Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_BLKDEV_H
3#define _LINUX_BLKDEV_H
4
5#include <linux/sched.h>
6#include <linux/sched/clock.h>
7
8#ifdef CONFIG_BLOCK
9
10#include <linux/major.h>
11#include <linux/genhd.h>
12#include <linux/list.h>
13#include <linux/llist.h>
14#include <linux/timer.h>
15#include <linux/workqueue.h>
16#include <linux/pagemap.h>
17#include <linux/backing-dev-defs.h>
18#include <linux/wait.h>
19#include <linux/mempool.h>
20#include <linux/pfn.h>
21#include <linux/bio.h>
22#include <linux/stringify.h>
23#include <linux/gfp.h>
24#include <linux/bsg.h>
25#include <linux/smp.h>
26#include <linux/rcupdate.h>
27#include <linux/percpu-refcount.h>
28#include <linux/scatterlist.h>
29#include <linux/blkzoned.h>
30
31struct module;
32struct scsi_ioctl_command;
33
34struct request_queue;
35struct elevator_queue;
36struct blk_trace;
37struct request;
38struct sg_io_hdr;
39struct bsg_job;
40struct blkcg_gq;
41struct blk_flush_queue;
42struct pr_ops;
43struct rq_qos;
44struct blk_queue_stats;
45struct blk_stat_callback;
46
47#define BLKDEV_MIN_RQ 4
48#define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50/* Must be consistent with blk_mq_poll_stats_bkt() */
51#define BLK_MQ_POLL_STATS_BKTS 16
52
53/* Doing classic polling */
54#define BLK_MQ_POLL_CLASSIC -1
55
56/*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60#define BLKCG_MAX_POLS 5
61
62typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64/*
65 * request flags */
66typedef __u32 __bitwise req_flags_t;
67
68/* elevator knows about this request */
69#define RQF_SORTED ((__force req_flags_t)(1 << 0))
70/* drive already may have started this one */
71#define RQF_STARTED ((__force req_flags_t)(1 << 1))
72/* may not be passed by ioscheduler */
73#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74/* request for flush sequence */
75#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76/* merge of different types, fail separately */
77#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78/* track inflight for MQ */
79#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80/* don't call prep for this one */
81#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82/* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84#define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85/* contains copies of user pages */
86#define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
87/* vaguely specified driver internal error. Ignored by the block layer */
88#define RQF_FAILED ((__force req_flags_t)(1 << 10))
89/* don't warn about errors */
90#define RQF_QUIET ((__force req_flags_t)(1 << 11))
91/* elevator private data attached */
92#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
93/* account into disk and partition IO statistics */
94#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
95/* request came from our alloc pool */
96#define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
97/* runtime pm request */
98#define RQF_PM ((__force req_flags_t)(1 << 15))
99/* on IO scheduler merge hash */
100#define RQF_HASHED ((__force req_flags_t)(1 << 16))
101/* track IO completion time */
102#define RQF_STATS ((__force req_flags_t)(1 << 17))
103/* Look at ->special_vec for the actual data payload instead of the
104 bio chain. */
105#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
106/* The per-zone write lock is held for this request */
107#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
108/* already slept for hybrid poll */
109#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
110/* ->timeout has been called, don't expire again */
111#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
112
113/* flags that prevent us from merging requests: */
114#define RQF_NOMERGE_FLAGS \
115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116
117/*
118 * Request state for blk-mq.
119 */
120enum mq_rq_state {
121 MQ_RQ_IDLE = 0,
122 MQ_RQ_IN_FLIGHT = 1,
123 MQ_RQ_COMPLETE = 2,
124};
125
126/*
127 * Try to put the fields that are referenced together in the same cacheline.
128 *
129 * If you modify this structure, make sure to update blk_rq_init() and
130 * especially blk_mq_rq_ctx_init() to take care of the added fields.
131 */
132struct request {
133 struct request_queue *q;
134 struct blk_mq_ctx *mq_ctx;
135 struct blk_mq_hw_ctx *mq_hctx;
136
137 unsigned int cmd_flags; /* op and common flags */
138 req_flags_t rq_flags;
139
140 int tag;
141 int internal_tag;
142
143 /* the following two fields are internal, NEVER access directly */
144 unsigned int __data_len; /* total data len */
145 sector_t __sector; /* sector cursor */
146
147 struct bio *bio;
148 struct bio *biotail;
149
150 struct list_head queuelist;
151
152 /*
153 * The hash is used inside the scheduler, and killed once the
154 * request reaches the dispatch list. The ipi_list is only used
155 * to queue the request for softirq completion, which is long
156 * after the request has been unhashed (and even removed from
157 * the dispatch list).
158 */
159 union {
160 struct hlist_node hash; /* merge hash */
161 struct list_head ipi_list;
162 };
163
164 /*
165 * The rb_node is only used inside the io scheduler, requests
166 * are pruned when moved to the dispatch queue. So let the
167 * completion_data share space with the rb_node.
168 */
169 union {
170 struct rb_node rb_node; /* sort/lookup */
171 struct bio_vec special_vec;
172 void *completion_data;
173 int error_count; /* for legacy drivers, don't use */
174 };
175
176 /*
177 * Three pointers are available for the IO schedulers, if they need
178 * more they have to dynamically allocate it. Flush requests are
179 * never put on the IO scheduler. So let the flush fields share
180 * space with the elevator data.
181 */
182 union {
183 struct {
184 struct io_cq *icq;
185 void *priv[2];
186 } elv;
187
188 struct {
189 unsigned int seq;
190 struct list_head list;
191 rq_end_io_fn *saved_end_io;
192 } flush;
193 };
194
195 struct gendisk *rq_disk;
196 struct hd_struct *part;
197#ifdef CONFIG_BLK_RQ_ALLOC_TIME
198 /* Time that the first bio started allocating this request. */
199 u64 alloc_time_ns;
200#endif
201 /* Time that this request was allocated for this IO. */
202 u64 start_time_ns;
203 /* Time that I/O was submitted to the device. */
204 u64 io_start_time_ns;
205
206#ifdef CONFIG_BLK_WBT
207 unsigned short wbt_flags;
208#endif
209 /*
210 * rq sectors used for blk stats. It has the same value
211 * with blk_rq_sectors(rq), except that it never be zeroed
212 * by completion.
213 */
214 unsigned short stats_sectors;
215
216 /*
217 * Number of scatter-gather DMA addr+len pairs after
218 * physical address coalescing is performed.
219 */
220 unsigned short nr_phys_segments;
221
222#if defined(CONFIG_BLK_DEV_INTEGRITY)
223 unsigned short nr_integrity_segments;
224#endif
225
226 unsigned short write_hint;
227 unsigned short ioprio;
228
229 unsigned int extra_len; /* length of alignment and padding */
230
231 enum mq_rq_state state;
232 refcount_t ref;
233
234 unsigned int timeout;
235 unsigned long deadline;
236
237 union {
238 struct __call_single_data csd;
239 u64 fifo_time;
240 };
241
242 /*
243 * completion callback.
244 */
245 rq_end_io_fn *end_io;
246 void *end_io_data;
247};
248
249static inline bool blk_op_is_scsi(unsigned int op)
250{
251 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
252}
253
254static inline bool blk_op_is_private(unsigned int op)
255{
256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
257}
258
259static inline bool blk_rq_is_scsi(struct request *rq)
260{
261 return blk_op_is_scsi(req_op(rq));
262}
263
264static inline bool blk_rq_is_private(struct request *rq)
265{
266 return blk_op_is_private(req_op(rq));
267}
268
269static inline bool blk_rq_is_passthrough(struct request *rq)
270{
271 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
272}
273
274static inline bool bio_is_passthrough(struct bio *bio)
275{
276 unsigned op = bio_op(bio);
277
278 return blk_op_is_scsi(op) || blk_op_is_private(op);
279}
280
281static inline unsigned short req_get_ioprio(struct request *req)
282{
283 return req->ioprio;
284}
285
286#include <linux/elevator.h>
287
288struct blk_queue_ctx;
289
290typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
291
292struct bio_vec;
293typedef int (dma_drain_needed_fn)(struct request *);
294
295enum blk_eh_timer_return {
296 BLK_EH_DONE, /* drivers has completed the command */
297 BLK_EH_RESET_TIMER, /* reset timer and try again */
298};
299
300enum blk_queue_state {
301 Queue_down,
302 Queue_up,
303};
304
305#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
306#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
307
308#define BLK_SCSI_MAX_CMDS (256)
309#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
310
311/*
312 * Zoned block device models (zoned limit).
313 */
314enum blk_zoned_model {
315 BLK_ZONED_NONE, /* Regular block device */
316 BLK_ZONED_HA, /* Host-aware zoned block device */
317 BLK_ZONED_HM, /* Host-managed zoned block device */
318};
319
320struct queue_limits {
321 unsigned long bounce_pfn;
322 unsigned long seg_boundary_mask;
323 unsigned long virt_boundary_mask;
324
325 unsigned int max_hw_sectors;
326 unsigned int max_dev_sectors;
327 unsigned int chunk_sectors;
328 unsigned int max_sectors;
329 unsigned int max_segment_size;
330 unsigned int physical_block_size;
331 unsigned int logical_block_size;
332 unsigned int alignment_offset;
333 unsigned int io_min;
334 unsigned int io_opt;
335 unsigned int max_discard_sectors;
336 unsigned int max_hw_discard_sectors;
337 unsigned int max_write_same_sectors;
338 unsigned int max_write_zeroes_sectors;
339 unsigned int discard_granularity;
340 unsigned int discard_alignment;
341
342 unsigned short max_segments;
343 unsigned short max_integrity_segments;
344 unsigned short max_discard_segments;
345
346 unsigned char misaligned;
347 unsigned char discard_misaligned;
348 unsigned char raid_partial_stripes_expensive;
349 enum blk_zoned_model zoned;
350};
351
352typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
353 void *data);
354
355#ifdef CONFIG_BLK_DEV_ZONED
356
357#define BLK_ALL_ZONES ((unsigned int)-1)
358int blkdev_report_zones(struct block_device *bdev, sector_t sector,
359 unsigned int nr_zones, report_zones_cb cb, void *data);
360unsigned int blkdev_nr_zones(struct gendisk *disk);
361extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
362 sector_t sectors, sector_t nr_sectors,
363 gfp_t gfp_mask);
364extern int blk_revalidate_disk_zones(struct gendisk *disk);
365
366extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
367 unsigned int cmd, unsigned long arg);
368extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
369 unsigned int cmd, unsigned long arg);
370
371#else /* CONFIG_BLK_DEV_ZONED */
372
373static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
374{
375 return 0;
376}
377
378static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
379 fmode_t mode, unsigned int cmd,
380 unsigned long arg)
381{
382 return -ENOTTY;
383}
384
385static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
386 fmode_t mode, unsigned int cmd,
387 unsigned long arg)
388{
389 return -ENOTTY;
390}
391
392#endif /* CONFIG_BLK_DEV_ZONED */
393
394struct request_queue {
395 struct request *last_merge;
396 struct elevator_queue *elevator;
397
398 struct blk_queue_stats *stats;
399 struct rq_qos *rq_qos;
400
401 make_request_fn *make_request_fn;
402 dma_drain_needed_fn *dma_drain_needed;
403
404 const struct blk_mq_ops *mq_ops;
405
406 /* sw queues */
407 struct blk_mq_ctx __percpu *queue_ctx;
408
409 unsigned int queue_depth;
410
411 /* hw dispatch queues */
412 struct blk_mq_hw_ctx **queue_hw_ctx;
413 unsigned int nr_hw_queues;
414
415 struct backing_dev_info *backing_dev_info;
416
417 /*
418 * The queue owner gets to use this for whatever they like.
419 * ll_rw_blk doesn't touch it.
420 */
421 void *queuedata;
422
423 /*
424 * various queue flags, see QUEUE_* below
425 */
426 unsigned long queue_flags;
427 /*
428 * Number of contexts that have called blk_set_pm_only(). If this
429 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
430 * processed.
431 */
432 atomic_t pm_only;
433
434 /*
435 * ida allocated id for this queue. Used to index queues from
436 * ioctx.
437 */
438 int id;
439
440 /*
441 * queue needs bounce pages for pages above this limit
442 */
443 gfp_t bounce_gfp;
444
445 spinlock_t queue_lock;
446
447 /*
448 * queue kobject
449 */
450 struct kobject kobj;
451
452 /*
453 * mq queue kobject
454 */
455 struct kobject *mq_kobj;
456
457#ifdef CONFIG_BLK_DEV_INTEGRITY
458 struct blk_integrity integrity;
459#endif /* CONFIG_BLK_DEV_INTEGRITY */
460
461#ifdef CONFIG_PM
462 struct device *dev;
463 int rpm_status;
464 unsigned int nr_pending;
465#endif
466
467 /*
468 * queue settings
469 */
470 unsigned long nr_requests; /* Max # of requests */
471
472 unsigned int dma_drain_size;
473 void *dma_drain_buffer;
474 unsigned int dma_pad_mask;
475 unsigned int dma_alignment;
476
477 unsigned int rq_timeout;
478 int poll_nsec;
479
480 struct blk_stat_callback *poll_cb;
481 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
482
483 struct timer_list timeout;
484 struct work_struct timeout_work;
485
486 struct list_head icq_list;
487#ifdef CONFIG_BLK_CGROUP
488 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
489 struct blkcg_gq *root_blkg;
490 struct list_head blkg_list;
491#endif
492
493 struct queue_limits limits;
494
495 unsigned int required_elevator_features;
496
497#ifdef CONFIG_BLK_DEV_ZONED
498 /*
499 * Zoned block device information for request dispatch control.
500 * nr_zones is the total number of zones of the device. This is always
501 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
502 * bits which indicates if a zone is conventional (bit set) or
503 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
504 * bits which indicates if a zone is write locked, that is, if a write
505 * request targeting the zone was dispatched. All three fields are
506 * initialized by the low level device driver (e.g. scsi/sd.c).
507 * Stacking drivers (device mappers) may or may not initialize
508 * these fields.
509 *
510 * Reads of this information must be protected with blk_queue_enter() /
511 * blk_queue_exit(). Modifying this information is only allowed while
512 * no requests are being processed. See also blk_mq_freeze_queue() and
513 * blk_mq_unfreeze_queue().
514 */
515 unsigned int nr_zones;
516 unsigned long *conv_zones_bitmap;
517 unsigned long *seq_zones_wlock;
518#endif /* CONFIG_BLK_DEV_ZONED */
519
520 /*
521 * sg stuff
522 */
523 unsigned int sg_timeout;
524 unsigned int sg_reserved_size;
525 int node;
526#ifdef CONFIG_BLK_DEV_IO_TRACE
527 struct blk_trace __rcu *blk_trace;
528 struct mutex blk_trace_mutex;
529#endif
530 /*
531 * for flush operations
532 */
533 struct blk_flush_queue *fq;
534
535 struct list_head requeue_list;
536 spinlock_t requeue_lock;
537 struct delayed_work requeue_work;
538
539 struct mutex sysfs_lock;
540 struct mutex sysfs_dir_lock;
541
542 /*
543 * for reusing dead hctx instance in case of updating
544 * nr_hw_queues
545 */
546 struct list_head unused_hctx_list;
547 spinlock_t unused_hctx_lock;
548
549 int mq_freeze_depth;
550
551#if defined(CONFIG_BLK_DEV_BSG)
552 struct bsg_class_device bsg_dev;
553#endif
554
555#ifdef CONFIG_BLK_DEV_THROTTLING
556 /* Throttle data */
557 struct throtl_data *td;
558#endif
559 struct rcu_head rcu_head;
560 wait_queue_head_t mq_freeze_wq;
561 /*
562 * Protect concurrent access to q_usage_counter by
563 * percpu_ref_kill() and percpu_ref_reinit().
564 */
565 struct mutex mq_freeze_lock;
566 struct percpu_ref q_usage_counter;
567
568 struct blk_mq_tag_set *tag_set;
569 struct list_head tag_set_list;
570 struct bio_set bio_split;
571
572#ifdef CONFIG_BLK_DEBUG_FS
573 struct dentry *debugfs_dir;
574 struct dentry *sched_debugfs_dir;
575 struct dentry *rqos_debugfs_dir;
576#endif
577
578 bool mq_sysfs_init_done;
579
580 size_t cmd_size;
581
582 struct work_struct release_work;
583
584#define BLK_MAX_WRITE_HINTS 5
585 u64 write_hints[BLK_MAX_WRITE_HINTS];
586};
587
588#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
589#define QUEUE_FLAG_DYING 1 /* queue being torn down */
590#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
591#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
592#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
593#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
594#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
595#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
596#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
597#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
598#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
599#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
600#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
601#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
602#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
603#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
604#define QUEUE_FLAG_WC 17 /* Write back caching */
605#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
606#define QUEUE_FLAG_DAX 19 /* device supports DAX */
607#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
608#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
609#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
610#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
611#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
612#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
613#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
614#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
615
616#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
617 (1 << QUEUE_FLAG_SAME_COMP))
618
619void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
620void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
621bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
622
623#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
624#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
625#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
626#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
627#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
628#define blk_queue_noxmerges(q) \
629 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
630#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
631#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
632#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
633#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
634#define blk_queue_zone_resetall(q) \
635 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
636#define blk_queue_secure_erase(q) \
637 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
638#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
639#define blk_queue_scsi_passthrough(q) \
640 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
641#define blk_queue_pci_p2pdma(q) \
642 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
643#ifdef CONFIG_BLK_RQ_ALLOC_TIME
644#define blk_queue_rq_alloc_time(q) \
645 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
646#else
647#define blk_queue_rq_alloc_time(q) false
648#endif
649
650#define blk_noretry_request(rq) \
651 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
652 REQ_FAILFAST_DRIVER))
653#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
654#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
655#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
656#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
657
658extern void blk_set_pm_only(struct request_queue *q);
659extern void blk_clear_pm_only(struct request_queue *q);
660
661static inline bool blk_account_rq(struct request *rq)
662{
663 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
664}
665
666#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
667
668#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
669
670#define rq_dma_dir(rq) \
671 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
672
673#define dma_map_bvec(dev, bv, dir, attrs) \
674 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
675 (dir), (attrs))
676
677static inline bool queue_is_mq(struct request_queue *q)
678{
679 return q->mq_ops;
680}
681
682static inline enum blk_zoned_model
683blk_queue_zoned_model(struct request_queue *q)
684{
685 return q->limits.zoned;
686}
687
688static inline bool blk_queue_is_zoned(struct request_queue *q)
689{
690 switch (blk_queue_zoned_model(q)) {
691 case BLK_ZONED_HA:
692 case BLK_ZONED_HM:
693 return true;
694 default:
695 return false;
696 }
697}
698
699static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
700{
701 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
702}
703
704#ifdef CONFIG_BLK_DEV_ZONED
705static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
706{
707 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
708}
709
710static inline unsigned int blk_queue_zone_no(struct request_queue *q,
711 sector_t sector)
712{
713 if (!blk_queue_is_zoned(q))
714 return 0;
715 return sector >> ilog2(q->limits.chunk_sectors);
716}
717
718static inline bool blk_queue_zone_is_seq(struct request_queue *q,
719 sector_t sector)
720{
721 if (!blk_queue_is_zoned(q))
722 return false;
723 if (!q->conv_zones_bitmap)
724 return true;
725 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
726}
727#else /* CONFIG_BLK_DEV_ZONED */
728static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
729{
730 return 0;
731}
732#endif /* CONFIG_BLK_DEV_ZONED */
733
734static inline bool rq_is_sync(struct request *rq)
735{
736 return op_is_sync(rq->cmd_flags);
737}
738
739static inline bool rq_mergeable(struct request *rq)
740{
741 if (blk_rq_is_passthrough(rq))
742 return false;
743
744 if (req_op(rq) == REQ_OP_FLUSH)
745 return false;
746
747 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
748 return false;
749
750 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
751 return false;
752 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
753 return false;
754
755 return true;
756}
757
758static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
759{
760 if (bio_page(a) == bio_page(b) &&
761 bio_offset(a) == bio_offset(b))
762 return true;
763
764 return false;
765}
766
767static inline unsigned int blk_queue_depth(struct request_queue *q)
768{
769 if (q->queue_depth)
770 return q->queue_depth;
771
772 return q->nr_requests;
773}
774
775extern unsigned long blk_max_low_pfn, blk_max_pfn;
776
777/*
778 * standard bounce addresses:
779 *
780 * BLK_BOUNCE_HIGH : bounce all highmem pages
781 * BLK_BOUNCE_ANY : don't bounce anything
782 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
783 */
784
785#if BITS_PER_LONG == 32
786#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
787#else
788#define BLK_BOUNCE_HIGH -1ULL
789#endif
790#define BLK_BOUNCE_ANY (-1ULL)
791#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
792
793/*
794 * default timeout for SG_IO if none specified
795 */
796#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
797#define BLK_MIN_SG_TIMEOUT (7 * HZ)
798
799struct rq_map_data {
800 struct page **pages;
801 int page_order;
802 int nr_entries;
803 unsigned long offset;
804 int null_mapped;
805 int from_user;
806};
807
808struct req_iterator {
809 struct bvec_iter iter;
810 struct bio *bio;
811};
812
813/* This should not be used directly - use rq_for_each_segment */
814#define for_each_bio(_bio) \
815 for (; _bio; _bio = _bio->bi_next)
816#define __rq_for_each_bio(_bio, rq) \
817 if ((rq->bio)) \
818 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
819
820#define rq_for_each_segment(bvl, _rq, _iter) \
821 __rq_for_each_bio(_iter.bio, _rq) \
822 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
823
824#define rq_for_each_bvec(bvl, _rq, _iter) \
825 __rq_for_each_bio(_iter.bio, _rq) \
826 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
827
828#define rq_iter_last(bvec, _iter) \
829 (_iter.bio->bi_next == NULL && \
830 bio_iter_last(bvec, _iter.iter))
831
832#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
833# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
834#endif
835#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
836extern void rq_flush_dcache_pages(struct request *rq);
837#else
838static inline void rq_flush_dcache_pages(struct request *rq)
839{
840}
841#endif
842
843extern int blk_register_queue(struct gendisk *disk);
844extern void blk_unregister_queue(struct gendisk *disk);
845extern blk_qc_t generic_make_request(struct bio *bio);
846extern blk_qc_t direct_make_request(struct bio *bio);
847extern void blk_rq_init(struct request_queue *q, struct request *rq);
848extern void blk_put_request(struct request *);
849extern struct request *blk_get_request(struct request_queue *, unsigned int op,
850 blk_mq_req_flags_t flags);
851extern int blk_lld_busy(struct request_queue *q);
852extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
853 struct bio_set *bs, gfp_t gfp_mask,
854 int (*bio_ctr)(struct bio *, struct bio *, void *),
855 void *data);
856extern void blk_rq_unprep_clone(struct request *rq);
857extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
858 struct request *rq);
859extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
860extern void blk_queue_split(struct request_queue *, struct bio **);
861extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
862extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
863 unsigned int, void __user *);
864extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
865 unsigned int, void __user *);
866extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
867 struct scsi_ioctl_command __user *);
868extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
869extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
870
871extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
872extern void blk_queue_exit(struct request_queue *q);
873extern void blk_sync_queue(struct request_queue *q);
874extern int blk_rq_map_user(struct request_queue *, struct request *,
875 struct rq_map_data *, void __user *, unsigned long,
876 gfp_t);
877extern int blk_rq_unmap_user(struct bio *);
878extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
879extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
880 struct rq_map_data *, const struct iov_iter *,
881 gfp_t);
882extern void blk_execute_rq(struct request_queue *, struct gendisk *,
883 struct request *, int);
884extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
885 struct request *, int, rq_end_io_fn *);
886
887/* Helper to convert REQ_OP_XXX to its string format XXX */
888extern const char *blk_op_str(unsigned int op);
889
890int blk_status_to_errno(blk_status_t status);
891blk_status_t errno_to_blk_status(int errno);
892
893int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
894
895static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
896{
897 return bdev->bd_disk->queue; /* this is never NULL */
898}
899
900/*
901 * The basic unit of block I/O is a sector. It is used in a number of contexts
902 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
903 * bytes. Variables of type sector_t represent an offset or size that is a
904 * multiple of 512 bytes. Hence these two constants.
905 */
906#ifndef SECTOR_SHIFT
907#define SECTOR_SHIFT 9
908#endif
909#ifndef SECTOR_SIZE
910#define SECTOR_SIZE (1 << SECTOR_SHIFT)
911#endif
912
913/*
914 * blk_rq_pos() : the current sector
915 * blk_rq_bytes() : bytes left in the entire request
916 * blk_rq_cur_bytes() : bytes left in the current segment
917 * blk_rq_err_bytes() : bytes left till the next error boundary
918 * blk_rq_sectors() : sectors left in the entire request
919 * blk_rq_cur_sectors() : sectors left in the current segment
920 * blk_rq_stats_sectors() : sectors of the entire request used for stats
921 */
922static inline sector_t blk_rq_pos(const struct request *rq)
923{
924 return rq->__sector;
925}
926
927static inline unsigned int blk_rq_bytes(const struct request *rq)
928{
929 return rq->__data_len;
930}
931
932static inline int blk_rq_cur_bytes(const struct request *rq)
933{
934 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
935}
936
937extern unsigned int blk_rq_err_bytes(const struct request *rq);
938
939static inline unsigned int blk_rq_sectors(const struct request *rq)
940{
941 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
942}
943
944static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
945{
946 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
947}
948
949static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
950{
951 return rq->stats_sectors;
952}
953
954#ifdef CONFIG_BLK_DEV_ZONED
955static inline unsigned int blk_rq_zone_no(struct request *rq)
956{
957 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
958}
959
960static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
961{
962 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
963}
964#endif /* CONFIG_BLK_DEV_ZONED */
965
966/*
967 * Some commands like WRITE SAME have a payload or data transfer size which
968 * is different from the size of the request. Any driver that supports such
969 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
970 * calculate the data transfer size.
971 */
972static inline unsigned int blk_rq_payload_bytes(struct request *rq)
973{
974 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
975 return rq->special_vec.bv_len;
976 return blk_rq_bytes(rq);
977}
978
979/*
980 * Return the first full biovec in the request. The caller needs to check that
981 * there are any bvecs before calling this helper.
982 */
983static inline struct bio_vec req_bvec(struct request *rq)
984{
985 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
986 return rq->special_vec;
987 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
988}
989
990static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
991 int op)
992{
993 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
994 return min(q->limits.max_discard_sectors,
995 UINT_MAX >> SECTOR_SHIFT);
996
997 if (unlikely(op == REQ_OP_WRITE_SAME))
998 return q->limits.max_write_same_sectors;
999
1000 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1001 return q->limits.max_write_zeroes_sectors;
1002
1003 return q->limits.max_sectors;
1004}
1005
1006/*
1007 * Return maximum size of a request at given offset. Only valid for
1008 * file system requests.
1009 */
1010static inline unsigned int blk_max_size_offset(struct request_queue *q,
1011 sector_t offset)
1012{
1013 if (!q->limits.chunk_sectors)
1014 return q->limits.max_sectors;
1015
1016 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1017 (offset & (q->limits.chunk_sectors - 1))));
1018}
1019
1020static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1021 sector_t offset)
1022{
1023 struct request_queue *q = rq->q;
1024
1025 if (blk_rq_is_passthrough(rq))
1026 return q->limits.max_hw_sectors;
1027
1028 if (!q->limits.chunk_sectors ||
1029 req_op(rq) == REQ_OP_DISCARD ||
1030 req_op(rq) == REQ_OP_SECURE_ERASE)
1031 return blk_queue_get_max_sectors(q, req_op(rq));
1032
1033 return min(blk_max_size_offset(q, offset),
1034 blk_queue_get_max_sectors(q, req_op(rq)));
1035}
1036
1037static inline unsigned int blk_rq_count_bios(struct request *rq)
1038{
1039 unsigned int nr_bios = 0;
1040 struct bio *bio;
1041
1042 __rq_for_each_bio(bio, rq)
1043 nr_bios++;
1044
1045 return nr_bios;
1046}
1047
1048void blk_steal_bios(struct bio_list *list, struct request *rq);
1049
1050/*
1051 * Request completion related functions.
1052 *
1053 * blk_update_request() completes given number of bytes and updates
1054 * the request without completing it.
1055 */
1056extern bool blk_update_request(struct request *rq, blk_status_t error,
1057 unsigned int nr_bytes);
1058
1059extern void __blk_complete_request(struct request *);
1060extern void blk_abort_request(struct request *);
1061
1062/*
1063 * Access functions for manipulating queue properties
1064 */
1065extern void blk_cleanup_queue(struct request_queue *);
1066extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1067extern void blk_queue_bounce_limit(struct request_queue *, u64);
1068extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1069extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1070extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1071extern void blk_queue_max_discard_segments(struct request_queue *,
1072 unsigned short);
1073extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1074extern void blk_queue_max_discard_sectors(struct request_queue *q,
1075 unsigned int max_discard_sectors);
1076extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1077 unsigned int max_write_same_sectors);
1078extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1079 unsigned int max_write_same_sectors);
1080extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1081extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1082extern void blk_queue_alignment_offset(struct request_queue *q,
1083 unsigned int alignment);
1084extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1085extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1086extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1087extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1088extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1089extern void blk_set_default_limits(struct queue_limits *lim);
1090extern void blk_set_stacking_limits(struct queue_limits *lim);
1091extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1092 sector_t offset);
1093extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1094 sector_t offset);
1095extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1096 sector_t offset);
1097extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1098extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1099extern int blk_queue_dma_drain(struct request_queue *q,
1100 dma_drain_needed_fn *dma_drain_needed,
1101 void *buf, unsigned int size);
1102extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1103extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1104extern void blk_queue_dma_alignment(struct request_queue *, int);
1105extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1106extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1107extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1108extern void blk_queue_required_elevator_features(struct request_queue *q,
1109 unsigned int features);
1110extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1111 struct device *dev);
1112
1113/*
1114 * Number of physical segments as sent to the device.
1115 *
1116 * Normally this is the number of discontiguous data segments sent by the
1117 * submitter. But for data-less command like discard we might have no
1118 * actual data segments submitted, but the driver might have to add it's
1119 * own special payload. In that case we still return 1 here so that this
1120 * special payload will be mapped.
1121 */
1122static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1123{
1124 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 return 1;
1126 return rq->nr_phys_segments;
1127}
1128
1129/*
1130 * Number of discard segments (or ranges) the driver needs to fill in.
1131 * Each discard bio merged into a request is counted as one segment.
1132 */
1133static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1134{
1135 return max_t(unsigned short, rq->nr_phys_segments, 1);
1136}
1137
1138extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1139extern void blk_dump_rq_flags(struct request *, char *);
1140extern long nr_blockdev_pages(void);
1141
1142bool __must_check blk_get_queue(struct request_queue *);
1143struct request_queue *blk_alloc_queue(gfp_t);
1144struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1145extern void blk_put_queue(struct request_queue *);
1146extern void blk_set_queue_dying(struct request_queue *);
1147
1148/*
1149 * blk_plug permits building a queue of related requests by holding the I/O
1150 * fragments for a short period. This allows merging of sequential requests
1151 * into single larger request. As the requests are moved from a per-task list to
1152 * the device's request_queue in a batch, this results in improved scalability
1153 * as the lock contention for request_queue lock is reduced.
1154 *
1155 * It is ok not to disable preemption when adding the request to the plug list
1156 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1157 * the plug list when the task sleeps by itself. For details, please see
1158 * schedule() where blk_schedule_flush_plug() is called.
1159 */
1160struct blk_plug {
1161 struct list_head mq_list; /* blk-mq requests */
1162 struct list_head cb_list; /* md requires an unplug callback */
1163 unsigned short rq_count;
1164 bool multiple_queues;
1165};
1166#define BLK_MAX_REQUEST_COUNT 16
1167#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1168
1169struct blk_plug_cb;
1170typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1171struct blk_plug_cb {
1172 struct list_head list;
1173 blk_plug_cb_fn callback;
1174 void *data;
1175};
1176extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1177 void *data, int size);
1178extern void blk_start_plug(struct blk_plug *);
1179extern void blk_finish_plug(struct blk_plug *);
1180extern void blk_flush_plug_list(struct blk_plug *, bool);
1181
1182static inline void blk_flush_plug(struct task_struct *tsk)
1183{
1184 struct blk_plug *plug = tsk->plug;
1185
1186 if (plug)
1187 blk_flush_plug_list(plug, false);
1188}
1189
1190static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1191{
1192 struct blk_plug *plug = tsk->plug;
1193
1194 if (plug)
1195 blk_flush_plug_list(plug, true);
1196}
1197
1198static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1199{
1200 struct blk_plug *plug = tsk->plug;
1201
1202 return plug &&
1203 (!list_empty(&plug->mq_list) ||
1204 !list_empty(&plug->cb_list));
1205}
1206
1207extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1208extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1209 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1210
1211#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1212
1213extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1214 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1215extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1216 sector_t nr_sects, gfp_t gfp_mask, int flags,
1217 struct bio **biop);
1218
1219#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1220#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1221
1222extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1223 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1224 unsigned flags);
1225extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1226 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1227
1228static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1229 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1230{
1231 return blkdev_issue_discard(sb->s_bdev,
1232 block << (sb->s_blocksize_bits -
1233 SECTOR_SHIFT),
1234 nr_blocks << (sb->s_blocksize_bits -
1235 SECTOR_SHIFT),
1236 gfp_mask, flags);
1237}
1238static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1239 sector_t nr_blocks, gfp_t gfp_mask)
1240{
1241 return blkdev_issue_zeroout(sb->s_bdev,
1242 block << (sb->s_blocksize_bits -
1243 SECTOR_SHIFT),
1244 nr_blocks << (sb->s_blocksize_bits -
1245 SECTOR_SHIFT),
1246 gfp_mask, 0);
1247}
1248
1249extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1250
1251enum blk_default_limits {
1252 BLK_MAX_SEGMENTS = 128,
1253 BLK_SAFE_MAX_SECTORS = 255,
1254 BLK_DEF_MAX_SECTORS = 2560,
1255 BLK_MAX_SEGMENT_SIZE = 65536,
1256 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1257};
1258
1259static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1260{
1261 return q->limits.seg_boundary_mask;
1262}
1263
1264static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1265{
1266 return q->limits.virt_boundary_mask;
1267}
1268
1269static inline unsigned int queue_max_sectors(const struct request_queue *q)
1270{
1271 return q->limits.max_sectors;
1272}
1273
1274static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1275{
1276 return q->limits.max_hw_sectors;
1277}
1278
1279static inline unsigned short queue_max_segments(const struct request_queue *q)
1280{
1281 return q->limits.max_segments;
1282}
1283
1284static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1285{
1286 return q->limits.max_discard_segments;
1287}
1288
1289static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1290{
1291 return q->limits.max_segment_size;
1292}
1293
1294static inline unsigned queue_logical_block_size(const struct request_queue *q)
1295{
1296 int retval = 512;
1297
1298 if (q && q->limits.logical_block_size)
1299 retval = q->limits.logical_block_size;
1300
1301 return retval;
1302}
1303
1304static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1305{
1306 return queue_logical_block_size(bdev_get_queue(bdev));
1307}
1308
1309static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1310{
1311 return q->limits.physical_block_size;
1312}
1313
1314static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1315{
1316 return queue_physical_block_size(bdev_get_queue(bdev));
1317}
1318
1319static inline unsigned int queue_io_min(const struct request_queue *q)
1320{
1321 return q->limits.io_min;
1322}
1323
1324static inline int bdev_io_min(struct block_device *bdev)
1325{
1326 return queue_io_min(bdev_get_queue(bdev));
1327}
1328
1329static inline unsigned int queue_io_opt(const struct request_queue *q)
1330{
1331 return q->limits.io_opt;
1332}
1333
1334static inline int bdev_io_opt(struct block_device *bdev)
1335{
1336 return queue_io_opt(bdev_get_queue(bdev));
1337}
1338
1339static inline int queue_alignment_offset(const struct request_queue *q)
1340{
1341 if (q->limits.misaligned)
1342 return -1;
1343
1344 return q->limits.alignment_offset;
1345}
1346
1347static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1348{
1349 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1350 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1351 << SECTOR_SHIFT;
1352
1353 return (granularity + lim->alignment_offset - alignment) % granularity;
1354}
1355
1356static inline int bdev_alignment_offset(struct block_device *bdev)
1357{
1358 struct request_queue *q = bdev_get_queue(bdev);
1359
1360 if (q->limits.misaligned)
1361 return -1;
1362
1363 if (bdev != bdev->bd_contains)
1364 return bdev->bd_part->alignment_offset;
1365
1366 return q->limits.alignment_offset;
1367}
1368
1369static inline int queue_discard_alignment(const struct request_queue *q)
1370{
1371 if (q->limits.discard_misaligned)
1372 return -1;
1373
1374 return q->limits.discard_alignment;
1375}
1376
1377static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1378{
1379 unsigned int alignment, granularity, offset;
1380
1381 if (!lim->max_discard_sectors)
1382 return 0;
1383
1384 /* Why are these in bytes, not sectors? */
1385 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1386 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1387 if (!granularity)
1388 return 0;
1389
1390 /* Offset of the partition start in 'granularity' sectors */
1391 offset = sector_div(sector, granularity);
1392
1393 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1394 offset = (granularity + alignment - offset) % granularity;
1395
1396 /* Turn it back into bytes, gaah */
1397 return offset << SECTOR_SHIFT;
1398}
1399
1400static inline int bdev_discard_alignment(struct block_device *bdev)
1401{
1402 struct request_queue *q = bdev_get_queue(bdev);
1403
1404 if (bdev != bdev->bd_contains)
1405 return bdev->bd_part->discard_alignment;
1406
1407 return q->limits.discard_alignment;
1408}
1409
1410static inline unsigned int bdev_write_same(struct block_device *bdev)
1411{
1412 struct request_queue *q = bdev_get_queue(bdev);
1413
1414 if (q)
1415 return q->limits.max_write_same_sectors;
1416
1417 return 0;
1418}
1419
1420static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1421{
1422 struct request_queue *q = bdev_get_queue(bdev);
1423
1424 if (q)
1425 return q->limits.max_write_zeroes_sectors;
1426
1427 return 0;
1428}
1429
1430static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1431{
1432 struct request_queue *q = bdev_get_queue(bdev);
1433
1434 if (q)
1435 return blk_queue_zoned_model(q);
1436
1437 return BLK_ZONED_NONE;
1438}
1439
1440static inline bool bdev_is_zoned(struct block_device *bdev)
1441{
1442 struct request_queue *q = bdev_get_queue(bdev);
1443
1444 if (q)
1445 return blk_queue_is_zoned(q);
1446
1447 return false;
1448}
1449
1450static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1451{
1452 struct request_queue *q = bdev_get_queue(bdev);
1453
1454 if (q)
1455 return blk_queue_zone_sectors(q);
1456 return 0;
1457}
1458
1459static inline int queue_dma_alignment(const struct request_queue *q)
1460{
1461 return q ? q->dma_alignment : 511;
1462}
1463
1464static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1465 unsigned int len)
1466{
1467 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1468 return !(addr & alignment) && !(len & alignment);
1469}
1470
1471/* assumes size > 256 */
1472static inline unsigned int blksize_bits(unsigned int size)
1473{
1474 unsigned int bits = 8;
1475 do {
1476 bits++;
1477 size >>= 1;
1478 } while (size > 256);
1479 return bits;
1480}
1481
1482static inline unsigned int block_size(struct block_device *bdev)
1483{
1484 return bdev->bd_block_size;
1485}
1486
1487typedef struct {struct page *v;} Sector;
1488
1489unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1490
1491static inline void put_dev_sector(Sector p)
1492{
1493 put_page(p.v);
1494}
1495
1496int kblockd_schedule_work(struct work_struct *work);
1497int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1498
1499#define MODULE_ALIAS_BLOCKDEV(major,minor) \
1500 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1501#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1502 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1503
1504#if defined(CONFIG_BLK_DEV_INTEGRITY)
1505
1506enum blk_integrity_flags {
1507 BLK_INTEGRITY_VERIFY = 1 << 0,
1508 BLK_INTEGRITY_GENERATE = 1 << 1,
1509 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1510 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1511};
1512
1513struct blk_integrity_iter {
1514 void *prot_buf;
1515 void *data_buf;
1516 sector_t seed;
1517 unsigned int data_size;
1518 unsigned short interval;
1519 const char *disk_name;
1520};
1521
1522typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1523typedef void (integrity_prepare_fn) (struct request *);
1524typedef void (integrity_complete_fn) (struct request *, unsigned int);
1525
1526struct blk_integrity_profile {
1527 integrity_processing_fn *generate_fn;
1528 integrity_processing_fn *verify_fn;
1529 integrity_prepare_fn *prepare_fn;
1530 integrity_complete_fn *complete_fn;
1531 const char *name;
1532};
1533
1534extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1535extern void blk_integrity_unregister(struct gendisk *);
1536extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1537extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1538 struct scatterlist *);
1539extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1540extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1541 struct request *);
1542extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1543 struct bio *);
1544
1545static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1546{
1547 struct blk_integrity *bi = &disk->queue->integrity;
1548
1549 if (!bi->profile)
1550 return NULL;
1551
1552 return bi;
1553}
1554
1555static inline
1556struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1557{
1558 return blk_get_integrity(bdev->bd_disk);
1559}
1560
1561static inline bool blk_integrity_rq(struct request *rq)
1562{
1563 return rq->cmd_flags & REQ_INTEGRITY;
1564}
1565
1566static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1567 unsigned int segs)
1568{
1569 q->limits.max_integrity_segments = segs;
1570}
1571
1572static inline unsigned short
1573queue_max_integrity_segments(const struct request_queue *q)
1574{
1575 return q->limits.max_integrity_segments;
1576}
1577
1578/**
1579 * bio_integrity_intervals - Return number of integrity intervals for a bio
1580 * @bi: blk_integrity profile for device
1581 * @sectors: Size of the bio in 512-byte sectors
1582 *
1583 * Description: The block layer calculates everything in 512 byte
1584 * sectors but integrity metadata is done in terms of the data integrity
1585 * interval size of the storage device. Convert the block layer sectors
1586 * to the appropriate number of integrity intervals.
1587 */
1588static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1589 unsigned int sectors)
1590{
1591 return sectors >> (bi->interval_exp - 9);
1592}
1593
1594static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1595 unsigned int sectors)
1596{
1597 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1598}
1599
1600/*
1601 * Return the first bvec that contains integrity data. Only drivers that are
1602 * limited to a single integrity segment should use this helper.
1603 */
1604static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1605{
1606 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1607 return NULL;
1608 return rq->bio->bi_integrity->bip_vec;
1609}
1610
1611#else /* CONFIG_BLK_DEV_INTEGRITY */
1612
1613struct bio;
1614struct block_device;
1615struct gendisk;
1616struct blk_integrity;
1617
1618static inline int blk_integrity_rq(struct request *rq)
1619{
1620 return 0;
1621}
1622static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1623 struct bio *b)
1624{
1625 return 0;
1626}
1627static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1628 struct bio *b,
1629 struct scatterlist *s)
1630{
1631 return 0;
1632}
1633static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1634{
1635 return NULL;
1636}
1637static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1638{
1639 return NULL;
1640}
1641static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1642{
1643 return 0;
1644}
1645static inline void blk_integrity_register(struct gendisk *d,
1646 struct blk_integrity *b)
1647{
1648}
1649static inline void blk_integrity_unregister(struct gendisk *d)
1650{
1651}
1652static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1653 unsigned int segs)
1654{
1655}
1656static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1657{
1658 return 0;
1659}
1660static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1661 struct request *r1,
1662 struct request *r2)
1663{
1664 return true;
1665}
1666static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1667 struct request *r,
1668 struct bio *b)
1669{
1670 return true;
1671}
1672
1673static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1674 unsigned int sectors)
1675{
1676 return 0;
1677}
1678
1679static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1680 unsigned int sectors)
1681{
1682 return 0;
1683}
1684
1685static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1686{
1687 return NULL;
1688}
1689
1690#endif /* CONFIG_BLK_DEV_INTEGRITY */
1691
1692struct block_device_operations {
1693 int (*open) (struct block_device *, fmode_t);
1694 void (*release) (struct gendisk *, fmode_t);
1695 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1696 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1697 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1698 unsigned int (*check_events) (struct gendisk *disk,
1699 unsigned int clearing);
1700 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1701 int (*media_changed) (struct gendisk *);
1702 void (*unlock_native_capacity) (struct gendisk *);
1703 int (*revalidate_disk) (struct gendisk *);
1704 int (*getgeo)(struct block_device *, struct hd_geometry *);
1705 /* this callback is with swap_lock and sometimes page table lock held */
1706 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1707 int (*report_zones)(struct gendisk *, sector_t sector,
1708 unsigned int nr_zones, report_zones_cb cb, void *data);
1709 struct module *owner;
1710 const struct pr_ops *pr_ops;
1711};
1712
1713#ifdef CONFIG_COMPAT
1714extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1715 unsigned int, unsigned long);
1716#else
1717#define blkdev_compat_ptr_ioctl NULL
1718#endif
1719
1720extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1721 unsigned long);
1722extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1723extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1724 struct writeback_control *);
1725
1726#ifdef CONFIG_BLK_DEV_ZONED
1727bool blk_req_needs_zone_write_lock(struct request *rq);
1728void __blk_req_zone_write_lock(struct request *rq);
1729void __blk_req_zone_write_unlock(struct request *rq);
1730
1731static inline void blk_req_zone_write_lock(struct request *rq)
1732{
1733 if (blk_req_needs_zone_write_lock(rq))
1734 __blk_req_zone_write_lock(rq);
1735}
1736
1737static inline void blk_req_zone_write_unlock(struct request *rq)
1738{
1739 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1740 __blk_req_zone_write_unlock(rq);
1741}
1742
1743static inline bool blk_req_zone_is_write_locked(struct request *rq)
1744{
1745 return rq->q->seq_zones_wlock &&
1746 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1747}
1748
1749static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1750{
1751 if (!blk_req_needs_zone_write_lock(rq))
1752 return true;
1753 return !blk_req_zone_is_write_locked(rq);
1754}
1755#else
1756static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1757{
1758 return false;
1759}
1760
1761static inline void blk_req_zone_write_lock(struct request *rq)
1762{
1763}
1764
1765static inline void blk_req_zone_write_unlock(struct request *rq)
1766{
1767}
1768static inline bool blk_req_zone_is_write_locked(struct request *rq)
1769{
1770 return false;
1771}
1772
1773static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1774{
1775 return true;
1776}
1777#endif /* CONFIG_BLK_DEV_ZONED */
1778
1779#else /* CONFIG_BLOCK */
1780
1781struct block_device;
1782
1783/*
1784 * stubs for when the block layer is configured out
1785 */
1786#define buffer_heads_over_limit 0
1787
1788static inline long nr_blockdev_pages(void)
1789{
1790 return 0;
1791}
1792
1793struct blk_plug {
1794};
1795
1796static inline void blk_start_plug(struct blk_plug *plug)
1797{
1798}
1799
1800static inline void blk_finish_plug(struct blk_plug *plug)
1801{
1802}
1803
1804static inline void blk_flush_plug(struct task_struct *task)
1805{
1806}
1807
1808static inline void blk_schedule_flush_plug(struct task_struct *task)
1809{
1810}
1811
1812
1813static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1814{
1815 return false;
1816}
1817
1818static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1819 sector_t *error_sector)
1820{
1821 return 0;
1822}
1823
1824#endif /* CONFIG_BLOCK */
1825
1826static inline void blk_wake_io_task(struct task_struct *waiter)
1827{
1828 /*
1829 * If we're polling, the task itself is doing the completions. For
1830 * that case, we don't need to signal a wakeup, it's enough to just
1831 * mark us as RUNNING.
1832 */
1833 if (waiter == current)
1834 __set_current_state(TASK_RUNNING);
1835 else
1836 wake_up_process(waiter);
1837}
1838
1839#endif