at v5.6-rc4 35 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20#include <asm/div64.h> 21 22#define STACK_MAGIC 0xdeadbeef 23 24/** 25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 26 * @x: value to repeat 27 * 28 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 29 */ 30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 31 32/* @a is a power of 2 value */ 33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 38 39/* generic data direction definitions */ 40#define READ 0 41#define WRITE 1 42 43/** 44 * ARRAY_SIZE - get the number of elements in array @arr 45 * @arr: array to be sized 46 */ 47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 48 49#define u64_to_user_ptr(x) ( \ 50{ \ 51 typecheck(u64, (x)); \ 52 (void __user *)(uintptr_t)(x); \ 53} \ 54) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63/** 64 * round_up - round up to next specified power of 2 65 * @x: the value to round 66 * @y: multiple to round up to (must be a power of 2) 67 * 68 * Rounds @x up to next multiple of @y (which must be a power of 2). 69 * To perform arbitrary rounding up, use roundup() below. 70 */ 71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 72/** 73 * round_down - round down to next specified power of 2 74 * @x: the value to round 75 * @y: multiple to round down to (must be a power of 2) 76 * 77 * Rounds @x down to next multiple of @y (which must be a power of 2). 78 * To perform arbitrary rounding down, use rounddown() below. 79 */ 80#define round_down(x, y) ((x) & ~__round_mask(x, y)) 81 82#define typeof_member(T, m) typeof(((T*)0)->m) 83 84#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 85 86#define DIV_ROUND_DOWN_ULL(ll, d) \ 87 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 88 89#define DIV_ROUND_UP_ULL(ll, d) \ 90 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 91 92#if BITS_PER_LONG == 32 93# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 94#else 95# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 96#endif 97 98/** 99 * roundup - round up to the next specified multiple 100 * @x: the value to up 101 * @y: multiple to round up to 102 * 103 * Rounds @x up to next multiple of @y. If @y will always be a power 104 * of 2, consider using the faster round_up(). 105 */ 106#define roundup(x, y) ( \ 107{ \ 108 typeof(y) __y = y; \ 109 (((x) + (__y - 1)) / __y) * __y; \ 110} \ 111) 112/** 113 * rounddown - round down to next specified multiple 114 * @x: the value to round 115 * @y: multiple to round down to 116 * 117 * Rounds @x down to next multiple of @y. If @y will always be a power 118 * of 2, consider using the faster round_down(). 119 */ 120#define rounddown(x, y) ( \ 121{ \ 122 typeof(x) __x = (x); \ 123 __x - (__x % (y)); \ 124} \ 125) 126 127/* 128 * Divide positive or negative dividend by positive or negative divisor 129 * and round to closest integer. Result is undefined for negative 130 * divisors if the dividend variable type is unsigned and for negative 131 * dividends if the divisor variable type is unsigned. 132 */ 133#define DIV_ROUND_CLOSEST(x, divisor)( \ 134{ \ 135 typeof(x) __x = x; \ 136 typeof(divisor) __d = divisor; \ 137 (((typeof(x))-1) > 0 || \ 138 ((typeof(divisor))-1) > 0 || \ 139 (((__x) > 0) == ((__d) > 0))) ? \ 140 (((__x) + ((__d) / 2)) / (__d)) : \ 141 (((__x) - ((__d) / 2)) / (__d)); \ 142} \ 143) 144/* 145 * Same as above but for u64 dividends. divisor must be a 32-bit 146 * number. 147 */ 148#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 149{ \ 150 typeof(divisor) __d = divisor; \ 151 unsigned long long _tmp = (x) + (__d) / 2; \ 152 do_div(_tmp, __d); \ 153 _tmp; \ 154} \ 155) 156 157/* 158 * Multiplies an integer by a fraction, while avoiding unnecessary 159 * overflow or loss of precision. 160 */ 161#define mult_frac(x, numer, denom)( \ 162{ \ 163 typeof(x) quot = (x) / (denom); \ 164 typeof(x) rem = (x) % (denom); \ 165 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 166} \ 167) 168 169 170#define _RET_IP_ (unsigned long)__builtin_return_address(0) 171#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 172 173#define sector_div(a, b) do_div(a, b) 174 175/** 176 * upper_32_bits - return bits 32-63 of a number 177 * @n: the number we're accessing 178 * 179 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 180 * the "right shift count >= width of type" warning when that quantity is 181 * 32-bits. 182 */ 183#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 184 185/** 186 * lower_32_bits - return bits 0-31 of a number 187 * @n: the number we're accessing 188 */ 189#define lower_32_bits(n) ((u32)(n)) 190 191struct completion; 192struct pt_regs; 193struct user; 194 195#ifdef CONFIG_PREEMPT_VOLUNTARY 196extern int _cond_resched(void); 197# define might_resched() _cond_resched() 198#else 199# define might_resched() do { } while (0) 200#endif 201 202#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 203extern void ___might_sleep(const char *file, int line, int preempt_offset); 204extern void __might_sleep(const char *file, int line, int preempt_offset); 205extern void __cant_sleep(const char *file, int line, int preempt_offset); 206 207/** 208 * might_sleep - annotation for functions that can sleep 209 * 210 * this macro will print a stack trace if it is executed in an atomic 211 * context (spinlock, irq-handler, ...). Additional sections where blocking is 212 * not allowed can be annotated with non_block_start() and non_block_end() 213 * pairs. 214 * 215 * This is a useful debugging help to be able to catch problems early and not 216 * be bitten later when the calling function happens to sleep when it is not 217 * supposed to. 218 */ 219# define might_sleep() \ 220 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 221/** 222 * cant_sleep - annotation for functions that cannot sleep 223 * 224 * this macro will print a stack trace if it is executed with preemption enabled 225 */ 226# define cant_sleep() \ 227 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 228# define sched_annotate_sleep() (current->task_state_change = 0) 229/** 230 * non_block_start - annotate the start of section where sleeping is prohibited 231 * 232 * This is on behalf of the oom reaper, specifically when it is calling the mmu 233 * notifiers. The problem is that if the notifier were to block on, for example, 234 * mutex_lock() and if the process which holds that mutex were to perform a 235 * sleeping memory allocation, the oom reaper is now blocked on completion of 236 * that memory allocation. Other blocking calls like wait_event() pose similar 237 * issues. 238 */ 239# define non_block_start() (current->non_block_count++) 240/** 241 * non_block_end - annotate the end of section where sleeping is prohibited 242 * 243 * Closes a section opened by non_block_start(). 244 */ 245# define non_block_end() WARN_ON(current->non_block_count-- == 0) 246#else 247 static inline void ___might_sleep(const char *file, int line, 248 int preempt_offset) { } 249 static inline void __might_sleep(const char *file, int line, 250 int preempt_offset) { } 251# define might_sleep() do { might_resched(); } while (0) 252# define cant_sleep() do { } while (0) 253# define sched_annotate_sleep() do { } while (0) 254# define non_block_start() do { } while (0) 255# define non_block_end() do { } while (0) 256#endif 257 258#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 259 260/** 261 * abs - return absolute value of an argument 262 * @x: the value. If it is unsigned type, it is converted to signed type first. 263 * char is treated as if it was signed (regardless of whether it really is) 264 * but the macro's return type is preserved as char. 265 * 266 * Return: an absolute value of x. 267 */ 268#define abs(x) __abs_choose_expr(x, long long, \ 269 __abs_choose_expr(x, long, \ 270 __abs_choose_expr(x, int, \ 271 __abs_choose_expr(x, short, \ 272 __abs_choose_expr(x, char, \ 273 __builtin_choose_expr( \ 274 __builtin_types_compatible_p(typeof(x), char), \ 275 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 276 ((void)0))))))) 277 278#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 279 __builtin_types_compatible_p(typeof(x), signed type) || \ 280 __builtin_types_compatible_p(typeof(x), unsigned type), \ 281 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 282 283/** 284 * reciprocal_scale - "scale" a value into range [0, ep_ro) 285 * @val: value 286 * @ep_ro: right open interval endpoint 287 * 288 * Perform a "reciprocal multiplication" in order to "scale" a value into 289 * range [0, @ep_ro), where the upper interval endpoint is right-open. 290 * This is useful, e.g. for accessing a index of an array containing 291 * @ep_ro elements, for example. Think of it as sort of modulus, only that 292 * the result isn't that of modulo. ;) Note that if initial input is a 293 * small value, then result will return 0. 294 * 295 * Return: a result based on @val in interval [0, @ep_ro). 296 */ 297static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 298{ 299 return (u32)(((u64) val * ep_ro) >> 32); 300} 301 302#if defined(CONFIG_MMU) && \ 303 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 304#define might_fault() __might_fault(__FILE__, __LINE__) 305void __might_fault(const char *file, int line); 306#else 307static inline void might_fault(void) { } 308#endif 309 310extern struct atomic_notifier_head panic_notifier_list; 311extern long (*panic_blink)(int state); 312__printf(1, 2) 313void panic(const char *fmt, ...) __noreturn __cold; 314void nmi_panic(struct pt_regs *regs, const char *msg); 315extern void oops_enter(void); 316extern void oops_exit(void); 317void print_oops_end_marker(void); 318extern int oops_may_print(void); 319void do_exit(long error_code) __noreturn; 320void complete_and_exit(struct completion *, long) __noreturn; 321 322/* Internal, do not use. */ 323int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 324int __must_check _kstrtol(const char *s, unsigned int base, long *res); 325 326int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 327int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 328 329/** 330 * kstrtoul - convert a string to an unsigned long 331 * @s: The start of the string. The string must be null-terminated, and may also 332 * include a single newline before its terminating null. The first character 333 * may also be a plus sign, but not a minus sign. 334 * @base: The number base to use. The maximum supported base is 16. If base is 335 * given as 0, then the base of the string is automatically detected with the 336 * conventional semantics - If it begins with 0x the number will be parsed as a 337 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 338 * parsed as an octal number. Otherwise it will be parsed as a decimal. 339 * @res: Where to write the result of the conversion on success. 340 * 341 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 342 * Used as a replacement for the simple_strtoull. Return code must be checked. 343*/ 344static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 345{ 346 /* 347 * We want to shortcut function call, but 348 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 349 */ 350 if (sizeof(unsigned long) == sizeof(unsigned long long) && 351 __alignof__(unsigned long) == __alignof__(unsigned long long)) 352 return kstrtoull(s, base, (unsigned long long *)res); 353 else 354 return _kstrtoul(s, base, res); 355} 356 357/** 358 * kstrtol - convert a string to a long 359 * @s: The start of the string. The string must be null-terminated, and may also 360 * include a single newline before its terminating null. The first character 361 * may also be a plus sign or a minus sign. 362 * @base: The number base to use. The maximum supported base is 16. If base is 363 * given as 0, then the base of the string is automatically detected with the 364 * conventional semantics - If it begins with 0x the number will be parsed as a 365 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 366 * parsed as an octal number. Otherwise it will be parsed as a decimal. 367 * @res: Where to write the result of the conversion on success. 368 * 369 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 370 * Used as a replacement for the simple_strtoull. Return code must be checked. 371 */ 372static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 373{ 374 /* 375 * We want to shortcut function call, but 376 * __builtin_types_compatible_p(long, long long) = 0. 377 */ 378 if (sizeof(long) == sizeof(long long) && 379 __alignof__(long) == __alignof__(long long)) 380 return kstrtoll(s, base, (long long *)res); 381 else 382 return _kstrtol(s, base, res); 383} 384 385int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 386int __must_check kstrtoint(const char *s, unsigned int base, int *res); 387 388static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 389{ 390 return kstrtoull(s, base, res); 391} 392 393static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 394{ 395 return kstrtoll(s, base, res); 396} 397 398static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 399{ 400 return kstrtouint(s, base, res); 401} 402 403static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 404{ 405 return kstrtoint(s, base, res); 406} 407 408int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 409int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 410int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 411int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 412int __must_check kstrtobool(const char *s, bool *res); 413 414int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 415int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 416int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 417int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 418int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 419int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 420int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 421int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 422int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 423int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 424int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 425 426static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 427{ 428 return kstrtoull_from_user(s, count, base, res); 429} 430 431static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 432{ 433 return kstrtoll_from_user(s, count, base, res); 434} 435 436static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 437{ 438 return kstrtouint_from_user(s, count, base, res); 439} 440 441static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 442{ 443 return kstrtoint_from_user(s, count, base, res); 444} 445 446/* 447 * Use kstrto<foo> instead. 448 * 449 * NOTE: simple_strto<foo> does not check for the range overflow and, 450 * depending on the input, may give interesting results. 451 * 452 * Use these functions if and only if you cannot use kstrto<foo>, because 453 * the conversion ends on the first non-digit character, which may be far 454 * beyond the supported range. It might be useful to parse the strings like 455 * 10x50 or 12:21 without altering original string or temporary buffer in use. 456 * Keep in mind above caveat. 457 */ 458 459extern unsigned long simple_strtoul(const char *,char **,unsigned int); 460extern long simple_strtol(const char *,char **,unsigned int); 461extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 462extern long long simple_strtoll(const char *,char **,unsigned int); 463 464extern int num_to_str(char *buf, int size, 465 unsigned long long num, unsigned int width); 466 467/* lib/printf utilities */ 468 469extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 470extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 471extern __printf(3, 4) 472int snprintf(char *buf, size_t size, const char *fmt, ...); 473extern __printf(3, 0) 474int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 475extern __printf(3, 4) 476int scnprintf(char *buf, size_t size, const char *fmt, ...); 477extern __printf(3, 0) 478int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 479extern __printf(2, 3) __malloc 480char *kasprintf(gfp_t gfp, const char *fmt, ...); 481extern __printf(2, 0) __malloc 482char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 483extern __printf(2, 0) 484const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 485 486extern __scanf(2, 3) 487int sscanf(const char *, const char *, ...); 488extern __scanf(2, 0) 489int vsscanf(const char *, const char *, va_list); 490 491extern int get_option(char **str, int *pint); 492extern char *get_options(const char *str, int nints, int *ints); 493extern unsigned long long memparse(const char *ptr, char **retptr); 494extern bool parse_option_str(const char *str, const char *option); 495extern char *next_arg(char *args, char **param, char **val); 496 497extern int core_kernel_text(unsigned long addr); 498extern int init_kernel_text(unsigned long addr); 499extern int core_kernel_data(unsigned long addr); 500extern int __kernel_text_address(unsigned long addr); 501extern int kernel_text_address(unsigned long addr); 502extern int func_ptr_is_kernel_text(void *ptr); 503 504u64 int_pow(u64 base, unsigned int exp); 505unsigned long int_sqrt(unsigned long); 506 507#if BITS_PER_LONG < 64 508u32 int_sqrt64(u64 x); 509#else 510static inline u32 int_sqrt64(u64 x) 511{ 512 return (u32)int_sqrt(x); 513} 514#endif 515 516extern void bust_spinlocks(int yes); 517extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 518extern int panic_timeout; 519extern unsigned long panic_print; 520extern int panic_on_oops; 521extern int panic_on_unrecovered_nmi; 522extern int panic_on_io_nmi; 523extern int panic_on_warn; 524extern int sysctl_panic_on_rcu_stall; 525extern int sysctl_panic_on_stackoverflow; 526 527extern bool crash_kexec_post_notifiers; 528 529/* 530 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 531 * holds a CPU number which is executing panic() currently. A value of 532 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 533 */ 534extern atomic_t panic_cpu; 535#define PANIC_CPU_INVALID -1 536 537/* 538 * Only to be used by arch init code. If the user over-wrote the default 539 * CONFIG_PANIC_TIMEOUT, honor it. 540 */ 541static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 542{ 543 if (panic_timeout == arch_default_timeout) 544 panic_timeout = timeout; 545} 546extern const char *print_tainted(void); 547enum lockdep_ok { 548 LOCKDEP_STILL_OK, 549 LOCKDEP_NOW_UNRELIABLE 550}; 551extern void add_taint(unsigned flag, enum lockdep_ok); 552extern int test_taint(unsigned flag); 553extern unsigned long get_taint(void); 554extern int root_mountflags; 555 556extern bool early_boot_irqs_disabled; 557 558/* 559 * Values used for system_state. Ordering of the states must not be changed 560 * as code checks for <, <=, >, >= STATE. 561 */ 562extern enum system_states { 563 SYSTEM_BOOTING, 564 SYSTEM_SCHEDULING, 565 SYSTEM_RUNNING, 566 SYSTEM_HALT, 567 SYSTEM_POWER_OFF, 568 SYSTEM_RESTART, 569 SYSTEM_SUSPEND, 570} system_state; 571 572/* This cannot be an enum because some may be used in assembly source. */ 573#define TAINT_PROPRIETARY_MODULE 0 574#define TAINT_FORCED_MODULE 1 575#define TAINT_CPU_OUT_OF_SPEC 2 576#define TAINT_FORCED_RMMOD 3 577#define TAINT_MACHINE_CHECK 4 578#define TAINT_BAD_PAGE 5 579#define TAINT_USER 6 580#define TAINT_DIE 7 581#define TAINT_OVERRIDDEN_ACPI_TABLE 8 582#define TAINT_WARN 9 583#define TAINT_CRAP 10 584#define TAINT_FIRMWARE_WORKAROUND 11 585#define TAINT_OOT_MODULE 12 586#define TAINT_UNSIGNED_MODULE 13 587#define TAINT_SOFTLOCKUP 14 588#define TAINT_LIVEPATCH 15 589#define TAINT_AUX 16 590#define TAINT_RANDSTRUCT 17 591#define TAINT_FLAGS_COUNT 18 592 593struct taint_flag { 594 char c_true; /* character printed when tainted */ 595 char c_false; /* character printed when not tainted */ 596 bool module; /* also show as a per-module taint flag */ 597}; 598 599extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 600 601extern const char hex_asc[]; 602#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 603#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 604 605static inline char *hex_byte_pack(char *buf, u8 byte) 606{ 607 *buf++ = hex_asc_hi(byte); 608 *buf++ = hex_asc_lo(byte); 609 return buf; 610} 611 612extern const char hex_asc_upper[]; 613#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 614#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 615 616static inline char *hex_byte_pack_upper(char *buf, u8 byte) 617{ 618 *buf++ = hex_asc_upper_hi(byte); 619 *buf++ = hex_asc_upper_lo(byte); 620 return buf; 621} 622 623extern int hex_to_bin(char ch); 624extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 625extern char *bin2hex(char *dst, const void *src, size_t count); 626 627bool mac_pton(const char *s, u8 *mac); 628 629/* 630 * General tracing related utility functions - trace_printk(), 631 * tracing_on/tracing_off and tracing_start()/tracing_stop 632 * 633 * Use tracing_on/tracing_off when you want to quickly turn on or off 634 * tracing. It simply enables or disables the recording of the trace events. 635 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 636 * file, which gives a means for the kernel and userspace to interact. 637 * Place a tracing_off() in the kernel where you want tracing to end. 638 * From user space, examine the trace, and then echo 1 > tracing_on 639 * to continue tracing. 640 * 641 * tracing_stop/tracing_start has slightly more overhead. It is used 642 * by things like suspend to ram where disabling the recording of the 643 * trace is not enough, but tracing must actually stop because things 644 * like calling smp_processor_id() may crash the system. 645 * 646 * Most likely, you want to use tracing_on/tracing_off. 647 */ 648 649enum ftrace_dump_mode { 650 DUMP_NONE, 651 DUMP_ALL, 652 DUMP_ORIG, 653}; 654 655#ifdef CONFIG_TRACING 656void tracing_on(void); 657void tracing_off(void); 658int tracing_is_on(void); 659void tracing_snapshot(void); 660void tracing_snapshot_alloc(void); 661 662extern void tracing_start(void); 663extern void tracing_stop(void); 664 665static inline __printf(1, 2) 666void ____trace_printk_check_format(const char *fmt, ...) 667{ 668} 669#define __trace_printk_check_format(fmt, args...) \ 670do { \ 671 if (0) \ 672 ____trace_printk_check_format(fmt, ##args); \ 673} while (0) 674 675/** 676 * trace_printk - printf formatting in the ftrace buffer 677 * @fmt: the printf format for printing 678 * 679 * Note: __trace_printk is an internal function for trace_printk() and 680 * the @ip is passed in via the trace_printk() macro. 681 * 682 * This function allows a kernel developer to debug fast path sections 683 * that printk is not appropriate for. By scattering in various 684 * printk like tracing in the code, a developer can quickly see 685 * where problems are occurring. 686 * 687 * This is intended as a debugging tool for the developer only. 688 * Please refrain from leaving trace_printks scattered around in 689 * your code. (Extra memory is used for special buffers that are 690 * allocated when trace_printk() is used.) 691 * 692 * A little optimization trick is done here. If there's only one 693 * argument, there's no need to scan the string for printf formats. 694 * The trace_puts() will suffice. But how can we take advantage of 695 * using trace_puts() when trace_printk() has only one argument? 696 * By stringifying the args and checking the size we can tell 697 * whether or not there are args. __stringify((__VA_ARGS__)) will 698 * turn into "()\0" with a size of 3 when there are no args, anything 699 * else will be bigger. All we need to do is define a string to this, 700 * and then take its size and compare to 3. If it's bigger, use 701 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 702 * let gcc optimize the rest. 703 */ 704 705#define trace_printk(fmt, ...) \ 706do { \ 707 char _______STR[] = __stringify((__VA_ARGS__)); \ 708 if (sizeof(_______STR) > 3) \ 709 do_trace_printk(fmt, ##__VA_ARGS__); \ 710 else \ 711 trace_puts(fmt); \ 712} while (0) 713 714#define do_trace_printk(fmt, args...) \ 715do { \ 716 static const char *trace_printk_fmt __used \ 717 __attribute__((section("__trace_printk_fmt"))) = \ 718 __builtin_constant_p(fmt) ? fmt : NULL; \ 719 \ 720 __trace_printk_check_format(fmt, ##args); \ 721 \ 722 if (__builtin_constant_p(fmt)) \ 723 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 724 else \ 725 __trace_printk(_THIS_IP_, fmt, ##args); \ 726} while (0) 727 728extern __printf(2, 3) 729int __trace_bprintk(unsigned long ip, const char *fmt, ...); 730 731extern __printf(2, 3) 732int __trace_printk(unsigned long ip, const char *fmt, ...); 733 734/** 735 * trace_puts - write a string into the ftrace buffer 736 * @str: the string to record 737 * 738 * Note: __trace_bputs is an internal function for trace_puts and 739 * the @ip is passed in via the trace_puts macro. 740 * 741 * This is similar to trace_printk() but is made for those really fast 742 * paths that a developer wants the least amount of "Heisenbug" effects, 743 * where the processing of the print format is still too much. 744 * 745 * This function allows a kernel developer to debug fast path sections 746 * that printk is not appropriate for. By scattering in various 747 * printk like tracing in the code, a developer can quickly see 748 * where problems are occurring. 749 * 750 * This is intended as a debugging tool for the developer only. 751 * Please refrain from leaving trace_puts scattered around in 752 * your code. (Extra memory is used for special buffers that are 753 * allocated when trace_puts() is used.) 754 * 755 * Returns: 0 if nothing was written, positive # if string was. 756 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 757 */ 758 759#define trace_puts(str) ({ \ 760 static const char *trace_printk_fmt __used \ 761 __attribute__((section("__trace_printk_fmt"))) = \ 762 __builtin_constant_p(str) ? str : NULL; \ 763 \ 764 if (__builtin_constant_p(str)) \ 765 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 766 else \ 767 __trace_puts(_THIS_IP_, str, strlen(str)); \ 768}) 769extern int __trace_bputs(unsigned long ip, const char *str); 770extern int __trace_puts(unsigned long ip, const char *str, int size); 771 772extern void trace_dump_stack(int skip); 773 774/* 775 * The double __builtin_constant_p is because gcc will give us an error 776 * if we try to allocate the static variable to fmt if it is not a 777 * constant. Even with the outer if statement. 778 */ 779#define ftrace_vprintk(fmt, vargs) \ 780do { \ 781 if (__builtin_constant_p(fmt)) { \ 782 static const char *trace_printk_fmt __used \ 783 __attribute__((section("__trace_printk_fmt"))) = \ 784 __builtin_constant_p(fmt) ? fmt : NULL; \ 785 \ 786 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 787 } else \ 788 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 789} while (0) 790 791extern __printf(2, 0) int 792__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 793 794extern __printf(2, 0) int 795__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 796 797extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 798#else 799static inline void tracing_start(void) { } 800static inline void tracing_stop(void) { } 801static inline void trace_dump_stack(int skip) { } 802 803static inline void tracing_on(void) { } 804static inline void tracing_off(void) { } 805static inline int tracing_is_on(void) { return 0; } 806static inline void tracing_snapshot(void) { } 807static inline void tracing_snapshot_alloc(void) { } 808 809static inline __printf(1, 2) 810int trace_printk(const char *fmt, ...) 811{ 812 return 0; 813} 814static __printf(1, 0) inline int 815ftrace_vprintk(const char *fmt, va_list ap) 816{ 817 return 0; 818} 819static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 820#endif /* CONFIG_TRACING */ 821 822/* 823 * min()/max()/clamp() macros must accomplish three things: 824 * 825 * - avoid multiple evaluations of the arguments (so side-effects like 826 * "x++" happen only once) when non-constant. 827 * - perform strict type-checking (to generate warnings instead of 828 * nasty runtime surprises). See the "unnecessary" pointer comparison 829 * in __typecheck(). 830 * - retain result as a constant expressions when called with only 831 * constant expressions (to avoid tripping VLA warnings in stack 832 * allocation usage). 833 */ 834#define __typecheck(x, y) \ 835 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 836 837/* 838 * This returns a constant expression while determining if an argument is 839 * a constant expression, most importantly without evaluating the argument. 840 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 841 */ 842#define __is_constexpr(x) \ 843 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 844 845#define __no_side_effects(x, y) \ 846 (__is_constexpr(x) && __is_constexpr(y)) 847 848#define __safe_cmp(x, y) \ 849 (__typecheck(x, y) && __no_side_effects(x, y)) 850 851#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 852 853#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 854 typeof(x) unique_x = (x); \ 855 typeof(y) unique_y = (y); \ 856 __cmp(unique_x, unique_y, op); }) 857 858#define __careful_cmp(x, y, op) \ 859 __builtin_choose_expr(__safe_cmp(x, y), \ 860 __cmp(x, y, op), \ 861 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 862 863/** 864 * min - return minimum of two values of the same or compatible types 865 * @x: first value 866 * @y: second value 867 */ 868#define min(x, y) __careful_cmp(x, y, <) 869 870/** 871 * max - return maximum of two values of the same or compatible types 872 * @x: first value 873 * @y: second value 874 */ 875#define max(x, y) __careful_cmp(x, y, >) 876 877/** 878 * min3 - return minimum of three values 879 * @x: first value 880 * @y: second value 881 * @z: third value 882 */ 883#define min3(x, y, z) min((typeof(x))min(x, y), z) 884 885/** 886 * max3 - return maximum of three values 887 * @x: first value 888 * @y: second value 889 * @z: third value 890 */ 891#define max3(x, y, z) max((typeof(x))max(x, y), z) 892 893/** 894 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 895 * @x: value1 896 * @y: value2 897 */ 898#define min_not_zero(x, y) ({ \ 899 typeof(x) __x = (x); \ 900 typeof(y) __y = (y); \ 901 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 902 903/** 904 * clamp - return a value clamped to a given range with strict typechecking 905 * @val: current value 906 * @lo: lowest allowable value 907 * @hi: highest allowable value 908 * 909 * This macro does strict typechecking of @lo/@hi to make sure they are of the 910 * same type as @val. See the unnecessary pointer comparisons. 911 */ 912#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 913 914/* 915 * ..and if you can't take the strict 916 * types, you can specify one yourself. 917 * 918 * Or not use min/max/clamp at all, of course. 919 */ 920 921/** 922 * min_t - return minimum of two values, using the specified type 923 * @type: data type to use 924 * @x: first value 925 * @y: second value 926 */ 927#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 928 929/** 930 * max_t - return maximum of two values, using the specified type 931 * @type: data type to use 932 * @x: first value 933 * @y: second value 934 */ 935#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 936 937/** 938 * clamp_t - return a value clamped to a given range using a given type 939 * @type: the type of variable to use 940 * @val: current value 941 * @lo: minimum allowable value 942 * @hi: maximum allowable value 943 * 944 * This macro does no typechecking and uses temporary variables of type 945 * @type to make all the comparisons. 946 */ 947#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 948 949/** 950 * clamp_val - return a value clamped to a given range using val's type 951 * @val: current value 952 * @lo: minimum allowable value 953 * @hi: maximum allowable value 954 * 955 * This macro does no typechecking and uses temporary variables of whatever 956 * type the input argument @val is. This is useful when @val is an unsigned 957 * type and @lo and @hi are literals that will otherwise be assigned a signed 958 * integer type. 959 */ 960#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 961 962 963/** 964 * swap - swap values of @a and @b 965 * @a: first value 966 * @b: second value 967 */ 968#define swap(a, b) \ 969 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 970 971/* This counts to 12. Any more, it will return 13th argument. */ 972#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 973#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 974 975#define __CONCAT(a, b) a ## b 976#define CONCATENATE(a, b) __CONCAT(a, b) 977 978/** 979 * container_of - cast a member of a structure out to the containing structure 980 * @ptr: the pointer to the member. 981 * @type: the type of the container struct this is embedded in. 982 * @member: the name of the member within the struct. 983 * 984 */ 985#define container_of(ptr, type, member) ({ \ 986 void *__mptr = (void *)(ptr); \ 987 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 988 !__same_type(*(ptr), void), \ 989 "pointer type mismatch in container_of()"); \ 990 ((type *)(__mptr - offsetof(type, member))); }) 991 992/** 993 * container_of_safe - cast a member of a structure out to the containing structure 994 * @ptr: the pointer to the member. 995 * @type: the type of the container struct this is embedded in. 996 * @member: the name of the member within the struct. 997 * 998 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 999 */ 1000#define container_of_safe(ptr, type, member) ({ \ 1001 void *__mptr = (void *)(ptr); \ 1002 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1003 !__same_type(*(ptr), void), \ 1004 "pointer type mismatch in container_of()"); \ 1005 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1006 ((type *)(__mptr - offsetof(type, member))); }) 1007 1008/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1009#ifdef CONFIG_FTRACE_MCOUNT_RECORD 1010# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1011#endif 1012 1013/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1014#define VERIFY_OCTAL_PERMISSIONS(perms) \ 1015 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1016 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1017 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1018 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1019 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1020 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1021 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1022 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1023 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1024 (perms)) 1025#endif