Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
89#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
90extern struct page *vmemmap;
91
92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93
94extern unsigned long MODULES_VADDR;
95extern unsigned long MODULES_END;
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108}
109
110/*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161/* Hardware bits in the page table entry */
162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163#define _PAGE_PROTECT 0x200 /* HW read-only bit */
164#define _PAGE_INVALID 0x400 /* HW invalid bit */
165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167/* Software bits in the page table entry */
168#define _PAGE_PRESENT 0x001 /* SW pte present bit */
169#define _PAGE_YOUNG 0x004 /* SW pte young bit */
170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171#define _PAGE_READ 0x010 /* SW pte read bit */
172#define _PAGE_WRITE 0x020 /* SW pte write bit */
173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182/* Set of bits not changed in pte_modify */
183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186/*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223/* Bits in the segment/region table address-space-control-element */
224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228#define _ASCE_REAL_SPACE 0x20 /* real space control */
229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236/* Bits in the region table entry */
237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262#ifdef CONFIG_MEM_SOFT_DIRTY
263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264#else
265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266#endif
267
268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269
270/* Bits in the segment table entry */
271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
273#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
274#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
275#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
276#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
277#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
278#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
279#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
280
281#define _SEGMENT_ENTRY (0)
282#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
283
284#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
285#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
286#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
287#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
288#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
289
290#ifdef CONFIG_MEM_SOFT_DIRTY
291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292#else
293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294#endif
295
296#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
297#define _PAGE_ENTRIES 256 /* number of page table entries */
298
299#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301
302#define _REGION1_SHIFT 53
303#define _REGION2_SHIFT 42
304#define _REGION3_SHIFT 31
305#define _SEGMENT_SHIFT 20
306
307#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
308#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
309#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
310#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
311#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
312
313#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
314#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
315#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
316#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
317
318#define _REGION1_MASK (~(_REGION1_SIZE - 1))
319#define _REGION2_MASK (~(_REGION2_SIZE - 1))
320#define _REGION3_MASK (~(_REGION3_SIZE - 1))
321#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
322
323#define PMD_SHIFT _SEGMENT_SHIFT
324#define PUD_SHIFT _REGION3_SHIFT
325#define P4D_SHIFT _REGION2_SHIFT
326#define PGDIR_SHIFT _REGION1_SHIFT
327
328#define PMD_SIZE _SEGMENT_SIZE
329#define PUD_SIZE _REGION3_SIZE
330#define P4D_SIZE _REGION2_SIZE
331#define PGDIR_SIZE _REGION1_SIZE
332
333#define PMD_MASK _SEGMENT_MASK
334#define PUD_MASK _REGION3_MASK
335#define P4D_MASK _REGION2_MASK
336#define PGDIR_MASK _REGION1_MASK
337
338#define PTRS_PER_PTE _PAGE_ENTRIES
339#define PTRS_PER_PMD _CRST_ENTRIES
340#define PTRS_PER_PUD _CRST_ENTRIES
341#define PTRS_PER_P4D _CRST_ENTRIES
342#define PTRS_PER_PGD _CRST_ENTRIES
343
344#define MAX_PTRS_PER_P4D PTRS_PER_P4D
345
346/*
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
349 * dy..R...I...wr
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
366 */
367
368/* Page status table bits for virtualization */
369#define PGSTE_ACC_BITS 0xf000000000000000UL
370#define PGSTE_FP_BIT 0x0800000000000000UL
371#define PGSTE_PCL_BIT 0x0080000000000000UL
372#define PGSTE_HR_BIT 0x0040000000000000UL
373#define PGSTE_HC_BIT 0x0020000000000000UL
374#define PGSTE_GR_BIT 0x0004000000000000UL
375#define PGSTE_GC_BIT 0x0002000000000000UL
376#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
379
380/* Guest Page State used for virtualization */
381#define _PGSTE_GPS_ZERO 0x0000000080000000UL
382#define _PGSTE_GPS_NODAT 0x0000000040000000UL
383#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
388
389/*
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
393 */
394#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 _ASCE_ALT_EVENT)
396
397/*
398 * Page protection definitions.
399 */
400#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
409
410#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
418
419/*
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
423 */
424 /*xwr*/
425#define __P000 PAGE_NONE
426#define __P001 PAGE_RO
427#define __P010 PAGE_RO
428#define __P011 PAGE_RO
429#define __P100 PAGE_RX
430#define __P101 PAGE_RX
431#define __P110 PAGE_RX
432#define __P111 PAGE_RX
433
434#define __S000 PAGE_NONE
435#define __S001 PAGE_RO
436#define __S010 PAGE_RW
437#define __S011 PAGE_RW
438#define __S100 PAGE_RX
439#define __S101 PAGE_RX
440#define __S110 PAGE_RWX
441#define __S111 PAGE_RWX
442
443/*
444 * Segment entry (large page) protection definitions.
445 */
446#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ)
453#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
477
478/*
479 * Region3 entry (large page) protection definitions.
480 */
481
482#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
495
496static inline bool mm_p4d_folded(struct mm_struct *mm)
497{
498 return mm->context.asce_limit <= _REGION1_SIZE;
499}
500#define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
502static inline bool mm_pud_folded(struct mm_struct *mm)
503{
504 return mm->context.asce_limit <= _REGION2_SIZE;
505}
506#define mm_pud_folded(mm) mm_pud_folded(mm)
507
508static inline bool mm_pmd_folded(struct mm_struct *mm)
509{
510 return mm->context.asce_limit <= _REGION3_SIZE;
511}
512#define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
514static inline int mm_has_pgste(struct mm_struct *mm)
515{
516#ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519#endif
520 return 0;
521}
522
523static inline int mm_alloc_pgste(struct mm_struct *mm)
524{
525#ifdef CONFIG_PGSTE
526 if (unlikely(mm->context.alloc_pgste))
527 return 1;
528#endif
529 return 0;
530}
531
532/*
533 * In the case that a guest uses storage keys
534 * faults should no longer be backed by zero pages
535 */
536#define mm_forbids_zeropage mm_has_pgste
537static inline int mm_uses_skeys(struct mm_struct *mm)
538{
539#ifdef CONFIG_PGSTE
540 if (mm->context.uses_skeys)
541 return 1;
542#endif
543 return 0;
544}
545
546static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
547{
548 register unsigned long reg2 asm("2") = old;
549 register unsigned long reg3 asm("3") = new;
550 unsigned long address = (unsigned long)ptr | 1;
551
552 asm volatile(
553 " csp %0,%3"
554 : "+d" (reg2), "+m" (*ptr)
555 : "d" (reg3), "d" (address)
556 : "cc");
557}
558
559static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
560{
561 register unsigned long reg2 asm("2") = old;
562 register unsigned long reg3 asm("3") = new;
563 unsigned long address = (unsigned long)ptr | 1;
564
565 asm volatile(
566 " .insn rre,0xb98a0000,%0,%3"
567 : "+d" (reg2), "+m" (*ptr)
568 : "d" (reg3), "d" (address)
569 : "cc");
570}
571
572#define CRDTE_DTT_PAGE 0x00UL
573#define CRDTE_DTT_SEGMENT 0x10UL
574#define CRDTE_DTT_REGION3 0x14UL
575#define CRDTE_DTT_REGION2 0x18UL
576#define CRDTE_DTT_REGION1 0x1cUL
577
578static inline void crdte(unsigned long old, unsigned long new,
579 unsigned long table, unsigned long dtt,
580 unsigned long address, unsigned long asce)
581{
582 register unsigned long reg2 asm("2") = old;
583 register unsigned long reg3 asm("3") = new;
584 register unsigned long reg4 asm("4") = table | dtt;
585 register unsigned long reg5 asm("5") = address;
586
587 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
588 : "+d" (reg2)
589 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
590 : "memory", "cc");
591}
592
593/*
594 * pgd/p4d/pud/pmd/pte query functions
595 */
596static inline int pgd_folded(pgd_t pgd)
597{
598 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
599}
600
601static inline int pgd_present(pgd_t pgd)
602{
603 if (pgd_folded(pgd))
604 return 1;
605 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
606}
607
608static inline int pgd_none(pgd_t pgd)
609{
610 if (pgd_folded(pgd))
611 return 0;
612 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
613}
614
615static inline int pgd_bad(pgd_t pgd)
616{
617 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
618 return 0;
619 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
620}
621
622static inline unsigned long pgd_pfn(pgd_t pgd)
623{
624 unsigned long origin_mask;
625
626 origin_mask = _REGION_ENTRY_ORIGIN;
627 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
628}
629
630static inline int p4d_folded(p4d_t p4d)
631{
632 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
633}
634
635static inline int p4d_present(p4d_t p4d)
636{
637 if (p4d_folded(p4d))
638 return 1;
639 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
640}
641
642static inline int p4d_none(p4d_t p4d)
643{
644 if (p4d_folded(p4d))
645 return 0;
646 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
647}
648
649static inline unsigned long p4d_pfn(p4d_t p4d)
650{
651 unsigned long origin_mask;
652
653 origin_mask = _REGION_ENTRY_ORIGIN;
654 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
655}
656
657static inline int pud_folded(pud_t pud)
658{
659 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
660}
661
662static inline int pud_present(pud_t pud)
663{
664 if (pud_folded(pud))
665 return 1;
666 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
667}
668
669static inline int pud_none(pud_t pud)
670{
671 if (pud_folded(pud))
672 return 0;
673 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
674}
675
676#define pud_leaf pud_large
677static inline int pud_large(pud_t pud)
678{
679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
680 return 0;
681 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
682}
683
684static inline unsigned long pud_pfn(pud_t pud)
685{
686 unsigned long origin_mask;
687
688 origin_mask = _REGION_ENTRY_ORIGIN;
689 if (pud_large(pud))
690 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
691 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
692}
693
694#define pmd_leaf pmd_large
695static inline int pmd_large(pmd_t pmd)
696{
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698}
699
700static inline int pmd_bad(pmd_t pmd)
701{
702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
703 return 1;
704 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
705}
706
707static inline int pud_bad(pud_t pud)
708{
709 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
710
711 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
712 return 1;
713 if (type < _REGION_ENTRY_TYPE_R3)
714 return 0;
715 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
716}
717
718static inline int p4d_bad(p4d_t p4d)
719{
720 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
721
722 if (type > _REGION_ENTRY_TYPE_R2)
723 return 1;
724 if (type < _REGION_ENTRY_TYPE_R2)
725 return 0;
726 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
727}
728
729static inline int pmd_present(pmd_t pmd)
730{
731 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
732}
733
734static inline int pmd_none(pmd_t pmd)
735{
736 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
737}
738
739static inline unsigned long pmd_pfn(pmd_t pmd)
740{
741 unsigned long origin_mask;
742
743 origin_mask = _SEGMENT_ENTRY_ORIGIN;
744 if (pmd_large(pmd))
745 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
746 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
747}
748
749#define pmd_write pmd_write
750static inline int pmd_write(pmd_t pmd)
751{
752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
753}
754
755#define pud_write pud_write
756static inline int pud_write(pud_t pud)
757{
758 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
759}
760
761static inline int pmd_dirty(pmd_t pmd)
762{
763 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764}
765
766static inline int pmd_young(pmd_t pmd)
767{
768 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
769}
770
771static inline int pte_present(pte_t pte)
772{
773 /* Bit pattern: (pte & 0x001) == 0x001 */
774 return (pte_val(pte) & _PAGE_PRESENT) != 0;
775}
776
777static inline int pte_none(pte_t pte)
778{
779 /* Bit pattern: pte == 0x400 */
780 return pte_val(pte) == _PAGE_INVALID;
781}
782
783static inline int pte_swap(pte_t pte)
784{
785 /* Bit pattern: (pte & 0x201) == 0x200 */
786 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
787 == _PAGE_PROTECT;
788}
789
790static inline int pte_special(pte_t pte)
791{
792 return (pte_val(pte) & _PAGE_SPECIAL);
793}
794
795#define __HAVE_ARCH_PTE_SAME
796static inline int pte_same(pte_t a, pte_t b)
797{
798 return pte_val(a) == pte_val(b);
799}
800
801#ifdef CONFIG_NUMA_BALANCING
802static inline int pte_protnone(pte_t pte)
803{
804 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
805}
806
807static inline int pmd_protnone(pmd_t pmd)
808{
809 /* pmd_large(pmd) implies pmd_present(pmd) */
810 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
811}
812#endif
813
814static inline int pte_soft_dirty(pte_t pte)
815{
816 return pte_val(pte) & _PAGE_SOFT_DIRTY;
817}
818#define pte_swp_soft_dirty pte_soft_dirty
819
820static inline pte_t pte_mksoft_dirty(pte_t pte)
821{
822 pte_val(pte) |= _PAGE_SOFT_DIRTY;
823 return pte;
824}
825#define pte_swp_mksoft_dirty pte_mksoft_dirty
826
827static inline pte_t pte_clear_soft_dirty(pte_t pte)
828{
829 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
830 return pte;
831}
832#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
833
834static inline int pmd_soft_dirty(pmd_t pmd)
835{
836 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
837}
838
839static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
840{
841 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
842 return pmd;
843}
844
845static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
846{
847 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
848 return pmd;
849}
850
851/*
852 * query functions pte_write/pte_dirty/pte_young only work if
853 * pte_present() is true. Undefined behaviour if not..
854 */
855static inline int pte_write(pte_t pte)
856{
857 return (pte_val(pte) & _PAGE_WRITE) != 0;
858}
859
860static inline int pte_dirty(pte_t pte)
861{
862 return (pte_val(pte) & _PAGE_DIRTY) != 0;
863}
864
865static inline int pte_young(pte_t pte)
866{
867 return (pte_val(pte) & _PAGE_YOUNG) != 0;
868}
869
870#define __HAVE_ARCH_PTE_UNUSED
871static inline int pte_unused(pte_t pte)
872{
873 return pte_val(pte) & _PAGE_UNUSED;
874}
875
876/*
877 * pgd/pmd/pte modification functions
878 */
879
880static inline void pgd_clear(pgd_t *pgd)
881{
882 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
883 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
884}
885
886static inline void p4d_clear(p4d_t *p4d)
887{
888 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
889 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
890}
891
892static inline void pud_clear(pud_t *pud)
893{
894 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
895 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
896}
897
898static inline void pmd_clear(pmd_t *pmdp)
899{
900 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
901}
902
903static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
904{
905 pte_val(*ptep) = _PAGE_INVALID;
906}
907
908/*
909 * The following pte modification functions only work if
910 * pte_present() is true. Undefined behaviour if not..
911 */
912static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
913{
914 pte_val(pte) &= _PAGE_CHG_MASK;
915 pte_val(pte) |= pgprot_val(newprot);
916 /*
917 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
918 * has the invalid bit set, clear it again for readable, young pages
919 */
920 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
921 pte_val(pte) &= ~_PAGE_INVALID;
922 /*
923 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
924 * protection bit set, clear it again for writable, dirty pages
925 */
926 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
927 pte_val(pte) &= ~_PAGE_PROTECT;
928 return pte;
929}
930
931static inline pte_t pte_wrprotect(pte_t pte)
932{
933 pte_val(pte) &= ~_PAGE_WRITE;
934 pte_val(pte) |= _PAGE_PROTECT;
935 return pte;
936}
937
938static inline pte_t pte_mkwrite(pte_t pte)
939{
940 pte_val(pte) |= _PAGE_WRITE;
941 if (pte_val(pte) & _PAGE_DIRTY)
942 pte_val(pte) &= ~_PAGE_PROTECT;
943 return pte;
944}
945
946static inline pte_t pte_mkclean(pte_t pte)
947{
948 pte_val(pte) &= ~_PAGE_DIRTY;
949 pte_val(pte) |= _PAGE_PROTECT;
950 return pte;
951}
952
953static inline pte_t pte_mkdirty(pte_t pte)
954{
955 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
956 if (pte_val(pte) & _PAGE_WRITE)
957 pte_val(pte) &= ~_PAGE_PROTECT;
958 return pte;
959}
960
961static inline pte_t pte_mkold(pte_t pte)
962{
963 pte_val(pte) &= ~_PAGE_YOUNG;
964 pte_val(pte) |= _PAGE_INVALID;
965 return pte;
966}
967
968static inline pte_t pte_mkyoung(pte_t pte)
969{
970 pte_val(pte) |= _PAGE_YOUNG;
971 if (pte_val(pte) & _PAGE_READ)
972 pte_val(pte) &= ~_PAGE_INVALID;
973 return pte;
974}
975
976static inline pte_t pte_mkspecial(pte_t pte)
977{
978 pte_val(pte) |= _PAGE_SPECIAL;
979 return pte;
980}
981
982#ifdef CONFIG_HUGETLB_PAGE
983static inline pte_t pte_mkhuge(pte_t pte)
984{
985 pte_val(pte) |= _PAGE_LARGE;
986 return pte;
987}
988#endif
989
990#define IPTE_GLOBAL 0
991#define IPTE_LOCAL 1
992
993#define IPTE_NODAT 0x400
994#define IPTE_GUEST_ASCE 0x800
995
996static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
997 unsigned long opt, unsigned long asce,
998 int local)
999{
1000 unsigned long pto = (unsigned long) ptep;
1001
1002 if (__builtin_constant_p(opt) && opt == 0) {
1003 /* Invalidation + TLB flush for the pte */
1004 asm volatile(
1005 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1006 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1007 [m4] "i" (local));
1008 return;
1009 }
1010
1011 /* Invalidate ptes with options + TLB flush of the ptes */
1012 opt = opt | (asce & _ASCE_ORIGIN);
1013 asm volatile(
1014 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1015 : [r2] "+a" (address), [r3] "+a" (opt)
1016 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1017}
1018
1019static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1020 pte_t *ptep, int local)
1021{
1022 unsigned long pto = (unsigned long) ptep;
1023
1024 /* Invalidate a range of ptes + TLB flush of the ptes */
1025 do {
1026 asm volatile(
1027 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1028 : [r2] "+a" (address), [r3] "+a" (nr)
1029 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1030 } while (nr != 255);
1031}
1032
1033/*
1034 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1035 * both clear the TLB for the unmapped pte. The reason is that
1036 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1037 * to modify an active pte. The sequence is
1038 * 1) ptep_get_and_clear
1039 * 2) set_pte_at
1040 * 3) flush_tlb_range
1041 * On s390 the tlb needs to get flushed with the modification of the pte
1042 * if the pte is active. The only way how this can be implemented is to
1043 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1044 * is a nop.
1045 */
1046pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1047pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1048
1049#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1050static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1051 unsigned long addr, pte_t *ptep)
1052{
1053 pte_t pte = *ptep;
1054
1055 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1056 return pte_young(pte);
1057}
1058
1059#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1060static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1061 unsigned long address, pte_t *ptep)
1062{
1063 return ptep_test_and_clear_young(vma, address, ptep);
1064}
1065
1066#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1067static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1068 unsigned long addr, pte_t *ptep)
1069{
1070 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1071}
1072
1073#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1074pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1075void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1076 pte_t *, pte_t, pte_t);
1077
1078#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1079static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1080 unsigned long addr, pte_t *ptep)
1081{
1082 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1083}
1084
1085/*
1086 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1087 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1088 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1089 * cannot be accessed while the batched unmap is running. In this case
1090 * full==1 and a simple pte_clear is enough. See tlb.h.
1091 */
1092#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1093static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1094 unsigned long addr,
1095 pte_t *ptep, int full)
1096{
1097 if (full) {
1098 pte_t pte = *ptep;
1099 *ptep = __pte(_PAGE_INVALID);
1100 return pte;
1101 }
1102 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1103}
1104
1105#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1106static inline void ptep_set_wrprotect(struct mm_struct *mm,
1107 unsigned long addr, pte_t *ptep)
1108{
1109 pte_t pte = *ptep;
1110
1111 if (pte_write(pte))
1112 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1113}
1114
1115#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1116static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1117 unsigned long addr, pte_t *ptep,
1118 pte_t entry, int dirty)
1119{
1120 if (pte_same(*ptep, entry))
1121 return 0;
1122 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1123 return 1;
1124}
1125
1126/*
1127 * Additional functions to handle KVM guest page tables
1128 */
1129void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1130 pte_t *ptep, pte_t entry);
1131void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1132void ptep_notify(struct mm_struct *mm, unsigned long addr,
1133 pte_t *ptep, unsigned long bits);
1134int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1135 pte_t *ptep, int prot, unsigned long bit);
1136void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep , int reset);
1138void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1139int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1140 pte_t *sptep, pte_t *tptep, pte_t pte);
1141void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1142
1143bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1144 pte_t *ptep);
1145int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1146 unsigned char key, bool nq);
1147int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1148 unsigned char key, unsigned char *oldkey,
1149 bool nq, bool mr, bool mc);
1150int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1151int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 unsigned char *key);
1153
1154int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1155 unsigned long bits, unsigned long value);
1156int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1157int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1158 unsigned long *oldpte, unsigned long *oldpgste);
1159void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1160void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1161void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1162void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1163
1164/*
1165 * Certain architectures need to do special things when PTEs
1166 * within a page table are directly modified. Thus, the following
1167 * hook is made available.
1168 */
1169static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1170 pte_t *ptep, pte_t entry)
1171{
1172 if (pte_present(entry))
1173 pte_val(entry) &= ~_PAGE_UNUSED;
1174 if (mm_has_pgste(mm))
1175 ptep_set_pte_at(mm, addr, ptep, entry);
1176 else
1177 *ptep = entry;
1178}
1179
1180/*
1181 * Conversion functions: convert a page and protection to a page entry,
1182 * and a page entry and page directory to the page they refer to.
1183 */
1184static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1185{
1186 pte_t __pte;
1187 pte_val(__pte) = physpage + pgprot_val(pgprot);
1188 if (!MACHINE_HAS_NX)
1189 pte_val(__pte) &= ~_PAGE_NOEXEC;
1190 return pte_mkyoung(__pte);
1191}
1192
1193static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1194{
1195 unsigned long physpage = page_to_phys(page);
1196 pte_t __pte = mk_pte_phys(physpage, pgprot);
1197
1198 if (pte_write(__pte) && PageDirty(page))
1199 __pte = pte_mkdirty(__pte);
1200 return __pte;
1201}
1202
1203#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1204#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1205#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1206#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1207#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1208
1209#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1210#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1211#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1212#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1213
1214/*
1215 * The pgd_offset function *always* adds the index for the top-level
1216 * region/segment table. This is done to get a sequence like the
1217 * following to work:
1218 * pgdp = pgd_offset(current->mm, addr);
1219 * pgd = READ_ONCE(*pgdp);
1220 * p4dp = p4d_offset(&pgd, addr);
1221 * ...
1222 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1223 * only add an index if they dereferenced the pointer.
1224 */
1225static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1226{
1227 unsigned long rste;
1228 unsigned int shift;
1229
1230 /* Get the first entry of the top level table */
1231 rste = pgd_val(*pgd);
1232 /* Pick up the shift from the table type of the first entry */
1233 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1234 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1235}
1236
1237#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1238#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1239
1240static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1241{
1242 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1243 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1244 return (p4d_t *) pgd;
1245}
1246
1247static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1248{
1249 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1250 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1251 return (pud_t *) p4d;
1252}
1253
1254static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1255{
1256 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1257 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1258 return (pmd_t *) pud;
1259}
1260
1261static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1262{
1263 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1264}
1265
1266#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1267#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1268
1269static inline void pte_unmap(pte_t *pte) { }
1270
1271static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1272{
1273 return end <= current->mm->context.asce_limit;
1274}
1275#define gup_fast_permitted gup_fast_permitted
1276
1277#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1278#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1279#define pte_page(x) pfn_to_page(pte_pfn(x))
1280
1281#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1282#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1283#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1284#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1285
1286static inline pmd_t pmd_wrprotect(pmd_t pmd)
1287{
1288 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1289 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1290 return pmd;
1291}
1292
1293static inline pmd_t pmd_mkwrite(pmd_t pmd)
1294{
1295 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1296 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1297 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1298 return pmd;
1299}
1300
1301static inline pmd_t pmd_mkclean(pmd_t pmd)
1302{
1303 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1304 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1305 return pmd;
1306}
1307
1308static inline pmd_t pmd_mkdirty(pmd_t pmd)
1309{
1310 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1311 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1312 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1313 return pmd;
1314}
1315
1316static inline pud_t pud_wrprotect(pud_t pud)
1317{
1318 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1319 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1320 return pud;
1321}
1322
1323static inline pud_t pud_mkwrite(pud_t pud)
1324{
1325 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1326 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1327 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1328 return pud;
1329}
1330
1331static inline pud_t pud_mkclean(pud_t pud)
1332{
1333 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1334 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1335 return pud;
1336}
1337
1338static inline pud_t pud_mkdirty(pud_t pud)
1339{
1340 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1341 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1342 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1343 return pud;
1344}
1345
1346#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348{
1349 /*
1350 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1351 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1352 */
1353 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354 return pgprot_val(SEGMENT_NONE);
1355 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1356 return pgprot_val(SEGMENT_RO);
1357 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1358 return pgprot_val(SEGMENT_RX);
1359 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1360 return pgprot_val(SEGMENT_RW);
1361 return pgprot_val(SEGMENT_RWX);
1362}
1363
1364static inline pmd_t pmd_mkyoung(pmd_t pmd)
1365{
1366 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1367 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1368 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1369 return pmd;
1370}
1371
1372static inline pmd_t pmd_mkold(pmd_t pmd)
1373{
1374 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1375 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1376 return pmd;
1377}
1378
1379static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1380{
1381 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1382 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1383 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1384 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1385 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1386 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1387 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1388 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1389 return pmd;
1390}
1391
1392static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1393{
1394 pmd_t __pmd;
1395 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1396 return __pmd;
1397}
1398
1399#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1400
1401static inline void __pmdp_csp(pmd_t *pmdp)
1402{
1403 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1404 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1405}
1406
1407#define IDTE_GLOBAL 0
1408#define IDTE_LOCAL 1
1409
1410#define IDTE_PTOA 0x0800
1411#define IDTE_NODAT 0x1000
1412#define IDTE_GUEST_ASCE 0x2000
1413
1414static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1415 unsigned long opt, unsigned long asce,
1416 int local)
1417{
1418 unsigned long sto;
1419
1420 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1421 if (__builtin_constant_p(opt) && opt == 0) {
1422 /* flush without guest asce */
1423 asm volatile(
1424 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1425 : "+m" (*pmdp)
1426 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1427 [m4] "i" (local)
1428 : "cc" );
1429 } else {
1430 /* flush with guest asce */
1431 asm volatile(
1432 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1433 : "+m" (*pmdp)
1434 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1435 [r3] "a" (asce), [m4] "i" (local)
1436 : "cc" );
1437 }
1438}
1439
1440static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1441 unsigned long opt, unsigned long asce,
1442 int local)
1443{
1444 unsigned long r3o;
1445
1446 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1447 r3o |= _ASCE_TYPE_REGION3;
1448 if (__builtin_constant_p(opt) && opt == 0) {
1449 /* flush without guest asce */
1450 asm volatile(
1451 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1452 : "+m" (*pudp)
1453 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1454 [m4] "i" (local)
1455 : "cc");
1456 } else {
1457 /* flush with guest asce */
1458 asm volatile(
1459 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1460 : "+m" (*pudp)
1461 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1462 [r3] "a" (asce), [m4] "i" (local)
1463 : "cc" );
1464 }
1465}
1466
1467pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1468pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1469pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1470
1471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1472
1473#define __HAVE_ARCH_PGTABLE_DEPOSIT
1474void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1475 pgtable_t pgtable);
1476
1477#define __HAVE_ARCH_PGTABLE_WITHDRAW
1478pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1479
1480#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1481static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1482 unsigned long addr, pmd_t *pmdp,
1483 pmd_t entry, int dirty)
1484{
1485 VM_BUG_ON(addr & ~HPAGE_MASK);
1486
1487 entry = pmd_mkyoung(entry);
1488 if (dirty)
1489 entry = pmd_mkdirty(entry);
1490 if (pmd_val(*pmdp) == pmd_val(entry))
1491 return 0;
1492 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1493 return 1;
1494}
1495
1496#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1497static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1498 unsigned long addr, pmd_t *pmdp)
1499{
1500 pmd_t pmd = *pmdp;
1501
1502 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1503 return pmd_young(pmd);
1504}
1505
1506#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1507static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1508 unsigned long addr, pmd_t *pmdp)
1509{
1510 VM_BUG_ON(addr & ~HPAGE_MASK);
1511 return pmdp_test_and_clear_young(vma, addr, pmdp);
1512}
1513
1514static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1515 pmd_t *pmdp, pmd_t entry)
1516{
1517 if (!MACHINE_HAS_NX)
1518 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1519 *pmdp = entry;
1520}
1521
1522static inline pmd_t pmd_mkhuge(pmd_t pmd)
1523{
1524 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1525 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1526 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1527 return pmd;
1528}
1529
1530#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1531static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1532 unsigned long addr, pmd_t *pmdp)
1533{
1534 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1535}
1536
1537#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1538static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1539 unsigned long addr,
1540 pmd_t *pmdp, int full)
1541{
1542 if (full) {
1543 pmd_t pmd = *pmdp;
1544 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1545 return pmd;
1546 }
1547 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1548}
1549
1550#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1551static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1552 unsigned long addr, pmd_t *pmdp)
1553{
1554 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1555}
1556
1557#define __HAVE_ARCH_PMDP_INVALIDATE
1558static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1559 unsigned long addr, pmd_t *pmdp)
1560{
1561 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1562
1563 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1564}
1565
1566#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1567static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1568 unsigned long addr, pmd_t *pmdp)
1569{
1570 pmd_t pmd = *pmdp;
1571
1572 if (pmd_write(pmd))
1573 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1574}
1575
1576static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1577 unsigned long address,
1578 pmd_t *pmdp)
1579{
1580 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1581}
1582#define pmdp_collapse_flush pmdp_collapse_flush
1583
1584#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1585#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1586
1587static inline int pmd_trans_huge(pmd_t pmd)
1588{
1589 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1590}
1591
1592#define has_transparent_hugepage has_transparent_hugepage
1593static inline int has_transparent_hugepage(void)
1594{
1595 return MACHINE_HAS_EDAT1 ? 1 : 0;
1596}
1597#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1598
1599/*
1600 * 64 bit swap entry format:
1601 * A page-table entry has some bits we have to treat in a special way.
1602 * Bits 52 and bit 55 have to be zero, otherwise a specification
1603 * exception will occur instead of a page translation exception. The
1604 * specification exception has the bad habit not to store necessary
1605 * information in the lowcore.
1606 * Bits 54 and 63 are used to indicate the page type.
1607 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1608 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1609 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1610 * for the offset.
1611 * | offset |01100|type |00|
1612 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1613 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1614 */
1615
1616#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1617#define __SWP_OFFSET_SHIFT 12
1618#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1619#define __SWP_TYPE_SHIFT 2
1620
1621static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1622{
1623 pte_t pte;
1624
1625 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1626 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1627 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1628 return pte;
1629}
1630
1631static inline unsigned long __swp_type(swp_entry_t entry)
1632{
1633 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1634}
1635
1636static inline unsigned long __swp_offset(swp_entry_t entry)
1637{
1638 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1639}
1640
1641static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1642{
1643 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1644}
1645
1646#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1647#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1648
1649#define kern_addr_valid(addr) (1)
1650
1651extern int vmem_add_mapping(unsigned long start, unsigned long size);
1652extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1653extern int s390_enable_sie(void);
1654extern int s390_enable_skey(void);
1655extern void s390_reset_cmma(struct mm_struct *mm);
1656
1657/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1658#define HAVE_ARCH_UNMAPPED_AREA
1659#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1660
1661#include <asm-generic/pgtable.h>
1662
1663#endif /* _S390_PAGE_H */