Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20
21#define CREATE_TRACE_POINTS
22#include "trace.h"
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34#ifdef LOG_DEVICE
35static inline bool regmap_should_log(struct regmap *map)
36{
37 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38}
39#else
40static inline bool regmap_should_log(struct regmap *map) { return false; }
41#endif
42
43
44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 unsigned int mask, unsigned int val,
46 bool *change, bool force_write);
47
48static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 unsigned int *val);
50static int _regmap_bus_read(void *context, unsigned int reg,
51 unsigned int *val);
52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 unsigned int val);
54static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 unsigned int val);
56static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 unsigned int val);
58
59bool regmap_reg_in_ranges(unsigned int reg,
60 const struct regmap_range *ranges,
61 unsigned int nranges)
62{
63 const struct regmap_range *r;
64 int i;
65
66 for (i = 0, r = ranges; i < nranges; i++, r++)
67 if (regmap_reg_in_range(reg, r))
68 return true;
69 return false;
70}
71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72
73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 const struct regmap_access_table *table)
75{
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 return false;
79
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table->n_yes_ranges)
82 return true;
83
84 return regmap_reg_in_ranges(reg, table->yes_ranges,
85 table->n_yes_ranges);
86}
87EXPORT_SYMBOL_GPL(regmap_check_range_table);
88
89bool regmap_writeable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->writeable_reg)
95 return map->writeable_reg(map->dev, reg);
96
97 if (map->wr_table)
98 return regmap_check_range_table(map, reg, map->wr_table);
99
100 return true;
101}
102
103bool regmap_cached(struct regmap *map, unsigned int reg)
104{
105 int ret;
106 unsigned int val;
107
108 if (map->cache_type == REGCACHE_NONE)
109 return false;
110
111 if (!map->cache_ops)
112 return false;
113
114 if (map->max_register && reg > map->max_register)
115 return false;
116
117 map->lock(map->lock_arg);
118 ret = regcache_read(map, reg, &val);
119 map->unlock(map->lock_arg);
120 if (ret)
121 return false;
122
123 return true;
124}
125
126bool regmap_readable(struct regmap *map, unsigned int reg)
127{
128 if (!map->reg_read)
129 return false;
130
131 if (map->max_register && reg > map->max_register)
132 return false;
133
134 if (map->format.format_write)
135 return false;
136
137 if (map->readable_reg)
138 return map->readable_reg(map->dev, reg);
139
140 if (map->rd_table)
141 return regmap_check_range_table(map, reg, map->rd_table);
142
143 return true;
144}
145
146bool regmap_volatile(struct regmap *map, unsigned int reg)
147{
148 if (!map->format.format_write && !regmap_readable(map, reg))
149 return false;
150
151 if (map->volatile_reg)
152 return map->volatile_reg(map->dev, reg);
153
154 if (map->volatile_table)
155 return regmap_check_range_table(map, reg, map->volatile_table);
156
157 if (map->cache_ops)
158 return false;
159 else
160 return true;
161}
162
163bool regmap_precious(struct regmap *map, unsigned int reg)
164{
165 if (!regmap_readable(map, reg))
166 return false;
167
168 if (map->precious_reg)
169 return map->precious_reg(map->dev, reg);
170
171 if (map->precious_table)
172 return regmap_check_range_table(map, reg, map->precious_table);
173
174 return false;
175}
176
177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178{
179 if (map->writeable_noinc_reg)
180 return map->writeable_noinc_reg(map->dev, reg);
181
182 if (map->wr_noinc_table)
183 return regmap_check_range_table(map, reg, map->wr_noinc_table);
184
185 return true;
186}
187
188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189{
190 if (map->readable_noinc_reg)
191 return map->readable_noinc_reg(map->dev, reg);
192
193 if (map->rd_noinc_table)
194 return regmap_check_range_table(map, reg, map->rd_noinc_table);
195
196 return true;
197}
198
199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 size_t num)
201{
202 unsigned int i;
203
204 for (i = 0; i < num; i++)
205 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 return false;
207
208 return true;
209}
210
211static void regmap_format_2_6_write(struct regmap *map,
212 unsigned int reg, unsigned int val)
213{
214 u8 *out = map->work_buf;
215
216 *out = (reg << 6) | val;
217}
218
219static void regmap_format_4_12_write(struct regmap *map,
220 unsigned int reg, unsigned int val)
221{
222 __be16 *out = map->work_buf;
223 *out = cpu_to_be16((reg << 12) | val);
224}
225
226static void regmap_format_7_9_write(struct regmap *map,
227 unsigned int reg, unsigned int val)
228{
229 __be16 *out = map->work_buf;
230 *out = cpu_to_be16((reg << 9) | val);
231}
232
233static void regmap_format_10_14_write(struct regmap *map,
234 unsigned int reg, unsigned int val)
235{
236 u8 *out = map->work_buf;
237
238 out[2] = val;
239 out[1] = (val >> 8) | (reg << 6);
240 out[0] = reg >> 2;
241}
242
243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244{
245 u8 *b = buf;
246
247 b[0] = val << shift;
248}
249
250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be16 *b = buf;
253
254 b[0] = cpu_to_be16(val << shift);
255}
256
257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le16 *b = buf;
260
261 b[0] = cpu_to_le16(val << shift);
262}
263
264static void regmap_format_16_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
267 *(u16 *)buf = val << shift;
268}
269
270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271{
272 u8 *b = buf;
273
274 val <<= shift;
275
276 b[0] = val >> 16;
277 b[1] = val >> 8;
278 b[2] = val;
279}
280
281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282{
283 __be32 *b = buf;
284
285 b[0] = cpu_to_be32(val << shift);
286}
287
288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289{
290 __le32 *b = buf;
291
292 b[0] = cpu_to_le32(val << shift);
293}
294
295static void regmap_format_32_native(void *buf, unsigned int val,
296 unsigned int shift)
297{
298 *(u32 *)buf = val << shift;
299}
300
301#ifdef CONFIG_64BIT
302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303{
304 __be64 *b = buf;
305
306 b[0] = cpu_to_be64((u64)val << shift);
307}
308
309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310{
311 __le64 *b = buf;
312
313 b[0] = cpu_to_le64((u64)val << shift);
314}
315
316static void regmap_format_64_native(void *buf, unsigned int val,
317 unsigned int shift)
318{
319 *(u64 *)buf = (u64)val << shift;
320}
321#endif
322
323static void regmap_parse_inplace_noop(void *buf)
324{
325}
326
327static unsigned int regmap_parse_8(const void *buf)
328{
329 const u8 *b = buf;
330
331 return b[0];
332}
333
334static unsigned int regmap_parse_16_be(const void *buf)
335{
336 const __be16 *b = buf;
337
338 return be16_to_cpu(b[0]);
339}
340
341static unsigned int regmap_parse_16_le(const void *buf)
342{
343 const __le16 *b = buf;
344
345 return le16_to_cpu(b[0]);
346}
347
348static void regmap_parse_16_be_inplace(void *buf)
349{
350 __be16 *b = buf;
351
352 b[0] = be16_to_cpu(b[0]);
353}
354
355static void regmap_parse_16_le_inplace(void *buf)
356{
357 __le16 *b = buf;
358
359 b[0] = le16_to_cpu(b[0]);
360}
361
362static unsigned int regmap_parse_16_native(const void *buf)
363{
364 return *(u16 *)buf;
365}
366
367static unsigned int regmap_parse_24(const void *buf)
368{
369 const u8 *b = buf;
370 unsigned int ret = b[2];
371 ret |= ((unsigned int)b[1]) << 8;
372 ret |= ((unsigned int)b[0]) << 16;
373
374 return ret;
375}
376
377static unsigned int regmap_parse_32_be(const void *buf)
378{
379 const __be32 *b = buf;
380
381 return be32_to_cpu(b[0]);
382}
383
384static unsigned int regmap_parse_32_le(const void *buf)
385{
386 const __le32 *b = buf;
387
388 return le32_to_cpu(b[0]);
389}
390
391static void regmap_parse_32_be_inplace(void *buf)
392{
393 __be32 *b = buf;
394
395 b[0] = be32_to_cpu(b[0]);
396}
397
398static void regmap_parse_32_le_inplace(void *buf)
399{
400 __le32 *b = buf;
401
402 b[0] = le32_to_cpu(b[0]);
403}
404
405static unsigned int regmap_parse_32_native(const void *buf)
406{
407 return *(u32 *)buf;
408}
409
410#ifdef CONFIG_64BIT
411static unsigned int regmap_parse_64_be(const void *buf)
412{
413 const __be64 *b = buf;
414
415 return be64_to_cpu(b[0]);
416}
417
418static unsigned int regmap_parse_64_le(const void *buf)
419{
420 const __le64 *b = buf;
421
422 return le64_to_cpu(b[0]);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 __be64 *b = buf;
428
429 b[0] = be64_to_cpu(b[0]);
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 __le64 *b = buf;
435
436 b[0] = le64_to_cpu(b[0]);
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 return *(u64 *)buf;
442}
443#endif
444
445static void regmap_lock_hwlock(void *__map)
446{
447 struct regmap *map = __map;
448
449 hwspin_lock_timeout(map->hwlock, UINT_MAX);
450}
451
452static void regmap_lock_hwlock_irq(void *__map)
453{
454 struct regmap *map = __map;
455
456 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457}
458
459static void regmap_lock_hwlock_irqsave(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 &map->spinlock_flags);
465}
466
467static void regmap_unlock_hwlock(void *__map)
468{
469 struct regmap *map = __map;
470
471 hwspin_unlock(map->hwlock);
472}
473
474static void regmap_unlock_hwlock_irq(void *__map)
475{
476 struct regmap *map = __map;
477
478 hwspin_unlock_irq(map->hwlock);
479}
480
481static void regmap_unlock_hwlock_irqrestore(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486}
487
488static void regmap_lock_unlock_none(void *__map)
489{
490
491}
492
493static void regmap_lock_mutex(void *__map)
494{
495 struct regmap *map = __map;
496 mutex_lock(&map->mutex);
497}
498
499static void regmap_unlock_mutex(void *__map)
500{
501 struct regmap *map = __map;
502 mutex_unlock(&map->mutex);
503}
504
505static void regmap_lock_spinlock(void *__map)
506__acquires(&map->spinlock)
507{
508 struct regmap *map = __map;
509 unsigned long flags;
510
511 spin_lock_irqsave(&map->spinlock, flags);
512 map->spinlock_flags = flags;
513}
514
515static void regmap_unlock_spinlock(void *__map)
516__releases(&map->spinlock)
517{
518 struct regmap *map = __map;
519 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520}
521
522static void dev_get_regmap_release(struct device *dev, void *res)
523{
524 /*
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
528 */
529}
530
531static bool _regmap_range_add(struct regmap *map,
532 struct regmap_range_node *data)
533{
534 struct rb_root *root = &map->range_tree;
535 struct rb_node **new = &(root->rb_node), *parent = NULL;
536
537 while (*new) {
538 struct regmap_range_node *this =
539 rb_entry(*new, struct regmap_range_node, node);
540
541 parent = *new;
542 if (data->range_max < this->range_min)
543 new = &((*new)->rb_left);
544 else if (data->range_min > this->range_max)
545 new = &((*new)->rb_right);
546 else
547 return false;
548 }
549
550 rb_link_node(&data->node, parent, new);
551 rb_insert_color(&data->node, root);
552
553 return true;
554}
555
556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 unsigned int reg)
558{
559 struct rb_node *node = map->range_tree.rb_node;
560
561 while (node) {
562 struct regmap_range_node *this =
563 rb_entry(node, struct regmap_range_node, node);
564
565 if (reg < this->range_min)
566 node = node->rb_left;
567 else if (reg > this->range_max)
568 node = node->rb_right;
569 else
570 return this;
571 }
572
573 return NULL;
574}
575
576static void regmap_range_exit(struct regmap *map)
577{
578 struct rb_node *next;
579 struct regmap_range_node *range_node;
580
581 next = rb_first(&map->range_tree);
582 while (next) {
583 range_node = rb_entry(next, struct regmap_range_node, node);
584 next = rb_next(&range_node->node);
585 rb_erase(&range_node->node, &map->range_tree);
586 kfree(range_node);
587 }
588
589 kfree(map->selector_work_buf);
590}
591
592int regmap_attach_dev(struct device *dev, struct regmap *map,
593 const struct regmap_config *config)
594{
595 struct regmap **m;
596
597 map->dev = dev;
598
599 regmap_debugfs_init(map, config->name);
600
601 /* Add a devres resource for dev_get_regmap() */
602 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 if (!m) {
604 regmap_debugfs_exit(map);
605 return -ENOMEM;
606 }
607 *m = map;
608 devres_add(dev, m);
609
610 return 0;
611}
612EXPORT_SYMBOL_GPL(regmap_attach_dev);
613
614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
616{
617 enum regmap_endian endian;
618
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
621
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
629
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
632 return endian;
633
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
636}
637
638enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
641{
642 struct device_node *np;
643 enum regmap_endian endian;
644
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
647
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev && dev->of_node) {
654 np = dev->of_node;
655
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np, "big-endian"))
658 endian = REGMAP_ENDIAN_BIG;
659 else if (of_property_read_bool(np, "little-endian"))
660 endian = REGMAP_ENDIAN_LITTLE;
661 else if (of_property_read_bool(np, "native-endian"))
662 endian = REGMAP_ENDIAN_NATIVE;
663
664 /* If the endianness was specified in DT, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
666 return endian;
667 }
668
669 /* Retrieve the endianness specification from the bus config */
670 if (bus && bus->val_format_endian_default)
671 endian = bus->val_format_endian_default;
672
673 /* If the bus specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG;
679}
680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681
682struct regmap *__regmap_init(struct device *dev,
683 const struct regmap_bus *bus,
684 void *bus_context,
685 const struct regmap_config *config,
686 struct lock_class_key *lock_key,
687 const char *lock_name)
688{
689 struct regmap *map;
690 int ret = -EINVAL;
691 enum regmap_endian reg_endian, val_endian;
692 int i, j;
693
694 if (!config)
695 goto err;
696
697 map = kzalloc(sizeof(*map), GFP_KERNEL);
698 if (map == NULL) {
699 ret = -ENOMEM;
700 goto err;
701 }
702
703 if (config->name) {
704 map->name = kstrdup_const(config->name, GFP_KERNEL);
705 if (!map->name) {
706 ret = -ENOMEM;
707 goto err_map;
708 }
709 }
710
711 if (config->disable_locking) {
712 map->lock = map->unlock = regmap_lock_unlock_none;
713 regmap_debugfs_disable(map);
714 } else if (config->lock && config->unlock) {
715 map->lock = config->lock;
716 map->unlock = config->unlock;
717 map->lock_arg = config->lock_arg;
718 } else if (config->use_hwlock) {
719 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 if (!map->hwlock) {
721 ret = -ENXIO;
722 goto err_name;
723 }
724
725 switch (config->hwlock_mode) {
726 case HWLOCK_IRQSTATE:
727 map->lock = regmap_lock_hwlock_irqsave;
728 map->unlock = regmap_unlock_hwlock_irqrestore;
729 break;
730 case HWLOCK_IRQ:
731 map->lock = regmap_lock_hwlock_irq;
732 map->unlock = regmap_unlock_hwlock_irq;
733 break;
734 default:
735 map->lock = regmap_lock_hwlock;
736 map->unlock = regmap_unlock_hwlock;
737 break;
738 }
739
740 map->lock_arg = map;
741 } else {
742 if ((bus && bus->fast_io) ||
743 config->fast_io) {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 } else {
750 mutex_init(&map->mutex);
751 map->lock = regmap_lock_mutex;
752 map->unlock = regmap_unlock_mutex;
753 lockdep_set_class_and_name(&map->mutex,
754 lock_key, lock_name);
755 }
756 map->lock_arg = map;
757 }
758
759 /*
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
762 */
763 if ((bus && bus->fast_io) || config->fast_io)
764 map->alloc_flags = GFP_ATOMIC;
765 else
766 map->alloc_flags = GFP_KERNEL;
767
768 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 map->format.pad_bytes = config->pad_bits / 8;
770 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 config->val_bits + config->pad_bits, 8);
773 map->reg_shift = config->pad_bits % 8;
774 if (config->reg_stride)
775 map->reg_stride = config->reg_stride;
776 else
777 map->reg_stride = 1;
778 if (is_power_of_2(map->reg_stride))
779 map->reg_stride_order = ilog2(map->reg_stride);
780 else
781 map->reg_stride_order = -1;
782 map->use_single_read = config->use_single_read || !bus || !bus->read;
783 map->use_single_write = config->use_single_write || !bus || !bus->write;
784 map->can_multi_write = config->can_multi_write && bus && bus->write;
785 if (bus) {
786 map->max_raw_read = bus->max_raw_read;
787 map->max_raw_write = bus->max_raw_write;
788 }
789 map->dev = dev;
790 map->bus = bus;
791 map->bus_context = bus_context;
792 map->max_register = config->max_register;
793 map->wr_table = config->wr_table;
794 map->rd_table = config->rd_table;
795 map->volatile_table = config->volatile_table;
796 map->precious_table = config->precious_table;
797 map->wr_noinc_table = config->wr_noinc_table;
798 map->rd_noinc_table = config->rd_noinc_table;
799 map->writeable_reg = config->writeable_reg;
800 map->readable_reg = config->readable_reg;
801 map->volatile_reg = config->volatile_reg;
802 map->precious_reg = config->precious_reg;
803 map->writeable_noinc_reg = config->writeable_noinc_reg;
804 map->readable_noinc_reg = config->readable_noinc_reg;
805 map->cache_type = config->cache_type;
806
807 spin_lock_init(&map->async_lock);
808 INIT_LIST_HEAD(&map->async_list);
809 INIT_LIST_HEAD(&map->async_free);
810 init_waitqueue_head(&map->async_waitq);
811
812 if (config->read_flag_mask ||
813 config->write_flag_mask ||
814 config->zero_flag_mask) {
815 map->read_flag_mask = config->read_flag_mask;
816 map->write_flag_mask = config->write_flag_mask;
817 } else if (bus) {
818 map->read_flag_mask = bus->read_flag_mask;
819 }
820
821 if (!bus) {
822 map->reg_read = config->reg_read;
823 map->reg_write = config->reg_write;
824
825 map->defer_caching = false;
826 goto skip_format_initialization;
827 } else if (!bus->read || !bus->write) {
828 map->reg_read = _regmap_bus_reg_read;
829 map->reg_write = _regmap_bus_reg_write;
830
831 map->defer_caching = false;
832 goto skip_format_initialization;
833 } else {
834 map->reg_read = _regmap_bus_read;
835 map->reg_update_bits = bus->reg_update_bits;
836 }
837
838 reg_endian = regmap_get_reg_endian(bus, config);
839 val_endian = regmap_get_val_endian(dev, bus, config);
840
841 switch (config->reg_bits + map->reg_shift) {
842 case 2:
843 switch (config->val_bits) {
844 case 6:
845 map->format.format_write = regmap_format_2_6_write;
846 break;
847 default:
848 goto err_hwlock;
849 }
850 break;
851
852 case 4:
853 switch (config->val_bits) {
854 case 12:
855 map->format.format_write = regmap_format_4_12_write;
856 break;
857 default:
858 goto err_hwlock;
859 }
860 break;
861
862 case 7:
863 switch (config->val_bits) {
864 case 9:
865 map->format.format_write = regmap_format_7_9_write;
866 break;
867 default:
868 goto err_hwlock;
869 }
870 break;
871
872 case 10:
873 switch (config->val_bits) {
874 case 14:
875 map->format.format_write = regmap_format_10_14_write;
876 break;
877 default:
878 goto err_hwlock;
879 }
880 break;
881
882 case 8:
883 map->format.format_reg = regmap_format_8;
884 break;
885
886 case 16:
887 switch (reg_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_reg = regmap_format_16_be;
890 break;
891 case REGMAP_ENDIAN_LITTLE:
892 map->format.format_reg = regmap_format_16_le;
893 break;
894 case REGMAP_ENDIAN_NATIVE:
895 map->format.format_reg = regmap_format_16_native;
896 break;
897 default:
898 goto err_hwlock;
899 }
900 break;
901
902 case 24:
903 if (reg_endian != REGMAP_ENDIAN_BIG)
904 goto err_hwlock;
905 map->format.format_reg = regmap_format_24;
906 break;
907
908 case 32:
909 switch (reg_endian) {
910 case REGMAP_ENDIAN_BIG:
911 map->format.format_reg = regmap_format_32_be;
912 break;
913 case REGMAP_ENDIAN_LITTLE:
914 map->format.format_reg = regmap_format_32_le;
915 break;
916 case REGMAP_ENDIAN_NATIVE:
917 map->format.format_reg = regmap_format_32_native;
918 break;
919 default:
920 goto err_hwlock;
921 }
922 break;
923
924#ifdef CONFIG_64BIT
925 case 64:
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_64_be;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_64_le;
932 break;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_64_native;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940#endif
941
942 default:
943 goto err_hwlock;
944 }
945
946 if (val_endian == REGMAP_ENDIAN_NATIVE)
947 map->format.parse_inplace = regmap_parse_inplace_noop;
948
949 switch (config->val_bits) {
950 case 8:
951 map->format.format_val = regmap_format_8;
952 map->format.parse_val = regmap_parse_8;
953 map->format.parse_inplace = regmap_parse_inplace_noop;
954 break;
955 case 16:
956 switch (val_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_val = regmap_format_16_be;
959 map->format.parse_val = regmap_parse_16_be;
960 map->format.parse_inplace = regmap_parse_16_be_inplace;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_val = regmap_format_16_le;
964 map->format.parse_val = regmap_parse_16_le;
965 map->format.parse_inplace = regmap_parse_16_le_inplace;
966 break;
967 case REGMAP_ENDIAN_NATIVE:
968 map->format.format_val = regmap_format_16_native;
969 map->format.parse_val = regmap_parse_16_native;
970 break;
971 default:
972 goto err_hwlock;
973 }
974 break;
975 case 24:
976 if (val_endian != REGMAP_ENDIAN_BIG)
977 goto err_hwlock;
978 map->format.format_val = regmap_format_24;
979 map->format.parse_val = regmap_parse_24;
980 break;
981 case 32:
982 switch (val_endian) {
983 case REGMAP_ENDIAN_BIG:
984 map->format.format_val = regmap_format_32_be;
985 map->format.parse_val = regmap_parse_32_be;
986 map->format.parse_inplace = regmap_parse_32_be_inplace;
987 break;
988 case REGMAP_ENDIAN_LITTLE:
989 map->format.format_val = regmap_format_32_le;
990 map->format.parse_val = regmap_parse_32_le;
991 map->format.parse_inplace = regmap_parse_32_le_inplace;
992 break;
993 case REGMAP_ENDIAN_NATIVE:
994 map->format.format_val = regmap_format_32_native;
995 map->format.parse_val = regmap_parse_32_native;
996 break;
997 default:
998 goto err_hwlock;
999 }
1000 break;
1001#ifdef CONFIG_64BIT
1002 case 64:
1003 switch (val_endian) {
1004 case REGMAP_ENDIAN_BIG:
1005 map->format.format_val = regmap_format_64_be;
1006 map->format.parse_val = regmap_parse_64_be;
1007 map->format.parse_inplace = regmap_parse_64_be_inplace;
1008 break;
1009 case REGMAP_ENDIAN_LITTLE:
1010 map->format.format_val = regmap_format_64_le;
1011 map->format.parse_val = regmap_parse_64_le;
1012 map->format.parse_inplace = regmap_parse_64_le_inplace;
1013 break;
1014 case REGMAP_ENDIAN_NATIVE:
1015 map->format.format_val = regmap_format_64_native;
1016 map->format.parse_val = regmap_parse_64_native;
1017 break;
1018 default:
1019 goto err_hwlock;
1020 }
1021 break;
1022#endif
1023 }
1024
1025 if (map->format.format_write) {
1026 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 (val_endian != REGMAP_ENDIAN_BIG))
1028 goto err_hwlock;
1029 map->use_single_write = true;
1030 }
1031
1032 if (!map->format.format_write &&
1033 !(map->format.format_reg && map->format.format_val))
1034 goto err_hwlock;
1035
1036 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 if (map->work_buf == NULL) {
1038 ret = -ENOMEM;
1039 goto err_hwlock;
1040 }
1041
1042 if (map->format.format_write) {
1043 map->defer_caching = false;
1044 map->reg_write = _regmap_bus_formatted_write;
1045 } else if (map->format.format_val) {
1046 map->defer_caching = true;
1047 map->reg_write = _regmap_bus_raw_write;
1048 }
1049
1050skip_format_initialization:
1051
1052 map->range_tree = RB_ROOT;
1053 for (i = 0; i < config->num_ranges; i++) {
1054 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 struct regmap_range_node *new;
1056
1057 /* Sanity check */
1058 if (range_cfg->range_max < range_cfg->range_min) {
1059 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 range_cfg->range_max, range_cfg->range_min);
1061 goto err_range;
1062 }
1063
1064 if (range_cfg->range_max > map->max_register) {
1065 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 range_cfg->range_max, map->max_register);
1067 goto err_range;
1068 }
1069
1070 if (range_cfg->selector_reg > map->max_register) {
1071 dev_err(map->dev,
1072 "Invalid range %d: selector out of map\n", i);
1073 goto err_range;
1074 }
1075
1076 if (range_cfg->window_len == 0) {
1077 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078 i);
1079 goto err_range;
1080 }
1081
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j = 0; j < config->num_ranges; j++) {
1085 unsigned sel_reg = config->ranges[j].selector_reg;
1086 unsigned win_min = config->ranges[j].window_start;
1087 unsigned win_max = win_min +
1088 config->ranges[j].window_len - 1;
1089
1090 /* Allow data window inside its own virtual range */
1091 if (j == i)
1092 continue;
1093
1094 if (range_cfg->range_min <= sel_reg &&
1095 sel_reg <= range_cfg->range_max) {
1096 dev_err(map->dev,
1097 "Range %d: selector for %d in window\n",
1098 i, j);
1099 goto err_range;
1100 }
1101
1102 if (!(win_max < range_cfg->range_min ||
1103 win_min > range_cfg->range_max)) {
1104 dev_err(map->dev,
1105 "Range %d: window for %d in window\n",
1106 i, j);
1107 goto err_range;
1108 }
1109 }
1110
1111 new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 if (new == NULL) {
1113 ret = -ENOMEM;
1114 goto err_range;
1115 }
1116
1117 new->map = map;
1118 new->name = range_cfg->name;
1119 new->range_min = range_cfg->range_min;
1120 new->range_max = range_cfg->range_max;
1121 new->selector_reg = range_cfg->selector_reg;
1122 new->selector_mask = range_cfg->selector_mask;
1123 new->selector_shift = range_cfg->selector_shift;
1124 new->window_start = range_cfg->window_start;
1125 new->window_len = range_cfg->window_len;
1126
1127 if (!_regmap_range_add(map, new)) {
1128 dev_err(map->dev, "Failed to add range %d\n", i);
1129 kfree(new);
1130 goto err_range;
1131 }
1132
1133 if (map->selector_work_buf == NULL) {
1134 map->selector_work_buf =
1135 kzalloc(map->format.buf_size, GFP_KERNEL);
1136 if (map->selector_work_buf == NULL) {
1137 ret = -ENOMEM;
1138 goto err_range;
1139 }
1140 }
1141 }
1142
1143 ret = regcache_init(map, config);
1144 if (ret != 0)
1145 goto err_range;
1146
1147 if (dev) {
1148 ret = regmap_attach_dev(dev, map, config);
1149 if (ret != 0)
1150 goto err_regcache;
1151 } else {
1152 regmap_debugfs_init(map, config->name);
1153 }
1154
1155 return map;
1156
1157err_regcache:
1158 regcache_exit(map);
1159err_range:
1160 regmap_range_exit(map);
1161 kfree(map->work_buf);
1162err_hwlock:
1163 if (map->hwlock)
1164 hwspin_lock_free(map->hwlock);
1165err_name:
1166 kfree_const(map->name);
1167err_map:
1168 kfree(map);
1169err:
1170 return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176 regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180 const struct regmap_bus *bus,
1181 void *bus_context,
1182 const struct regmap_config *config,
1183 struct lock_class_key *lock_key,
1184 const char *lock_name)
1185{
1186 struct regmap **ptr, *regmap;
1187
1188 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189 if (!ptr)
1190 return ERR_PTR(-ENOMEM);
1191
1192 regmap = __regmap_init(dev, bus, bus_context, config,
1193 lock_key, lock_name);
1194 if (!IS_ERR(regmap)) {
1195 *ptr = regmap;
1196 devres_add(dev, ptr);
1197 } else {
1198 devres_free(ptr);
1199 }
1200
1201 return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206 struct regmap *regmap, struct reg_field reg_field)
1207{
1208 rm_field->regmap = regmap;
1209 rm_field->reg = reg_field.reg;
1210 rm_field->shift = reg_field.lsb;
1211 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 rm_field->id_size = reg_field.id_size;
1213 rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 struct regmap *regmap, struct reg_field reg_field)
1229{
1230 struct regmap_field *rm_field = devm_kzalloc(dev,
1231 sizeof(*rm_field), GFP_KERNEL);
1232 if (!rm_field)
1233 return ERR_PTR(-ENOMEM);
1234
1235 regmap_field_init(rm_field, regmap, reg_field);
1236
1237 return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254 struct regmap_field *field)
1255{
1256 devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 struct reg_field reg_field)
1272{
1273 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275 if (!rm_field)
1276 return ERR_PTR(-ENOMEM);
1277
1278 regmap_field_init(rm_field, regmap, reg_field);
1279
1280 return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292 kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
1312 regcache_exit(map);
1313 regmap_debugfs_exit(map);
1314
1315 map->max_register = config->max_register;
1316 map->writeable_reg = config->writeable_reg;
1317 map->readable_reg = config->readable_reg;
1318 map->volatile_reg = config->volatile_reg;
1319 map->precious_reg = config->precious_reg;
1320 map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 map->readable_noinc_reg = config->readable_noinc_reg;
1322 map->cache_type = config->cache_type;
1323
1324 regmap_debugfs_init(map, config->name);
1325
1326 map->cache_bypass = false;
1327 map->cache_only = false;
1328
1329 return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340 struct regmap_async *async;
1341
1342 regcache_exit(map);
1343 regmap_debugfs_exit(map);
1344 regmap_range_exit(map);
1345 if (map->bus && map->bus->free_context)
1346 map->bus->free_context(map->bus_context);
1347 kfree(map->work_buf);
1348 while (!list_empty(&map->async_free)) {
1349 async = list_first_entry_or_null(&map->async_free,
1350 struct regmap_async,
1351 list);
1352 list_del(&async->list);
1353 kfree(async->work_buf);
1354 kfree(async);
1355 }
1356 if (map->hwlock)
1357 hwspin_lock_free(map->hwlock);
1358 kfree_const(map->name);
1359 kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365 struct regmap **r = res;
1366 if (!r || !*r) {
1367 WARN_ON(!r || !*r);
1368 return 0;
1369 }
1370
1371 /* If the user didn't specify a name match any */
1372 if (data)
1373 return (*r)->name == data;
1374 else
1375 return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 dev_get_regmap_match, (void *)name);
1394
1395 if (!r)
1396 return NULL;
1397 return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410 return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 struct regmap_range_node *range,
1416 unsigned int val_num)
1417{
1418 void *orig_work_buf;
1419 unsigned int win_offset;
1420 unsigned int win_page;
1421 bool page_chg;
1422 int ret;
1423
1424 win_offset = (*reg - range->range_min) % range->window_len;
1425 win_page = (*reg - range->range_min) / range->window_len;
1426
1427 if (val_num > 1) {
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg + val_num - 1 > range->range_max)
1430 return -EINVAL;
1431
1432 /* ... or single page boundary */
1433 if (val_num > range->window_len - win_offset)
1434 return -EINVAL;
1435 }
1436
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1440 if (val_num > 1 ||
1441 range->window_start + win_offset != range->selector_reg) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf = map->work_buf;
1444 map->work_buf = map->selector_work_buf;
1445
1446 ret = _regmap_update_bits(map, range->selector_reg,
1447 range->selector_mask,
1448 win_page << range->selector_shift,
1449 &page_chg, false);
1450
1451 map->work_buf = orig_work_buf;
1452
1453 if (ret != 0)
1454 return ret;
1455 }
1456
1457 *reg = range->window_start + win_offset;
1458
1459 return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463 unsigned long mask)
1464{
1465 u8 *buf;
1466 int i;
1467
1468 if (!mask || !map->work_buf)
1469 return;
1470
1471 buf = map->work_buf;
1472
1473 for (i = 0; i < max_bytes; i++)
1474 buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 const void *val, size_t val_len)
1479{
1480 struct regmap_range_node *range;
1481 unsigned long flags;
1482 void *work_val = map->work_buf + map->format.reg_bytes +
1483 map->format.pad_bytes;
1484 void *buf;
1485 int ret = -ENOTSUPP;
1486 size_t len;
1487 int i;
1488
1489 WARN_ON(!map->bus);
1490
1491 /* Check for unwritable or noinc registers in range
1492 * before we start
1493 */
1494 if (!regmap_writeable_noinc(map, reg)) {
1495 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1496 unsigned int element =
1497 reg + regmap_get_offset(map, i);
1498 if (!regmap_writeable(map, element) ||
1499 regmap_writeable_noinc(map, element))
1500 return -EINVAL;
1501 }
1502 }
1503
1504 if (!map->cache_bypass && map->format.parse_val) {
1505 unsigned int ival;
1506 int val_bytes = map->format.val_bytes;
1507 for (i = 0; i < val_len / val_bytes; i++) {
1508 ival = map->format.parse_val(val + (i * val_bytes));
1509 ret = regcache_write(map,
1510 reg + regmap_get_offset(map, i),
1511 ival);
1512 if (ret) {
1513 dev_err(map->dev,
1514 "Error in caching of register: %x ret: %d\n",
1515 reg + i, ret);
1516 return ret;
1517 }
1518 }
1519 if (map->cache_only) {
1520 map->cache_dirty = true;
1521 return 0;
1522 }
1523 }
1524
1525 range = _regmap_range_lookup(map, reg);
1526 if (range) {
1527 int val_num = val_len / map->format.val_bytes;
1528 int win_offset = (reg - range->range_min) % range->window_len;
1529 int win_residue = range->window_len - win_offset;
1530
1531 /* If the write goes beyond the end of the window split it */
1532 while (val_num > win_residue) {
1533 dev_dbg(map->dev, "Writing window %d/%zu\n",
1534 win_residue, val_len / map->format.val_bytes);
1535 ret = _regmap_raw_write_impl(map, reg, val,
1536 win_residue *
1537 map->format.val_bytes);
1538 if (ret != 0)
1539 return ret;
1540
1541 reg += win_residue;
1542 val_num -= win_residue;
1543 val += win_residue * map->format.val_bytes;
1544 val_len -= win_residue * map->format.val_bytes;
1545
1546 win_offset = (reg - range->range_min) %
1547 range->window_len;
1548 win_residue = range->window_len - win_offset;
1549 }
1550
1551 ret = _regmap_select_page(map, ®, range, val_num);
1552 if (ret != 0)
1553 return ret;
1554 }
1555
1556 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1557 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1558 map->write_flag_mask);
1559
1560 /*
1561 * Essentially all I/O mechanisms will be faster with a single
1562 * buffer to write. Since register syncs often generate raw
1563 * writes of single registers optimise that case.
1564 */
1565 if (val != work_val && val_len == map->format.val_bytes) {
1566 memcpy(work_val, val, map->format.val_bytes);
1567 val = work_val;
1568 }
1569
1570 if (map->async && map->bus->async_write) {
1571 struct regmap_async *async;
1572
1573 trace_regmap_async_write_start(map, reg, val_len);
1574
1575 spin_lock_irqsave(&map->async_lock, flags);
1576 async = list_first_entry_or_null(&map->async_free,
1577 struct regmap_async,
1578 list);
1579 if (async)
1580 list_del(&async->list);
1581 spin_unlock_irqrestore(&map->async_lock, flags);
1582
1583 if (!async) {
1584 async = map->bus->async_alloc();
1585 if (!async)
1586 return -ENOMEM;
1587
1588 async->work_buf = kzalloc(map->format.buf_size,
1589 GFP_KERNEL | GFP_DMA);
1590 if (!async->work_buf) {
1591 kfree(async);
1592 return -ENOMEM;
1593 }
1594 }
1595
1596 async->map = map;
1597
1598 /* If the caller supplied the value we can use it safely. */
1599 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1600 map->format.reg_bytes + map->format.val_bytes);
1601
1602 spin_lock_irqsave(&map->async_lock, flags);
1603 list_add_tail(&async->list, &map->async_list);
1604 spin_unlock_irqrestore(&map->async_lock, flags);
1605
1606 if (val != work_val)
1607 ret = map->bus->async_write(map->bus_context,
1608 async->work_buf,
1609 map->format.reg_bytes +
1610 map->format.pad_bytes,
1611 val, val_len, async);
1612 else
1613 ret = map->bus->async_write(map->bus_context,
1614 async->work_buf,
1615 map->format.reg_bytes +
1616 map->format.pad_bytes +
1617 val_len, NULL, 0, async);
1618
1619 if (ret != 0) {
1620 dev_err(map->dev, "Failed to schedule write: %d\n",
1621 ret);
1622
1623 spin_lock_irqsave(&map->async_lock, flags);
1624 list_move(&async->list, &map->async_free);
1625 spin_unlock_irqrestore(&map->async_lock, flags);
1626 }
1627
1628 return ret;
1629 }
1630
1631 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1632
1633 /* If we're doing a single register write we can probably just
1634 * send the work_buf directly, otherwise try to do a gather
1635 * write.
1636 */
1637 if (val == work_val)
1638 ret = map->bus->write(map->bus_context, map->work_buf,
1639 map->format.reg_bytes +
1640 map->format.pad_bytes +
1641 val_len);
1642 else if (map->bus->gather_write)
1643 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1644 map->format.reg_bytes +
1645 map->format.pad_bytes,
1646 val, val_len);
1647 else
1648 ret = -ENOTSUPP;
1649
1650 /* If that didn't work fall back on linearising by hand. */
1651 if (ret == -ENOTSUPP) {
1652 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1653 buf = kzalloc(len, GFP_KERNEL);
1654 if (!buf)
1655 return -ENOMEM;
1656
1657 memcpy(buf, map->work_buf, map->format.reg_bytes);
1658 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1659 val, val_len);
1660 ret = map->bus->write(map->bus_context, buf, len);
1661
1662 kfree(buf);
1663 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1664 /* regcache_drop_region() takes lock that we already have,
1665 * thus call map->cache_ops->drop() directly
1666 */
1667 if (map->cache_ops && map->cache_ops->drop)
1668 map->cache_ops->drop(map, reg, reg + 1);
1669 }
1670
1671 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1672
1673 return ret;
1674}
1675
1676/**
1677 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1678 *
1679 * @map: Map to check.
1680 */
1681bool regmap_can_raw_write(struct regmap *map)
1682{
1683 return map->bus && map->bus->write && map->format.format_val &&
1684 map->format.format_reg;
1685}
1686EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1687
1688/**
1689 * regmap_get_raw_read_max - Get the maximum size we can read
1690 *
1691 * @map: Map to check.
1692 */
1693size_t regmap_get_raw_read_max(struct regmap *map)
1694{
1695 return map->max_raw_read;
1696}
1697EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1698
1699/**
1700 * regmap_get_raw_write_max - Get the maximum size we can read
1701 *
1702 * @map: Map to check.
1703 */
1704size_t regmap_get_raw_write_max(struct regmap *map)
1705{
1706 return map->max_raw_write;
1707}
1708EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1709
1710static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1711 unsigned int val)
1712{
1713 int ret;
1714 struct regmap_range_node *range;
1715 struct regmap *map = context;
1716
1717 WARN_ON(!map->bus || !map->format.format_write);
1718
1719 range = _regmap_range_lookup(map, reg);
1720 if (range) {
1721 ret = _regmap_select_page(map, ®, range, 1);
1722 if (ret != 0)
1723 return ret;
1724 }
1725
1726 map->format.format_write(map, reg, val);
1727
1728 trace_regmap_hw_write_start(map, reg, 1);
1729
1730 ret = map->bus->write(map->bus_context, map->work_buf,
1731 map->format.buf_size);
1732
1733 trace_regmap_hw_write_done(map, reg, 1);
1734
1735 return ret;
1736}
1737
1738static int _regmap_bus_reg_write(void *context, unsigned int reg,
1739 unsigned int val)
1740{
1741 struct regmap *map = context;
1742
1743 return map->bus->reg_write(map->bus_context, reg, val);
1744}
1745
1746static int _regmap_bus_raw_write(void *context, unsigned int reg,
1747 unsigned int val)
1748{
1749 struct regmap *map = context;
1750
1751 WARN_ON(!map->bus || !map->format.format_val);
1752
1753 map->format.format_val(map->work_buf + map->format.reg_bytes
1754 + map->format.pad_bytes, val, 0);
1755 return _regmap_raw_write_impl(map, reg,
1756 map->work_buf +
1757 map->format.reg_bytes +
1758 map->format.pad_bytes,
1759 map->format.val_bytes);
1760}
1761
1762static inline void *_regmap_map_get_context(struct regmap *map)
1763{
1764 return (map->bus) ? map : map->bus_context;
1765}
1766
1767int _regmap_write(struct regmap *map, unsigned int reg,
1768 unsigned int val)
1769{
1770 int ret;
1771 void *context = _regmap_map_get_context(map);
1772
1773 if (!regmap_writeable(map, reg))
1774 return -EIO;
1775
1776 if (!map->cache_bypass && !map->defer_caching) {
1777 ret = regcache_write(map, reg, val);
1778 if (ret != 0)
1779 return ret;
1780 if (map->cache_only) {
1781 map->cache_dirty = true;
1782 return 0;
1783 }
1784 }
1785
1786 if (regmap_should_log(map))
1787 dev_info(map->dev, "%x <= %x\n", reg, val);
1788
1789 trace_regmap_reg_write(map, reg, val);
1790
1791 return map->reg_write(context, reg, val);
1792}
1793
1794/**
1795 * regmap_write() - Write a value to a single register
1796 *
1797 * @map: Register map to write to
1798 * @reg: Register to write to
1799 * @val: Value to be written
1800 *
1801 * A value of zero will be returned on success, a negative errno will
1802 * be returned in error cases.
1803 */
1804int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1805{
1806 int ret;
1807
1808 if (!IS_ALIGNED(reg, map->reg_stride))
1809 return -EINVAL;
1810
1811 map->lock(map->lock_arg);
1812
1813 ret = _regmap_write(map, reg, val);
1814
1815 map->unlock(map->lock_arg);
1816
1817 return ret;
1818}
1819EXPORT_SYMBOL_GPL(regmap_write);
1820
1821/**
1822 * regmap_write_async() - Write a value to a single register asynchronously
1823 *
1824 * @map: Register map to write to
1825 * @reg: Register to write to
1826 * @val: Value to be written
1827 *
1828 * A value of zero will be returned on success, a negative errno will
1829 * be returned in error cases.
1830 */
1831int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1832{
1833 int ret;
1834
1835 if (!IS_ALIGNED(reg, map->reg_stride))
1836 return -EINVAL;
1837
1838 map->lock(map->lock_arg);
1839
1840 map->async = true;
1841
1842 ret = _regmap_write(map, reg, val);
1843
1844 map->async = false;
1845
1846 map->unlock(map->lock_arg);
1847
1848 return ret;
1849}
1850EXPORT_SYMBOL_GPL(regmap_write_async);
1851
1852int _regmap_raw_write(struct regmap *map, unsigned int reg,
1853 const void *val, size_t val_len)
1854{
1855 size_t val_bytes = map->format.val_bytes;
1856 size_t val_count = val_len / val_bytes;
1857 size_t chunk_count, chunk_bytes;
1858 size_t chunk_regs = val_count;
1859 int ret, i;
1860
1861 if (!val_count)
1862 return -EINVAL;
1863
1864 if (map->use_single_write)
1865 chunk_regs = 1;
1866 else if (map->max_raw_write && val_len > map->max_raw_write)
1867 chunk_regs = map->max_raw_write / val_bytes;
1868
1869 chunk_count = val_count / chunk_regs;
1870 chunk_bytes = chunk_regs * val_bytes;
1871
1872 /* Write as many bytes as possible with chunk_size */
1873 for (i = 0; i < chunk_count; i++) {
1874 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1875 if (ret)
1876 return ret;
1877
1878 reg += regmap_get_offset(map, chunk_regs);
1879 val += chunk_bytes;
1880 val_len -= chunk_bytes;
1881 }
1882
1883 /* Write remaining bytes */
1884 if (val_len)
1885 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1886
1887 return ret;
1888}
1889
1890/**
1891 * regmap_raw_write() - Write raw values to one or more registers
1892 *
1893 * @map: Register map to write to
1894 * @reg: Initial register to write to
1895 * @val: Block of data to be written, laid out for direct transmission to the
1896 * device
1897 * @val_len: Length of data pointed to by val.
1898 *
1899 * This function is intended to be used for things like firmware
1900 * download where a large block of data needs to be transferred to the
1901 * device. No formatting will be done on the data provided.
1902 *
1903 * A value of zero will be returned on success, a negative errno will
1904 * be returned in error cases.
1905 */
1906int regmap_raw_write(struct regmap *map, unsigned int reg,
1907 const void *val, size_t val_len)
1908{
1909 int ret;
1910
1911 if (!regmap_can_raw_write(map))
1912 return -EINVAL;
1913 if (val_len % map->format.val_bytes)
1914 return -EINVAL;
1915
1916 map->lock(map->lock_arg);
1917
1918 ret = _regmap_raw_write(map, reg, val, val_len);
1919
1920 map->unlock(map->lock_arg);
1921
1922 return ret;
1923}
1924EXPORT_SYMBOL_GPL(regmap_raw_write);
1925
1926/**
1927 * regmap_noinc_write(): Write data from a register without incrementing the
1928 * register number
1929 *
1930 * @map: Register map to write to
1931 * @reg: Register to write to
1932 * @val: Pointer to data buffer
1933 * @val_len: Length of output buffer in bytes.
1934 *
1935 * The regmap API usually assumes that bulk bus write operations will write a
1936 * range of registers. Some devices have certain registers for which a write
1937 * operation can write to an internal FIFO.
1938 *
1939 * The target register must be volatile but registers after it can be
1940 * completely unrelated cacheable registers.
1941 *
1942 * This will attempt multiple writes as required to write val_len bytes.
1943 *
1944 * A value of zero will be returned on success, a negative errno will be
1945 * returned in error cases.
1946 */
1947int regmap_noinc_write(struct regmap *map, unsigned int reg,
1948 const void *val, size_t val_len)
1949{
1950 size_t write_len;
1951 int ret;
1952
1953 if (!map->bus)
1954 return -EINVAL;
1955 if (!map->bus->write)
1956 return -ENOTSUPP;
1957 if (val_len % map->format.val_bytes)
1958 return -EINVAL;
1959 if (!IS_ALIGNED(reg, map->reg_stride))
1960 return -EINVAL;
1961 if (val_len == 0)
1962 return -EINVAL;
1963
1964 map->lock(map->lock_arg);
1965
1966 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1967 ret = -EINVAL;
1968 goto out_unlock;
1969 }
1970
1971 while (val_len) {
1972 if (map->max_raw_write && map->max_raw_write < val_len)
1973 write_len = map->max_raw_write;
1974 else
1975 write_len = val_len;
1976 ret = _regmap_raw_write(map, reg, val, write_len);
1977 if (ret)
1978 goto out_unlock;
1979 val = ((u8 *)val) + write_len;
1980 val_len -= write_len;
1981 }
1982
1983out_unlock:
1984 map->unlock(map->lock_arg);
1985 return ret;
1986}
1987EXPORT_SYMBOL_GPL(regmap_noinc_write);
1988
1989/**
1990 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1991 * register field.
1992 *
1993 * @field: Register field to write to
1994 * @mask: Bitmask to change
1995 * @val: Value to be written
1996 * @change: Boolean indicating if a write was done
1997 * @async: Boolean indicating asynchronously
1998 * @force: Boolean indicating use force update
1999 *
2000 * Perform a read/modify/write cycle on the register field with change,
2001 * async, force option.
2002 *
2003 * A value of zero will be returned on success, a negative errno will
2004 * be returned in error cases.
2005 */
2006int regmap_field_update_bits_base(struct regmap_field *field,
2007 unsigned int mask, unsigned int val,
2008 bool *change, bool async, bool force)
2009{
2010 mask = (mask << field->shift) & field->mask;
2011
2012 return regmap_update_bits_base(field->regmap, field->reg,
2013 mask, val << field->shift,
2014 change, async, force);
2015}
2016EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2017
2018/**
2019 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2020 * register field with port ID
2021 *
2022 * @field: Register field to write to
2023 * @id: port ID
2024 * @mask: Bitmask to change
2025 * @val: Value to be written
2026 * @change: Boolean indicating if a write was done
2027 * @async: Boolean indicating asynchronously
2028 * @force: Boolean indicating use force update
2029 *
2030 * A value of zero will be returned on success, a negative errno will
2031 * be returned in error cases.
2032 */
2033int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2034 unsigned int mask, unsigned int val,
2035 bool *change, bool async, bool force)
2036{
2037 if (id >= field->id_size)
2038 return -EINVAL;
2039
2040 mask = (mask << field->shift) & field->mask;
2041
2042 return regmap_update_bits_base(field->regmap,
2043 field->reg + (field->id_offset * id),
2044 mask, val << field->shift,
2045 change, async, force);
2046}
2047EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2048
2049/**
2050 * regmap_bulk_write() - Write multiple registers to the device
2051 *
2052 * @map: Register map to write to
2053 * @reg: First register to be write from
2054 * @val: Block of data to be written, in native register size for device
2055 * @val_count: Number of registers to write
2056 *
2057 * This function is intended to be used for writing a large block of
2058 * data to the device either in single transfer or multiple transfer.
2059 *
2060 * A value of zero will be returned on success, a negative errno will
2061 * be returned in error cases.
2062 */
2063int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2064 size_t val_count)
2065{
2066 int ret = 0, i;
2067 size_t val_bytes = map->format.val_bytes;
2068
2069 if (!IS_ALIGNED(reg, map->reg_stride))
2070 return -EINVAL;
2071
2072 /*
2073 * Some devices don't support bulk write, for them we have a series of
2074 * single write operations.
2075 */
2076 if (!map->bus || !map->format.parse_inplace) {
2077 map->lock(map->lock_arg);
2078 for (i = 0; i < val_count; i++) {
2079 unsigned int ival;
2080
2081 switch (val_bytes) {
2082 case 1:
2083 ival = *(u8 *)(val + (i * val_bytes));
2084 break;
2085 case 2:
2086 ival = *(u16 *)(val + (i * val_bytes));
2087 break;
2088 case 4:
2089 ival = *(u32 *)(val + (i * val_bytes));
2090 break;
2091#ifdef CONFIG_64BIT
2092 case 8:
2093 ival = *(u64 *)(val + (i * val_bytes));
2094 break;
2095#endif
2096 default:
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100
2101 ret = _regmap_write(map,
2102 reg + regmap_get_offset(map, i),
2103 ival);
2104 if (ret != 0)
2105 goto out;
2106 }
2107out:
2108 map->unlock(map->lock_arg);
2109 } else {
2110 void *wval;
2111
2112 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2113 if (!wval)
2114 return -ENOMEM;
2115
2116 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2117 map->format.parse_inplace(wval + i);
2118
2119 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2120
2121 kfree(wval);
2122 }
2123 return ret;
2124}
2125EXPORT_SYMBOL_GPL(regmap_bulk_write);
2126
2127/*
2128 * _regmap_raw_multi_reg_write()
2129 *
2130 * the (register,newvalue) pairs in regs have not been formatted, but
2131 * they are all in the same page and have been changed to being page
2132 * relative. The page register has been written if that was necessary.
2133 */
2134static int _regmap_raw_multi_reg_write(struct regmap *map,
2135 const struct reg_sequence *regs,
2136 size_t num_regs)
2137{
2138 int ret;
2139 void *buf;
2140 int i;
2141 u8 *u8;
2142 size_t val_bytes = map->format.val_bytes;
2143 size_t reg_bytes = map->format.reg_bytes;
2144 size_t pad_bytes = map->format.pad_bytes;
2145 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2146 size_t len = pair_size * num_regs;
2147
2148 if (!len)
2149 return -EINVAL;
2150
2151 buf = kzalloc(len, GFP_KERNEL);
2152 if (!buf)
2153 return -ENOMEM;
2154
2155 /* We have to linearise by hand. */
2156
2157 u8 = buf;
2158
2159 for (i = 0; i < num_regs; i++) {
2160 unsigned int reg = regs[i].reg;
2161 unsigned int val = regs[i].def;
2162 trace_regmap_hw_write_start(map, reg, 1);
2163 map->format.format_reg(u8, reg, map->reg_shift);
2164 u8 += reg_bytes + pad_bytes;
2165 map->format.format_val(u8, val, 0);
2166 u8 += val_bytes;
2167 }
2168 u8 = buf;
2169 *u8 |= map->write_flag_mask;
2170
2171 ret = map->bus->write(map->bus_context, buf, len);
2172
2173 kfree(buf);
2174
2175 for (i = 0; i < num_regs; i++) {
2176 int reg = regs[i].reg;
2177 trace_regmap_hw_write_done(map, reg, 1);
2178 }
2179 return ret;
2180}
2181
2182static unsigned int _regmap_register_page(struct regmap *map,
2183 unsigned int reg,
2184 struct regmap_range_node *range)
2185{
2186 unsigned int win_page = (reg - range->range_min) / range->window_len;
2187
2188 return win_page;
2189}
2190
2191static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2192 struct reg_sequence *regs,
2193 size_t num_regs)
2194{
2195 int ret;
2196 int i, n;
2197 struct reg_sequence *base;
2198 unsigned int this_page = 0;
2199 unsigned int page_change = 0;
2200 /*
2201 * the set of registers are not neccessarily in order, but
2202 * since the order of write must be preserved this algorithm
2203 * chops the set each time the page changes. This also applies
2204 * if there is a delay required at any point in the sequence.
2205 */
2206 base = regs;
2207 for (i = 0, n = 0; i < num_regs; i++, n++) {
2208 unsigned int reg = regs[i].reg;
2209 struct regmap_range_node *range;
2210
2211 range = _regmap_range_lookup(map, reg);
2212 if (range) {
2213 unsigned int win_page = _regmap_register_page(map, reg,
2214 range);
2215
2216 if (i == 0)
2217 this_page = win_page;
2218 if (win_page != this_page) {
2219 this_page = win_page;
2220 page_change = 1;
2221 }
2222 }
2223
2224 /* If we have both a page change and a delay make sure to
2225 * write the regs and apply the delay before we change the
2226 * page.
2227 */
2228
2229 if (page_change || regs[i].delay_us) {
2230
2231 /* For situations where the first write requires
2232 * a delay we need to make sure we don't call
2233 * raw_multi_reg_write with n=0
2234 * This can't occur with page breaks as we
2235 * never write on the first iteration
2236 */
2237 if (regs[i].delay_us && i == 0)
2238 n = 1;
2239
2240 ret = _regmap_raw_multi_reg_write(map, base, n);
2241 if (ret != 0)
2242 return ret;
2243
2244 if (regs[i].delay_us)
2245 udelay(regs[i].delay_us);
2246
2247 base += n;
2248 n = 0;
2249
2250 if (page_change) {
2251 ret = _regmap_select_page(map,
2252 &base[n].reg,
2253 range, 1);
2254 if (ret != 0)
2255 return ret;
2256
2257 page_change = 0;
2258 }
2259
2260 }
2261
2262 }
2263 if (n > 0)
2264 return _regmap_raw_multi_reg_write(map, base, n);
2265 return 0;
2266}
2267
2268static int _regmap_multi_reg_write(struct regmap *map,
2269 const struct reg_sequence *regs,
2270 size_t num_regs)
2271{
2272 int i;
2273 int ret;
2274
2275 if (!map->can_multi_write) {
2276 for (i = 0; i < num_regs; i++) {
2277 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2278 if (ret != 0)
2279 return ret;
2280
2281 if (regs[i].delay_us)
2282 udelay(regs[i].delay_us);
2283 }
2284 return 0;
2285 }
2286
2287 if (!map->format.parse_inplace)
2288 return -EINVAL;
2289
2290 if (map->writeable_reg)
2291 for (i = 0; i < num_regs; i++) {
2292 int reg = regs[i].reg;
2293 if (!map->writeable_reg(map->dev, reg))
2294 return -EINVAL;
2295 if (!IS_ALIGNED(reg, map->reg_stride))
2296 return -EINVAL;
2297 }
2298
2299 if (!map->cache_bypass) {
2300 for (i = 0; i < num_regs; i++) {
2301 unsigned int val = regs[i].def;
2302 unsigned int reg = regs[i].reg;
2303 ret = regcache_write(map, reg, val);
2304 if (ret) {
2305 dev_err(map->dev,
2306 "Error in caching of register: %x ret: %d\n",
2307 reg, ret);
2308 return ret;
2309 }
2310 }
2311 if (map->cache_only) {
2312 map->cache_dirty = true;
2313 return 0;
2314 }
2315 }
2316
2317 WARN_ON(!map->bus);
2318
2319 for (i = 0; i < num_regs; i++) {
2320 unsigned int reg = regs[i].reg;
2321 struct regmap_range_node *range;
2322
2323 /* Coalesce all the writes between a page break or a delay
2324 * in a sequence
2325 */
2326 range = _regmap_range_lookup(map, reg);
2327 if (range || regs[i].delay_us) {
2328 size_t len = sizeof(struct reg_sequence)*num_regs;
2329 struct reg_sequence *base = kmemdup(regs, len,
2330 GFP_KERNEL);
2331 if (!base)
2332 return -ENOMEM;
2333 ret = _regmap_range_multi_paged_reg_write(map, base,
2334 num_regs);
2335 kfree(base);
2336
2337 return ret;
2338 }
2339 }
2340 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2341}
2342
2343/**
2344 * regmap_multi_reg_write() - Write multiple registers to the device
2345 *
2346 * @map: Register map to write to
2347 * @regs: Array of structures containing register,value to be written
2348 * @num_regs: Number of registers to write
2349 *
2350 * Write multiple registers to the device where the set of register, value
2351 * pairs are supplied in any order, possibly not all in a single range.
2352 *
2353 * The 'normal' block write mode will send ultimately send data on the
2354 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2355 * addressed. However, this alternative block multi write mode will send
2356 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2357 * must of course support the mode.
2358 *
2359 * A value of zero will be returned on success, a negative errno will be
2360 * returned in error cases.
2361 */
2362int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2363 int num_regs)
2364{
2365 int ret;
2366
2367 map->lock(map->lock_arg);
2368
2369 ret = _regmap_multi_reg_write(map, regs, num_regs);
2370
2371 map->unlock(map->lock_arg);
2372
2373 return ret;
2374}
2375EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2376
2377/**
2378 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2379 * device but not the cache
2380 *
2381 * @map: Register map to write to
2382 * @regs: Array of structures containing register,value to be written
2383 * @num_regs: Number of registers to write
2384 *
2385 * Write multiple registers to the device but not the cache where the set
2386 * of register are supplied in any order.
2387 *
2388 * This function is intended to be used for writing a large block of data
2389 * atomically to the device in single transfer for those I2C client devices
2390 * that implement this alternative block write mode.
2391 *
2392 * A value of zero will be returned on success, a negative errno will
2393 * be returned in error cases.
2394 */
2395int regmap_multi_reg_write_bypassed(struct regmap *map,
2396 const struct reg_sequence *regs,
2397 int num_regs)
2398{
2399 int ret;
2400 bool bypass;
2401
2402 map->lock(map->lock_arg);
2403
2404 bypass = map->cache_bypass;
2405 map->cache_bypass = true;
2406
2407 ret = _regmap_multi_reg_write(map, regs, num_regs);
2408
2409 map->cache_bypass = bypass;
2410
2411 map->unlock(map->lock_arg);
2412
2413 return ret;
2414}
2415EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2416
2417/**
2418 * regmap_raw_write_async() - Write raw values to one or more registers
2419 * asynchronously
2420 *
2421 * @map: Register map to write to
2422 * @reg: Initial register to write to
2423 * @val: Block of data to be written, laid out for direct transmission to the
2424 * device. Must be valid until regmap_async_complete() is called.
2425 * @val_len: Length of data pointed to by val.
2426 *
2427 * This function is intended to be used for things like firmware
2428 * download where a large block of data needs to be transferred to the
2429 * device. No formatting will be done on the data provided.
2430 *
2431 * If supported by the underlying bus the write will be scheduled
2432 * asynchronously, helping maximise I/O speed on higher speed buses
2433 * like SPI. regmap_async_complete() can be called to ensure that all
2434 * asynchrnous writes have been completed.
2435 *
2436 * A value of zero will be returned on success, a negative errno will
2437 * be returned in error cases.
2438 */
2439int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2440 const void *val, size_t val_len)
2441{
2442 int ret;
2443
2444 if (val_len % map->format.val_bytes)
2445 return -EINVAL;
2446 if (!IS_ALIGNED(reg, map->reg_stride))
2447 return -EINVAL;
2448
2449 map->lock(map->lock_arg);
2450
2451 map->async = true;
2452
2453 ret = _regmap_raw_write(map, reg, val, val_len);
2454
2455 map->async = false;
2456
2457 map->unlock(map->lock_arg);
2458
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2462
2463static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2464 unsigned int val_len)
2465{
2466 struct regmap_range_node *range;
2467 int ret;
2468
2469 WARN_ON(!map->bus);
2470
2471 if (!map->bus || !map->bus->read)
2472 return -EINVAL;
2473
2474 range = _regmap_range_lookup(map, reg);
2475 if (range) {
2476 ret = _regmap_select_page(map, ®, range,
2477 val_len / map->format.val_bytes);
2478 if (ret != 0)
2479 return ret;
2480 }
2481
2482 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2483 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2484 map->read_flag_mask);
2485 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2486
2487 ret = map->bus->read(map->bus_context, map->work_buf,
2488 map->format.reg_bytes + map->format.pad_bytes,
2489 val, val_len);
2490
2491 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2492
2493 return ret;
2494}
2495
2496static int _regmap_bus_reg_read(void *context, unsigned int reg,
2497 unsigned int *val)
2498{
2499 struct regmap *map = context;
2500
2501 return map->bus->reg_read(map->bus_context, reg, val);
2502}
2503
2504static int _regmap_bus_read(void *context, unsigned int reg,
2505 unsigned int *val)
2506{
2507 int ret;
2508 struct regmap *map = context;
2509 void *work_val = map->work_buf + map->format.reg_bytes +
2510 map->format.pad_bytes;
2511
2512 if (!map->format.parse_val)
2513 return -EINVAL;
2514
2515 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2516 if (ret == 0)
2517 *val = map->format.parse_val(work_val);
2518
2519 return ret;
2520}
2521
2522static int _regmap_read(struct regmap *map, unsigned int reg,
2523 unsigned int *val)
2524{
2525 int ret;
2526 void *context = _regmap_map_get_context(map);
2527
2528 if (!map->cache_bypass) {
2529 ret = regcache_read(map, reg, val);
2530 if (ret == 0)
2531 return 0;
2532 }
2533
2534 if (map->cache_only)
2535 return -EBUSY;
2536
2537 if (!regmap_readable(map, reg))
2538 return -EIO;
2539
2540 ret = map->reg_read(context, reg, val);
2541 if (ret == 0) {
2542 if (regmap_should_log(map))
2543 dev_info(map->dev, "%x => %x\n", reg, *val);
2544
2545 trace_regmap_reg_read(map, reg, *val);
2546
2547 if (!map->cache_bypass)
2548 regcache_write(map, reg, *val);
2549 }
2550
2551 return ret;
2552}
2553
2554/**
2555 * regmap_read() - Read a value from a single register
2556 *
2557 * @map: Register map to read from
2558 * @reg: Register to be read from
2559 * @val: Pointer to store read value
2560 *
2561 * A value of zero will be returned on success, a negative errno will
2562 * be returned in error cases.
2563 */
2564int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2565{
2566 int ret;
2567
2568 if (!IS_ALIGNED(reg, map->reg_stride))
2569 return -EINVAL;
2570
2571 map->lock(map->lock_arg);
2572
2573 ret = _regmap_read(map, reg, val);
2574
2575 map->unlock(map->lock_arg);
2576
2577 return ret;
2578}
2579EXPORT_SYMBOL_GPL(regmap_read);
2580
2581/**
2582 * regmap_raw_read() - Read raw data from the device
2583 *
2584 * @map: Register map to read from
2585 * @reg: First register to be read from
2586 * @val: Pointer to store read value
2587 * @val_len: Size of data to read
2588 *
2589 * A value of zero will be returned on success, a negative errno will
2590 * be returned in error cases.
2591 */
2592int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2593 size_t val_len)
2594{
2595 size_t val_bytes = map->format.val_bytes;
2596 size_t val_count = val_len / val_bytes;
2597 unsigned int v;
2598 int ret, i;
2599
2600 if (!map->bus)
2601 return -EINVAL;
2602 if (val_len % map->format.val_bytes)
2603 return -EINVAL;
2604 if (!IS_ALIGNED(reg, map->reg_stride))
2605 return -EINVAL;
2606 if (val_count == 0)
2607 return -EINVAL;
2608
2609 map->lock(map->lock_arg);
2610
2611 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2612 map->cache_type == REGCACHE_NONE) {
2613 size_t chunk_count, chunk_bytes;
2614 size_t chunk_regs = val_count;
2615
2616 if (!map->bus->read) {
2617 ret = -ENOTSUPP;
2618 goto out;
2619 }
2620
2621 if (map->use_single_read)
2622 chunk_regs = 1;
2623 else if (map->max_raw_read && val_len > map->max_raw_read)
2624 chunk_regs = map->max_raw_read / val_bytes;
2625
2626 chunk_count = val_count / chunk_regs;
2627 chunk_bytes = chunk_regs * val_bytes;
2628
2629 /* Read bytes that fit into whole chunks */
2630 for (i = 0; i < chunk_count; i++) {
2631 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2632 if (ret != 0)
2633 goto out;
2634
2635 reg += regmap_get_offset(map, chunk_regs);
2636 val += chunk_bytes;
2637 val_len -= chunk_bytes;
2638 }
2639
2640 /* Read remaining bytes */
2641 if (val_len) {
2642 ret = _regmap_raw_read(map, reg, val, val_len);
2643 if (ret != 0)
2644 goto out;
2645 }
2646 } else {
2647 /* Otherwise go word by word for the cache; should be low
2648 * cost as we expect to hit the cache.
2649 */
2650 for (i = 0; i < val_count; i++) {
2651 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2652 &v);
2653 if (ret != 0)
2654 goto out;
2655
2656 map->format.format_val(val + (i * val_bytes), v, 0);
2657 }
2658 }
2659
2660 out:
2661 map->unlock(map->lock_arg);
2662
2663 return ret;
2664}
2665EXPORT_SYMBOL_GPL(regmap_raw_read);
2666
2667/**
2668 * regmap_noinc_read(): Read data from a register without incrementing the
2669 * register number
2670 *
2671 * @map: Register map to read from
2672 * @reg: Register to read from
2673 * @val: Pointer to data buffer
2674 * @val_len: Length of output buffer in bytes.
2675 *
2676 * The regmap API usually assumes that bulk bus read operations will read a
2677 * range of registers. Some devices have certain registers for which a read
2678 * operation read will read from an internal FIFO.
2679 *
2680 * The target register must be volatile but registers after it can be
2681 * completely unrelated cacheable registers.
2682 *
2683 * This will attempt multiple reads as required to read val_len bytes.
2684 *
2685 * A value of zero will be returned on success, a negative errno will be
2686 * returned in error cases.
2687 */
2688int regmap_noinc_read(struct regmap *map, unsigned int reg,
2689 void *val, size_t val_len)
2690{
2691 size_t read_len;
2692 int ret;
2693
2694 if (!map->bus)
2695 return -EINVAL;
2696 if (!map->bus->read)
2697 return -ENOTSUPP;
2698 if (val_len % map->format.val_bytes)
2699 return -EINVAL;
2700 if (!IS_ALIGNED(reg, map->reg_stride))
2701 return -EINVAL;
2702 if (val_len == 0)
2703 return -EINVAL;
2704
2705 map->lock(map->lock_arg);
2706
2707 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2708 ret = -EINVAL;
2709 goto out_unlock;
2710 }
2711
2712 while (val_len) {
2713 if (map->max_raw_read && map->max_raw_read < val_len)
2714 read_len = map->max_raw_read;
2715 else
2716 read_len = val_len;
2717 ret = _regmap_raw_read(map, reg, val, read_len);
2718 if (ret)
2719 goto out_unlock;
2720 val = ((u8 *)val) + read_len;
2721 val_len -= read_len;
2722 }
2723
2724out_unlock:
2725 map->unlock(map->lock_arg);
2726 return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_noinc_read);
2729
2730/**
2731 * regmap_field_read(): Read a value to a single register field
2732 *
2733 * @field: Register field to read from
2734 * @val: Pointer to store read value
2735 *
2736 * A value of zero will be returned on success, a negative errno will
2737 * be returned in error cases.
2738 */
2739int regmap_field_read(struct regmap_field *field, unsigned int *val)
2740{
2741 int ret;
2742 unsigned int reg_val;
2743 ret = regmap_read(field->regmap, field->reg, ®_val);
2744 if (ret != 0)
2745 return ret;
2746
2747 reg_val &= field->mask;
2748 reg_val >>= field->shift;
2749 *val = reg_val;
2750
2751 return ret;
2752}
2753EXPORT_SYMBOL_GPL(regmap_field_read);
2754
2755/**
2756 * regmap_fields_read() - Read a value to a single register field with port ID
2757 *
2758 * @field: Register field to read from
2759 * @id: port ID
2760 * @val: Pointer to store read value
2761 *
2762 * A value of zero will be returned on success, a negative errno will
2763 * be returned in error cases.
2764 */
2765int regmap_fields_read(struct regmap_field *field, unsigned int id,
2766 unsigned int *val)
2767{
2768 int ret;
2769 unsigned int reg_val;
2770
2771 if (id >= field->id_size)
2772 return -EINVAL;
2773
2774 ret = regmap_read(field->regmap,
2775 field->reg + (field->id_offset * id),
2776 ®_val);
2777 if (ret != 0)
2778 return ret;
2779
2780 reg_val &= field->mask;
2781 reg_val >>= field->shift;
2782 *val = reg_val;
2783
2784 return ret;
2785}
2786EXPORT_SYMBOL_GPL(regmap_fields_read);
2787
2788/**
2789 * regmap_bulk_read() - Read multiple registers from the device
2790 *
2791 * @map: Register map to read from
2792 * @reg: First register to be read from
2793 * @val: Pointer to store read value, in native register size for device
2794 * @val_count: Number of registers to read
2795 *
2796 * A value of zero will be returned on success, a negative errno will
2797 * be returned in error cases.
2798 */
2799int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2800 size_t val_count)
2801{
2802 int ret, i;
2803 size_t val_bytes = map->format.val_bytes;
2804 bool vol = regmap_volatile_range(map, reg, val_count);
2805
2806 if (!IS_ALIGNED(reg, map->reg_stride))
2807 return -EINVAL;
2808 if (val_count == 0)
2809 return -EINVAL;
2810
2811 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2812 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2813 if (ret != 0)
2814 return ret;
2815
2816 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2817 map->format.parse_inplace(val + i);
2818 } else {
2819#ifdef CONFIG_64BIT
2820 u64 *u64 = val;
2821#endif
2822 u32 *u32 = val;
2823 u16 *u16 = val;
2824 u8 *u8 = val;
2825
2826 map->lock(map->lock_arg);
2827
2828 for (i = 0; i < val_count; i++) {
2829 unsigned int ival;
2830
2831 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2832 &ival);
2833 if (ret != 0)
2834 goto out;
2835
2836 switch (map->format.val_bytes) {
2837#ifdef CONFIG_64BIT
2838 case 8:
2839 u64[i] = ival;
2840 break;
2841#endif
2842 case 4:
2843 u32[i] = ival;
2844 break;
2845 case 2:
2846 u16[i] = ival;
2847 break;
2848 case 1:
2849 u8[i] = ival;
2850 break;
2851 default:
2852 ret = -EINVAL;
2853 goto out;
2854 }
2855 }
2856
2857out:
2858 map->unlock(map->lock_arg);
2859 }
2860
2861 return ret;
2862}
2863EXPORT_SYMBOL_GPL(regmap_bulk_read);
2864
2865static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2866 unsigned int mask, unsigned int val,
2867 bool *change, bool force_write)
2868{
2869 int ret;
2870 unsigned int tmp, orig;
2871
2872 if (change)
2873 *change = false;
2874
2875 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2876 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2877 if (ret == 0 && change)
2878 *change = true;
2879 } else {
2880 ret = _regmap_read(map, reg, &orig);
2881 if (ret != 0)
2882 return ret;
2883
2884 tmp = orig & ~mask;
2885 tmp |= val & mask;
2886
2887 if (force_write || (tmp != orig)) {
2888 ret = _regmap_write(map, reg, tmp);
2889 if (ret == 0 && change)
2890 *change = true;
2891 }
2892 }
2893
2894 return ret;
2895}
2896
2897/**
2898 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2899 *
2900 * @map: Register map to update
2901 * @reg: Register to update
2902 * @mask: Bitmask to change
2903 * @val: New value for bitmask
2904 * @change: Boolean indicating if a write was done
2905 * @async: Boolean indicating asynchronously
2906 * @force: Boolean indicating use force update
2907 *
2908 * Perform a read/modify/write cycle on a register map with change, async, force
2909 * options.
2910 *
2911 * If async is true:
2912 *
2913 * With most buses the read must be done synchronously so this is most useful
2914 * for devices with a cache which do not need to interact with the hardware to
2915 * determine the current register value.
2916 *
2917 * Returns zero for success, a negative number on error.
2918 */
2919int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2920 unsigned int mask, unsigned int val,
2921 bool *change, bool async, bool force)
2922{
2923 int ret;
2924
2925 map->lock(map->lock_arg);
2926
2927 map->async = async;
2928
2929 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2930
2931 map->async = false;
2932
2933 map->unlock(map->lock_arg);
2934
2935 return ret;
2936}
2937EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2938
2939void regmap_async_complete_cb(struct regmap_async *async, int ret)
2940{
2941 struct regmap *map = async->map;
2942 bool wake;
2943
2944 trace_regmap_async_io_complete(map);
2945
2946 spin_lock(&map->async_lock);
2947 list_move(&async->list, &map->async_free);
2948 wake = list_empty(&map->async_list);
2949
2950 if (ret != 0)
2951 map->async_ret = ret;
2952
2953 spin_unlock(&map->async_lock);
2954
2955 if (wake)
2956 wake_up(&map->async_waitq);
2957}
2958EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2959
2960static int regmap_async_is_done(struct regmap *map)
2961{
2962 unsigned long flags;
2963 int ret;
2964
2965 spin_lock_irqsave(&map->async_lock, flags);
2966 ret = list_empty(&map->async_list);
2967 spin_unlock_irqrestore(&map->async_lock, flags);
2968
2969 return ret;
2970}
2971
2972/**
2973 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2974 *
2975 * @map: Map to operate on.
2976 *
2977 * Blocks until any pending asynchronous I/O has completed. Returns
2978 * an error code for any failed I/O operations.
2979 */
2980int regmap_async_complete(struct regmap *map)
2981{
2982 unsigned long flags;
2983 int ret;
2984
2985 /* Nothing to do with no async support */
2986 if (!map->bus || !map->bus->async_write)
2987 return 0;
2988
2989 trace_regmap_async_complete_start(map);
2990
2991 wait_event(map->async_waitq, regmap_async_is_done(map));
2992
2993 spin_lock_irqsave(&map->async_lock, flags);
2994 ret = map->async_ret;
2995 map->async_ret = 0;
2996 spin_unlock_irqrestore(&map->async_lock, flags);
2997
2998 trace_regmap_async_complete_done(map);
2999
3000 return ret;
3001}
3002EXPORT_SYMBOL_GPL(regmap_async_complete);
3003
3004/**
3005 * regmap_register_patch - Register and apply register updates to be applied
3006 * on device initialistion
3007 *
3008 * @map: Register map to apply updates to.
3009 * @regs: Values to update.
3010 * @num_regs: Number of entries in regs.
3011 *
3012 * Register a set of register updates to be applied to the device
3013 * whenever the device registers are synchronised with the cache and
3014 * apply them immediately. Typically this is used to apply
3015 * corrections to be applied to the device defaults on startup, such
3016 * as the updates some vendors provide to undocumented registers.
3017 *
3018 * The caller must ensure that this function cannot be called
3019 * concurrently with either itself or regcache_sync().
3020 */
3021int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3022 int num_regs)
3023{
3024 struct reg_sequence *p;
3025 int ret;
3026 bool bypass;
3027
3028 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3029 num_regs))
3030 return 0;
3031
3032 p = krealloc(map->patch,
3033 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3034 GFP_KERNEL);
3035 if (p) {
3036 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3037 map->patch = p;
3038 map->patch_regs += num_regs;
3039 } else {
3040 return -ENOMEM;
3041 }
3042
3043 map->lock(map->lock_arg);
3044
3045 bypass = map->cache_bypass;
3046
3047 map->cache_bypass = true;
3048 map->async = true;
3049
3050 ret = _regmap_multi_reg_write(map, regs, num_regs);
3051
3052 map->async = false;
3053 map->cache_bypass = bypass;
3054
3055 map->unlock(map->lock_arg);
3056
3057 regmap_async_complete(map);
3058
3059 return ret;
3060}
3061EXPORT_SYMBOL_GPL(regmap_register_patch);
3062
3063/**
3064 * regmap_get_val_bytes() - Report the size of a register value
3065 *
3066 * @map: Register map to operate on.
3067 *
3068 * Report the size of a register value, mainly intended to for use by
3069 * generic infrastructure built on top of regmap.
3070 */
3071int regmap_get_val_bytes(struct regmap *map)
3072{
3073 if (map->format.format_write)
3074 return -EINVAL;
3075
3076 return map->format.val_bytes;
3077}
3078EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3079
3080/**
3081 * regmap_get_max_register() - Report the max register value
3082 *
3083 * @map: Register map to operate on.
3084 *
3085 * Report the max register value, mainly intended to for use by
3086 * generic infrastructure built on top of regmap.
3087 */
3088int regmap_get_max_register(struct regmap *map)
3089{
3090 return map->max_register ? map->max_register : -EINVAL;
3091}
3092EXPORT_SYMBOL_GPL(regmap_get_max_register);
3093
3094/**
3095 * regmap_get_reg_stride() - Report the register address stride
3096 *
3097 * @map: Register map to operate on.
3098 *
3099 * Report the register address stride, mainly intended to for use by
3100 * generic infrastructure built on top of regmap.
3101 */
3102int regmap_get_reg_stride(struct regmap *map)
3103{
3104 return map->reg_stride;
3105}
3106EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3107
3108int regmap_parse_val(struct regmap *map, const void *buf,
3109 unsigned int *val)
3110{
3111 if (!map->format.parse_val)
3112 return -EINVAL;
3113
3114 *val = map->format.parse_val(buf);
3115
3116 return 0;
3117}
3118EXPORT_SYMBOL_GPL(regmap_parse_val);
3119
3120static int __init regmap_initcall(void)
3121{
3122 regmap_debugfs_initcall();
3123
3124 return 0;
3125}
3126postcore_initcall(regmap_initcall);