Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10#ifndef __ASM_MEMORY_H
11#define __ASM_MEMORY_H
12
13#include <linux/compiler.h>
14#include <linux/const.h>
15#include <linux/sizes.h>
16#include <linux/types.h>
17#include <asm/bug.h>
18#include <asm/page-def.h>
19
20/*
21 * Size of the PCI I/O space. This must remain a power of two so that
22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
23 */
24#define PCI_IO_SIZE SZ_16M
25
26/*
27 * VMEMMAP_SIZE - allows the whole linear region to be covered by
28 * a struct page array
29 *
30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
31 * needs to cover the memory region from the beginning of the 52-bit
32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
34 * of the VMEMMAP where 52-bit support is not available in hardware.
35 */
36#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
38
39/*
40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
41 * start of the TTBR1 address space.
42 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
43 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
44 * VA_BITS - the maximum number of bits for virtual addresses.
45 */
46#define VA_BITS (CONFIG_ARM64_VA_BITS)
47#define _PAGE_OFFSET(va) (-(UL(1) << (va)))
48#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
49#define KIMAGE_VADDR (MODULES_END)
50#define BPF_JIT_REGION_START (KASAN_SHADOW_END)
51#define BPF_JIT_REGION_SIZE (SZ_128M)
52#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
53#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
54#define MODULES_VADDR (BPF_JIT_REGION_END)
55#define MODULES_VSIZE (SZ_128M)
56#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
57#define PCI_IO_END (VMEMMAP_START - SZ_2M)
58#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
59#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
60
61#if VA_BITS > 48
62#define VA_BITS_MIN (48)
63#else
64#define VA_BITS_MIN (VA_BITS)
65#endif
66
67#define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
68
69#define KERNEL_START _text
70#define KERNEL_END _end
71
72/*
73 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
74 * address space for the shadow region respectively. They can bloat the stack
75 * significantly, so double the (minimum) stack size when they are in use.
76 */
77#ifdef CONFIG_KASAN
78#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
79#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
80 + KASAN_SHADOW_OFFSET)
81#define KASAN_THREAD_SHIFT 1
82#else
83#define KASAN_THREAD_SHIFT 0
84#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN))
85#endif /* CONFIG_KASAN */
86
87#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
88
89/*
90 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
91 * stacks are a multiple of page size.
92 */
93#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
94#define THREAD_SHIFT PAGE_SHIFT
95#else
96#define THREAD_SHIFT MIN_THREAD_SHIFT
97#endif
98
99#if THREAD_SHIFT >= PAGE_SHIFT
100#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
101#endif
102
103#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
104
105/*
106 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
107 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
108 * assembly.
109 */
110#ifdef CONFIG_VMAP_STACK
111#define THREAD_ALIGN (2 * THREAD_SIZE)
112#else
113#define THREAD_ALIGN THREAD_SIZE
114#endif
115
116#define IRQ_STACK_SIZE THREAD_SIZE
117
118#define OVERFLOW_STACK_SIZE SZ_4K
119
120/*
121 * Alignment of kernel segments (e.g. .text, .data).
122 */
123#if defined(CONFIG_DEBUG_ALIGN_RODATA)
124/*
125 * 4 KB granule: 1 level 2 entry
126 * 16 KB granule: 128 level 3 entries, with contiguous bit
127 * 64 KB granule: 32 level 3 entries, with contiguous bit
128 */
129#define SEGMENT_ALIGN SZ_2M
130#else
131/*
132 * 4 KB granule: 16 level 3 entries, with contiguous bit
133 * 16 KB granule: 4 level 3 entries, without contiguous bit
134 * 64 KB granule: 1 level 3 entry
135 */
136#define SEGMENT_ALIGN SZ_64K
137#endif
138
139/*
140 * Memory types available.
141 */
142#define MT_DEVICE_nGnRnE 0
143#define MT_DEVICE_nGnRE 1
144#define MT_DEVICE_GRE 2
145#define MT_NORMAL_NC 3
146#define MT_NORMAL 4
147#define MT_NORMAL_WT 5
148
149/*
150 * Memory types for Stage-2 translation
151 */
152#define MT_S2_NORMAL 0xf
153#define MT_S2_DEVICE_nGnRE 0x1
154
155/*
156 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
157 * Stage-2 enforces Normal-WB and Device-nGnRE
158 */
159#define MT_S2_FWB_NORMAL 6
160#define MT_S2_FWB_DEVICE_nGnRE 1
161
162#ifdef CONFIG_ARM64_4K_PAGES
163#define IOREMAP_MAX_ORDER (PUD_SHIFT)
164#else
165#define IOREMAP_MAX_ORDER (PMD_SHIFT)
166#endif
167
168#ifndef __ASSEMBLY__
169extern u64 vabits_actual;
170#define PAGE_END (_PAGE_END(vabits_actual))
171
172#include <linux/bitops.h>
173#include <linux/mmdebug.h>
174
175extern s64 physvirt_offset;
176extern s64 memstart_addr;
177/* PHYS_OFFSET - the physical address of the start of memory. */
178#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
179
180/* the virtual base of the kernel image (minus TEXT_OFFSET) */
181extern u64 kimage_vaddr;
182
183/* the offset between the kernel virtual and physical mappings */
184extern u64 kimage_voffset;
185
186static inline unsigned long kaslr_offset(void)
187{
188 return kimage_vaddr - KIMAGE_VADDR;
189}
190
191/*
192 * Allow all memory at the discovery stage. We will clip it later.
193 */
194#define MIN_MEMBLOCK_ADDR 0
195#define MAX_MEMBLOCK_ADDR U64_MAX
196
197/*
198 * PFNs are used to describe any physical page; this means
199 * PFN 0 == physical address 0.
200 *
201 * This is the PFN of the first RAM page in the kernel
202 * direct-mapped view. We assume this is the first page
203 * of RAM in the mem_map as well.
204 */
205#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
206
207/*
208 * When dealing with data aborts, watchpoints, or instruction traps we may end
209 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
210 * pass on to access_ok(), for instance.
211 */
212#define __untagged_addr(addr) \
213 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
214
215#define untagged_addr(addr) ({ \
216 u64 __addr = (__force u64)(addr); \
217 __addr &= __untagged_addr(__addr); \
218 (__force __typeof__(addr))__addr; \
219})
220
221#ifdef CONFIG_KASAN_SW_TAGS
222#define __tag_shifted(tag) ((u64)(tag) << 56)
223#define __tag_reset(addr) __untagged_addr(addr)
224#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
225#else
226#define __tag_shifted(tag) 0UL
227#define __tag_reset(addr) (addr)
228#define __tag_get(addr) 0
229#endif /* CONFIG_KASAN_SW_TAGS */
230
231static inline const void *__tag_set(const void *addr, u8 tag)
232{
233 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
234 return (const void *)(__addr | __tag_shifted(tag));
235}
236
237/*
238 * Physical vs virtual RAM address space conversion. These are
239 * private definitions which should NOT be used outside memory.h
240 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
241 */
242
243
244/*
245 * The linear kernel range starts at the bottom of the virtual address
246 * space. Testing the top bit for the start of the region is a
247 * sufficient check and avoids having to worry about the tag.
248 */
249#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1)))
250
251#define __lm_to_phys(addr) (((addr) + physvirt_offset))
252#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
253
254#define __virt_to_phys_nodebug(x) ({ \
255 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
256 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
257})
258
259#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
260
261#ifdef CONFIG_DEBUG_VIRTUAL
262extern phys_addr_t __virt_to_phys(unsigned long x);
263extern phys_addr_t __phys_addr_symbol(unsigned long x);
264#else
265#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
266#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
267#endif /* CONFIG_DEBUG_VIRTUAL */
268
269#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset))
270#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
271
272/*
273 * Convert a page to/from a physical address
274 */
275#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
276#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
277
278/*
279 * Note: Drivers should NOT use these. They are the wrong
280 * translation for translating DMA addresses. Use the driver
281 * DMA support - see dma-mapping.h.
282 */
283#define virt_to_phys virt_to_phys
284static inline phys_addr_t virt_to_phys(const volatile void *x)
285{
286 return __virt_to_phys((unsigned long)(x));
287}
288
289#define phys_to_virt phys_to_virt
290static inline void *phys_to_virt(phys_addr_t x)
291{
292 return (void *)(__phys_to_virt(x));
293}
294
295/*
296 * Drivers should NOT use these either.
297 */
298#define __pa(x) __virt_to_phys((unsigned long)(x))
299#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
300#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
301#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
302#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
303#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
304#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
305
306/*
307 * virt_to_page(x) convert a _valid_ virtual address to struct page *
308 * virt_addr_valid(x) indicates whether a virtual address is valid
309 */
310#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
311
312#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
313#define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
314#else
315#define page_to_virt(x) ({ \
316 __typeof__(x) __page = x; \
317 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
318 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
319 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
320})
321
322#define virt_to_page(x) ({ \
323 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
324 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
325 (struct page *)__addr; \
326})
327#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
328
329#define virt_addr_valid(addr) ({ \
330 __typeof__(addr) __addr = addr; \
331 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
332})
333
334#endif /* !ASSEMBLY */
335
336/*
337 * Given that the GIC architecture permits ITS implementations that can only be
338 * configured with a LPI table address once, GICv3 systems with many CPUs may
339 * end up reserving a lot of different regions after a kexec for their LPI
340 * tables (one per CPU), as we are forced to reuse the same memory after kexec
341 * (and thus reserve it persistently with EFI beforehand)
342 */
343#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
344# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
345#endif
346
347#include <asm-generic/memory_model.h>
348
349#endif /* __ASM_MEMORY_H */