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 266#endif 267 268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 269 270/* Bits in the segment table entry */ 271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 272#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 273#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 274#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 275#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 276#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 277#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 278#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 279#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 280 281#define _SEGMENT_ENTRY (0) 282#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 283 284#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 285#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 286#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 287#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 288#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 292#else 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 294#endif 295 296#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 297#define _PAGE_ENTRIES 256 /* number of page table entries */ 298 299#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 300#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 301 302#define _REGION1_SHIFT 53 303#define _REGION2_SHIFT 42 304#define _REGION3_SHIFT 31 305#define _SEGMENT_SHIFT 20 306 307#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 308#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 309#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 310#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 311#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 312 313#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 314#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 315#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 316#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 317 318#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 319#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 320#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 321#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 322 323#define PMD_SHIFT _SEGMENT_SHIFT 324#define PUD_SHIFT _REGION3_SHIFT 325#define P4D_SHIFT _REGION2_SHIFT 326#define PGDIR_SHIFT _REGION1_SHIFT 327 328#define PMD_SIZE _SEGMENT_SIZE 329#define PUD_SIZE _REGION3_SIZE 330#define P4D_SIZE _REGION2_SIZE 331#define PGDIR_SIZE _REGION1_SIZE 332 333#define PMD_MASK _SEGMENT_MASK 334#define PUD_MASK _REGION3_MASK 335#define P4D_MASK _REGION2_MASK 336#define PGDIR_MASK _REGION1_MASK 337 338#define PTRS_PER_PTE _PAGE_ENTRIES 339#define PTRS_PER_PMD _CRST_ENTRIES 340#define PTRS_PER_PUD _CRST_ENTRIES 341#define PTRS_PER_P4D _CRST_ENTRIES 342#define PTRS_PER_PGD _CRST_ENTRIES 343 344#define MAX_PTRS_PER_P4D PTRS_PER_P4D 345 346/* 347 * Segment table and region3 table entry encoding 348 * (R = read-only, I = invalid, y = young bit): 349 * dy..R...I...wr 350 * prot-none, clean, old 00..1...1...00 351 * prot-none, clean, young 01..1...1...00 352 * prot-none, dirty, old 10..1...1...00 353 * prot-none, dirty, young 11..1...1...00 354 * read-only, clean, old 00..1...1...01 355 * read-only, clean, young 01..1...0...01 356 * read-only, dirty, old 10..1...1...01 357 * read-only, dirty, young 11..1...0...01 358 * read-write, clean, old 00..1...1...11 359 * read-write, clean, young 01..1...0...11 360 * read-write, dirty, old 10..0...1...11 361 * read-write, dirty, young 11..0...0...11 362 * The segment table origin is used to distinguish empty (origin==0) from 363 * read-write, old segment table entries (origin!=0) 364 * HW-bits: R read-only, I invalid 365 * SW-bits: y young, d dirty, r read, w write 366 */ 367 368/* Page status table bits for virtualization */ 369#define PGSTE_ACC_BITS 0xf000000000000000UL 370#define PGSTE_FP_BIT 0x0800000000000000UL 371#define PGSTE_PCL_BIT 0x0080000000000000UL 372#define PGSTE_HR_BIT 0x0040000000000000UL 373#define PGSTE_HC_BIT 0x0020000000000000UL 374#define PGSTE_GR_BIT 0x0004000000000000UL 375#define PGSTE_GC_BIT 0x0002000000000000UL 376#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 377#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 378#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 379 380/* Guest Page State used for virtualization */ 381#define _PGSTE_GPS_ZERO 0x0000000080000000UL 382#define _PGSTE_GPS_NODAT 0x0000000040000000UL 383#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 384#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 385#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 386#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 387#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 388 389/* 390 * A user page table pointer has the space-switch-event bit, the 391 * private-space-control bit and the storage-alteration-event-control 392 * bit set. A kernel page table pointer doesn't need them. 393 */ 394#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 395 _ASCE_ALT_EVENT) 396 397/* 398 * Page protection definitions. 399 */ 400#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 401#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 403#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 404 _PAGE_INVALID | _PAGE_PROTECT) 405#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 407#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 408 _PAGE_INVALID | _PAGE_PROTECT) 409 410#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 412#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 414#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 415 _PAGE_PROTECT | _PAGE_NOEXEC) 416#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 417 _PAGE_YOUNG | _PAGE_DIRTY) 418 419/* 420 * On s390 the page table entry has an invalid bit and a read-only bit. 421 * Read permission implies execute permission and write permission 422 * implies read permission. 423 */ 424 /*xwr*/ 425#define __P000 PAGE_NONE 426#define __P001 PAGE_RO 427#define __P010 PAGE_RO 428#define __P011 PAGE_RO 429#define __P100 PAGE_RX 430#define __P101 PAGE_RX 431#define __P110 PAGE_RX 432#define __P111 PAGE_RX 433 434#define __S000 PAGE_NONE 435#define __S001 PAGE_RO 436#define __S010 PAGE_RW 437#define __S011 PAGE_RW 438#define __S100 PAGE_RX 439#define __S101 PAGE_RX 440#define __S110 PAGE_RWX 441#define __S111 PAGE_RWX 442 443/* 444 * Segment entry (large page) protection definitions. 445 */ 446#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 447 _SEGMENT_ENTRY_PROTECT) 448#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 449 _SEGMENT_ENTRY_READ | \ 450 _SEGMENT_ENTRY_NOEXEC) 451#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 452 _SEGMENT_ENTRY_READ) 453#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 454 _SEGMENT_ENTRY_WRITE | \ 455 _SEGMENT_ENTRY_NOEXEC) 456#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 457 _SEGMENT_ENTRY_WRITE) 458#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 459 _SEGMENT_ENTRY_LARGE | \ 460 _SEGMENT_ENTRY_READ | \ 461 _SEGMENT_ENTRY_WRITE | \ 462 _SEGMENT_ENTRY_YOUNG | \ 463 _SEGMENT_ENTRY_DIRTY | \ 464 _SEGMENT_ENTRY_NOEXEC) 465#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 466 _SEGMENT_ENTRY_LARGE | \ 467 _SEGMENT_ENTRY_READ | \ 468 _SEGMENT_ENTRY_YOUNG | \ 469 _SEGMENT_ENTRY_PROTECT | \ 470 _SEGMENT_ENTRY_NOEXEC) 471#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 472 _SEGMENT_ENTRY_LARGE | \ 473 _SEGMENT_ENTRY_READ | \ 474 _SEGMENT_ENTRY_WRITE | \ 475 _SEGMENT_ENTRY_YOUNG | \ 476 _SEGMENT_ENTRY_DIRTY) 477 478/* 479 * Region3 entry (large page) protection definitions. 480 */ 481 482#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 483 _REGION3_ENTRY_LARGE | \ 484 _REGION3_ENTRY_READ | \ 485 _REGION3_ENTRY_WRITE | \ 486 _REGION3_ENTRY_YOUNG | \ 487 _REGION3_ENTRY_DIRTY | \ 488 _REGION_ENTRY_NOEXEC) 489#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 490 _REGION3_ENTRY_LARGE | \ 491 _REGION3_ENTRY_READ | \ 492 _REGION3_ENTRY_YOUNG | \ 493 _REGION_ENTRY_PROTECT | \ 494 _REGION_ENTRY_NOEXEC) 495 496static inline bool mm_p4d_folded(struct mm_struct *mm) 497{ 498 return mm->context.asce_limit <= _REGION1_SIZE; 499} 500#define mm_p4d_folded(mm) mm_p4d_folded(mm) 501 502static inline bool mm_pud_folded(struct mm_struct *mm) 503{ 504 return mm->context.asce_limit <= _REGION2_SIZE; 505} 506#define mm_pud_folded(mm) mm_pud_folded(mm) 507 508static inline bool mm_pmd_folded(struct mm_struct *mm) 509{ 510 return mm->context.asce_limit <= _REGION3_SIZE; 511} 512#define mm_pmd_folded(mm) mm_pmd_folded(mm) 513 514static inline int mm_has_pgste(struct mm_struct *mm) 515{ 516#ifdef CONFIG_PGSTE 517 if (unlikely(mm->context.has_pgste)) 518 return 1; 519#endif 520 return 0; 521} 522 523static inline int mm_alloc_pgste(struct mm_struct *mm) 524{ 525#ifdef CONFIG_PGSTE 526 if (unlikely(mm->context.alloc_pgste)) 527 return 1; 528#endif 529 return 0; 530} 531 532/* 533 * In the case that a guest uses storage keys 534 * faults should no longer be backed by zero pages 535 */ 536#define mm_forbids_zeropage mm_has_pgste 537static inline int mm_uses_skeys(struct mm_struct *mm) 538{ 539#ifdef CONFIG_PGSTE 540 if (mm->context.uses_skeys) 541 return 1; 542#endif 543 return 0; 544} 545 546static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 547{ 548 register unsigned long reg2 asm("2") = old; 549 register unsigned long reg3 asm("3") = new; 550 unsigned long address = (unsigned long)ptr | 1; 551 552 asm volatile( 553 " csp %0,%3" 554 : "+d" (reg2), "+m" (*ptr) 555 : "d" (reg3), "d" (address) 556 : "cc"); 557} 558 559static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 560{ 561 register unsigned long reg2 asm("2") = old; 562 register unsigned long reg3 asm("3") = new; 563 unsigned long address = (unsigned long)ptr | 1; 564 565 asm volatile( 566 " .insn rre,0xb98a0000,%0,%3" 567 : "+d" (reg2), "+m" (*ptr) 568 : "d" (reg3), "d" (address) 569 : "cc"); 570} 571 572#define CRDTE_DTT_PAGE 0x00UL 573#define CRDTE_DTT_SEGMENT 0x10UL 574#define CRDTE_DTT_REGION3 0x14UL 575#define CRDTE_DTT_REGION2 0x18UL 576#define CRDTE_DTT_REGION1 0x1cUL 577 578static inline void crdte(unsigned long old, unsigned long new, 579 unsigned long table, unsigned long dtt, 580 unsigned long address, unsigned long asce) 581{ 582 register unsigned long reg2 asm("2") = old; 583 register unsigned long reg3 asm("3") = new; 584 register unsigned long reg4 asm("4") = table | dtt; 585 register unsigned long reg5 asm("5") = address; 586 587 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 588 : "+d" (reg2) 589 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 590 : "memory", "cc"); 591} 592 593/* 594 * pgd/p4d/pud/pmd/pte query functions 595 */ 596static inline int pgd_folded(pgd_t pgd) 597{ 598 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 599} 600 601static inline int pgd_present(pgd_t pgd) 602{ 603 if (pgd_folded(pgd)) 604 return 1; 605 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 606} 607 608static inline int pgd_none(pgd_t pgd) 609{ 610 if (pgd_folded(pgd)) 611 return 0; 612 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 613} 614 615static inline int pgd_bad(pgd_t pgd) 616{ 617 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 618 return 0; 619 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 620} 621 622static inline unsigned long pgd_pfn(pgd_t pgd) 623{ 624 unsigned long origin_mask; 625 626 origin_mask = _REGION_ENTRY_ORIGIN; 627 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 628} 629 630static inline int p4d_folded(p4d_t p4d) 631{ 632 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 633} 634 635static inline int p4d_present(p4d_t p4d) 636{ 637 if (p4d_folded(p4d)) 638 return 1; 639 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 640} 641 642static inline int p4d_none(p4d_t p4d) 643{ 644 if (p4d_folded(p4d)) 645 return 0; 646 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 647} 648 649static inline unsigned long p4d_pfn(p4d_t p4d) 650{ 651 unsigned long origin_mask; 652 653 origin_mask = _REGION_ENTRY_ORIGIN; 654 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 655} 656 657static inline int pud_folded(pud_t pud) 658{ 659 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 660} 661 662static inline int pud_present(pud_t pud) 663{ 664 if (pud_folded(pud)) 665 return 1; 666 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 667} 668 669static inline int pud_none(pud_t pud) 670{ 671 if (pud_folded(pud)) 672 return 0; 673 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 674} 675 676#define pud_leaf pud_large 677static inline int pud_large(pud_t pud) 678{ 679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 680 return 0; 681 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 682} 683 684static inline unsigned long pud_pfn(pud_t pud) 685{ 686 unsigned long origin_mask; 687 688 origin_mask = _REGION_ENTRY_ORIGIN; 689 if (pud_large(pud)) 690 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 691 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 692} 693 694#define pmd_leaf pmd_large 695static inline int pmd_large(pmd_t pmd) 696{ 697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 698} 699 700static inline int pmd_bad(pmd_t pmd) 701{ 702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 703 return 1; 704 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 705} 706 707static inline int pud_bad(pud_t pud) 708{ 709 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 710 711 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 712 return 1; 713 if (type < _REGION_ENTRY_TYPE_R3) 714 return 0; 715 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 716} 717 718static inline int p4d_bad(p4d_t p4d) 719{ 720 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 721 722 if (type > _REGION_ENTRY_TYPE_R2) 723 return 1; 724 if (type < _REGION_ENTRY_TYPE_R2) 725 return 0; 726 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 727} 728 729static inline int pmd_present(pmd_t pmd) 730{ 731 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 732} 733 734static inline int pmd_none(pmd_t pmd) 735{ 736 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 737} 738 739static inline unsigned long pmd_pfn(pmd_t pmd) 740{ 741 unsigned long origin_mask; 742 743 origin_mask = _SEGMENT_ENTRY_ORIGIN; 744 if (pmd_large(pmd)) 745 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 746 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 747} 748 749#define pmd_write pmd_write 750static inline int pmd_write(pmd_t pmd) 751{ 752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 753} 754 755#define pud_write pud_write 756static inline int pud_write(pud_t pud) 757{ 758 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 759} 760 761static inline int pmd_dirty(pmd_t pmd) 762{ 763 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 764} 765 766static inline int pmd_young(pmd_t pmd) 767{ 768 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 769} 770 771static inline int pte_present(pte_t pte) 772{ 773 /* Bit pattern: (pte & 0x001) == 0x001 */ 774 return (pte_val(pte) & _PAGE_PRESENT) != 0; 775} 776 777static inline int pte_none(pte_t pte) 778{ 779 /* Bit pattern: pte == 0x400 */ 780 return pte_val(pte) == _PAGE_INVALID; 781} 782 783static inline int pte_swap(pte_t pte) 784{ 785 /* Bit pattern: (pte & 0x201) == 0x200 */ 786 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 787 == _PAGE_PROTECT; 788} 789 790static inline int pte_special(pte_t pte) 791{ 792 return (pte_val(pte) & _PAGE_SPECIAL); 793} 794 795#define __HAVE_ARCH_PTE_SAME 796static inline int pte_same(pte_t a, pte_t b) 797{ 798 return pte_val(a) == pte_val(b); 799} 800 801#ifdef CONFIG_NUMA_BALANCING 802static inline int pte_protnone(pte_t pte) 803{ 804 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 805} 806 807static inline int pmd_protnone(pmd_t pmd) 808{ 809 /* pmd_large(pmd) implies pmd_present(pmd) */ 810 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 811} 812#endif 813 814static inline int pte_soft_dirty(pte_t pte) 815{ 816 return pte_val(pte) & _PAGE_SOFT_DIRTY; 817} 818#define pte_swp_soft_dirty pte_soft_dirty 819 820static inline pte_t pte_mksoft_dirty(pte_t pte) 821{ 822 pte_val(pte) |= _PAGE_SOFT_DIRTY; 823 return pte; 824} 825#define pte_swp_mksoft_dirty pte_mksoft_dirty 826 827static inline pte_t pte_clear_soft_dirty(pte_t pte) 828{ 829 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 830 return pte; 831} 832#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 833 834static inline int pmd_soft_dirty(pmd_t pmd) 835{ 836 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 837} 838 839static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 840{ 841 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 842 return pmd; 843} 844 845static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 846{ 847 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 848 return pmd; 849} 850 851/* 852 * query functions pte_write/pte_dirty/pte_young only work if 853 * pte_present() is true. Undefined behaviour if not.. 854 */ 855static inline int pte_write(pte_t pte) 856{ 857 return (pte_val(pte) & _PAGE_WRITE) != 0; 858} 859 860static inline int pte_dirty(pte_t pte) 861{ 862 return (pte_val(pte) & _PAGE_DIRTY) != 0; 863} 864 865static inline int pte_young(pte_t pte) 866{ 867 return (pte_val(pte) & _PAGE_YOUNG) != 0; 868} 869 870#define __HAVE_ARCH_PTE_UNUSED 871static inline int pte_unused(pte_t pte) 872{ 873 return pte_val(pte) & _PAGE_UNUSED; 874} 875 876/* 877 * pgd/pmd/pte modification functions 878 */ 879 880static inline void pgd_clear(pgd_t *pgd) 881{ 882 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 883 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 884} 885 886static inline void p4d_clear(p4d_t *p4d) 887{ 888 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 889 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 890} 891 892static inline void pud_clear(pud_t *pud) 893{ 894 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 895 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 896} 897 898static inline void pmd_clear(pmd_t *pmdp) 899{ 900 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 901} 902 903static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 904{ 905 pte_val(*ptep) = _PAGE_INVALID; 906} 907 908/* 909 * The following pte modification functions only work if 910 * pte_present() is true. Undefined behaviour if not.. 911 */ 912static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 913{ 914 pte_val(pte) &= _PAGE_CHG_MASK; 915 pte_val(pte) |= pgprot_val(newprot); 916 /* 917 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 918 * has the invalid bit set, clear it again for readable, young pages 919 */ 920 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 921 pte_val(pte) &= ~_PAGE_INVALID; 922 /* 923 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 924 * protection bit set, clear it again for writable, dirty pages 925 */ 926 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 927 pte_val(pte) &= ~_PAGE_PROTECT; 928 return pte; 929} 930 931static inline pte_t pte_wrprotect(pte_t pte) 932{ 933 pte_val(pte) &= ~_PAGE_WRITE; 934 pte_val(pte) |= _PAGE_PROTECT; 935 return pte; 936} 937 938static inline pte_t pte_mkwrite(pte_t pte) 939{ 940 pte_val(pte) |= _PAGE_WRITE; 941 if (pte_val(pte) & _PAGE_DIRTY) 942 pte_val(pte) &= ~_PAGE_PROTECT; 943 return pte; 944} 945 946static inline pte_t pte_mkclean(pte_t pte) 947{ 948 pte_val(pte) &= ~_PAGE_DIRTY; 949 pte_val(pte) |= _PAGE_PROTECT; 950 return pte; 951} 952 953static inline pte_t pte_mkdirty(pte_t pte) 954{ 955 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 956 if (pte_val(pte) & _PAGE_WRITE) 957 pte_val(pte) &= ~_PAGE_PROTECT; 958 return pte; 959} 960 961static inline pte_t pte_mkold(pte_t pte) 962{ 963 pte_val(pte) &= ~_PAGE_YOUNG; 964 pte_val(pte) |= _PAGE_INVALID; 965 return pte; 966} 967 968static inline pte_t pte_mkyoung(pte_t pte) 969{ 970 pte_val(pte) |= _PAGE_YOUNG; 971 if (pte_val(pte) & _PAGE_READ) 972 pte_val(pte) &= ~_PAGE_INVALID; 973 return pte; 974} 975 976static inline pte_t pte_mkspecial(pte_t pte) 977{ 978 pte_val(pte) |= _PAGE_SPECIAL; 979 return pte; 980} 981 982#ifdef CONFIG_HUGETLB_PAGE 983static inline pte_t pte_mkhuge(pte_t pte) 984{ 985 pte_val(pte) |= _PAGE_LARGE; 986 return pte; 987} 988#endif 989 990#define IPTE_GLOBAL 0 991#define IPTE_LOCAL 1 992 993#define IPTE_NODAT 0x400 994#define IPTE_GUEST_ASCE 0x800 995 996static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 997 unsigned long opt, unsigned long asce, 998 int local) 999{ 1000 unsigned long pto = (unsigned long) ptep; 1001 1002 if (__builtin_constant_p(opt) && opt == 0) { 1003 /* Invalidation + TLB flush for the pte */ 1004 asm volatile( 1005 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 1006 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1007 [m4] "i" (local)); 1008 return; 1009 } 1010 1011 /* Invalidate ptes with options + TLB flush of the ptes */ 1012 opt = opt | (asce & _ASCE_ORIGIN); 1013 asm volatile( 1014 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1015 : [r2] "+a" (address), [r3] "+a" (opt) 1016 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1017} 1018 1019static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1020 pte_t *ptep, int local) 1021{ 1022 unsigned long pto = (unsigned long) ptep; 1023 1024 /* Invalidate a range of ptes + TLB flush of the ptes */ 1025 do { 1026 asm volatile( 1027 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1028 : [r2] "+a" (address), [r3] "+a" (nr) 1029 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1030 } while (nr != 255); 1031} 1032 1033/* 1034 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1035 * both clear the TLB for the unmapped pte. The reason is that 1036 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1037 * to modify an active pte. The sequence is 1038 * 1) ptep_get_and_clear 1039 * 2) set_pte_at 1040 * 3) flush_tlb_range 1041 * On s390 the tlb needs to get flushed with the modification of the pte 1042 * if the pte is active. The only way how this can be implemented is to 1043 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1044 * is a nop. 1045 */ 1046pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1047pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1048 1049#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1050static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1051 unsigned long addr, pte_t *ptep) 1052{ 1053 pte_t pte = *ptep; 1054 1055 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1056 return pte_young(pte); 1057} 1058 1059#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1060static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1061 unsigned long address, pte_t *ptep) 1062{ 1063 return ptep_test_and_clear_young(vma, address, ptep); 1064} 1065 1066#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1067static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1068 unsigned long addr, pte_t *ptep) 1069{ 1070 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1071} 1072 1073#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1074pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1075void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1076 pte_t *, pte_t, pte_t); 1077 1078#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1079static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1080 unsigned long addr, pte_t *ptep) 1081{ 1082 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1083} 1084 1085/* 1086 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1087 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1088 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1089 * cannot be accessed while the batched unmap is running. In this case 1090 * full==1 and a simple pte_clear is enough. See tlb.h. 1091 */ 1092#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1093static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1094 unsigned long addr, 1095 pte_t *ptep, int full) 1096{ 1097 if (full) { 1098 pte_t pte = *ptep; 1099 *ptep = __pte(_PAGE_INVALID); 1100 return pte; 1101 } 1102 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1103} 1104 1105#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1106static inline void ptep_set_wrprotect(struct mm_struct *mm, 1107 unsigned long addr, pte_t *ptep) 1108{ 1109 pte_t pte = *ptep; 1110 1111 if (pte_write(pte)) 1112 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1113} 1114 1115#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1116static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1117 unsigned long addr, pte_t *ptep, 1118 pte_t entry, int dirty) 1119{ 1120 if (pte_same(*ptep, entry)) 1121 return 0; 1122 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1123 return 1; 1124} 1125 1126/* 1127 * Additional functions to handle KVM guest page tables 1128 */ 1129void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1130 pte_t *ptep, pte_t entry); 1131void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1132void ptep_notify(struct mm_struct *mm, unsigned long addr, 1133 pte_t *ptep, unsigned long bits); 1134int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1135 pte_t *ptep, int prot, unsigned long bit); 1136void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1137 pte_t *ptep , int reset); 1138void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1139int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1140 pte_t *sptep, pte_t *tptep, pte_t pte); 1141void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1142 1143bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1144 pte_t *ptep); 1145int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1146 unsigned char key, bool nq); 1147int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1148 unsigned char key, unsigned char *oldkey, 1149 bool nq, bool mr, bool mc); 1150int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1151int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1152 unsigned char *key); 1153 1154int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1155 unsigned long bits, unsigned long value); 1156int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1157int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1158 unsigned long *oldpte, unsigned long *oldpgste); 1159void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1160void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1161void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1162void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1163 1164/* 1165 * Certain architectures need to do special things when PTEs 1166 * within a page table are directly modified. Thus, the following 1167 * hook is made available. 1168 */ 1169static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1170 pte_t *ptep, pte_t entry) 1171{ 1172 if (pte_present(entry)) 1173 pte_val(entry) &= ~_PAGE_UNUSED; 1174 if (mm_has_pgste(mm)) 1175 ptep_set_pte_at(mm, addr, ptep, entry); 1176 else 1177 *ptep = entry; 1178} 1179 1180/* 1181 * Conversion functions: convert a page and protection to a page entry, 1182 * and a page entry and page directory to the page they refer to. 1183 */ 1184static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1185{ 1186 pte_t __pte; 1187 pte_val(__pte) = physpage + pgprot_val(pgprot); 1188 if (!MACHINE_HAS_NX) 1189 pte_val(__pte) &= ~_PAGE_NOEXEC; 1190 return pte_mkyoung(__pte); 1191} 1192 1193static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1194{ 1195 unsigned long physpage = page_to_phys(page); 1196 pte_t __pte = mk_pte_phys(physpage, pgprot); 1197 1198 if (pte_write(__pte) && PageDirty(page)) 1199 __pte = pte_mkdirty(__pte); 1200 return __pte; 1201} 1202 1203#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1204#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1205#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1206#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1207#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1208 1209#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1210#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1211#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1212#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1213 1214/* 1215 * The pgd_offset function *always* adds the index for the top-level 1216 * region/segment table. This is done to get a sequence like the 1217 * following to work: 1218 * pgdp = pgd_offset(current->mm, addr); 1219 * pgd = READ_ONCE(*pgdp); 1220 * p4dp = p4d_offset(&pgd, addr); 1221 * ... 1222 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1223 * only add an index if they dereferenced the pointer. 1224 */ 1225static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1226{ 1227 unsigned long rste; 1228 unsigned int shift; 1229 1230 /* Get the first entry of the top level table */ 1231 rste = pgd_val(*pgd); 1232 /* Pick up the shift from the table type of the first entry */ 1233 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1234 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1235} 1236 1237#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1238#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1239 1240static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1241{ 1242 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1243 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address); 1244 return (p4d_t *) pgd; 1245} 1246 1247static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1248{ 1249 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1250 return (pud_t *) p4d_deref(*p4d) + pud_index(address); 1251 return (pud_t *) p4d; 1252} 1253 1254static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1255{ 1256 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1257 return (pmd_t *) pud_deref(*pud) + pmd_index(address); 1258 return (pmd_t *) pud; 1259} 1260 1261static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address) 1262{ 1263 return (pte_t *) pmd_deref(*pmd) + pte_index(address); 1264} 1265 1266#define pte_offset_kernel(pmd, address) pte_offset(pmd, address) 1267#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1268 1269static inline void pte_unmap(pte_t *pte) { } 1270 1271static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1272{ 1273 return end <= current->mm->context.asce_limit; 1274} 1275#define gup_fast_permitted gup_fast_permitted 1276 1277#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1278#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1279#define pte_page(x) pfn_to_page(pte_pfn(x)) 1280 1281#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1282#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1283#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1284#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1285 1286static inline pmd_t pmd_wrprotect(pmd_t pmd) 1287{ 1288 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1289 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1290 return pmd; 1291} 1292 1293static inline pmd_t pmd_mkwrite(pmd_t pmd) 1294{ 1295 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1296 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1297 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1298 return pmd; 1299} 1300 1301static inline pmd_t pmd_mkclean(pmd_t pmd) 1302{ 1303 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1304 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1305 return pmd; 1306} 1307 1308static inline pmd_t pmd_mkdirty(pmd_t pmd) 1309{ 1310 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY; 1311 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1312 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1313 return pmd; 1314} 1315 1316static inline pud_t pud_wrprotect(pud_t pud) 1317{ 1318 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1319 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1320 return pud; 1321} 1322 1323static inline pud_t pud_mkwrite(pud_t pud) 1324{ 1325 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1326 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1327 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1328 return pud; 1329} 1330 1331static inline pud_t pud_mkclean(pud_t pud) 1332{ 1333 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1334 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1335 return pud; 1336} 1337 1338static inline pud_t pud_mkdirty(pud_t pud) 1339{ 1340 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY; 1341 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1342 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1343 return pud; 1344} 1345 1346#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1347static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1348{ 1349 /* 1350 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1351 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1352 */ 1353 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1354 return pgprot_val(SEGMENT_NONE); 1355 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1356 return pgprot_val(SEGMENT_RO); 1357 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1358 return pgprot_val(SEGMENT_RX); 1359 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1360 return pgprot_val(SEGMENT_RW); 1361 return pgprot_val(SEGMENT_RWX); 1362} 1363 1364static inline pmd_t pmd_mkyoung(pmd_t pmd) 1365{ 1366 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1367 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1368 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1369 return pmd; 1370} 1371 1372static inline pmd_t pmd_mkold(pmd_t pmd) 1373{ 1374 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1375 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1376 return pmd; 1377} 1378 1379static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1380{ 1381 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1382 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1383 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1384 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1385 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1386 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1387 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1388 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1389 return pmd; 1390} 1391 1392static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1393{ 1394 pmd_t __pmd; 1395 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1396 return __pmd; 1397} 1398 1399#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1400 1401static inline void __pmdp_csp(pmd_t *pmdp) 1402{ 1403 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1404 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1405} 1406 1407#define IDTE_GLOBAL 0 1408#define IDTE_LOCAL 1 1409 1410#define IDTE_PTOA 0x0800 1411#define IDTE_NODAT 0x1000 1412#define IDTE_GUEST_ASCE 0x2000 1413 1414static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1415 unsigned long opt, unsigned long asce, 1416 int local) 1417{ 1418 unsigned long sto; 1419 1420 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1421 if (__builtin_constant_p(opt) && opt == 0) { 1422 /* flush without guest asce */ 1423 asm volatile( 1424 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1425 : "+m" (*pmdp) 1426 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1427 [m4] "i" (local) 1428 : "cc" ); 1429 } else { 1430 /* flush with guest asce */ 1431 asm volatile( 1432 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1433 : "+m" (*pmdp) 1434 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1435 [r3] "a" (asce), [m4] "i" (local) 1436 : "cc" ); 1437 } 1438} 1439 1440static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1441 unsigned long opt, unsigned long asce, 1442 int local) 1443{ 1444 unsigned long r3o; 1445 1446 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1447 r3o |= _ASCE_TYPE_REGION3; 1448 if (__builtin_constant_p(opt) && opt == 0) { 1449 /* flush without guest asce */ 1450 asm volatile( 1451 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1452 : "+m" (*pudp) 1453 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1454 [m4] "i" (local) 1455 : "cc"); 1456 } else { 1457 /* flush with guest asce */ 1458 asm volatile( 1459 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1460 : "+m" (*pudp) 1461 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1462 [r3] "a" (asce), [m4] "i" (local) 1463 : "cc" ); 1464 } 1465} 1466 1467pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1468pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1469pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1470 1471#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1472 1473#define __HAVE_ARCH_PGTABLE_DEPOSIT 1474void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1475 pgtable_t pgtable); 1476 1477#define __HAVE_ARCH_PGTABLE_WITHDRAW 1478pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1479 1480#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1481static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1482 unsigned long addr, pmd_t *pmdp, 1483 pmd_t entry, int dirty) 1484{ 1485 VM_BUG_ON(addr & ~HPAGE_MASK); 1486 1487 entry = pmd_mkyoung(entry); 1488 if (dirty) 1489 entry = pmd_mkdirty(entry); 1490 if (pmd_val(*pmdp) == pmd_val(entry)) 1491 return 0; 1492 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1493 return 1; 1494} 1495 1496#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1497static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1498 unsigned long addr, pmd_t *pmdp) 1499{ 1500 pmd_t pmd = *pmdp; 1501 1502 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1503 return pmd_young(pmd); 1504} 1505 1506#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1507static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1508 unsigned long addr, pmd_t *pmdp) 1509{ 1510 VM_BUG_ON(addr & ~HPAGE_MASK); 1511 return pmdp_test_and_clear_young(vma, addr, pmdp); 1512} 1513 1514static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1515 pmd_t *pmdp, pmd_t entry) 1516{ 1517 if (!MACHINE_HAS_NX) 1518 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1519 *pmdp = entry; 1520} 1521 1522static inline pmd_t pmd_mkhuge(pmd_t pmd) 1523{ 1524 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1525 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1526 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1527 return pmd; 1528} 1529 1530#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1531static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1532 unsigned long addr, pmd_t *pmdp) 1533{ 1534 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1535} 1536 1537#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1538static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1539 unsigned long addr, 1540 pmd_t *pmdp, int full) 1541{ 1542 if (full) { 1543 pmd_t pmd = *pmdp; 1544 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1545 return pmd; 1546 } 1547 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1548} 1549 1550#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1551static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1552 unsigned long addr, pmd_t *pmdp) 1553{ 1554 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1555} 1556 1557#define __HAVE_ARCH_PMDP_INVALIDATE 1558static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1559 unsigned long addr, pmd_t *pmdp) 1560{ 1561 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1562 1563 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1564} 1565 1566#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1567static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1568 unsigned long addr, pmd_t *pmdp) 1569{ 1570 pmd_t pmd = *pmdp; 1571 1572 if (pmd_write(pmd)) 1573 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1574} 1575 1576static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1577 unsigned long address, 1578 pmd_t *pmdp) 1579{ 1580 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1581} 1582#define pmdp_collapse_flush pmdp_collapse_flush 1583 1584#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1585#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1586 1587static inline int pmd_trans_huge(pmd_t pmd) 1588{ 1589 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1590} 1591 1592#define has_transparent_hugepage has_transparent_hugepage 1593static inline int has_transparent_hugepage(void) 1594{ 1595 return MACHINE_HAS_EDAT1 ? 1 : 0; 1596} 1597#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1598 1599/* 1600 * 64 bit swap entry format: 1601 * A page-table entry has some bits we have to treat in a special way. 1602 * Bits 52 and bit 55 have to be zero, otherwise a specification 1603 * exception will occur instead of a page translation exception. The 1604 * specification exception has the bad habit not to store necessary 1605 * information in the lowcore. 1606 * Bits 54 and 63 are used to indicate the page type. 1607 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1608 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1609 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1610 * for the offset. 1611 * | offset |01100|type |00| 1612 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1613 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1614 */ 1615 1616#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1617#define __SWP_OFFSET_SHIFT 12 1618#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1619#define __SWP_TYPE_SHIFT 2 1620 1621static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1622{ 1623 pte_t pte; 1624 1625 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1626 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1627 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1628 return pte; 1629} 1630 1631static inline unsigned long __swp_type(swp_entry_t entry) 1632{ 1633 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1634} 1635 1636static inline unsigned long __swp_offset(swp_entry_t entry) 1637{ 1638 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1639} 1640 1641static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1642{ 1643 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1644} 1645 1646#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1647#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1648 1649#define kern_addr_valid(addr) (1) 1650 1651extern int vmem_add_mapping(unsigned long start, unsigned long size); 1652extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1653extern int s390_enable_sie(void); 1654extern int s390_enable_skey(void); 1655extern void s390_reset_cmma(struct mm_struct *mm); 1656 1657/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1658#define HAVE_ARCH_UNMAPPED_AREA 1659#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1660 1661#include <asm-generic/pgtable.h> 1662 1663#endif /* _S390_PAGE_H */