at v5.6 490 lines 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef __ASSEMBLY__ 15 16/* Page Upper Directory not used in RISC-V */ 17#include <asm-generic/pgtable-nopud.h> 18#include <asm/page.h> 19#include <asm/tlbflush.h> 20#include <linux/mm_types.h> 21 22#ifdef CONFIG_MMU 23 24#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 25#define VMALLOC_END (PAGE_OFFSET - 1) 26#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 27 28#define BPF_JIT_REGION_SIZE (SZ_128M) 29#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 30#define BPF_JIT_REGION_END (VMALLOC_END) 31 32/* 33 * Roughly size the vmemmap space to be large enough to fit enough 34 * struct pages to map half the virtual address space. Then 35 * position vmemmap directly below the VMALLOC region. 36 */ 37#define VMEMMAP_SHIFT \ 38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 39#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 40#define VMEMMAP_END (VMALLOC_START - 1) 41#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 42 43/* 44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 46 */ 47#define vmemmap ((struct page *)VMEMMAP_START) 48 49#define PCI_IO_SIZE SZ_16M 50#define PCI_IO_END VMEMMAP_START 51#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 52 53#define FIXADDR_TOP PCI_IO_START 54#ifdef CONFIG_64BIT 55#define FIXADDR_SIZE PMD_SIZE 56#else 57#define FIXADDR_SIZE PGDIR_SIZE 58#endif 59#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 60 61#endif 62 63#ifdef CONFIG_64BIT 64#include <asm/pgtable-64.h> 65#else 66#include <asm/pgtable-32.h> 67#endif /* CONFIG_64BIT */ 68 69#ifdef CONFIG_MMU 70/* Number of entries in the page global directory */ 71#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 72/* Number of entries in the page table */ 73#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 74 75/* Number of PGD entries that a user-mode program can use */ 76#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 77 78/* Page protection bits */ 79#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 80 81#define PAGE_NONE __pgprot(_PAGE_PROT_NONE) 82#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 83#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 84#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 85#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 86#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 87 _PAGE_EXEC | _PAGE_WRITE) 88 89#define PAGE_COPY PAGE_READ 90#define PAGE_COPY_EXEC PAGE_EXEC 91#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 92#define PAGE_SHARED PAGE_WRITE 93#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 94 95#define _PAGE_KERNEL (_PAGE_READ \ 96 | _PAGE_WRITE \ 97 | _PAGE_PRESENT \ 98 | _PAGE_ACCESSED \ 99 | _PAGE_DIRTY) 100 101#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 102#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 103 104#define PAGE_TABLE __pgprot(_PAGE_TABLE) 105 106/* 107 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't 108 * change the properties of memory regions. 109 */ 110#define _PAGE_IOREMAP _PAGE_KERNEL 111 112extern pgd_t swapper_pg_dir[]; 113 114/* MAP_PRIVATE permissions: xwr (copy-on-write) */ 115#define __P000 PAGE_NONE 116#define __P001 PAGE_READ 117#define __P010 PAGE_COPY 118#define __P011 PAGE_COPY 119#define __P100 PAGE_EXEC 120#define __P101 PAGE_READ_EXEC 121#define __P110 PAGE_COPY_EXEC 122#define __P111 PAGE_COPY_READ_EXEC 123 124/* MAP_SHARED permissions: xwr */ 125#define __S000 PAGE_NONE 126#define __S001 PAGE_READ 127#define __S010 PAGE_SHARED 128#define __S011 PAGE_SHARED 129#define __S100 PAGE_EXEC 130#define __S101 PAGE_READ_EXEC 131#define __S110 PAGE_SHARED_EXEC 132#define __S111 PAGE_SHARED_EXEC 133 134static inline int pmd_present(pmd_t pmd) 135{ 136 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 137} 138 139static inline int pmd_none(pmd_t pmd) 140{ 141 return (pmd_val(pmd) == 0); 142} 143 144static inline int pmd_bad(pmd_t pmd) 145{ 146 return !pmd_present(pmd); 147} 148 149#define pmd_leaf pmd_leaf 150static inline int pmd_leaf(pmd_t pmd) 151{ 152 return pmd_present(pmd) && 153 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 154} 155 156static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 157{ 158 *pmdp = pmd; 159} 160 161static inline void pmd_clear(pmd_t *pmdp) 162{ 163 set_pmd(pmdp, __pmd(0)); 164} 165 166static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 167{ 168 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 169} 170 171static inline unsigned long _pgd_pfn(pgd_t pgd) 172{ 173 return pgd_val(pgd) >> _PAGE_PFN_SHIFT; 174} 175 176#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 177 178/* Locate an entry in the page global directory */ 179static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr) 180{ 181 return mm->pgd + pgd_index(addr); 182} 183/* Locate an entry in the kernel page global directory */ 184#define pgd_offset_k(addr) pgd_offset(&init_mm, (addr)) 185 186static inline struct page *pmd_page(pmd_t pmd) 187{ 188 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 189} 190 191static inline unsigned long pmd_page_vaddr(pmd_t pmd) 192{ 193 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 194} 195 196/* Yields the page frame number (PFN) of a page table entry */ 197static inline unsigned long pte_pfn(pte_t pte) 198{ 199 return (pte_val(pte) >> _PAGE_PFN_SHIFT); 200} 201 202#define pte_page(x) pfn_to_page(pte_pfn(x)) 203 204/* Constructs a page table entry */ 205static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 206{ 207 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 208} 209 210#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 211 212#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 213 214static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr) 215{ 216 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr); 217} 218 219#define pte_offset_map(dir, addr) pte_offset_kernel((dir), (addr)) 220#define pte_unmap(pte) ((void)(pte)) 221 222static inline int pte_present(pte_t pte) 223{ 224 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 225} 226 227static inline int pte_none(pte_t pte) 228{ 229 return (pte_val(pte) == 0); 230} 231 232static inline int pte_write(pte_t pte) 233{ 234 return pte_val(pte) & _PAGE_WRITE; 235} 236 237static inline int pte_exec(pte_t pte) 238{ 239 return pte_val(pte) & _PAGE_EXEC; 240} 241 242static inline int pte_huge(pte_t pte) 243{ 244 return pte_present(pte) 245 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 246} 247 248static inline int pte_dirty(pte_t pte) 249{ 250 return pte_val(pte) & _PAGE_DIRTY; 251} 252 253static inline int pte_young(pte_t pte) 254{ 255 return pte_val(pte) & _PAGE_ACCESSED; 256} 257 258static inline int pte_special(pte_t pte) 259{ 260 return pte_val(pte) & _PAGE_SPECIAL; 261} 262 263/* static inline pte_t pte_rdprotect(pte_t pte) */ 264 265static inline pte_t pte_wrprotect(pte_t pte) 266{ 267 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 268} 269 270/* static inline pte_t pte_mkread(pte_t pte) */ 271 272static inline pte_t pte_mkwrite(pte_t pte) 273{ 274 return __pte(pte_val(pte) | _PAGE_WRITE); 275} 276 277/* static inline pte_t pte_mkexec(pte_t pte) */ 278 279static inline pte_t pte_mkdirty(pte_t pte) 280{ 281 return __pte(pte_val(pte) | _PAGE_DIRTY); 282} 283 284static inline pte_t pte_mkclean(pte_t pte) 285{ 286 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 287} 288 289static inline pte_t pte_mkyoung(pte_t pte) 290{ 291 return __pte(pte_val(pte) | _PAGE_ACCESSED); 292} 293 294static inline pte_t pte_mkold(pte_t pte) 295{ 296 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 297} 298 299static inline pte_t pte_mkspecial(pte_t pte) 300{ 301 return __pte(pte_val(pte) | _PAGE_SPECIAL); 302} 303 304static inline pte_t pte_mkhuge(pte_t pte) 305{ 306 return pte; 307} 308 309/* Modify page protection bits */ 310static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 311{ 312 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 313} 314 315#define pgd_ERROR(e) \ 316 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 317 318 319/* Commit new configuration to MMU hardware */ 320static inline void update_mmu_cache(struct vm_area_struct *vma, 321 unsigned long address, pte_t *ptep) 322{ 323 /* 324 * The kernel assumes that TLBs don't cache invalid entries, but 325 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 326 * cache flush; it is necessary even after writing invalid entries. 327 * Relying on flush_tlb_fix_spurious_fault would suffice, but 328 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 329 */ 330 local_flush_tlb_page(address); 331} 332 333#define __HAVE_ARCH_PTE_SAME 334static inline int pte_same(pte_t pte_a, pte_t pte_b) 335{ 336 return pte_val(pte_a) == pte_val(pte_b); 337} 338 339/* 340 * Certain architectures need to do special things when PTEs within 341 * a page table are directly modified. Thus, the following hook is 342 * made available. 343 */ 344static inline void set_pte(pte_t *ptep, pte_t pteval) 345{ 346 *ptep = pteval; 347} 348 349void flush_icache_pte(pte_t pte); 350 351static inline void set_pte_at(struct mm_struct *mm, 352 unsigned long addr, pte_t *ptep, pte_t pteval) 353{ 354 if (pte_present(pteval) && pte_exec(pteval)) 355 flush_icache_pte(pteval); 356 357 set_pte(ptep, pteval); 358} 359 360static inline void pte_clear(struct mm_struct *mm, 361 unsigned long addr, pte_t *ptep) 362{ 363 set_pte_at(mm, addr, ptep, __pte(0)); 364} 365 366#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 367static inline int ptep_set_access_flags(struct vm_area_struct *vma, 368 unsigned long address, pte_t *ptep, 369 pte_t entry, int dirty) 370{ 371 if (!pte_same(*ptep, entry)) 372 set_pte_at(vma->vm_mm, address, ptep, entry); 373 /* 374 * update_mmu_cache will unconditionally execute, handling both 375 * the case that the PTE changed and the spurious fault case. 376 */ 377 return true; 378} 379 380#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 381static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 382 unsigned long address, pte_t *ptep) 383{ 384 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 385} 386 387#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 388static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 389 unsigned long address, 390 pte_t *ptep) 391{ 392 if (!pte_young(*ptep)) 393 return 0; 394 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 395} 396 397#define __HAVE_ARCH_PTEP_SET_WRPROTECT 398static inline void ptep_set_wrprotect(struct mm_struct *mm, 399 unsigned long address, pte_t *ptep) 400{ 401 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 402} 403 404#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 405static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 406 unsigned long address, pte_t *ptep) 407{ 408 /* 409 * This comment is borrowed from x86, but applies equally to RISC-V: 410 * 411 * Clearing the accessed bit without a TLB flush 412 * doesn't cause data corruption. [ It could cause incorrect 413 * page aging and the (mistaken) reclaim of hot pages, but the 414 * chance of that should be relatively low. ] 415 * 416 * So as a performance optimization don't flush the TLB when 417 * clearing the accessed bit, it will eventually be flushed by 418 * a context switch or a VM operation anyway. [ In the rare 419 * event of it not getting flushed for a long time the delay 420 * shouldn't really matter because there's no real memory 421 * pressure for swapout to react to. ] 422 */ 423 return ptep_test_and_clear_young(vma, address, ptep); 424} 425 426/* 427 * Encode and decode a swap entry 428 * 429 * Format of swap PTE: 430 * bit 0: _PAGE_PRESENT (zero) 431 * bit 1: _PAGE_PROT_NONE (zero) 432 * bits 2 to 6: swap type 433 * bits 7 to XLEN-1: swap offset 434 */ 435#define __SWP_TYPE_SHIFT 2 436#define __SWP_TYPE_BITS 5 437#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 438#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 439 440#define MAX_SWAPFILES_CHECK() \ 441 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 442 443#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 444#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 445#define __swp_entry(type, offset) ((swp_entry_t) \ 446 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 447 448#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 449#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 450 451/* 452 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 453 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 454 */ 455#ifdef CONFIG_64BIT 456#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2) 457#else 458#define TASK_SIZE FIXADDR_START 459#endif 460 461#else /* CONFIG_MMU */ 462 463#define PAGE_KERNEL __pgprot(0) 464#define swapper_pg_dir NULL 465#define VMALLOC_START 0 466 467#define TASK_SIZE 0xffffffffUL 468 469#endif /* !CONFIG_MMU */ 470 471#define kern_addr_valid(addr) (1) /* FIXME */ 472 473extern void *dtb_early_va; 474void setup_bootmem(void); 475void paging_init(void); 476 477#define FIRST_USER_ADDRESS 0 478 479/* 480 * ZERO_PAGE is a global shared page that is always zero, 481 * used for zero-mapped memory areas, etc. 482 */ 483extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 484#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 485 486#include <asm-generic/pgtable.h> 487 488#endif /* !__ASSEMBLY__ */ 489 490#endif /* _ASM_RISCV_PGTABLE_H */