at v5.6-rc5 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/types.h> 18#include <linux/scatterlist.h> 19#include <linux/list.h> 20#include <linux/timer.h> 21#include <linux/completion.h> 22#include <linux/device.h> 23#include <linux/mod_devicetable.h> 24#include <linux/interrupt.h> 25#include <linux/reciprocal_div.h> 26 27#define MAX_PAGE_BUFFER_COUNT 32 28#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 29 30#pragma pack(push, 1) 31 32/* Single-page buffer */ 33struct hv_page_buffer { 34 u32 len; 35 u32 offset; 36 u64 pfn; 37}; 38 39/* Multiple-page buffer */ 40struct hv_multipage_buffer { 41 /* Length and Offset determines the # of pfns in the array */ 42 u32 len; 43 u32 offset; 44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 45}; 46 47/* 48 * Multiple-page buffer array; the pfn array is variable size: 49 * The number of entries in the PFN array is determined by 50 * "len" and "offset". 51 */ 52struct hv_mpb_array { 53 /* Length and Offset determines the # of pfns in the array */ 54 u32 len; 55 u32 offset; 56 u64 pfn_array[]; 57}; 58 59/* 0x18 includes the proprietary packet header */ 60#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 61 (sizeof(struct hv_page_buffer) * \ 62 MAX_PAGE_BUFFER_COUNT)) 63#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 64 sizeof(struct hv_multipage_buffer)) 65 66 67#pragma pack(pop) 68 69struct hv_ring_buffer { 70 /* Offset in bytes from the start of ring data below */ 71 u32 write_index; 72 73 /* Offset in bytes from the start of ring data below */ 74 u32 read_index; 75 76 u32 interrupt_mask; 77 78 /* 79 * WS2012/Win8 and later versions of Hyper-V implement interrupt 80 * driven flow management. The feature bit feat_pending_send_sz 81 * is set by the host on the host->guest ring buffer, and by the 82 * guest on the guest->host ring buffer. 83 * 84 * The meaning of the feature bit is a bit complex in that it has 85 * semantics that apply to both ring buffers. If the guest sets 86 * the feature bit in the guest->host ring buffer, the guest is 87 * telling the host that: 88 * 1) It will set the pending_send_sz field in the guest->host ring 89 * buffer when it is waiting for space to become available, and 90 * 2) It will read the pending_send_sz field in the host->guest 91 * ring buffer and interrupt the host when it frees enough space 92 * 93 * Similarly, if the host sets the feature bit in the host->guest 94 * ring buffer, the host is telling the guest that: 95 * 1) It will set the pending_send_sz field in the host->guest ring 96 * buffer when it is waiting for space to become available, and 97 * 2) It will read the pending_send_sz field in the guest->host 98 * ring buffer and interrupt the guest when it frees enough space 99 * 100 * If either the guest or host does not set the feature bit that it 101 * owns, that guest or host must do polling if it encounters a full 102 * ring buffer, and not signal the other end with an interrupt. 103 */ 104 u32 pending_send_sz; 105 u32 reserved1[12]; 106 union { 107 struct { 108 u32 feat_pending_send_sz:1; 109 }; 110 u32 value; 111 } feature_bits; 112 113 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 114 u8 reserved2[4028]; 115 116 /* 117 * Ring data starts here + RingDataStartOffset 118 * !!! DO NOT place any fields below this !!! 119 */ 120 u8 buffer[0]; 121} __packed; 122 123struct hv_ring_buffer_info { 124 struct hv_ring_buffer *ring_buffer; 125 u32 ring_size; /* Include the shared header */ 126 struct reciprocal_value ring_size_div10_reciprocal; 127 spinlock_t ring_lock; 128 129 u32 ring_datasize; /* < ring_size */ 130 u32 priv_read_index; 131 /* 132 * The ring buffer mutex lock. This lock prevents the ring buffer from 133 * being freed while the ring buffer is being accessed. 134 */ 135 struct mutex ring_buffer_mutex; 136}; 137 138 139static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 140{ 141 u32 read_loc, write_loc, dsize, read; 142 143 dsize = rbi->ring_datasize; 144 read_loc = rbi->ring_buffer->read_index; 145 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 146 147 read = write_loc >= read_loc ? (write_loc - read_loc) : 148 (dsize - read_loc) + write_loc; 149 150 return read; 151} 152 153static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 154{ 155 u32 read_loc, write_loc, dsize, write; 156 157 dsize = rbi->ring_datasize; 158 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 159 write_loc = rbi->ring_buffer->write_index; 160 161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 162 read_loc - write_loc; 163 return write; 164} 165 166static inline u32 hv_get_avail_to_write_percent( 167 const struct hv_ring_buffer_info *rbi) 168{ 169 u32 avail_write = hv_get_bytes_to_write(rbi); 170 171 return reciprocal_divide( 172 (avail_write << 3) + (avail_write << 1), 173 rbi->ring_size_div10_reciprocal); 174} 175 176/* 177 * VMBUS version is 32 bit entity broken up into 178 * two 16 bit quantities: major_number. minor_number. 179 * 180 * 0 . 13 (Windows Server 2008) 181 * 1 . 1 (Windows 7) 182 * 2 . 4 (Windows 8) 183 * 3 . 0 (Windows 8 R2) 184 * 4 . 0 (Windows 10) 185 * 4 . 1 (Windows 10 RS3) 186 * 5 . 0 (Newer Windows 10) 187 * 5 . 1 (Windows 10 RS4) 188 * 5 . 2 (Windows Server 2019, RS5) 189 */ 190 191#define VERSION_WS2008 ((0 << 16) | (13)) 192#define VERSION_WIN7 ((1 << 16) | (1)) 193#define VERSION_WIN8 ((2 << 16) | (4)) 194#define VERSION_WIN8_1 ((3 << 16) | (0)) 195#define VERSION_WIN10 ((4 << 16) | (0)) 196#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 197#define VERSION_WIN10_V5 ((5 << 16) | (0)) 198#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 199#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 200 201/* Make maximum size of pipe payload of 16K */ 202#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 203 204/* Define PipeMode values. */ 205#define VMBUS_PIPE_TYPE_BYTE 0x00000000 206#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 207 208/* The size of the user defined data buffer for non-pipe offers. */ 209#define MAX_USER_DEFINED_BYTES 120 210 211/* The size of the user defined data buffer for pipe offers. */ 212#define MAX_PIPE_USER_DEFINED_BYTES 116 213 214/* 215 * At the center of the Channel Management library is the Channel Offer. This 216 * struct contains the fundamental information about an offer. 217 */ 218struct vmbus_channel_offer { 219 guid_t if_type; 220 guid_t if_instance; 221 222 /* 223 * These two fields are not currently used. 224 */ 225 u64 reserved1; 226 u64 reserved2; 227 228 u16 chn_flags; 229 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 230 231 union { 232 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 233 struct { 234 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 235 } std; 236 237 /* 238 * Pipes: 239 * The following sructure is an integrated pipe protocol, which 240 * is implemented on top of standard user-defined data. Pipe 241 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 242 * use. 243 */ 244 struct { 245 u32 pipe_mode; 246 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 247 } pipe; 248 } u; 249 /* 250 * The sub_channel_index is defined in Win8: a value of zero means a 251 * primary channel and a value of non-zero means a sub-channel. 252 * 253 * Before Win8, the field is reserved, meaning it's always zero. 254 */ 255 u16 sub_channel_index; 256 u16 reserved3; 257} __packed; 258 259/* Server Flags */ 260#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 261#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 262#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 263#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 264#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 265#define VMBUS_CHANNEL_PARENT_OFFER 0x200 266#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 267#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 268 269struct vmpacket_descriptor { 270 u16 type; 271 u16 offset8; 272 u16 len8; 273 u16 flags; 274 u64 trans_id; 275} __packed; 276 277struct vmpacket_header { 278 u32 prev_pkt_start_offset; 279 struct vmpacket_descriptor descriptor; 280} __packed; 281 282struct vmtransfer_page_range { 283 u32 byte_count; 284 u32 byte_offset; 285} __packed; 286 287struct vmtransfer_page_packet_header { 288 struct vmpacket_descriptor d; 289 u16 xfer_pageset_id; 290 u8 sender_owns_set; 291 u8 reserved; 292 u32 range_cnt; 293 struct vmtransfer_page_range ranges[1]; 294} __packed; 295 296struct vmgpadl_packet_header { 297 struct vmpacket_descriptor d; 298 u32 gpadl; 299 u32 reserved; 300} __packed; 301 302struct vmadd_remove_transfer_page_set { 303 struct vmpacket_descriptor d; 304 u32 gpadl; 305 u16 xfer_pageset_id; 306 u16 reserved; 307} __packed; 308 309/* 310 * This structure defines a range in guest physical space that can be made to 311 * look virtually contiguous. 312 */ 313struct gpa_range { 314 u32 byte_count; 315 u32 byte_offset; 316 u64 pfn_array[0]; 317}; 318 319/* 320 * This is the format for an Establish Gpadl packet, which contains a handle by 321 * which this GPADL will be known and a set of GPA ranges associated with it. 322 * This can be converted to a MDL by the guest OS. If there are multiple GPA 323 * ranges, then the resulting MDL will be "chained," representing multiple VA 324 * ranges. 325 */ 326struct vmestablish_gpadl { 327 struct vmpacket_descriptor d; 328 u32 gpadl; 329 u32 range_cnt; 330 struct gpa_range range[1]; 331} __packed; 332 333/* 334 * This is the format for a Teardown Gpadl packet, which indicates that the 335 * GPADL handle in the Establish Gpadl packet will never be referenced again. 336 */ 337struct vmteardown_gpadl { 338 struct vmpacket_descriptor d; 339 u32 gpadl; 340 u32 reserved; /* for alignment to a 8-byte boundary */ 341} __packed; 342 343/* 344 * This is the format for a GPA-Direct packet, which contains a set of GPA 345 * ranges, in addition to commands and/or data. 346 */ 347struct vmdata_gpa_direct { 348 struct vmpacket_descriptor d; 349 u32 reserved; 350 u32 range_cnt; 351 struct gpa_range range[1]; 352} __packed; 353 354/* This is the format for a Additional Data Packet. */ 355struct vmadditional_data { 356 struct vmpacket_descriptor d; 357 u64 total_bytes; 358 u32 offset; 359 u32 byte_cnt; 360 unsigned char data[1]; 361} __packed; 362 363union vmpacket_largest_possible_header { 364 struct vmpacket_descriptor simple_hdr; 365 struct vmtransfer_page_packet_header xfer_page_hdr; 366 struct vmgpadl_packet_header gpadl_hdr; 367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 368 struct vmestablish_gpadl establish_gpadl_hdr; 369 struct vmteardown_gpadl teardown_gpadl_hdr; 370 struct vmdata_gpa_direct data_gpa_direct_hdr; 371}; 372 373#define VMPACKET_DATA_START_ADDRESS(__packet) \ 374 (void *)(((unsigned char *)__packet) + \ 375 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 376 377#define VMPACKET_DATA_LENGTH(__packet) \ 378 ((((struct vmpacket_descriptor)__packet)->len8 - \ 379 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 380 381#define VMPACKET_TRANSFER_MODE(__packet) \ 382 (((struct IMPACT)__packet)->type) 383 384enum vmbus_packet_type { 385 VM_PKT_INVALID = 0x0, 386 VM_PKT_SYNCH = 0x1, 387 VM_PKT_ADD_XFER_PAGESET = 0x2, 388 VM_PKT_RM_XFER_PAGESET = 0x3, 389 VM_PKT_ESTABLISH_GPADL = 0x4, 390 VM_PKT_TEARDOWN_GPADL = 0x5, 391 VM_PKT_DATA_INBAND = 0x6, 392 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 393 VM_PKT_DATA_USING_GPADL = 0x8, 394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 395 VM_PKT_CANCEL_REQUEST = 0xa, 396 VM_PKT_COMP = 0xb, 397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 398 VM_PKT_ADDITIONAL_DATA = 0xd 399}; 400 401#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 402 403 404/* Version 1 messages */ 405enum vmbus_channel_message_type { 406 CHANNELMSG_INVALID = 0, 407 CHANNELMSG_OFFERCHANNEL = 1, 408 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 409 CHANNELMSG_REQUESTOFFERS = 3, 410 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 411 CHANNELMSG_OPENCHANNEL = 5, 412 CHANNELMSG_OPENCHANNEL_RESULT = 6, 413 CHANNELMSG_CLOSECHANNEL = 7, 414 CHANNELMSG_GPADL_HEADER = 8, 415 CHANNELMSG_GPADL_BODY = 9, 416 CHANNELMSG_GPADL_CREATED = 10, 417 CHANNELMSG_GPADL_TEARDOWN = 11, 418 CHANNELMSG_GPADL_TORNDOWN = 12, 419 CHANNELMSG_RELID_RELEASED = 13, 420 CHANNELMSG_INITIATE_CONTACT = 14, 421 CHANNELMSG_VERSION_RESPONSE = 15, 422 CHANNELMSG_UNLOAD = 16, 423 CHANNELMSG_UNLOAD_RESPONSE = 17, 424 CHANNELMSG_18 = 18, 425 CHANNELMSG_19 = 19, 426 CHANNELMSG_20 = 20, 427 CHANNELMSG_TL_CONNECT_REQUEST = 21, 428 CHANNELMSG_22 = 22, 429 CHANNELMSG_TL_CONNECT_RESULT = 23, 430 CHANNELMSG_COUNT 431}; 432 433/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 434#define INVALID_RELID U32_MAX 435 436struct vmbus_channel_message_header { 437 enum vmbus_channel_message_type msgtype; 438 u32 padding; 439} __packed; 440 441/* Query VMBus Version parameters */ 442struct vmbus_channel_query_vmbus_version { 443 struct vmbus_channel_message_header header; 444 u32 version; 445} __packed; 446 447/* VMBus Version Supported parameters */ 448struct vmbus_channel_version_supported { 449 struct vmbus_channel_message_header header; 450 u8 version_supported; 451} __packed; 452 453/* Offer Channel parameters */ 454struct vmbus_channel_offer_channel { 455 struct vmbus_channel_message_header header; 456 struct vmbus_channel_offer offer; 457 u32 child_relid; 458 u8 monitorid; 459 /* 460 * win7 and beyond splits this field into a bit field. 461 */ 462 u8 monitor_allocated:1; 463 u8 reserved:7; 464 /* 465 * These are new fields added in win7 and later. 466 * Do not access these fields without checking the 467 * negotiated protocol. 468 * 469 * If "is_dedicated_interrupt" is set, we must not set the 470 * associated bit in the channel bitmap while sending the 471 * interrupt to the host. 472 * 473 * connection_id is to be used in signaling the host. 474 */ 475 u16 is_dedicated_interrupt:1; 476 u16 reserved1:15; 477 u32 connection_id; 478} __packed; 479 480/* Rescind Offer parameters */ 481struct vmbus_channel_rescind_offer { 482 struct vmbus_channel_message_header header; 483 u32 child_relid; 484} __packed; 485 486static inline u32 487hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 488{ 489 return rbi->ring_buffer->pending_send_sz; 490} 491 492/* 493 * Request Offer -- no parameters, SynIC message contains the partition ID 494 * Set Snoop -- no parameters, SynIC message contains the partition ID 495 * Clear Snoop -- no parameters, SynIC message contains the partition ID 496 * All Offers Delivered -- no parameters, SynIC message contains the partition 497 * ID 498 * Flush Client -- no parameters, SynIC message contains the partition ID 499 */ 500 501/* Open Channel parameters */ 502struct vmbus_channel_open_channel { 503 struct vmbus_channel_message_header header; 504 505 /* Identifies the specific VMBus channel that is being opened. */ 506 u32 child_relid; 507 508 /* ID making a particular open request at a channel offer unique. */ 509 u32 openid; 510 511 /* GPADL for the channel's ring buffer. */ 512 u32 ringbuffer_gpadlhandle; 513 514 /* 515 * Starting with win8, this field will be used to specify 516 * the target virtual processor on which to deliver the interrupt for 517 * the host to guest communication. 518 * Prior to win8, incoming channel interrupts would only 519 * be delivered on cpu 0. Setting this value to 0 would 520 * preserve the earlier behavior. 521 */ 522 u32 target_vp; 523 524 /* 525 * The upstream ring buffer begins at offset zero in the memory 526 * described by RingBufferGpadlHandle. The downstream ring buffer 527 * follows it at this offset (in pages). 528 */ 529 u32 downstream_ringbuffer_pageoffset; 530 531 /* User-specific data to be passed along to the server endpoint. */ 532 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 533} __packed; 534 535/* Open Channel Result parameters */ 536struct vmbus_channel_open_result { 537 struct vmbus_channel_message_header header; 538 u32 child_relid; 539 u32 openid; 540 u32 status; 541} __packed; 542 543/* Close channel parameters; */ 544struct vmbus_channel_close_channel { 545 struct vmbus_channel_message_header header; 546 u32 child_relid; 547} __packed; 548 549/* Channel Message GPADL */ 550#define GPADL_TYPE_RING_BUFFER 1 551#define GPADL_TYPE_SERVER_SAVE_AREA 2 552#define GPADL_TYPE_TRANSACTION 8 553 554/* 555 * The number of PFNs in a GPADL message is defined by the number of 556 * pages that would be spanned by ByteCount and ByteOffset. If the 557 * implied number of PFNs won't fit in this packet, there will be a 558 * follow-up packet that contains more. 559 */ 560struct vmbus_channel_gpadl_header { 561 struct vmbus_channel_message_header header; 562 u32 child_relid; 563 u32 gpadl; 564 u16 range_buflen; 565 u16 rangecount; 566 struct gpa_range range[0]; 567} __packed; 568 569/* This is the followup packet that contains more PFNs. */ 570struct vmbus_channel_gpadl_body { 571 struct vmbus_channel_message_header header; 572 u32 msgnumber; 573 u32 gpadl; 574 u64 pfn[0]; 575} __packed; 576 577struct vmbus_channel_gpadl_created { 578 struct vmbus_channel_message_header header; 579 u32 child_relid; 580 u32 gpadl; 581 u32 creation_status; 582} __packed; 583 584struct vmbus_channel_gpadl_teardown { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587 u32 gpadl; 588} __packed; 589 590struct vmbus_channel_gpadl_torndown { 591 struct vmbus_channel_message_header header; 592 u32 gpadl; 593} __packed; 594 595struct vmbus_channel_relid_released { 596 struct vmbus_channel_message_header header; 597 u32 child_relid; 598} __packed; 599 600struct vmbus_channel_initiate_contact { 601 struct vmbus_channel_message_header header; 602 u32 vmbus_version_requested; 603 u32 target_vcpu; /* The VCPU the host should respond to */ 604 union { 605 u64 interrupt_page; 606 struct { 607 u8 msg_sint; 608 u8 padding1[3]; 609 u32 padding2; 610 }; 611 }; 612 u64 monitor_page1; 613 u64 monitor_page2; 614} __packed; 615 616/* Hyper-V socket: guest's connect()-ing to host */ 617struct vmbus_channel_tl_connect_request { 618 struct vmbus_channel_message_header header; 619 guid_t guest_endpoint_id; 620 guid_t host_service_id; 621} __packed; 622 623struct vmbus_channel_version_response { 624 struct vmbus_channel_message_header header; 625 u8 version_supported; 626 627 u8 connection_state; 628 u16 padding; 629 630 /* 631 * On new hosts that support VMBus protocol 5.0, we must use 632 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 633 * and for subsequent messages, we must use the Message Connection ID 634 * field in the host-returned Version Response Message. 635 * 636 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 637 */ 638 u32 msg_conn_id; 639} __packed; 640 641enum vmbus_channel_state { 642 CHANNEL_OFFER_STATE, 643 CHANNEL_OPENING_STATE, 644 CHANNEL_OPEN_STATE, 645 CHANNEL_OPENED_STATE, 646}; 647 648/* 649 * Represents each channel msg on the vmbus connection This is a 650 * variable-size data structure depending on the msg type itself 651 */ 652struct vmbus_channel_msginfo { 653 /* Bookkeeping stuff */ 654 struct list_head msglistentry; 655 656 /* So far, this is only used to handle gpadl body message */ 657 struct list_head submsglist; 658 659 /* Synchronize the request/response if needed */ 660 struct completion waitevent; 661 struct vmbus_channel *waiting_channel; 662 union { 663 struct vmbus_channel_version_supported version_supported; 664 struct vmbus_channel_open_result open_result; 665 struct vmbus_channel_gpadl_torndown gpadl_torndown; 666 struct vmbus_channel_gpadl_created gpadl_created; 667 struct vmbus_channel_version_response version_response; 668 } response; 669 670 u32 msgsize; 671 /* 672 * The channel message that goes out on the "wire". 673 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 674 */ 675 unsigned char msg[0]; 676}; 677 678struct vmbus_close_msg { 679 struct vmbus_channel_msginfo info; 680 struct vmbus_channel_close_channel msg; 681}; 682 683/* Define connection identifier type. */ 684union hv_connection_id { 685 u32 asu32; 686 struct { 687 u32 id:24; 688 u32 reserved:8; 689 } u; 690}; 691 692enum hv_numa_policy { 693 HV_BALANCED = 0, 694 HV_LOCALIZED, 695}; 696 697enum vmbus_device_type { 698 HV_IDE = 0, 699 HV_SCSI, 700 HV_FC, 701 HV_NIC, 702 HV_ND, 703 HV_PCIE, 704 HV_FB, 705 HV_KBD, 706 HV_MOUSE, 707 HV_KVP, 708 HV_TS, 709 HV_HB, 710 HV_SHUTDOWN, 711 HV_FCOPY, 712 HV_BACKUP, 713 HV_DM, 714 HV_UNKNOWN, 715}; 716 717struct vmbus_device { 718 u16 dev_type; 719 guid_t guid; 720 bool perf_device; 721}; 722 723struct vmbus_channel { 724 struct list_head listentry; 725 726 struct hv_device *device_obj; 727 728 enum vmbus_channel_state state; 729 730 struct vmbus_channel_offer_channel offermsg; 731 /* 732 * These are based on the OfferMsg.MonitorId. 733 * Save it here for easy access. 734 */ 735 u8 monitor_grp; 736 u8 monitor_bit; 737 738 bool rescind; /* got rescind msg */ 739 struct completion rescind_event; 740 741 u32 ringbuffer_gpadlhandle; 742 743 /* Allocated memory for ring buffer */ 744 struct page *ringbuffer_page; 745 u32 ringbuffer_pagecount; 746 u32 ringbuffer_send_offset; 747 struct hv_ring_buffer_info outbound; /* send to parent */ 748 struct hv_ring_buffer_info inbound; /* receive from parent */ 749 750 struct vmbus_close_msg close_msg; 751 752 /* Statistics */ 753 u64 interrupts; /* Host to Guest interrupts */ 754 u64 sig_events; /* Guest to Host events */ 755 756 /* 757 * Guest to host interrupts caused by the outbound ring buffer changing 758 * from empty to not empty. 759 */ 760 u64 intr_out_empty; 761 762 /* 763 * Indicates that a full outbound ring buffer was encountered. The flag 764 * is set to true when a full outbound ring buffer is encountered and 765 * set to false when a write to the outbound ring buffer is completed. 766 */ 767 bool out_full_flag; 768 769 /* Channel callback's invoked in softirq context */ 770 struct tasklet_struct callback_event; 771 void (*onchannel_callback)(void *context); 772 void *channel_callback_context; 773 774 /* 775 * A channel can be marked for one of three modes of reading: 776 * BATCHED - callback called from taslket and should read 777 * channel until empty. Interrupts from the host 778 * are masked while read is in process (default). 779 * DIRECT - callback called from tasklet (softirq). 780 * ISR - callback called in interrupt context and must 781 * invoke its own deferred processing. 782 * Host interrupts are disabled and must be re-enabled 783 * when ring is empty. 784 */ 785 enum hv_callback_mode { 786 HV_CALL_BATCHED, 787 HV_CALL_DIRECT, 788 HV_CALL_ISR 789 } callback_mode; 790 791 bool is_dedicated_interrupt; 792 u64 sig_event; 793 794 /* 795 * Starting with win8, this field will be used to specify 796 * the target virtual processor on which to deliver the interrupt for 797 * the host to guest communication. 798 * Prior to win8, incoming channel interrupts would only 799 * be delivered on cpu 0. Setting this value to 0 would 800 * preserve the earlier behavior. 801 */ 802 u32 target_vp; 803 /* The corresponding CPUID in the guest */ 804 u32 target_cpu; 805 /* 806 * State to manage the CPU affiliation of channels. 807 */ 808 struct cpumask alloced_cpus_in_node; 809 int numa_node; 810 /* 811 * Support for sub-channels. For high performance devices, 812 * it will be useful to have multiple sub-channels to support 813 * a scalable communication infrastructure with the host. 814 * The support for sub-channels is implemented as an extention 815 * to the current infrastructure. 816 * The initial offer is considered the primary channel and this 817 * offer message will indicate if the host supports sub-channels. 818 * The guest is free to ask for sub-channels to be offerred and can 819 * open these sub-channels as a normal "primary" channel. However, 820 * all sub-channels will have the same type and instance guids as the 821 * primary channel. Requests sent on a given channel will result in a 822 * response on the same channel. 823 */ 824 825 /* 826 * Sub-channel creation callback. This callback will be called in 827 * process context when a sub-channel offer is received from the host. 828 * The guest can open the sub-channel in the context of this callback. 829 */ 830 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 831 832 /* 833 * Channel rescind callback. Some channels (the hvsock ones), need to 834 * register a callback which is invoked in vmbus_onoffer_rescind(). 835 */ 836 void (*chn_rescind_callback)(struct vmbus_channel *channel); 837 838 /* 839 * The spinlock to protect the structure. It is being used to protect 840 * test-and-set access to various attributes of the structure as well 841 * as all sc_list operations. 842 */ 843 spinlock_t lock; 844 /* 845 * All Sub-channels of a primary channel are linked here. 846 */ 847 struct list_head sc_list; 848 /* 849 * The primary channel this sub-channel belongs to. 850 * This will be NULL for the primary channel. 851 */ 852 struct vmbus_channel *primary_channel; 853 /* 854 * Support per-channel state for use by vmbus drivers. 855 */ 856 void *per_channel_state; 857 /* 858 * To support per-cpu lookup mapping of relid to channel, 859 * link up channels based on their CPU affinity. 860 */ 861 struct list_head percpu_list; 862 863 /* 864 * Defer freeing channel until after all cpu's have 865 * gone through grace period. 866 */ 867 struct rcu_head rcu; 868 869 /* 870 * For sysfs per-channel properties. 871 */ 872 struct kobject kobj; 873 874 /* 875 * For performance critical channels (storage, networking 876 * etc,), Hyper-V has a mechanism to enhance the throughput 877 * at the expense of latency: 878 * When the host is to be signaled, we just set a bit in a shared page 879 * and this bit will be inspected by the hypervisor within a certain 880 * window and if the bit is set, the host will be signaled. The window 881 * of time is the monitor latency - currently around 100 usecs. This 882 * mechanism improves throughput by: 883 * 884 * A) Making the host more efficient - each time it wakes up, 885 * potentially it will process morev number of packets. The 886 * monitor latency allows a batch to build up. 887 * B) By deferring the hypercall to signal, we will also minimize 888 * the interrupts. 889 * 890 * Clearly, these optimizations improve throughput at the expense of 891 * latency. Furthermore, since the channel is shared for both 892 * control and data messages, control messages currently suffer 893 * unnecessary latency adversley impacting performance and boot 894 * time. To fix this issue, permit tagging the channel as being 895 * in "low latency" mode. In this mode, we will bypass the monitor 896 * mechanism. 897 */ 898 bool low_latency; 899 900 /* 901 * NUMA distribution policy: 902 * We support two policies: 903 * 1) Balanced: Here all performance critical channels are 904 * distributed evenly amongst all the NUMA nodes. 905 * This policy will be the default policy. 906 * 2) Localized: All channels of a given instance of a 907 * performance critical service will be assigned CPUs 908 * within a selected NUMA node. 909 */ 910 enum hv_numa_policy affinity_policy; 911 912 bool probe_done; 913 914 /* 915 * We must offload the handling of the primary/sub channels 916 * from the single-threaded vmbus_connection.work_queue to 917 * two different workqueue, otherwise we can block 918 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 919 */ 920 struct work_struct add_channel_work; 921 922 /* 923 * Guest to host interrupts caused by the inbound ring buffer changing 924 * from full to not full while a packet is waiting. 925 */ 926 u64 intr_in_full; 927 928 /* 929 * The total number of write operations that encountered a full 930 * outbound ring buffer. 931 */ 932 u64 out_full_total; 933 934 /* 935 * The number of write operations that were the first to encounter a 936 * full outbound ring buffer. 937 */ 938 u64 out_full_first; 939 940 /* enabling/disabling fuzz testing on the channel (default is false)*/ 941 bool fuzz_testing_state; 942 943 /* 944 * Interrupt delay will delay the guest from emptying the ring buffer 945 * for a specific amount of time. The delay is in microseconds and will 946 * be between 1 to a maximum of 1000, its default is 0 (no delay). 947 * The Message delay will delay guest reading on a per message basis 948 * in microseconds between 1 to 1000 with the default being 0 949 * (no delay). 950 */ 951 u32 fuzz_testing_interrupt_delay; 952 u32 fuzz_testing_message_delay; 953 954}; 955 956static inline bool is_hvsock_channel(const struct vmbus_channel *c) 957{ 958 return !!(c->offermsg.offer.chn_flags & 959 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 960} 961 962static inline bool is_sub_channel(const struct vmbus_channel *c) 963{ 964 return c->offermsg.offer.sub_channel_index != 0; 965} 966 967static inline void set_channel_affinity_state(struct vmbus_channel *c, 968 enum hv_numa_policy policy) 969{ 970 c->affinity_policy = policy; 971} 972 973static inline void set_channel_read_mode(struct vmbus_channel *c, 974 enum hv_callback_mode mode) 975{ 976 c->callback_mode = mode; 977} 978 979static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 980{ 981 c->per_channel_state = s; 982} 983 984static inline void *get_per_channel_state(struct vmbus_channel *c) 985{ 986 return c->per_channel_state; 987} 988 989static inline void set_channel_pending_send_size(struct vmbus_channel *c, 990 u32 size) 991{ 992 unsigned long flags; 993 994 if (size) { 995 spin_lock_irqsave(&c->outbound.ring_lock, flags); 996 ++c->out_full_total; 997 998 if (!c->out_full_flag) { 999 ++c->out_full_first; 1000 c->out_full_flag = true; 1001 } 1002 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1003 } else { 1004 c->out_full_flag = false; 1005 } 1006 1007 c->outbound.ring_buffer->pending_send_sz = size; 1008} 1009 1010static inline void set_low_latency_mode(struct vmbus_channel *c) 1011{ 1012 c->low_latency = true; 1013} 1014 1015static inline void clear_low_latency_mode(struct vmbus_channel *c) 1016{ 1017 c->low_latency = false; 1018} 1019 1020void vmbus_onmessage(void *context); 1021 1022int vmbus_request_offers(void); 1023 1024/* 1025 * APIs for managing sub-channels. 1026 */ 1027 1028void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1029 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1030 1031void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1032 void (*chn_rescind_cb)(struct vmbus_channel *)); 1033 1034/* 1035 * Check if sub-channels have already been offerred. This API will be useful 1036 * when the driver is unloaded after establishing sub-channels. In this case, 1037 * when the driver is re-loaded, the driver would have to check if the 1038 * subchannels have already been established before attempting to request 1039 * the creation of sub-channels. 1040 * This function returns TRUE to indicate that subchannels have already been 1041 * created. 1042 * This function should be invoked after setting the callback function for 1043 * sub-channel creation. 1044 */ 1045bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1046 1047/* The format must be the same as struct vmdata_gpa_direct */ 1048struct vmbus_channel_packet_page_buffer { 1049 u16 type; 1050 u16 dataoffset8; 1051 u16 length8; 1052 u16 flags; 1053 u64 transactionid; 1054 u32 reserved; 1055 u32 rangecount; 1056 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1057} __packed; 1058 1059/* The format must be the same as struct vmdata_gpa_direct */ 1060struct vmbus_channel_packet_multipage_buffer { 1061 u16 type; 1062 u16 dataoffset8; 1063 u16 length8; 1064 u16 flags; 1065 u64 transactionid; 1066 u32 reserved; 1067 u32 rangecount; /* Always 1 in this case */ 1068 struct hv_multipage_buffer range; 1069} __packed; 1070 1071/* The format must be the same as struct vmdata_gpa_direct */ 1072struct vmbus_packet_mpb_array { 1073 u16 type; 1074 u16 dataoffset8; 1075 u16 length8; 1076 u16 flags; 1077 u64 transactionid; 1078 u32 reserved; 1079 u32 rangecount; /* Always 1 in this case */ 1080 struct hv_mpb_array range; 1081} __packed; 1082 1083int vmbus_alloc_ring(struct vmbus_channel *channel, 1084 u32 send_size, u32 recv_size); 1085void vmbus_free_ring(struct vmbus_channel *channel); 1086 1087int vmbus_connect_ring(struct vmbus_channel *channel, 1088 void (*onchannel_callback)(void *context), 1089 void *context); 1090int vmbus_disconnect_ring(struct vmbus_channel *channel); 1091 1092extern int vmbus_open(struct vmbus_channel *channel, 1093 u32 send_ringbuffersize, 1094 u32 recv_ringbuffersize, 1095 void *userdata, 1096 u32 userdatalen, 1097 void (*onchannel_callback)(void *context), 1098 void *context); 1099 1100extern void vmbus_close(struct vmbus_channel *channel); 1101 1102extern int vmbus_sendpacket(struct vmbus_channel *channel, 1103 void *buffer, 1104 u32 bufferLen, 1105 u64 requestid, 1106 enum vmbus_packet_type type, 1107 u32 flags); 1108 1109extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1110 struct hv_page_buffer pagebuffers[], 1111 u32 pagecount, 1112 void *buffer, 1113 u32 bufferlen, 1114 u64 requestid); 1115 1116extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1117 struct vmbus_packet_mpb_array *mpb, 1118 u32 desc_size, 1119 void *buffer, 1120 u32 bufferlen, 1121 u64 requestid); 1122 1123extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1124 void *kbuffer, 1125 u32 size, 1126 u32 *gpadl_handle); 1127 1128extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1129 u32 gpadl_handle); 1130 1131void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1132 1133extern int vmbus_recvpacket(struct vmbus_channel *channel, 1134 void *buffer, 1135 u32 bufferlen, 1136 u32 *buffer_actual_len, 1137 u64 *requestid); 1138 1139extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1140 void *buffer, 1141 u32 bufferlen, 1142 u32 *buffer_actual_len, 1143 u64 *requestid); 1144 1145 1146extern void vmbus_ontimer(unsigned long data); 1147 1148/* Base driver object */ 1149struct hv_driver { 1150 const char *name; 1151 1152 /* 1153 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1154 * channel flag, actually doesn't mean a synthetic device because the 1155 * offer's if_type/if_instance can change for every new hvsock 1156 * connection. 1157 * 1158 * However, to facilitate the notification of new-offer/rescind-offer 1159 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1160 * a special vmbus device, and hence we need the below flag to 1161 * indicate if the driver is the hvsock driver or not: we need to 1162 * specially treat the hvosck offer & driver in vmbus_match(). 1163 */ 1164 bool hvsock; 1165 1166 /* the device type supported by this driver */ 1167 guid_t dev_type; 1168 const struct hv_vmbus_device_id *id_table; 1169 1170 struct device_driver driver; 1171 1172 /* dynamic device GUID's */ 1173 struct { 1174 spinlock_t lock; 1175 struct list_head list; 1176 } dynids; 1177 1178 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1179 int (*remove)(struct hv_device *); 1180 void (*shutdown)(struct hv_device *); 1181 1182 int (*suspend)(struct hv_device *); 1183 int (*resume)(struct hv_device *); 1184 1185}; 1186 1187/* Base device object */ 1188struct hv_device { 1189 /* the device type id of this device */ 1190 guid_t dev_type; 1191 1192 /* the device instance id of this device */ 1193 guid_t dev_instance; 1194 u16 vendor_id; 1195 u16 device_id; 1196 1197 struct device device; 1198 char *driver_override; /* Driver name to force a match */ 1199 1200 struct vmbus_channel *channel; 1201 struct kset *channels_kset; 1202 1203 /* place holder to keep track of the dir for hv device in debugfs */ 1204 struct dentry *debug_dir; 1205 1206}; 1207 1208 1209static inline struct hv_device *device_to_hv_device(struct device *d) 1210{ 1211 return container_of(d, struct hv_device, device); 1212} 1213 1214static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1215{ 1216 return container_of(d, struct hv_driver, driver); 1217} 1218 1219static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1220{ 1221 dev_set_drvdata(&dev->device, data); 1222} 1223 1224static inline void *hv_get_drvdata(struct hv_device *dev) 1225{ 1226 return dev_get_drvdata(&dev->device); 1227} 1228 1229struct hv_ring_buffer_debug_info { 1230 u32 current_interrupt_mask; 1231 u32 current_read_index; 1232 u32 current_write_index; 1233 u32 bytes_avail_toread; 1234 u32 bytes_avail_towrite; 1235}; 1236 1237 1238int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1239 struct hv_ring_buffer_debug_info *debug_info); 1240 1241/* Vmbus interface */ 1242#define vmbus_driver_register(driver) \ 1243 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1244int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1245 struct module *owner, 1246 const char *mod_name); 1247void vmbus_driver_unregister(struct hv_driver *hv_driver); 1248 1249void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1250 1251int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1252 resource_size_t min, resource_size_t max, 1253 resource_size_t size, resource_size_t align, 1254 bool fb_overlap_ok); 1255void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1256 1257/* 1258 * GUID definitions of various offer types - services offered to the guest. 1259 */ 1260 1261/* 1262 * Network GUID 1263 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1264 */ 1265#define HV_NIC_GUID \ 1266 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1267 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1268 1269/* 1270 * IDE GUID 1271 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1272 */ 1273#define HV_IDE_GUID \ 1274 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1275 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1276 1277/* 1278 * SCSI GUID 1279 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1280 */ 1281#define HV_SCSI_GUID \ 1282 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1283 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1284 1285/* 1286 * Shutdown GUID 1287 * {0e0b6031-5213-4934-818b-38d90ced39db} 1288 */ 1289#define HV_SHUTDOWN_GUID \ 1290 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1291 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1292 1293/* 1294 * Time Synch GUID 1295 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1296 */ 1297#define HV_TS_GUID \ 1298 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1299 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1300 1301/* 1302 * Heartbeat GUID 1303 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1304 */ 1305#define HV_HEART_BEAT_GUID \ 1306 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1307 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1308 1309/* 1310 * KVP GUID 1311 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1312 */ 1313#define HV_KVP_GUID \ 1314 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1315 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1316 1317/* 1318 * Dynamic memory GUID 1319 * {525074dc-8985-46e2-8057-a307dc18a502} 1320 */ 1321#define HV_DM_GUID \ 1322 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1323 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1324 1325/* 1326 * Mouse GUID 1327 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1328 */ 1329#define HV_MOUSE_GUID \ 1330 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1331 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1332 1333/* 1334 * Keyboard GUID 1335 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1336 */ 1337#define HV_KBD_GUID \ 1338 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1339 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1340 1341/* 1342 * VSS (Backup/Restore) GUID 1343 */ 1344#define HV_VSS_GUID \ 1345 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1346 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1347/* 1348 * Synthetic Video GUID 1349 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1350 */ 1351#define HV_SYNTHVID_GUID \ 1352 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1353 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1354 1355/* 1356 * Synthetic FC GUID 1357 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1358 */ 1359#define HV_SYNTHFC_GUID \ 1360 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1361 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1362 1363/* 1364 * Guest File Copy Service 1365 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1366 */ 1367 1368#define HV_FCOPY_GUID \ 1369 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1370 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1371 1372/* 1373 * NetworkDirect. This is the guest RDMA service. 1374 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1375 */ 1376#define HV_ND_GUID \ 1377 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1378 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1379 1380/* 1381 * PCI Express Pass Through 1382 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1383 */ 1384 1385#define HV_PCIE_GUID \ 1386 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1387 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1388 1389/* 1390 * Linux doesn't support the 3 devices: the first two are for 1391 * Automatic Virtual Machine Activation, and the third is for 1392 * Remote Desktop Virtualization. 1393 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1394 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1395 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1396 */ 1397 1398#define HV_AVMA1_GUID \ 1399 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1400 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1401 1402#define HV_AVMA2_GUID \ 1403 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1404 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1405 1406#define HV_RDV_GUID \ 1407 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1408 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1409 1410/* 1411 * Common header for Hyper-V ICs 1412 */ 1413 1414#define ICMSGTYPE_NEGOTIATE 0 1415#define ICMSGTYPE_HEARTBEAT 1 1416#define ICMSGTYPE_KVPEXCHANGE 2 1417#define ICMSGTYPE_SHUTDOWN 3 1418#define ICMSGTYPE_TIMESYNC 4 1419#define ICMSGTYPE_VSS 5 1420 1421#define ICMSGHDRFLAG_TRANSACTION 1 1422#define ICMSGHDRFLAG_REQUEST 2 1423#define ICMSGHDRFLAG_RESPONSE 4 1424 1425 1426/* 1427 * While we want to handle util services as regular devices, 1428 * there is only one instance of each of these services; so 1429 * we statically allocate the service specific state. 1430 */ 1431 1432struct hv_util_service { 1433 u8 *recv_buffer; 1434 void *channel; 1435 void (*util_cb)(void *); 1436 int (*util_init)(struct hv_util_service *); 1437 void (*util_deinit)(void); 1438 int (*util_pre_suspend)(void); 1439 int (*util_pre_resume)(void); 1440}; 1441 1442struct vmbuspipe_hdr { 1443 u32 flags; 1444 u32 msgsize; 1445} __packed; 1446 1447struct ic_version { 1448 u16 major; 1449 u16 minor; 1450} __packed; 1451 1452struct icmsg_hdr { 1453 struct ic_version icverframe; 1454 u16 icmsgtype; 1455 struct ic_version icvermsg; 1456 u16 icmsgsize; 1457 u32 status; 1458 u8 ictransaction_id; 1459 u8 icflags; 1460 u8 reserved[2]; 1461} __packed; 1462 1463struct icmsg_negotiate { 1464 u16 icframe_vercnt; 1465 u16 icmsg_vercnt; 1466 u32 reserved; 1467 struct ic_version icversion_data[1]; /* any size array */ 1468} __packed; 1469 1470struct shutdown_msg_data { 1471 u32 reason_code; 1472 u32 timeout_seconds; 1473 u32 flags; 1474 u8 display_message[2048]; 1475} __packed; 1476 1477struct heartbeat_msg_data { 1478 u64 seq_num; 1479 u32 reserved[8]; 1480} __packed; 1481 1482/* Time Sync IC defs */ 1483#define ICTIMESYNCFLAG_PROBE 0 1484#define ICTIMESYNCFLAG_SYNC 1 1485#define ICTIMESYNCFLAG_SAMPLE 2 1486 1487#ifdef __x86_64__ 1488#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1489#else 1490#define WLTIMEDELTA 116444736000000000LL 1491#endif 1492 1493struct ictimesync_data { 1494 u64 parenttime; 1495 u64 childtime; 1496 u64 roundtriptime; 1497 u8 flags; 1498} __packed; 1499 1500struct ictimesync_ref_data { 1501 u64 parenttime; 1502 u64 vmreferencetime; 1503 u8 flags; 1504 char leapflags; 1505 char stratum; 1506 u8 reserved[3]; 1507} __packed; 1508 1509struct hyperv_service_callback { 1510 u8 msg_type; 1511 char *log_msg; 1512 guid_t data; 1513 struct vmbus_channel *channel; 1514 void (*callback)(void *context); 1515}; 1516 1517#define MAX_SRV_VER 0x7ffffff 1518extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1519 const int *fw_version, int fw_vercnt, 1520 const int *srv_version, int srv_vercnt, 1521 int *nego_fw_version, int *nego_srv_version); 1522 1523void hv_process_channel_removal(struct vmbus_channel *channel); 1524 1525void vmbus_setevent(struct vmbus_channel *channel); 1526/* 1527 * Negotiated version with the Host. 1528 */ 1529 1530extern __u32 vmbus_proto_version; 1531 1532int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1533 const guid_t *shv_host_servie_id); 1534void vmbus_set_event(struct vmbus_channel *channel); 1535 1536/* Get the start of the ring buffer. */ 1537static inline void * 1538hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1539{ 1540 return ring_info->ring_buffer->buffer; 1541} 1542 1543/* 1544 * Mask off host interrupt callback notifications 1545 */ 1546static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1547{ 1548 rbi->ring_buffer->interrupt_mask = 1; 1549 1550 /* make sure mask update is not reordered */ 1551 virt_mb(); 1552} 1553 1554/* 1555 * Re-enable host callback and return number of outstanding bytes 1556 */ 1557static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1558{ 1559 1560 rbi->ring_buffer->interrupt_mask = 0; 1561 1562 /* make sure mask update is not reordered */ 1563 virt_mb(); 1564 1565 /* 1566 * Now check to see if the ring buffer is still empty. 1567 * If it is not, we raced and we need to process new 1568 * incoming messages. 1569 */ 1570 return hv_get_bytes_to_read(rbi); 1571} 1572 1573/* 1574 * An API to support in-place processing of incoming VMBUS packets. 1575 */ 1576 1577/* Get data payload associated with descriptor */ 1578static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1579{ 1580 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1581} 1582 1583/* Get data size associated with descriptor */ 1584static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1585{ 1586 return (desc->len8 << 3) - (desc->offset8 << 3); 1587} 1588 1589 1590struct vmpacket_descriptor * 1591hv_pkt_iter_first(struct vmbus_channel *channel); 1592 1593struct vmpacket_descriptor * 1594__hv_pkt_iter_next(struct vmbus_channel *channel, 1595 const struct vmpacket_descriptor *pkt); 1596 1597void hv_pkt_iter_close(struct vmbus_channel *channel); 1598 1599/* 1600 * Get next packet descriptor from iterator 1601 * If at end of list, return NULL and update host. 1602 */ 1603static inline struct vmpacket_descriptor * 1604hv_pkt_iter_next(struct vmbus_channel *channel, 1605 const struct vmpacket_descriptor *pkt) 1606{ 1607 struct vmpacket_descriptor *nxt; 1608 1609 nxt = __hv_pkt_iter_next(channel, pkt); 1610 if (!nxt) 1611 hv_pkt_iter_close(channel); 1612 1613 return nxt; 1614} 1615 1616#define foreach_vmbus_pkt(pkt, channel) \ 1617 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1618 pkt = hv_pkt_iter_next(channel, pkt)) 1619 1620/* 1621 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1622 * sends requests to read and write blocks. Each block must be 128 bytes or 1623 * smaller. Optionally, the VF driver can register a callback function which 1624 * will be invoked when the host says that one or more of the first 64 block 1625 * IDs is "invalid" which means that the VF driver should reread them. 1626 */ 1627#define HV_CONFIG_BLOCK_SIZE_MAX 128 1628 1629int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1630 unsigned int block_id, unsigned int *bytes_returned); 1631int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1632 unsigned int block_id); 1633int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1634 void (*block_invalidate)(void *context, 1635 u64 block_mask)); 1636 1637struct hyperv_pci_block_ops { 1638 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1639 unsigned int block_id, unsigned int *bytes_returned); 1640 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1641 unsigned int block_id); 1642 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1643 void (*block_invalidate)(void *context, 1644 u64 block_mask)); 1645}; 1646 1647extern struct hyperv_pci_block_ops hvpci_block_ops; 1648 1649#endif /* _HYPERV_H */