Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16#include <linux/time.h>
17#include <linux/fs.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <linux/cred.h>
26
27#include <asm/byteorder.h>
28
29#include "ext4.h"
30#include "ext4_jbd2.h"
31#include "xattr.h"
32#include "acl.h"
33
34#include <trace/events/ext4.h>
35
36/*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40/*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50/*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56{
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67}
68
69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70{
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77}
78
79static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83{
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86
87 if (buffer_verified(bh))
88 return 0;
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 return -EFSCORRUPTED;
91
92 ext4_lock_group(sb, block_group);
93 if (buffer_verified(bh))
94 goto verified;
95 blk = ext4_inode_bitmap(sb, desc);
96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 EXT4_INODES_PER_GROUP(sb) / 8) ||
98 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
99 ext4_unlock_group(sb, block_group);
100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group, blk);
102 ext4_mark_group_bitmap_corrupted(sb, block_group,
103 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
104 return -EFSBADCRC;
105 }
106 set_buffer_verified(bh);
107verified:
108 ext4_unlock_group(sb, block_group);
109 return 0;
110}
111
112/*
113 * Read the inode allocation bitmap for a given block_group, reading
114 * into the specified slot in the superblock's bitmap cache.
115 *
116 * Return buffer_head of bitmap on success or NULL.
117 */
118static struct buffer_head *
119ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120{
121 struct ext4_group_desc *desc;
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
123 struct buffer_head *bh = NULL;
124 ext4_fsblk_t bitmap_blk;
125 int err;
126
127 desc = ext4_get_group_desc(sb, block_group, NULL);
128 if (!desc)
129 return ERR_PTR(-EFSCORRUPTED);
130
131 bitmap_blk = ext4_inode_bitmap(sb, desc);
132 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
133 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
134 ext4_error(sb, "Invalid inode bitmap blk %llu in "
135 "block_group %u", bitmap_blk, block_group);
136 ext4_mark_group_bitmap_corrupted(sb, block_group,
137 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
138 return ERR_PTR(-EFSCORRUPTED);
139 }
140 bh = sb_getblk(sb, bitmap_blk);
141 if (unlikely(!bh)) {
142 ext4_warning(sb, "Cannot read inode bitmap - "
143 "block_group = %u, inode_bitmap = %llu",
144 block_group, bitmap_blk);
145 return ERR_PTR(-ENOMEM);
146 }
147 if (bitmap_uptodate(bh))
148 goto verify;
149
150 lock_buffer(bh);
151 if (bitmap_uptodate(bh)) {
152 unlock_buffer(bh);
153 goto verify;
154 }
155
156 ext4_lock_group(sb, block_group);
157 if (ext4_has_group_desc_csum(sb) &&
158 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
159 if (block_group == 0) {
160 ext4_unlock_group(sb, block_group);
161 unlock_buffer(bh);
162 ext4_error(sb, "Inode bitmap for bg 0 marked "
163 "uninitialized");
164 err = -EFSCORRUPTED;
165 goto out;
166 }
167 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
169 sb->s_blocksize * 8, bh->b_data);
170 set_bitmap_uptodate(bh);
171 set_buffer_uptodate(bh);
172 set_buffer_verified(bh);
173 ext4_unlock_group(sb, block_group);
174 unlock_buffer(bh);
175 return bh;
176 }
177 ext4_unlock_group(sb, block_group);
178
179 if (buffer_uptodate(bh)) {
180 /*
181 * if not uninit if bh is uptodate,
182 * bitmap is also uptodate
183 */
184 set_bitmap_uptodate(bh);
185 unlock_buffer(bh);
186 goto verify;
187 }
188 /*
189 * submit the buffer_head for reading
190 */
191 trace_ext4_load_inode_bitmap(sb, block_group);
192 bh->b_end_io = ext4_end_bitmap_read;
193 get_bh(bh);
194 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
195 wait_on_buffer(bh);
196 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
197 if (!buffer_uptodate(bh)) {
198 put_bh(bh);
199 ext4_set_errno(sb, EIO);
200 ext4_error(sb, "Cannot read inode bitmap - "
201 "block_group = %u, inode_bitmap = %llu",
202 block_group, bitmap_blk);
203 ext4_mark_group_bitmap_corrupted(sb, block_group,
204 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
205 return ERR_PTR(-EIO);
206 }
207
208verify:
209 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
210 if (err)
211 goto out;
212 return bh;
213out:
214 put_bh(bh);
215 return ERR_PTR(err);
216}
217
218/*
219 * NOTE! When we get the inode, we're the only people
220 * that have access to it, and as such there are no
221 * race conditions we have to worry about. The inode
222 * is not on the hash-lists, and it cannot be reached
223 * through the filesystem because the directory entry
224 * has been deleted earlier.
225 *
226 * HOWEVER: we must make sure that we get no aliases,
227 * which means that we have to call "clear_inode()"
228 * _before_ we mark the inode not in use in the inode
229 * bitmaps. Otherwise a newly created file might use
230 * the same inode number (not actually the same pointer
231 * though), and then we'd have two inodes sharing the
232 * same inode number and space on the harddisk.
233 */
234void ext4_free_inode(handle_t *handle, struct inode *inode)
235{
236 struct super_block *sb = inode->i_sb;
237 int is_directory;
238 unsigned long ino;
239 struct buffer_head *bitmap_bh = NULL;
240 struct buffer_head *bh2;
241 ext4_group_t block_group;
242 unsigned long bit;
243 struct ext4_group_desc *gdp;
244 struct ext4_super_block *es;
245 struct ext4_sb_info *sbi;
246 int fatal = 0, err, count, cleared;
247 struct ext4_group_info *grp;
248
249 if (!sb) {
250 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
251 "nonexistent device\n", __func__, __LINE__);
252 return;
253 }
254 if (atomic_read(&inode->i_count) > 1) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
256 __func__, __LINE__, inode->i_ino,
257 atomic_read(&inode->i_count));
258 return;
259 }
260 if (inode->i_nlink) {
261 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
262 __func__, __LINE__, inode->i_ino, inode->i_nlink);
263 return;
264 }
265 sbi = EXT4_SB(sb);
266
267 ino = inode->i_ino;
268 ext4_debug("freeing inode %lu\n", ino);
269 trace_ext4_free_inode(inode);
270
271 dquot_initialize(inode);
272 dquot_free_inode(inode);
273
274 is_directory = S_ISDIR(inode->i_mode);
275
276 /* Do this BEFORE marking the inode not in use or returning an error */
277 ext4_clear_inode(inode);
278
279 es = sbi->s_es;
280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 goto error_return;
283 }
284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 /* Don't bother if the inode bitmap is corrupt. */
288 grp = ext4_get_group_info(sb, block_group);
289 if (IS_ERR(bitmap_bh)) {
290 fatal = PTR_ERR(bitmap_bh);
291 bitmap_bh = NULL;
292 goto error_return;
293 }
294 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
295 fatal = -EFSCORRUPTED;
296 goto error_return;
297 }
298
299 BUFFER_TRACE(bitmap_bh, "get_write_access");
300 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
301 if (fatal)
302 goto error_return;
303
304 fatal = -ESRCH;
305 gdp = ext4_get_group_desc(sb, block_group, &bh2);
306 if (gdp) {
307 BUFFER_TRACE(bh2, "get_write_access");
308 fatal = ext4_journal_get_write_access(handle, bh2);
309 }
310 ext4_lock_group(sb, block_group);
311 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
312 if (fatal || !cleared) {
313 ext4_unlock_group(sb, block_group);
314 goto out;
315 }
316
317 count = ext4_free_inodes_count(sb, gdp) + 1;
318 ext4_free_inodes_set(sb, gdp, count);
319 if (is_directory) {
320 count = ext4_used_dirs_count(sb, gdp) - 1;
321 ext4_used_dirs_set(sb, gdp, count);
322 percpu_counter_dec(&sbi->s_dirs_counter);
323 }
324 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
325 EXT4_INODES_PER_GROUP(sb) / 8);
326 ext4_group_desc_csum_set(sb, block_group, gdp);
327 ext4_unlock_group(sb, block_group);
328
329 percpu_counter_inc(&sbi->s_freeinodes_counter);
330 if (sbi->s_log_groups_per_flex) {
331 struct flex_groups *fg;
332
333 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
334 ext4_flex_group(sbi, block_group));
335 atomic_inc(&fg->free_inodes);
336 if (is_directory)
337 atomic_dec(&fg->used_dirs);
338 }
339 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
340 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
341out:
342 if (cleared) {
343 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
344 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
345 if (!fatal)
346 fatal = err;
347 } else {
348 ext4_error(sb, "bit already cleared for inode %lu", ino);
349 ext4_mark_group_bitmap_corrupted(sb, block_group,
350 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
351 }
352
353error_return:
354 brelse(bitmap_bh);
355 ext4_std_error(sb, fatal);
356}
357
358struct orlov_stats {
359 __u64 free_clusters;
360 __u32 free_inodes;
361 __u32 used_dirs;
362};
363
364/*
365 * Helper function for Orlov's allocator; returns critical information
366 * for a particular block group or flex_bg. If flex_size is 1, then g
367 * is a block group number; otherwise it is flex_bg number.
368 */
369static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
370 int flex_size, struct orlov_stats *stats)
371{
372 struct ext4_group_desc *desc;
373
374 if (flex_size > 1) {
375 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
376 s_flex_groups, g);
377 stats->free_inodes = atomic_read(&fg->free_inodes);
378 stats->free_clusters = atomic64_read(&fg->free_clusters);
379 stats->used_dirs = atomic_read(&fg->used_dirs);
380 return;
381 }
382
383 desc = ext4_get_group_desc(sb, g, NULL);
384 if (desc) {
385 stats->free_inodes = ext4_free_inodes_count(sb, desc);
386 stats->free_clusters = ext4_free_group_clusters(sb, desc);
387 stats->used_dirs = ext4_used_dirs_count(sb, desc);
388 } else {
389 stats->free_inodes = 0;
390 stats->free_clusters = 0;
391 stats->used_dirs = 0;
392 }
393}
394
395/*
396 * Orlov's allocator for directories.
397 *
398 * We always try to spread first-level directories.
399 *
400 * If there are blockgroups with both free inodes and free blocks counts
401 * not worse than average we return one with smallest directory count.
402 * Otherwise we simply return a random group.
403 *
404 * For the rest rules look so:
405 *
406 * It's OK to put directory into a group unless
407 * it has too many directories already (max_dirs) or
408 * it has too few free inodes left (min_inodes) or
409 * it has too few free blocks left (min_blocks) or
410 * Parent's group is preferred, if it doesn't satisfy these
411 * conditions we search cyclically through the rest. If none
412 * of the groups look good we just look for a group with more
413 * free inodes than average (starting at parent's group).
414 */
415
416static int find_group_orlov(struct super_block *sb, struct inode *parent,
417 ext4_group_t *group, umode_t mode,
418 const struct qstr *qstr)
419{
420 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
421 struct ext4_sb_info *sbi = EXT4_SB(sb);
422 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
423 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
424 unsigned int freei, avefreei, grp_free;
425 ext4_fsblk_t freeb, avefreec;
426 unsigned int ndirs;
427 int max_dirs, min_inodes;
428 ext4_grpblk_t min_clusters;
429 ext4_group_t i, grp, g, ngroups;
430 struct ext4_group_desc *desc;
431 struct orlov_stats stats;
432 int flex_size = ext4_flex_bg_size(sbi);
433 struct dx_hash_info hinfo;
434
435 ngroups = real_ngroups;
436 if (flex_size > 1) {
437 ngroups = (real_ngroups + flex_size - 1) >>
438 sbi->s_log_groups_per_flex;
439 parent_group >>= sbi->s_log_groups_per_flex;
440 }
441
442 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
443 avefreei = freei / ngroups;
444 freeb = EXT4_C2B(sbi,
445 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
446 avefreec = freeb;
447 do_div(avefreec, ngroups);
448 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
449
450 if (S_ISDIR(mode) &&
451 ((parent == d_inode(sb->s_root)) ||
452 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
453 int best_ndir = inodes_per_group;
454 int ret = -1;
455
456 if (qstr) {
457 hinfo.hash_version = DX_HASH_HALF_MD4;
458 hinfo.seed = sbi->s_hash_seed;
459 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
460 grp = hinfo.hash;
461 } else
462 grp = prandom_u32();
463 parent_group = (unsigned)grp % ngroups;
464 for (i = 0; i < ngroups; i++) {
465 g = (parent_group + i) % ngroups;
466 get_orlov_stats(sb, g, flex_size, &stats);
467 if (!stats.free_inodes)
468 continue;
469 if (stats.used_dirs >= best_ndir)
470 continue;
471 if (stats.free_inodes < avefreei)
472 continue;
473 if (stats.free_clusters < avefreec)
474 continue;
475 grp = g;
476 ret = 0;
477 best_ndir = stats.used_dirs;
478 }
479 if (ret)
480 goto fallback;
481 found_flex_bg:
482 if (flex_size == 1) {
483 *group = grp;
484 return 0;
485 }
486
487 /*
488 * We pack inodes at the beginning of the flexgroup's
489 * inode tables. Block allocation decisions will do
490 * something similar, although regular files will
491 * start at 2nd block group of the flexgroup. See
492 * ext4_ext_find_goal() and ext4_find_near().
493 */
494 grp *= flex_size;
495 for (i = 0; i < flex_size; i++) {
496 if (grp+i >= real_ngroups)
497 break;
498 desc = ext4_get_group_desc(sb, grp+i, NULL);
499 if (desc && ext4_free_inodes_count(sb, desc)) {
500 *group = grp+i;
501 return 0;
502 }
503 }
504 goto fallback;
505 }
506
507 max_dirs = ndirs / ngroups + inodes_per_group / 16;
508 min_inodes = avefreei - inodes_per_group*flex_size / 4;
509 if (min_inodes < 1)
510 min_inodes = 1;
511 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
512
513 /*
514 * Start looking in the flex group where we last allocated an
515 * inode for this parent directory
516 */
517 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
518 parent_group = EXT4_I(parent)->i_last_alloc_group;
519 if (flex_size > 1)
520 parent_group >>= sbi->s_log_groups_per_flex;
521 }
522
523 for (i = 0; i < ngroups; i++) {
524 grp = (parent_group + i) % ngroups;
525 get_orlov_stats(sb, grp, flex_size, &stats);
526 if (stats.used_dirs >= max_dirs)
527 continue;
528 if (stats.free_inodes < min_inodes)
529 continue;
530 if (stats.free_clusters < min_clusters)
531 continue;
532 goto found_flex_bg;
533 }
534
535fallback:
536 ngroups = real_ngroups;
537 avefreei = freei / ngroups;
538fallback_retry:
539 parent_group = EXT4_I(parent)->i_block_group;
540 for (i = 0; i < ngroups; i++) {
541 grp = (parent_group + i) % ngroups;
542 desc = ext4_get_group_desc(sb, grp, NULL);
543 if (desc) {
544 grp_free = ext4_free_inodes_count(sb, desc);
545 if (grp_free && grp_free >= avefreei) {
546 *group = grp;
547 return 0;
548 }
549 }
550 }
551
552 if (avefreei) {
553 /*
554 * The free-inodes counter is approximate, and for really small
555 * filesystems the above test can fail to find any blockgroups
556 */
557 avefreei = 0;
558 goto fallback_retry;
559 }
560
561 return -1;
562}
563
564static int find_group_other(struct super_block *sb, struct inode *parent,
565 ext4_group_t *group, umode_t mode)
566{
567 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
568 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
569 struct ext4_group_desc *desc;
570 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
571
572 /*
573 * Try to place the inode is the same flex group as its
574 * parent. If we can't find space, use the Orlov algorithm to
575 * find another flex group, and store that information in the
576 * parent directory's inode information so that use that flex
577 * group for future allocations.
578 */
579 if (flex_size > 1) {
580 int retry = 0;
581
582 try_again:
583 parent_group &= ~(flex_size-1);
584 last = parent_group + flex_size;
585 if (last > ngroups)
586 last = ngroups;
587 for (i = parent_group; i < last; i++) {
588 desc = ext4_get_group_desc(sb, i, NULL);
589 if (desc && ext4_free_inodes_count(sb, desc)) {
590 *group = i;
591 return 0;
592 }
593 }
594 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
595 retry = 1;
596 parent_group = EXT4_I(parent)->i_last_alloc_group;
597 goto try_again;
598 }
599 /*
600 * If this didn't work, use the Orlov search algorithm
601 * to find a new flex group; we pass in the mode to
602 * avoid the topdir algorithms.
603 */
604 *group = parent_group + flex_size;
605 if (*group > ngroups)
606 *group = 0;
607 return find_group_orlov(sb, parent, group, mode, NULL);
608 }
609
610 /*
611 * Try to place the inode in its parent directory
612 */
613 *group = parent_group;
614 desc = ext4_get_group_desc(sb, *group, NULL);
615 if (desc && ext4_free_inodes_count(sb, desc) &&
616 ext4_free_group_clusters(sb, desc))
617 return 0;
618
619 /*
620 * We're going to place this inode in a different blockgroup from its
621 * parent. We want to cause files in a common directory to all land in
622 * the same blockgroup. But we want files which are in a different
623 * directory which shares a blockgroup with our parent to land in a
624 * different blockgroup.
625 *
626 * So add our directory's i_ino into the starting point for the hash.
627 */
628 *group = (*group + parent->i_ino) % ngroups;
629
630 /*
631 * Use a quadratic hash to find a group with a free inode and some free
632 * blocks.
633 */
634 for (i = 1; i < ngroups; i <<= 1) {
635 *group += i;
636 if (*group >= ngroups)
637 *group -= ngroups;
638 desc = ext4_get_group_desc(sb, *group, NULL);
639 if (desc && ext4_free_inodes_count(sb, desc) &&
640 ext4_free_group_clusters(sb, desc))
641 return 0;
642 }
643
644 /*
645 * That failed: try linear search for a free inode, even if that group
646 * has no free blocks.
647 */
648 *group = parent_group;
649 for (i = 0; i < ngroups; i++) {
650 if (++*group >= ngroups)
651 *group = 0;
652 desc = ext4_get_group_desc(sb, *group, NULL);
653 if (desc && ext4_free_inodes_count(sb, desc))
654 return 0;
655 }
656
657 return -1;
658}
659
660/*
661 * In no journal mode, if an inode has recently been deleted, we want
662 * to avoid reusing it until we're reasonably sure the inode table
663 * block has been written back to disk. (Yes, these values are
664 * somewhat arbitrary...)
665 */
666#define RECENTCY_MIN 5
667#define RECENTCY_DIRTY 300
668
669static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
670{
671 struct ext4_group_desc *gdp;
672 struct ext4_inode *raw_inode;
673 struct buffer_head *bh;
674 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
675 int offset, ret = 0;
676 int recentcy = RECENTCY_MIN;
677 u32 dtime, now;
678
679 gdp = ext4_get_group_desc(sb, group, NULL);
680 if (unlikely(!gdp))
681 return 0;
682
683 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
684 (ino / inodes_per_block));
685 if (!bh || !buffer_uptodate(bh))
686 /*
687 * If the block is not in the buffer cache, then it
688 * must have been written out.
689 */
690 goto out;
691
692 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
693 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
694
695 /* i_dtime is only 32 bits on disk, but we only care about relative
696 * times in the range of a few minutes (i.e. long enough to sync a
697 * recently-deleted inode to disk), so using the low 32 bits of the
698 * clock (a 68 year range) is enough, see time_before32() */
699 dtime = le32_to_cpu(raw_inode->i_dtime);
700 now = ktime_get_real_seconds();
701 if (buffer_dirty(bh))
702 recentcy += RECENTCY_DIRTY;
703
704 if (dtime && time_before32(dtime, now) &&
705 time_before32(now, dtime + recentcy))
706 ret = 1;
707out:
708 brelse(bh);
709 return ret;
710}
711
712static int find_inode_bit(struct super_block *sb, ext4_group_t group,
713 struct buffer_head *bitmap, unsigned long *ino)
714{
715next:
716 *ino = ext4_find_next_zero_bit((unsigned long *)
717 bitmap->b_data,
718 EXT4_INODES_PER_GROUP(sb), *ino);
719 if (*ino >= EXT4_INODES_PER_GROUP(sb))
720 return 0;
721
722 if ((EXT4_SB(sb)->s_journal == NULL) &&
723 recently_deleted(sb, group, *ino)) {
724 *ino = *ino + 1;
725 if (*ino < EXT4_INODES_PER_GROUP(sb))
726 goto next;
727 return 0;
728 }
729
730 return 1;
731}
732
733/*
734 * There are two policies for allocating an inode. If the new inode is
735 * a directory, then a forward search is made for a block group with both
736 * free space and a low directory-to-inode ratio; if that fails, then of
737 * the groups with above-average free space, that group with the fewest
738 * directories already is chosen.
739 *
740 * For other inodes, search forward from the parent directory's block
741 * group to find a free inode.
742 */
743struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
744 umode_t mode, const struct qstr *qstr,
745 __u32 goal, uid_t *owner, __u32 i_flags,
746 int handle_type, unsigned int line_no,
747 int nblocks)
748{
749 struct super_block *sb;
750 struct buffer_head *inode_bitmap_bh = NULL;
751 struct buffer_head *group_desc_bh;
752 ext4_group_t ngroups, group = 0;
753 unsigned long ino = 0;
754 struct inode *inode;
755 struct ext4_group_desc *gdp = NULL;
756 struct ext4_inode_info *ei;
757 struct ext4_sb_info *sbi;
758 int ret2, err;
759 struct inode *ret;
760 ext4_group_t i;
761 ext4_group_t flex_group;
762 struct ext4_group_info *grp;
763 int encrypt = 0;
764
765 /* Cannot create files in a deleted directory */
766 if (!dir || !dir->i_nlink)
767 return ERR_PTR(-EPERM);
768
769 sb = dir->i_sb;
770 sbi = EXT4_SB(sb);
771
772 if (unlikely(ext4_forced_shutdown(sbi)))
773 return ERR_PTR(-EIO);
774
775 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
776 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
777 !(i_flags & EXT4_EA_INODE_FL)) {
778 err = fscrypt_get_encryption_info(dir);
779 if (err)
780 return ERR_PTR(err);
781 if (!fscrypt_has_encryption_key(dir))
782 return ERR_PTR(-ENOKEY);
783 encrypt = 1;
784 }
785
786 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
787#ifdef CONFIG_EXT4_FS_POSIX_ACL
788 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
789
790 if (IS_ERR(p))
791 return ERR_CAST(p);
792 if (p) {
793 int acl_size = p->a_count * sizeof(ext4_acl_entry);
794
795 nblocks += (S_ISDIR(mode) ? 2 : 1) *
796 __ext4_xattr_set_credits(sb, NULL /* inode */,
797 NULL /* block_bh */, acl_size,
798 true /* is_create */);
799 posix_acl_release(p);
800 }
801#endif
802
803#ifdef CONFIG_SECURITY
804 {
805 int num_security_xattrs = 1;
806
807#ifdef CONFIG_INTEGRITY
808 num_security_xattrs++;
809#endif
810 /*
811 * We assume that security xattrs are never
812 * more than 1k. In practice they are under
813 * 128 bytes.
814 */
815 nblocks += num_security_xattrs *
816 __ext4_xattr_set_credits(sb, NULL /* inode */,
817 NULL /* block_bh */, 1024,
818 true /* is_create */);
819 }
820#endif
821 if (encrypt)
822 nblocks += __ext4_xattr_set_credits(sb,
823 NULL /* inode */, NULL /* block_bh */,
824 FSCRYPT_SET_CONTEXT_MAX_SIZE,
825 true /* is_create */);
826 }
827
828 ngroups = ext4_get_groups_count(sb);
829 trace_ext4_request_inode(dir, mode);
830 inode = new_inode(sb);
831 if (!inode)
832 return ERR_PTR(-ENOMEM);
833 ei = EXT4_I(inode);
834
835 /*
836 * Initialize owners and quota early so that we don't have to account
837 * for quota initialization worst case in standard inode creating
838 * transaction
839 */
840 if (owner) {
841 inode->i_mode = mode;
842 i_uid_write(inode, owner[0]);
843 i_gid_write(inode, owner[1]);
844 } else if (test_opt(sb, GRPID)) {
845 inode->i_mode = mode;
846 inode->i_uid = current_fsuid();
847 inode->i_gid = dir->i_gid;
848 } else
849 inode_init_owner(inode, dir, mode);
850
851 if (ext4_has_feature_project(sb) &&
852 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
853 ei->i_projid = EXT4_I(dir)->i_projid;
854 else
855 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
856
857 err = dquot_initialize(inode);
858 if (err)
859 goto out;
860
861 if (!goal)
862 goal = sbi->s_inode_goal;
863
864 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
865 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
866 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
867 ret2 = 0;
868 goto got_group;
869 }
870
871 if (S_ISDIR(mode))
872 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
873 else
874 ret2 = find_group_other(sb, dir, &group, mode);
875
876got_group:
877 EXT4_I(dir)->i_last_alloc_group = group;
878 err = -ENOSPC;
879 if (ret2 == -1)
880 goto out;
881
882 /*
883 * Normally we will only go through one pass of this loop,
884 * unless we get unlucky and it turns out the group we selected
885 * had its last inode grabbed by someone else.
886 */
887 for (i = 0; i < ngroups; i++, ino = 0) {
888 err = -EIO;
889
890 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
891 if (!gdp)
892 goto out;
893
894 /*
895 * Check free inodes count before loading bitmap.
896 */
897 if (ext4_free_inodes_count(sb, gdp) == 0)
898 goto next_group;
899
900 grp = ext4_get_group_info(sb, group);
901 /* Skip groups with already-known suspicious inode tables */
902 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
903 goto next_group;
904
905 brelse(inode_bitmap_bh);
906 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
907 /* Skip groups with suspicious inode tables */
908 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
909 IS_ERR(inode_bitmap_bh)) {
910 inode_bitmap_bh = NULL;
911 goto next_group;
912 }
913
914repeat_in_this_group:
915 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
916 if (!ret2)
917 goto next_group;
918
919 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
920 ext4_error(sb, "reserved inode found cleared - "
921 "inode=%lu", ino + 1);
922 ext4_mark_group_bitmap_corrupted(sb, group,
923 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
924 goto next_group;
925 }
926
927 if (!handle) {
928 BUG_ON(nblocks <= 0);
929 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
930 handle_type, nblocks, 0,
931 ext4_trans_default_revoke_credits(sb));
932 if (IS_ERR(handle)) {
933 err = PTR_ERR(handle);
934 ext4_std_error(sb, err);
935 goto out;
936 }
937 }
938 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
939 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
940 if (err) {
941 ext4_std_error(sb, err);
942 goto out;
943 }
944 ext4_lock_group(sb, group);
945 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
946 if (ret2) {
947 /* Someone already took the bit. Repeat the search
948 * with lock held.
949 */
950 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
951 if (ret2) {
952 ext4_set_bit(ino, inode_bitmap_bh->b_data);
953 ret2 = 0;
954 } else {
955 ret2 = 1; /* we didn't grab the inode */
956 }
957 }
958 ext4_unlock_group(sb, group);
959 ino++; /* the inode bitmap is zero-based */
960 if (!ret2)
961 goto got; /* we grabbed the inode! */
962
963 if (ino < EXT4_INODES_PER_GROUP(sb))
964 goto repeat_in_this_group;
965next_group:
966 if (++group == ngroups)
967 group = 0;
968 }
969 err = -ENOSPC;
970 goto out;
971
972got:
973 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
974 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
975 if (err) {
976 ext4_std_error(sb, err);
977 goto out;
978 }
979
980 BUFFER_TRACE(group_desc_bh, "get_write_access");
981 err = ext4_journal_get_write_access(handle, group_desc_bh);
982 if (err) {
983 ext4_std_error(sb, err);
984 goto out;
985 }
986
987 /* We may have to initialize the block bitmap if it isn't already */
988 if (ext4_has_group_desc_csum(sb) &&
989 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
990 struct buffer_head *block_bitmap_bh;
991
992 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
993 if (IS_ERR(block_bitmap_bh)) {
994 err = PTR_ERR(block_bitmap_bh);
995 goto out;
996 }
997 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
998 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
999 if (err) {
1000 brelse(block_bitmap_bh);
1001 ext4_std_error(sb, err);
1002 goto out;
1003 }
1004
1005 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1006 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1007
1008 /* recheck and clear flag under lock if we still need to */
1009 ext4_lock_group(sb, group);
1010 if (ext4_has_group_desc_csum(sb) &&
1011 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1012 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1013 ext4_free_group_clusters_set(sb, gdp,
1014 ext4_free_clusters_after_init(sb, group, gdp));
1015 ext4_block_bitmap_csum_set(sb, group, gdp,
1016 block_bitmap_bh);
1017 ext4_group_desc_csum_set(sb, group, gdp);
1018 }
1019 ext4_unlock_group(sb, group);
1020 brelse(block_bitmap_bh);
1021
1022 if (err) {
1023 ext4_std_error(sb, err);
1024 goto out;
1025 }
1026 }
1027
1028 /* Update the relevant bg descriptor fields */
1029 if (ext4_has_group_desc_csum(sb)) {
1030 int free;
1031 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1032
1033 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1034 ext4_lock_group(sb, group); /* while we modify the bg desc */
1035 free = EXT4_INODES_PER_GROUP(sb) -
1036 ext4_itable_unused_count(sb, gdp);
1037 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1038 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1039 free = 0;
1040 }
1041 /*
1042 * Check the relative inode number against the last used
1043 * relative inode number in this group. if it is greater
1044 * we need to update the bg_itable_unused count
1045 */
1046 if (ino > free)
1047 ext4_itable_unused_set(sb, gdp,
1048 (EXT4_INODES_PER_GROUP(sb) - ino));
1049 up_read(&grp->alloc_sem);
1050 } else {
1051 ext4_lock_group(sb, group);
1052 }
1053
1054 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1055 if (S_ISDIR(mode)) {
1056 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1057 if (sbi->s_log_groups_per_flex) {
1058 ext4_group_t f = ext4_flex_group(sbi, group);
1059
1060 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1061 f)->used_dirs);
1062 }
1063 }
1064 if (ext4_has_group_desc_csum(sb)) {
1065 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1066 EXT4_INODES_PER_GROUP(sb) / 8);
1067 ext4_group_desc_csum_set(sb, group, gdp);
1068 }
1069 ext4_unlock_group(sb, group);
1070
1071 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1072 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1073 if (err) {
1074 ext4_std_error(sb, err);
1075 goto out;
1076 }
1077
1078 percpu_counter_dec(&sbi->s_freeinodes_counter);
1079 if (S_ISDIR(mode))
1080 percpu_counter_inc(&sbi->s_dirs_counter);
1081
1082 if (sbi->s_log_groups_per_flex) {
1083 flex_group = ext4_flex_group(sbi, group);
1084 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1085 flex_group)->free_inodes);
1086 }
1087
1088 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1089 /* This is the optimal IO size (for stat), not the fs block size */
1090 inode->i_blocks = 0;
1091 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1092 ei->i_crtime = inode->i_mtime;
1093
1094 memset(ei->i_data, 0, sizeof(ei->i_data));
1095 ei->i_dir_start_lookup = 0;
1096 ei->i_disksize = 0;
1097
1098 /* Don't inherit extent flag from directory, amongst others. */
1099 ei->i_flags =
1100 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1101 ei->i_flags |= i_flags;
1102 ei->i_file_acl = 0;
1103 ei->i_dtime = 0;
1104 ei->i_block_group = group;
1105 ei->i_last_alloc_group = ~0;
1106
1107 ext4_set_inode_flags(inode);
1108 if (IS_DIRSYNC(inode))
1109 ext4_handle_sync(handle);
1110 if (insert_inode_locked(inode) < 0) {
1111 /*
1112 * Likely a bitmap corruption causing inode to be allocated
1113 * twice.
1114 */
1115 err = -EIO;
1116 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1117 inode->i_ino);
1118 ext4_mark_group_bitmap_corrupted(sb, group,
1119 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1120 goto out;
1121 }
1122 inode->i_generation = prandom_u32();
1123
1124 /* Precompute checksum seed for inode metadata */
1125 if (ext4_has_metadata_csum(sb)) {
1126 __u32 csum;
1127 __le32 inum = cpu_to_le32(inode->i_ino);
1128 __le32 gen = cpu_to_le32(inode->i_generation);
1129 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1130 sizeof(inum));
1131 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1132 sizeof(gen));
1133 }
1134
1135 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1136 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1137
1138 ei->i_extra_isize = sbi->s_want_extra_isize;
1139 ei->i_inline_off = 0;
1140 if (ext4_has_feature_inline_data(sb))
1141 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1142 ret = inode;
1143 err = dquot_alloc_inode(inode);
1144 if (err)
1145 goto fail_drop;
1146
1147 /*
1148 * Since the encryption xattr will always be unique, create it first so
1149 * that it's less likely to end up in an external xattr block and
1150 * prevent its deduplication.
1151 */
1152 if (encrypt) {
1153 err = fscrypt_inherit_context(dir, inode, handle, true);
1154 if (err)
1155 goto fail_free_drop;
1156 }
1157
1158 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1159 err = ext4_init_acl(handle, inode, dir);
1160 if (err)
1161 goto fail_free_drop;
1162
1163 err = ext4_init_security(handle, inode, dir, qstr);
1164 if (err)
1165 goto fail_free_drop;
1166 }
1167
1168 if (ext4_has_feature_extents(sb)) {
1169 /* set extent flag only for directory, file and normal symlink*/
1170 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1171 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1172 ext4_ext_tree_init(handle, inode);
1173 }
1174 }
1175
1176 if (ext4_handle_valid(handle)) {
1177 ei->i_sync_tid = handle->h_transaction->t_tid;
1178 ei->i_datasync_tid = handle->h_transaction->t_tid;
1179 }
1180
1181 err = ext4_mark_inode_dirty(handle, inode);
1182 if (err) {
1183 ext4_std_error(sb, err);
1184 goto fail_free_drop;
1185 }
1186
1187 ext4_debug("allocating inode %lu\n", inode->i_ino);
1188 trace_ext4_allocate_inode(inode, dir, mode);
1189 brelse(inode_bitmap_bh);
1190 return ret;
1191
1192fail_free_drop:
1193 dquot_free_inode(inode);
1194fail_drop:
1195 clear_nlink(inode);
1196 unlock_new_inode(inode);
1197out:
1198 dquot_drop(inode);
1199 inode->i_flags |= S_NOQUOTA;
1200 iput(inode);
1201 brelse(inode_bitmap_bh);
1202 return ERR_PTR(err);
1203}
1204
1205/* Verify that we are loading a valid orphan from disk */
1206struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1207{
1208 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1209 ext4_group_t block_group;
1210 int bit;
1211 struct buffer_head *bitmap_bh = NULL;
1212 struct inode *inode = NULL;
1213 int err = -EFSCORRUPTED;
1214
1215 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1216 goto bad_orphan;
1217
1218 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1219 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1220 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1221 if (IS_ERR(bitmap_bh))
1222 return ERR_CAST(bitmap_bh);
1223
1224 /* Having the inode bit set should be a 100% indicator that this
1225 * is a valid orphan (no e2fsck run on fs). Orphans also include
1226 * inodes that were being truncated, so we can't check i_nlink==0.
1227 */
1228 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1229 goto bad_orphan;
1230
1231 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1232 if (IS_ERR(inode)) {
1233 err = PTR_ERR(inode);
1234 ext4_set_errno(sb, -err);
1235 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1236 ino, err);
1237 return inode;
1238 }
1239
1240 /*
1241 * If the orphans has i_nlinks > 0 then it should be able to
1242 * be truncated, otherwise it won't be removed from the orphan
1243 * list during processing and an infinite loop will result.
1244 * Similarly, it must not be a bad inode.
1245 */
1246 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1247 is_bad_inode(inode))
1248 goto bad_orphan;
1249
1250 if (NEXT_ORPHAN(inode) > max_ino)
1251 goto bad_orphan;
1252 brelse(bitmap_bh);
1253 return inode;
1254
1255bad_orphan:
1256 ext4_error(sb, "bad orphan inode %lu", ino);
1257 if (bitmap_bh)
1258 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1259 bit, (unsigned long long)bitmap_bh->b_blocknr,
1260 ext4_test_bit(bit, bitmap_bh->b_data));
1261 if (inode) {
1262 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1263 is_bad_inode(inode));
1264 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1265 NEXT_ORPHAN(inode));
1266 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1267 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1268 /* Avoid freeing blocks if we got a bad deleted inode */
1269 if (inode->i_nlink == 0)
1270 inode->i_blocks = 0;
1271 iput(inode);
1272 }
1273 brelse(bitmap_bh);
1274 return ERR_PTR(err);
1275}
1276
1277unsigned long ext4_count_free_inodes(struct super_block *sb)
1278{
1279 unsigned long desc_count;
1280 struct ext4_group_desc *gdp;
1281 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1282#ifdef EXT4FS_DEBUG
1283 struct ext4_super_block *es;
1284 unsigned long bitmap_count, x;
1285 struct buffer_head *bitmap_bh = NULL;
1286
1287 es = EXT4_SB(sb)->s_es;
1288 desc_count = 0;
1289 bitmap_count = 0;
1290 gdp = NULL;
1291 for (i = 0; i < ngroups; i++) {
1292 gdp = ext4_get_group_desc(sb, i, NULL);
1293 if (!gdp)
1294 continue;
1295 desc_count += ext4_free_inodes_count(sb, gdp);
1296 brelse(bitmap_bh);
1297 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1298 if (IS_ERR(bitmap_bh)) {
1299 bitmap_bh = NULL;
1300 continue;
1301 }
1302
1303 x = ext4_count_free(bitmap_bh->b_data,
1304 EXT4_INODES_PER_GROUP(sb) / 8);
1305 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1306 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1307 bitmap_count += x;
1308 }
1309 brelse(bitmap_bh);
1310 printk(KERN_DEBUG "ext4_count_free_inodes: "
1311 "stored = %u, computed = %lu, %lu\n",
1312 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1313 return desc_count;
1314#else
1315 desc_count = 0;
1316 for (i = 0; i < ngroups; i++) {
1317 gdp = ext4_get_group_desc(sb, i, NULL);
1318 if (!gdp)
1319 continue;
1320 desc_count += ext4_free_inodes_count(sb, gdp);
1321 cond_resched();
1322 }
1323 return desc_count;
1324#endif
1325}
1326
1327/* Called at mount-time, super-block is locked */
1328unsigned long ext4_count_dirs(struct super_block * sb)
1329{
1330 unsigned long count = 0;
1331 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1332
1333 for (i = 0; i < ngroups; i++) {
1334 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1335 if (!gdp)
1336 continue;
1337 count += ext4_used_dirs_count(sb, gdp);
1338 }
1339 return count;
1340}
1341
1342/*
1343 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1344 * inode table. Must be called without any spinlock held. The only place
1345 * where it is called from on active part of filesystem is ext4lazyinit
1346 * thread, so we do not need any special locks, however we have to prevent
1347 * inode allocation from the current group, so we take alloc_sem lock, to
1348 * block ext4_new_inode() until we are finished.
1349 */
1350int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1351 int barrier)
1352{
1353 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1354 struct ext4_sb_info *sbi = EXT4_SB(sb);
1355 struct ext4_group_desc *gdp = NULL;
1356 struct buffer_head *group_desc_bh;
1357 handle_t *handle;
1358 ext4_fsblk_t blk;
1359 int num, ret = 0, used_blks = 0;
1360
1361 /* This should not happen, but just to be sure check this */
1362 if (sb_rdonly(sb)) {
1363 ret = 1;
1364 goto out;
1365 }
1366
1367 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1368 if (!gdp)
1369 goto out;
1370
1371 /*
1372 * We do not need to lock this, because we are the only one
1373 * handling this flag.
1374 */
1375 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1376 goto out;
1377
1378 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1379 if (IS_ERR(handle)) {
1380 ret = PTR_ERR(handle);
1381 goto out;
1382 }
1383
1384 down_write(&grp->alloc_sem);
1385 /*
1386 * If inode bitmap was already initialized there may be some
1387 * used inodes so we need to skip blocks with used inodes in
1388 * inode table.
1389 */
1390 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1391 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1392 ext4_itable_unused_count(sb, gdp)),
1393 sbi->s_inodes_per_block);
1394
1395 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1396 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1397 ext4_itable_unused_count(sb, gdp)) <
1398 EXT4_FIRST_INO(sb)))) {
1399 ext4_error(sb, "Something is wrong with group %u: "
1400 "used itable blocks: %d; "
1401 "itable unused count: %u",
1402 group, used_blks,
1403 ext4_itable_unused_count(sb, gdp));
1404 ret = 1;
1405 goto err_out;
1406 }
1407
1408 blk = ext4_inode_table(sb, gdp) + used_blks;
1409 num = sbi->s_itb_per_group - used_blks;
1410
1411 BUFFER_TRACE(group_desc_bh, "get_write_access");
1412 ret = ext4_journal_get_write_access(handle,
1413 group_desc_bh);
1414 if (ret)
1415 goto err_out;
1416
1417 /*
1418 * Skip zeroout if the inode table is full. But we set the ZEROED
1419 * flag anyway, because obviously, when it is full it does not need
1420 * further zeroing.
1421 */
1422 if (unlikely(num == 0))
1423 goto skip_zeroout;
1424
1425 ext4_debug("going to zero out inode table in group %d\n",
1426 group);
1427 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1428 if (ret < 0)
1429 goto err_out;
1430 if (barrier)
1431 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1432
1433skip_zeroout:
1434 ext4_lock_group(sb, group);
1435 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1436 ext4_group_desc_csum_set(sb, group, gdp);
1437 ext4_unlock_group(sb, group);
1438
1439 BUFFER_TRACE(group_desc_bh,
1440 "call ext4_handle_dirty_metadata");
1441 ret = ext4_handle_dirty_metadata(handle, NULL,
1442 group_desc_bh);
1443
1444err_out:
1445 up_write(&grp->alloc_sem);
1446 ext4_journal_stop(handle);
1447out:
1448 return ret;
1449}