Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329};
330ATTRIBUTE_GROUPS(mtd);
331
332static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
338static int mtd_partid_show(struct seq_file *s, void *p)
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348{
349 return single_open(file, mtd_partid_show, inode->i_private);
350}
351
352static const struct file_operations mtd_partid_debug_fops = {
353 .open = mtd_partid_debugfs_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = single_release,
357};
358
359static int mtd_partname_show(struct seq_file *s, void *p)
360{
361 struct mtd_info *mtd = s->private;
362
363 seq_printf(s, "%s\n", mtd->dbg.partname);
364
365 return 0;
366}
367
368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369{
370 return single_open(file, mtd_partname_show, inode->i_private);
371}
372
373static const struct file_operations mtd_partname_debug_fops = {
374 .open = mtd_partname_debugfs_open,
375 .read = seq_read,
376 .llseek = seq_lseek,
377 .release = single_release,
378};
379
380static struct dentry *dfs_dir_mtd;
381
382static void mtd_debugfs_populate(struct mtd_info *mtd)
383{
384 struct device *dev = &mtd->dev;
385 struct dentry *root;
386
387 if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 return;
389
390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 mtd->dbg.dfs_dir = root;
392
393 if (mtd->dbg.partid)
394 debugfs_create_file("partid", 0400, root, mtd,
395 &mtd_partid_debug_fops);
396
397 if (mtd->dbg.partname)
398 debugfs_create_file("partname", 0400, root, mtd,
399 &mtd_partname_debug_fops);
400}
401
402#ifndef CONFIG_MMU
403unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404{
405 switch (mtd->type) {
406 case MTD_RAM:
407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 case MTD_ROM:
410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 NOMMU_MAP_READ;
412 default:
413 return NOMMU_MAP_COPY;
414 }
415}
416EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417#endif
418
419static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 void *cmd)
421{
422 struct mtd_info *mtd;
423
424 mtd = container_of(n, struct mtd_info, reboot_notifier);
425 mtd->_reboot(mtd);
426
427 return NOTIFY_DONE;
428}
429
430/**
431 * mtd_wunit_to_pairing_info - get pairing information of a wunit
432 * @mtd: pointer to new MTD device info structure
433 * @wunit: write unit we are interested in
434 * @info: returned pairing information
435 *
436 * Retrieve pairing information associated to the wunit.
437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438 * paired together, and where programming a page may influence the page it is
439 * paired with.
440 * The notion of page is replaced by the term wunit (write-unit) to stay
441 * consistent with the ->writesize field.
442 *
443 * The @wunit argument can be extracted from an absolute offset using
444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445 * to @wunit.
446 *
447 * From the pairing info the MTD user can find all the wunits paired with
448 * @wunit using the following loop:
449 *
450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451 * info.pair = i;
452 * mtd_pairing_info_to_wunit(mtd, &info);
453 * ...
454 * }
455 */
456int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 struct mtd_pairing_info *info)
458{
459 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
460
461 if (wunit < 0 || wunit >= npairs)
462 return -EINVAL;
463
464 if (mtd->pairing && mtd->pairing->get_info)
465 return mtd->pairing->get_info(mtd, wunit, info);
466
467 info->group = 0;
468 info->pair = wunit;
469
470 return 0;
471}
472EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
473
474/**
475 * mtd_pairing_info_to_wunit - get wunit from pairing information
476 * @mtd: pointer to new MTD device info structure
477 * @info: pairing information struct
478 *
479 * Returns a positive number representing the wunit associated to the info
480 * struct, or a negative error code.
481 *
482 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
483 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
484 * doc).
485 *
486 * It can also be used to only program the first page of each pair (i.e.
487 * page attached to group 0), which allows one to use an MLC NAND in
488 * software-emulated SLC mode:
489 *
490 * info.group = 0;
491 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
492 * for (info.pair = 0; info.pair < npairs; info.pair++) {
493 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
494 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
495 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
496 * }
497 */
498int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
499 const struct mtd_pairing_info *info)
500{
501 int ngroups = mtd_pairing_groups(mtd);
502 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
503
504 if (!info || info->pair < 0 || info->pair >= npairs ||
505 info->group < 0 || info->group >= ngroups)
506 return -EINVAL;
507
508 if (mtd->pairing && mtd->pairing->get_wunit)
509 return mtd->pairing->get_wunit(mtd, info);
510
511 return info->pair;
512}
513EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
514
515/**
516 * mtd_pairing_groups - get the number of pairing groups
517 * @mtd: pointer to new MTD device info structure
518 *
519 * Returns the number of pairing groups.
520 *
521 * This number is usually equal to the number of bits exposed by a single
522 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
523 * to iterate over all pages of a given pair.
524 */
525int mtd_pairing_groups(struct mtd_info *mtd)
526{
527 if (!mtd->pairing || !mtd->pairing->ngroups)
528 return 1;
529
530 return mtd->pairing->ngroups;
531}
532EXPORT_SYMBOL_GPL(mtd_pairing_groups);
533
534static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
535 void *val, size_t bytes)
536{
537 struct mtd_info *mtd = priv;
538 size_t retlen;
539 int err;
540
541 err = mtd_read(mtd, offset, bytes, &retlen, val);
542 if (err && err != -EUCLEAN)
543 return err;
544
545 return retlen == bytes ? 0 : -EIO;
546}
547
548static int mtd_nvmem_add(struct mtd_info *mtd)
549{
550 struct nvmem_config config = {};
551
552 config.id = -1;
553 config.dev = &mtd->dev;
554 config.name = mtd->name;
555 config.owner = THIS_MODULE;
556 config.reg_read = mtd_nvmem_reg_read;
557 config.size = mtd->size;
558 config.word_size = 1;
559 config.stride = 1;
560 config.read_only = true;
561 config.root_only = true;
562 config.no_of_node = true;
563 config.priv = mtd;
564
565 mtd->nvmem = nvmem_register(&config);
566 if (IS_ERR(mtd->nvmem)) {
567 /* Just ignore if there is no NVMEM support in the kernel */
568 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
569 mtd->nvmem = NULL;
570 } else {
571 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
572 return PTR_ERR(mtd->nvmem);
573 }
574 }
575
576 return 0;
577}
578
579/**
580 * add_mtd_device - register an MTD device
581 * @mtd: pointer to new MTD device info structure
582 *
583 * Add a device to the list of MTD devices present in the system, and
584 * notify each currently active MTD 'user' of its arrival. Returns
585 * zero on success or non-zero on failure.
586 */
587
588int add_mtd_device(struct mtd_info *mtd)
589{
590 struct mtd_notifier *not;
591 int i, error;
592
593 /*
594 * May occur, for instance, on buggy drivers which call
595 * mtd_device_parse_register() multiple times on the same master MTD,
596 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
597 */
598 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
599 return -EEXIST;
600
601 BUG_ON(mtd->writesize == 0);
602
603 /*
604 * MTD drivers should implement ->_{write,read}() or
605 * ->_{write,read}_oob(), but not both.
606 */
607 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
608 (mtd->_read && mtd->_read_oob)))
609 return -EINVAL;
610
611 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
612 !(mtd->flags & MTD_NO_ERASE)))
613 return -EINVAL;
614
615 mutex_lock(&mtd_table_mutex);
616
617 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
618 if (i < 0) {
619 error = i;
620 goto fail_locked;
621 }
622
623 mtd->index = i;
624 mtd->usecount = 0;
625
626 /* default value if not set by driver */
627 if (mtd->bitflip_threshold == 0)
628 mtd->bitflip_threshold = mtd->ecc_strength;
629
630 if (is_power_of_2(mtd->erasesize))
631 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
632 else
633 mtd->erasesize_shift = 0;
634
635 if (is_power_of_2(mtd->writesize))
636 mtd->writesize_shift = ffs(mtd->writesize) - 1;
637 else
638 mtd->writesize_shift = 0;
639
640 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
641 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
642
643 /* Some chips always power up locked. Unlock them now */
644 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
645 error = mtd_unlock(mtd, 0, mtd->size);
646 if (error && error != -EOPNOTSUPP)
647 printk(KERN_WARNING
648 "%s: unlock failed, writes may not work\n",
649 mtd->name);
650 /* Ignore unlock failures? */
651 error = 0;
652 }
653
654 /* Caller should have set dev.parent to match the
655 * physical device, if appropriate.
656 */
657 mtd->dev.type = &mtd_devtype;
658 mtd->dev.class = &mtd_class;
659 mtd->dev.devt = MTD_DEVT(i);
660 dev_set_name(&mtd->dev, "mtd%d", i);
661 dev_set_drvdata(&mtd->dev, mtd);
662 of_node_get(mtd_get_of_node(mtd));
663 error = device_register(&mtd->dev);
664 if (error)
665 goto fail_added;
666
667 /* Add the nvmem provider */
668 error = mtd_nvmem_add(mtd);
669 if (error)
670 goto fail_nvmem_add;
671
672 mtd_debugfs_populate(mtd);
673
674 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
675 "mtd%dro", i);
676
677 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
678 /* No need to get a refcount on the module containing
679 the notifier, since we hold the mtd_table_mutex */
680 list_for_each_entry(not, &mtd_notifiers, list)
681 not->add(mtd);
682
683 mutex_unlock(&mtd_table_mutex);
684 /* We _know_ we aren't being removed, because
685 our caller is still holding us here. So none
686 of this try_ nonsense, and no bitching about it
687 either. :) */
688 __module_get(THIS_MODULE);
689 return 0;
690
691fail_nvmem_add:
692 device_unregister(&mtd->dev);
693fail_added:
694 of_node_put(mtd_get_of_node(mtd));
695 idr_remove(&mtd_idr, i);
696fail_locked:
697 mutex_unlock(&mtd_table_mutex);
698 return error;
699}
700
701/**
702 * del_mtd_device - unregister an MTD device
703 * @mtd: pointer to MTD device info structure
704 *
705 * Remove a device from the list of MTD devices present in the system,
706 * and notify each currently active MTD 'user' of its departure.
707 * Returns zero on success or 1 on failure, which currently will happen
708 * if the requested device does not appear to be present in the list.
709 */
710
711int del_mtd_device(struct mtd_info *mtd)
712{
713 int ret;
714 struct mtd_notifier *not;
715
716 mutex_lock(&mtd_table_mutex);
717
718 debugfs_remove_recursive(mtd->dbg.dfs_dir);
719
720 if (idr_find(&mtd_idr, mtd->index) != mtd) {
721 ret = -ENODEV;
722 goto out_error;
723 }
724
725 /* No need to get a refcount on the module containing
726 the notifier, since we hold the mtd_table_mutex */
727 list_for_each_entry(not, &mtd_notifiers, list)
728 not->remove(mtd);
729
730 if (mtd->usecount) {
731 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
732 mtd->index, mtd->name, mtd->usecount);
733 ret = -EBUSY;
734 } else {
735 /* Try to remove the NVMEM provider */
736 if (mtd->nvmem)
737 nvmem_unregister(mtd->nvmem);
738
739 device_unregister(&mtd->dev);
740
741 idr_remove(&mtd_idr, mtd->index);
742 of_node_put(mtd_get_of_node(mtd));
743
744 module_put(THIS_MODULE);
745 ret = 0;
746 }
747
748out_error:
749 mutex_unlock(&mtd_table_mutex);
750 return ret;
751}
752
753/*
754 * Set a few defaults based on the parent devices, if not provided by the
755 * driver
756 */
757static void mtd_set_dev_defaults(struct mtd_info *mtd)
758{
759 if (mtd->dev.parent) {
760 if (!mtd->owner && mtd->dev.parent->driver)
761 mtd->owner = mtd->dev.parent->driver->owner;
762 if (!mtd->name)
763 mtd->name = dev_name(mtd->dev.parent);
764 } else {
765 pr_debug("mtd device won't show a device symlink in sysfs\n");
766 }
767
768 mtd->orig_flags = mtd->flags;
769}
770
771/**
772 * mtd_device_parse_register - parse partitions and register an MTD device.
773 *
774 * @mtd: the MTD device to register
775 * @types: the list of MTD partition probes to try, see
776 * 'parse_mtd_partitions()' for more information
777 * @parser_data: MTD partition parser-specific data
778 * @parts: fallback partition information to register, if parsing fails;
779 * only valid if %nr_parts > %0
780 * @nr_parts: the number of partitions in parts, if zero then the full
781 * MTD device is registered if no partition info is found
782 *
783 * This function aggregates MTD partitions parsing (done by
784 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
785 * basically follows the most common pattern found in many MTD drivers:
786 *
787 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
788 * registered first.
789 * * Then It tries to probe partitions on MTD device @mtd using parsers
790 * specified in @types (if @types is %NULL, then the default list of parsers
791 * is used, see 'parse_mtd_partitions()' for more information). If none are
792 * found this functions tries to fallback to information specified in
793 * @parts/@nr_parts.
794 * * If no partitions were found this function just registers the MTD device
795 * @mtd and exits.
796 *
797 * Returns zero in case of success and a negative error code in case of failure.
798 */
799int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
800 struct mtd_part_parser_data *parser_data,
801 const struct mtd_partition *parts,
802 int nr_parts)
803{
804 int ret;
805
806 mtd_set_dev_defaults(mtd);
807
808 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
809 ret = add_mtd_device(mtd);
810 if (ret)
811 return ret;
812 }
813
814 /* Prefer parsed partitions over driver-provided fallback */
815 ret = parse_mtd_partitions(mtd, types, parser_data);
816 if (ret > 0)
817 ret = 0;
818 else if (nr_parts)
819 ret = add_mtd_partitions(mtd, parts, nr_parts);
820 else if (!device_is_registered(&mtd->dev))
821 ret = add_mtd_device(mtd);
822 else
823 ret = 0;
824
825 if (ret)
826 goto out;
827
828 /*
829 * FIXME: some drivers unfortunately call this function more than once.
830 * So we have to check if we've already assigned the reboot notifier.
831 *
832 * Generally, we can make multiple calls work for most cases, but it
833 * does cause problems with parse_mtd_partitions() above (e.g.,
834 * cmdlineparts will register partitions more than once).
835 */
836 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
837 "MTD already registered\n");
838 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
839 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
840 register_reboot_notifier(&mtd->reboot_notifier);
841 }
842
843out:
844 if (ret && device_is_registered(&mtd->dev))
845 del_mtd_device(mtd);
846
847 return ret;
848}
849EXPORT_SYMBOL_GPL(mtd_device_parse_register);
850
851/**
852 * mtd_device_unregister - unregister an existing MTD device.
853 *
854 * @master: the MTD device to unregister. This will unregister both the master
855 * and any partitions if registered.
856 */
857int mtd_device_unregister(struct mtd_info *master)
858{
859 int err;
860
861 if (master->_reboot)
862 unregister_reboot_notifier(&master->reboot_notifier);
863
864 err = del_mtd_partitions(master);
865 if (err)
866 return err;
867
868 if (!device_is_registered(&master->dev))
869 return 0;
870
871 return del_mtd_device(master);
872}
873EXPORT_SYMBOL_GPL(mtd_device_unregister);
874
875/**
876 * register_mtd_user - register a 'user' of MTD devices.
877 * @new: pointer to notifier info structure
878 *
879 * Registers a pair of callbacks function to be called upon addition
880 * or removal of MTD devices. Causes the 'add' callback to be immediately
881 * invoked for each MTD device currently present in the system.
882 */
883void register_mtd_user (struct mtd_notifier *new)
884{
885 struct mtd_info *mtd;
886
887 mutex_lock(&mtd_table_mutex);
888
889 list_add(&new->list, &mtd_notifiers);
890
891 __module_get(THIS_MODULE);
892
893 mtd_for_each_device(mtd)
894 new->add(mtd);
895
896 mutex_unlock(&mtd_table_mutex);
897}
898EXPORT_SYMBOL_GPL(register_mtd_user);
899
900/**
901 * unregister_mtd_user - unregister a 'user' of MTD devices.
902 * @old: pointer to notifier info structure
903 *
904 * Removes a callback function pair from the list of 'users' to be
905 * notified upon addition or removal of MTD devices. Causes the
906 * 'remove' callback to be immediately invoked for each MTD device
907 * currently present in the system.
908 */
909int unregister_mtd_user (struct mtd_notifier *old)
910{
911 struct mtd_info *mtd;
912
913 mutex_lock(&mtd_table_mutex);
914
915 module_put(THIS_MODULE);
916
917 mtd_for_each_device(mtd)
918 old->remove(mtd);
919
920 list_del(&old->list);
921 mutex_unlock(&mtd_table_mutex);
922 return 0;
923}
924EXPORT_SYMBOL_GPL(unregister_mtd_user);
925
926/**
927 * get_mtd_device - obtain a validated handle for an MTD device
928 * @mtd: last known address of the required MTD device
929 * @num: internal device number of the required MTD device
930 *
931 * Given a number and NULL address, return the num'th entry in the device
932 * table, if any. Given an address and num == -1, search the device table
933 * for a device with that address and return if it's still present. Given
934 * both, return the num'th driver only if its address matches. Return
935 * error code if not.
936 */
937struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
938{
939 struct mtd_info *ret = NULL, *other;
940 int err = -ENODEV;
941
942 mutex_lock(&mtd_table_mutex);
943
944 if (num == -1) {
945 mtd_for_each_device(other) {
946 if (other == mtd) {
947 ret = mtd;
948 break;
949 }
950 }
951 } else if (num >= 0) {
952 ret = idr_find(&mtd_idr, num);
953 if (mtd && mtd != ret)
954 ret = NULL;
955 }
956
957 if (!ret) {
958 ret = ERR_PTR(err);
959 goto out;
960 }
961
962 err = __get_mtd_device(ret);
963 if (err)
964 ret = ERR_PTR(err);
965out:
966 mutex_unlock(&mtd_table_mutex);
967 return ret;
968}
969EXPORT_SYMBOL_GPL(get_mtd_device);
970
971
972int __get_mtd_device(struct mtd_info *mtd)
973{
974 int err;
975
976 if (!try_module_get(mtd->owner))
977 return -ENODEV;
978
979 if (mtd->_get_device) {
980 err = mtd->_get_device(mtd);
981
982 if (err) {
983 module_put(mtd->owner);
984 return err;
985 }
986 }
987 mtd->usecount++;
988 return 0;
989}
990EXPORT_SYMBOL_GPL(__get_mtd_device);
991
992/**
993 * get_mtd_device_nm - obtain a validated handle for an MTD device by
994 * device name
995 * @name: MTD device name to open
996 *
997 * This function returns MTD device description structure in case of
998 * success and an error code in case of failure.
999 */
1000struct mtd_info *get_mtd_device_nm(const char *name)
1001{
1002 int err = -ENODEV;
1003 struct mtd_info *mtd = NULL, *other;
1004
1005 mutex_lock(&mtd_table_mutex);
1006
1007 mtd_for_each_device(other) {
1008 if (!strcmp(name, other->name)) {
1009 mtd = other;
1010 break;
1011 }
1012 }
1013
1014 if (!mtd)
1015 goto out_unlock;
1016
1017 err = __get_mtd_device(mtd);
1018 if (err)
1019 goto out_unlock;
1020
1021 mutex_unlock(&mtd_table_mutex);
1022 return mtd;
1023
1024out_unlock:
1025 mutex_unlock(&mtd_table_mutex);
1026 return ERR_PTR(err);
1027}
1028EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1029
1030void put_mtd_device(struct mtd_info *mtd)
1031{
1032 mutex_lock(&mtd_table_mutex);
1033 __put_mtd_device(mtd);
1034 mutex_unlock(&mtd_table_mutex);
1035
1036}
1037EXPORT_SYMBOL_GPL(put_mtd_device);
1038
1039void __put_mtd_device(struct mtd_info *mtd)
1040{
1041 --mtd->usecount;
1042 BUG_ON(mtd->usecount < 0);
1043
1044 if (mtd->_put_device)
1045 mtd->_put_device(mtd);
1046
1047 module_put(mtd->owner);
1048}
1049EXPORT_SYMBOL_GPL(__put_mtd_device);
1050
1051/*
1052 * Erase is an synchronous operation. Device drivers are epected to return a
1053 * negative error code if the operation failed and update instr->fail_addr
1054 * to point the portion that was not properly erased.
1055 */
1056int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1057{
1058 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1059
1060 if (!mtd->erasesize || !mtd->_erase)
1061 return -ENOTSUPP;
1062
1063 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1064 return -EINVAL;
1065 if (!(mtd->flags & MTD_WRITEABLE))
1066 return -EROFS;
1067
1068 if (!instr->len)
1069 return 0;
1070
1071 ledtrig_mtd_activity();
1072 return mtd->_erase(mtd, instr);
1073}
1074EXPORT_SYMBOL_GPL(mtd_erase);
1075
1076/*
1077 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1078 */
1079int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1080 void **virt, resource_size_t *phys)
1081{
1082 *retlen = 0;
1083 *virt = NULL;
1084 if (phys)
1085 *phys = 0;
1086 if (!mtd->_point)
1087 return -EOPNOTSUPP;
1088 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1089 return -EINVAL;
1090 if (!len)
1091 return 0;
1092 return mtd->_point(mtd, from, len, retlen, virt, phys);
1093}
1094EXPORT_SYMBOL_GPL(mtd_point);
1095
1096/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1097int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1098{
1099 if (!mtd->_unpoint)
1100 return -EOPNOTSUPP;
1101 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1102 return -EINVAL;
1103 if (!len)
1104 return 0;
1105 return mtd->_unpoint(mtd, from, len);
1106}
1107EXPORT_SYMBOL_GPL(mtd_unpoint);
1108
1109/*
1110 * Allow NOMMU mmap() to directly map the device (if not NULL)
1111 * - return the address to which the offset maps
1112 * - return -ENOSYS to indicate refusal to do the mapping
1113 */
1114unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1115 unsigned long offset, unsigned long flags)
1116{
1117 size_t retlen;
1118 void *virt;
1119 int ret;
1120
1121 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1122 if (ret)
1123 return ret;
1124 if (retlen != len) {
1125 mtd_unpoint(mtd, offset, retlen);
1126 return -ENOSYS;
1127 }
1128 return (unsigned long)virt;
1129}
1130EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1131
1132int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1133 u_char *buf)
1134{
1135 struct mtd_oob_ops ops = {
1136 .len = len,
1137 .datbuf = buf,
1138 };
1139 int ret;
1140
1141 ret = mtd_read_oob(mtd, from, &ops);
1142 *retlen = ops.retlen;
1143
1144 return ret;
1145}
1146EXPORT_SYMBOL_GPL(mtd_read);
1147
1148int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1149 const u_char *buf)
1150{
1151 struct mtd_oob_ops ops = {
1152 .len = len,
1153 .datbuf = (u8 *)buf,
1154 };
1155 int ret;
1156
1157 ret = mtd_write_oob(mtd, to, &ops);
1158 *retlen = ops.retlen;
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(mtd_write);
1163
1164/*
1165 * In blackbox flight recorder like scenarios we want to make successful writes
1166 * in interrupt context. panic_write() is only intended to be called when its
1167 * known the kernel is about to panic and we need the write to succeed. Since
1168 * the kernel is not going to be running for much longer, this function can
1169 * break locks and delay to ensure the write succeeds (but not sleep).
1170 */
1171int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1172 const u_char *buf)
1173{
1174 *retlen = 0;
1175 if (!mtd->_panic_write)
1176 return -EOPNOTSUPP;
1177 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1178 return -EINVAL;
1179 if (!(mtd->flags & MTD_WRITEABLE))
1180 return -EROFS;
1181 if (!len)
1182 return 0;
1183 if (!mtd->oops_panic_write)
1184 mtd->oops_panic_write = true;
1185
1186 return mtd->_panic_write(mtd, to, len, retlen, buf);
1187}
1188EXPORT_SYMBOL_GPL(mtd_panic_write);
1189
1190static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1191 struct mtd_oob_ops *ops)
1192{
1193 /*
1194 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1195 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1196 * this case.
1197 */
1198 if (!ops->datbuf)
1199 ops->len = 0;
1200
1201 if (!ops->oobbuf)
1202 ops->ooblen = 0;
1203
1204 if (offs < 0 || offs + ops->len > mtd->size)
1205 return -EINVAL;
1206
1207 if (ops->ooblen) {
1208 size_t maxooblen;
1209
1210 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1211 return -EINVAL;
1212
1213 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1214 mtd_div_by_ws(offs, mtd)) *
1215 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1216 if (ops->ooblen > maxooblen)
1217 return -EINVAL;
1218 }
1219
1220 return 0;
1221}
1222
1223int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1224{
1225 int ret_code;
1226 ops->retlen = ops->oobretlen = 0;
1227
1228 ret_code = mtd_check_oob_ops(mtd, from, ops);
1229 if (ret_code)
1230 return ret_code;
1231
1232 ledtrig_mtd_activity();
1233
1234 /* Check the validity of a potential fallback on mtd->_read */
1235 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1236 return -EOPNOTSUPP;
1237
1238 if (mtd->_read_oob)
1239 ret_code = mtd->_read_oob(mtd, from, ops);
1240 else
1241 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1242 ops->datbuf);
1243
1244 /*
1245 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1246 * similar to mtd->_read(), returning a non-negative integer
1247 * representing max bitflips. In other cases, mtd->_read_oob() may
1248 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1249 */
1250 if (unlikely(ret_code < 0))
1251 return ret_code;
1252 if (mtd->ecc_strength == 0)
1253 return 0; /* device lacks ecc */
1254 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1255}
1256EXPORT_SYMBOL_GPL(mtd_read_oob);
1257
1258int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1259 struct mtd_oob_ops *ops)
1260{
1261 int ret;
1262
1263 ops->retlen = ops->oobretlen = 0;
1264
1265 if (!(mtd->flags & MTD_WRITEABLE))
1266 return -EROFS;
1267
1268 ret = mtd_check_oob_ops(mtd, to, ops);
1269 if (ret)
1270 return ret;
1271
1272 ledtrig_mtd_activity();
1273
1274 /* Check the validity of a potential fallback on mtd->_write */
1275 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1276 return -EOPNOTSUPP;
1277
1278 if (mtd->_write_oob)
1279 return mtd->_write_oob(mtd, to, ops);
1280 else
1281 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1282 ops->datbuf);
1283}
1284EXPORT_SYMBOL_GPL(mtd_write_oob);
1285
1286/**
1287 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1288 * @mtd: MTD device structure
1289 * @section: ECC section. Depending on the layout you may have all the ECC
1290 * bytes stored in a single contiguous section, or one section
1291 * per ECC chunk (and sometime several sections for a single ECC
1292 * ECC chunk)
1293 * @oobecc: OOB region struct filled with the appropriate ECC position
1294 * information
1295 *
1296 * This function returns ECC section information in the OOB area. If you want
1297 * to get all the ECC bytes information, then you should call
1298 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1299 *
1300 * Returns zero on success, a negative error code otherwise.
1301 */
1302int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1303 struct mtd_oob_region *oobecc)
1304{
1305 memset(oobecc, 0, sizeof(*oobecc));
1306
1307 if (!mtd || section < 0)
1308 return -EINVAL;
1309
1310 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1311 return -ENOTSUPP;
1312
1313 return mtd->ooblayout->ecc(mtd, section, oobecc);
1314}
1315EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1316
1317/**
1318 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1319 * section
1320 * @mtd: MTD device structure
1321 * @section: Free section you are interested in. Depending on the layout
1322 * you may have all the free bytes stored in a single contiguous
1323 * section, or one section per ECC chunk plus an extra section
1324 * for the remaining bytes (or other funky layout).
1325 * @oobfree: OOB region struct filled with the appropriate free position
1326 * information
1327 *
1328 * This function returns free bytes position in the OOB area. If you want
1329 * to get all the free bytes information, then you should call
1330 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1331 *
1332 * Returns zero on success, a negative error code otherwise.
1333 */
1334int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1335 struct mtd_oob_region *oobfree)
1336{
1337 memset(oobfree, 0, sizeof(*oobfree));
1338
1339 if (!mtd || section < 0)
1340 return -EINVAL;
1341
1342 if (!mtd->ooblayout || !mtd->ooblayout->free)
1343 return -ENOTSUPP;
1344
1345 return mtd->ooblayout->free(mtd, section, oobfree);
1346}
1347EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1348
1349/**
1350 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1351 * @mtd: mtd info structure
1352 * @byte: the byte we are searching for
1353 * @sectionp: pointer where the section id will be stored
1354 * @oobregion: used to retrieve the ECC position
1355 * @iter: iterator function. Should be either mtd_ooblayout_free or
1356 * mtd_ooblayout_ecc depending on the region type you're searching for
1357 *
1358 * This function returns the section id and oobregion information of a
1359 * specific byte. For example, say you want to know where the 4th ECC byte is
1360 * stored, you'll use:
1361 *
1362 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1363 *
1364 * Returns zero on success, a negative error code otherwise.
1365 */
1366static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1367 int *sectionp, struct mtd_oob_region *oobregion,
1368 int (*iter)(struct mtd_info *,
1369 int section,
1370 struct mtd_oob_region *oobregion))
1371{
1372 int pos = 0, ret, section = 0;
1373
1374 memset(oobregion, 0, sizeof(*oobregion));
1375
1376 while (1) {
1377 ret = iter(mtd, section, oobregion);
1378 if (ret)
1379 return ret;
1380
1381 if (pos + oobregion->length > byte)
1382 break;
1383
1384 pos += oobregion->length;
1385 section++;
1386 }
1387
1388 /*
1389 * Adjust region info to make it start at the beginning at the
1390 * 'start' ECC byte.
1391 */
1392 oobregion->offset += byte - pos;
1393 oobregion->length -= byte - pos;
1394 *sectionp = section;
1395
1396 return 0;
1397}
1398
1399/**
1400 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1401 * ECC byte
1402 * @mtd: mtd info structure
1403 * @eccbyte: the byte we are searching for
1404 * @sectionp: pointer where the section id will be stored
1405 * @oobregion: OOB region information
1406 *
1407 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1408 * byte.
1409 *
1410 * Returns zero on success, a negative error code otherwise.
1411 */
1412int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1413 int *section,
1414 struct mtd_oob_region *oobregion)
1415{
1416 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1417 mtd_ooblayout_ecc);
1418}
1419EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1420
1421/**
1422 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1423 * @mtd: mtd info structure
1424 * @buf: destination buffer to store OOB bytes
1425 * @oobbuf: OOB buffer
1426 * @start: first byte to retrieve
1427 * @nbytes: number of bytes to retrieve
1428 * @iter: section iterator
1429 *
1430 * Extract bytes attached to a specific category (ECC or free)
1431 * from the OOB buffer and copy them into buf.
1432 *
1433 * Returns zero on success, a negative error code otherwise.
1434 */
1435static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1436 const u8 *oobbuf, int start, int nbytes,
1437 int (*iter)(struct mtd_info *,
1438 int section,
1439 struct mtd_oob_region *oobregion))
1440{
1441 struct mtd_oob_region oobregion;
1442 int section, ret;
1443
1444 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1445 &oobregion, iter);
1446
1447 while (!ret) {
1448 int cnt;
1449
1450 cnt = min_t(int, nbytes, oobregion.length);
1451 memcpy(buf, oobbuf + oobregion.offset, cnt);
1452 buf += cnt;
1453 nbytes -= cnt;
1454
1455 if (!nbytes)
1456 break;
1457
1458 ret = iter(mtd, ++section, &oobregion);
1459 }
1460
1461 return ret;
1462}
1463
1464/**
1465 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1466 * @mtd: mtd info structure
1467 * @buf: source buffer to get OOB bytes from
1468 * @oobbuf: OOB buffer
1469 * @start: first OOB byte to set
1470 * @nbytes: number of OOB bytes to set
1471 * @iter: section iterator
1472 *
1473 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1474 * is selected by passing the appropriate iterator.
1475 *
1476 * Returns zero on success, a negative error code otherwise.
1477 */
1478static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1479 u8 *oobbuf, int start, int nbytes,
1480 int (*iter)(struct mtd_info *,
1481 int section,
1482 struct mtd_oob_region *oobregion))
1483{
1484 struct mtd_oob_region oobregion;
1485 int section, ret;
1486
1487 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1488 &oobregion, iter);
1489
1490 while (!ret) {
1491 int cnt;
1492
1493 cnt = min_t(int, nbytes, oobregion.length);
1494 memcpy(oobbuf + oobregion.offset, buf, cnt);
1495 buf += cnt;
1496 nbytes -= cnt;
1497
1498 if (!nbytes)
1499 break;
1500
1501 ret = iter(mtd, ++section, &oobregion);
1502 }
1503
1504 return ret;
1505}
1506
1507/**
1508 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1509 * @mtd: mtd info structure
1510 * @iter: category iterator
1511 *
1512 * Count the number of bytes in a given category.
1513 *
1514 * Returns a positive value on success, a negative error code otherwise.
1515 */
1516static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1517 int (*iter)(struct mtd_info *,
1518 int section,
1519 struct mtd_oob_region *oobregion))
1520{
1521 struct mtd_oob_region oobregion;
1522 int section = 0, ret, nbytes = 0;
1523
1524 while (1) {
1525 ret = iter(mtd, section++, &oobregion);
1526 if (ret) {
1527 if (ret == -ERANGE)
1528 ret = nbytes;
1529 break;
1530 }
1531
1532 nbytes += oobregion.length;
1533 }
1534
1535 return ret;
1536}
1537
1538/**
1539 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1540 * @mtd: mtd info structure
1541 * @eccbuf: destination buffer to store ECC bytes
1542 * @oobbuf: OOB buffer
1543 * @start: first ECC byte to retrieve
1544 * @nbytes: number of ECC bytes to retrieve
1545 *
1546 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1547 *
1548 * Returns zero on success, a negative error code otherwise.
1549 */
1550int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1551 const u8 *oobbuf, int start, int nbytes)
1552{
1553 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1554 mtd_ooblayout_ecc);
1555}
1556EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1557
1558/**
1559 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1560 * @mtd: mtd info structure
1561 * @eccbuf: source buffer to get ECC bytes from
1562 * @oobbuf: OOB buffer
1563 * @start: first ECC byte to set
1564 * @nbytes: number of ECC bytes to set
1565 *
1566 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1567 *
1568 * Returns zero on success, a negative error code otherwise.
1569 */
1570int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1571 u8 *oobbuf, int start, int nbytes)
1572{
1573 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1574 mtd_ooblayout_ecc);
1575}
1576EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1577
1578/**
1579 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1580 * @mtd: mtd info structure
1581 * @databuf: destination buffer to store ECC bytes
1582 * @oobbuf: OOB buffer
1583 * @start: first ECC byte to retrieve
1584 * @nbytes: number of ECC bytes to retrieve
1585 *
1586 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1587 *
1588 * Returns zero on success, a negative error code otherwise.
1589 */
1590int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1591 const u8 *oobbuf, int start, int nbytes)
1592{
1593 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1594 mtd_ooblayout_free);
1595}
1596EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1597
1598/**
1599 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1600 * @mtd: mtd info structure
1601 * @databuf: source buffer to get data bytes from
1602 * @oobbuf: OOB buffer
1603 * @start: first ECC byte to set
1604 * @nbytes: number of ECC bytes to set
1605 *
1606 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1607 *
1608 * Returns zero on success, a negative error code otherwise.
1609 */
1610int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1611 u8 *oobbuf, int start, int nbytes)
1612{
1613 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1614 mtd_ooblayout_free);
1615}
1616EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1617
1618/**
1619 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1620 * @mtd: mtd info structure
1621 *
1622 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1623 *
1624 * Returns zero on success, a negative error code otherwise.
1625 */
1626int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1627{
1628 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1629}
1630EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1631
1632/**
1633 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1634 * @mtd: mtd info structure
1635 *
1636 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1637 *
1638 * Returns zero on success, a negative error code otherwise.
1639 */
1640int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1641{
1642 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1643}
1644EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1645
1646/*
1647 * Method to access the protection register area, present in some flash
1648 * devices. The user data is one time programmable but the factory data is read
1649 * only.
1650 */
1651int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1652 struct otp_info *buf)
1653{
1654 if (!mtd->_get_fact_prot_info)
1655 return -EOPNOTSUPP;
1656 if (!len)
1657 return 0;
1658 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1659}
1660EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1661
1662int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1663 size_t *retlen, u_char *buf)
1664{
1665 *retlen = 0;
1666 if (!mtd->_read_fact_prot_reg)
1667 return -EOPNOTSUPP;
1668 if (!len)
1669 return 0;
1670 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1671}
1672EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1673
1674int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1675 struct otp_info *buf)
1676{
1677 if (!mtd->_get_user_prot_info)
1678 return -EOPNOTSUPP;
1679 if (!len)
1680 return 0;
1681 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1682}
1683EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1684
1685int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1686 size_t *retlen, u_char *buf)
1687{
1688 *retlen = 0;
1689 if (!mtd->_read_user_prot_reg)
1690 return -EOPNOTSUPP;
1691 if (!len)
1692 return 0;
1693 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1694}
1695EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1696
1697int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1698 size_t *retlen, u_char *buf)
1699{
1700 int ret;
1701
1702 *retlen = 0;
1703 if (!mtd->_write_user_prot_reg)
1704 return -EOPNOTSUPP;
1705 if (!len)
1706 return 0;
1707 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1708 if (ret)
1709 return ret;
1710
1711 /*
1712 * If no data could be written at all, we are out of memory and
1713 * must return -ENOSPC.
1714 */
1715 return (*retlen) ? 0 : -ENOSPC;
1716}
1717EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1718
1719int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1720{
1721 if (!mtd->_lock_user_prot_reg)
1722 return -EOPNOTSUPP;
1723 if (!len)
1724 return 0;
1725 return mtd->_lock_user_prot_reg(mtd, from, len);
1726}
1727EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1728
1729/* Chip-supported device locking */
1730int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1731{
1732 if (!mtd->_lock)
1733 return -EOPNOTSUPP;
1734 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1735 return -EINVAL;
1736 if (!len)
1737 return 0;
1738 return mtd->_lock(mtd, ofs, len);
1739}
1740EXPORT_SYMBOL_GPL(mtd_lock);
1741
1742int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1743{
1744 if (!mtd->_unlock)
1745 return -EOPNOTSUPP;
1746 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1747 return -EINVAL;
1748 if (!len)
1749 return 0;
1750 return mtd->_unlock(mtd, ofs, len);
1751}
1752EXPORT_SYMBOL_GPL(mtd_unlock);
1753
1754int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1755{
1756 if (!mtd->_is_locked)
1757 return -EOPNOTSUPP;
1758 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1759 return -EINVAL;
1760 if (!len)
1761 return 0;
1762 return mtd->_is_locked(mtd, ofs, len);
1763}
1764EXPORT_SYMBOL_GPL(mtd_is_locked);
1765
1766int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1767{
1768 if (ofs < 0 || ofs >= mtd->size)
1769 return -EINVAL;
1770 if (!mtd->_block_isreserved)
1771 return 0;
1772 return mtd->_block_isreserved(mtd, ofs);
1773}
1774EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1775
1776int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1777{
1778 if (ofs < 0 || ofs >= mtd->size)
1779 return -EINVAL;
1780 if (!mtd->_block_isbad)
1781 return 0;
1782 return mtd->_block_isbad(mtd, ofs);
1783}
1784EXPORT_SYMBOL_GPL(mtd_block_isbad);
1785
1786int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1787{
1788 if (!mtd->_block_markbad)
1789 return -EOPNOTSUPP;
1790 if (ofs < 0 || ofs >= mtd->size)
1791 return -EINVAL;
1792 if (!(mtd->flags & MTD_WRITEABLE))
1793 return -EROFS;
1794 return mtd->_block_markbad(mtd, ofs);
1795}
1796EXPORT_SYMBOL_GPL(mtd_block_markbad);
1797
1798/*
1799 * default_mtd_writev - the default writev method
1800 * @mtd: mtd device description object pointer
1801 * @vecs: the vectors to write
1802 * @count: count of vectors in @vecs
1803 * @to: the MTD device offset to write to
1804 * @retlen: on exit contains the count of bytes written to the MTD device.
1805 *
1806 * This function returns zero in case of success and a negative error code in
1807 * case of failure.
1808 */
1809static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1810 unsigned long count, loff_t to, size_t *retlen)
1811{
1812 unsigned long i;
1813 size_t totlen = 0, thislen;
1814 int ret = 0;
1815
1816 for (i = 0; i < count; i++) {
1817 if (!vecs[i].iov_len)
1818 continue;
1819 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1820 vecs[i].iov_base);
1821 totlen += thislen;
1822 if (ret || thislen != vecs[i].iov_len)
1823 break;
1824 to += vecs[i].iov_len;
1825 }
1826 *retlen = totlen;
1827 return ret;
1828}
1829
1830/*
1831 * mtd_writev - the vector-based MTD write method
1832 * @mtd: mtd device description object pointer
1833 * @vecs: the vectors to write
1834 * @count: count of vectors in @vecs
1835 * @to: the MTD device offset to write to
1836 * @retlen: on exit contains the count of bytes written to the MTD device.
1837 *
1838 * This function returns zero in case of success and a negative error code in
1839 * case of failure.
1840 */
1841int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1842 unsigned long count, loff_t to, size_t *retlen)
1843{
1844 *retlen = 0;
1845 if (!(mtd->flags & MTD_WRITEABLE))
1846 return -EROFS;
1847 if (!mtd->_writev)
1848 return default_mtd_writev(mtd, vecs, count, to, retlen);
1849 return mtd->_writev(mtd, vecs, count, to, retlen);
1850}
1851EXPORT_SYMBOL_GPL(mtd_writev);
1852
1853/**
1854 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1855 * @mtd: mtd device description object pointer
1856 * @size: a pointer to the ideal or maximum size of the allocation, points
1857 * to the actual allocation size on success.
1858 *
1859 * This routine attempts to allocate a contiguous kernel buffer up to
1860 * the specified size, backing off the size of the request exponentially
1861 * until the request succeeds or until the allocation size falls below
1862 * the system page size. This attempts to make sure it does not adversely
1863 * impact system performance, so when allocating more than one page, we
1864 * ask the memory allocator to avoid re-trying, swapping, writing back
1865 * or performing I/O.
1866 *
1867 * Note, this function also makes sure that the allocated buffer is aligned to
1868 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1869 *
1870 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1871 * to handle smaller (i.e. degraded) buffer allocations under low- or
1872 * fragmented-memory situations where such reduced allocations, from a
1873 * requested ideal, are allowed.
1874 *
1875 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1876 */
1877void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1878{
1879 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1880 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1881 void *kbuf;
1882
1883 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1884
1885 while (*size > min_alloc) {
1886 kbuf = kmalloc(*size, flags);
1887 if (kbuf)
1888 return kbuf;
1889
1890 *size >>= 1;
1891 *size = ALIGN(*size, mtd->writesize);
1892 }
1893
1894 /*
1895 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1896 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1897 */
1898 return kmalloc(*size, GFP_KERNEL);
1899}
1900EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1901
1902#ifdef CONFIG_PROC_FS
1903
1904/*====================================================================*/
1905/* Support for /proc/mtd */
1906
1907static int mtd_proc_show(struct seq_file *m, void *v)
1908{
1909 struct mtd_info *mtd;
1910
1911 seq_puts(m, "dev: size erasesize name\n");
1912 mutex_lock(&mtd_table_mutex);
1913 mtd_for_each_device(mtd) {
1914 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1915 mtd->index, (unsigned long long)mtd->size,
1916 mtd->erasesize, mtd->name);
1917 }
1918 mutex_unlock(&mtd_table_mutex);
1919 return 0;
1920}
1921#endif /* CONFIG_PROC_FS */
1922
1923/*====================================================================*/
1924/* Init code */
1925
1926static struct backing_dev_info * __init mtd_bdi_init(char *name)
1927{
1928 struct backing_dev_info *bdi;
1929 int ret;
1930
1931 bdi = bdi_alloc(GFP_KERNEL);
1932 if (!bdi)
1933 return ERR_PTR(-ENOMEM);
1934
1935 bdi->name = name;
1936 /*
1937 * We put '-0' suffix to the name to get the same name format as we
1938 * used to get. Since this is called only once, we get a unique name.
1939 */
1940 ret = bdi_register(bdi, "%.28s-0", name);
1941 if (ret)
1942 bdi_put(bdi);
1943
1944 return ret ? ERR_PTR(ret) : bdi;
1945}
1946
1947static struct proc_dir_entry *proc_mtd;
1948
1949static int __init init_mtd(void)
1950{
1951 int ret;
1952
1953 ret = class_register(&mtd_class);
1954 if (ret)
1955 goto err_reg;
1956
1957 mtd_bdi = mtd_bdi_init("mtd");
1958 if (IS_ERR(mtd_bdi)) {
1959 ret = PTR_ERR(mtd_bdi);
1960 goto err_bdi;
1961 }
1962
1963 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1964
1965 ret = init_mtdchar();
1966 if (ret)
1967 goto out_procfs;
1968
1969 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1970
1971 return 0;
1972
1973out_procfs:
1974 if (proc_mtd)
1975 remove_proc_entry("mtd", NULL);
1976 bdi_put(mtd_bdi);
1977err_bdi:
1978 class_unregister(&mtd_class);
1979err_reg:
1980 pr_err("Error registering mtd class or bdi: %d\n", ret);
1981 return ret;
1982}
1983
1984static void __exit cleanup_mtd(void)
1985{
1986 debugfs_remove_recursive(dfs_dir_mtd);
1987 cleanup_mtdchar();
1988 if (proc_mtd)
1989 remove_proc_entry("mtd", NULL);
1990 class_unregister(&mtd_class);
1991 bdi_put(mtd_bdi);
1992 idr_destroy(&mtd_idr);
1993}
1994
1995module_init(init_mtd);
1996module_exit(cleanup_mtd);
1997
1998MODULE_LICENSE("GPL");
1999MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2000MODULE_DESCRIPTION("Core MTD registration and access routines");