Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
106 *
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
109 *
110 * The userspace interfaces are two character devices /dev/random and
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
116 *
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
122 *
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
125 *
126 * The primary kernel interface is
127 *
128 * void get_random_bytes(void *buf, int nbytes);
129 *
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
133 *
134 * For less critical applications, there are the functions:
135 *
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
140 *
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
144 * the kernel*.
145 *
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
151 *
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
157 *
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
163 *
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
168 * is just fine.
169 *
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
175 * CRNG is silly.
176 *
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
183 *
184 * prandom_u32()
185 * -------------
186 *
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
193 *
194 * Exported interfaces ---- input
195 * ==============================
196 *
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
199 *
200 * void add_device_randomness(const void *buf, unsigned int size);
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
203 * void add_interrupt_randomness(int irq, int irq_flags);
204 * void add_disk_randomness(struct gendisk *disk);
205 *
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
213 *
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
216 *
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
220 *
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
226 *
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
230 *
231 * Ensuring unpredictability at system startup
232 * ============================================
233 *
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
242 * sequence:
243 *
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
250 * else
251 * touch $random_seed
252 * fi
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
255 *
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
258 *
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
263 * touch $random_seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
266 *
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271 *
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
279 * the system.
280 *
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
283 *
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
288 *
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
291 *
292 * Acknowledgements:
293 * =================
294 *
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
301 *
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
304 *
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
308 */
309
310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311
312#include <linux/utsname.h>
313#include <linux/module.h>
314#include <linux/kernel.h>
315#include <linux/major.h>
316#include <linux/string.h>
317#include <linux/fcntl.h>
318#include <linux/slab.h>
319#include <linux/random.h>
320#include <linux/poll.h>
321#include <linux/init.h>
322#include <linux/fs.h>
323#include <linux/genhd.h>
324#include <linux/interrupt.h>
325#include <linux/mm.h>
326#include <linux/nodemask.h>
327#include <linux/spinlock.h>
328#include <linux/kthread.h>
329#include <linux/percpu.h>
330#include <linux/cryptohash.h>
331#include <linux/fips.h>
332#include <linux/ptrace.h>
333#include <linux/workqueue.h>
334#include <linux/irq.h>
335#include <linux/ratelimit.h>
336#include <linux/syscalls.h>
337#include <linux/completion.h>
338#include <linux/uuid.h>
339#include <crypto/chacha.h>
340
341#include <asm/processor.h>
342#include <linux/uaccess.h>
343#include <asm/irq.h>
344#include <asm/irq_regs.h>
345#include <asm/io.h>
346
347#define CREATE_TRACE_POINTS
348#include <trace/events/random.h>
349
350/* #define ADD_INTERRUPT_BENCH */
351
352/*
353 * Configuration information
354 */
355#define INPUT_POOL_SHIFT 12
356#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
357#define OUTPUT_POOL_SHIFT 10
358#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
359#define EXTRACT_SIZE 10
360
361
362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363
364/*
365 * To allow fractional bits to be tracked, the entropy_count field is
366 * denominated in units of 1/8th bits.
367 *
368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369 * credit_entropy_bits() needs to be 64 bits wide.
370 */
371#define ENTROPY_SHIFT 3
372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373
374/*
375 * If the entropy count falls under this number of bits, then we
376 * should wake up processes which are selecting or polling on write
377 * access to /dev/random.
378 */
379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
380
381/*
382 * Originally, we used a primitive polynomial of degree .poolwords
383 * over GF(2). The taps for various sizes are defined below. They
384 * were chosen to be evenly spaced except for the last tap, which is 1
385 * to get the twisting happening as fast as possible.
386 *
387 * For the purposes of better mixing, we use the CRC-32 polynomial as
388 * well to make a (modified) twisted Generalized Feedback Shift
389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
390 * generators. ACM Transactions on Modeling and Computer Simulation
391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
392 * GFSR generators II. ACM Transactions on Modeling and Computer
393 * Simulation 4:254-266)
394 *
395 * Thanks to Colin Plumb for suggesting this.
396 *
397 * The mixing operation is much less sensitive than the output hash,
398 * where we use SHA-1. All that we want of mixing operation is that
399 * it be a good non-cryptographic hash; i.e. it not produce collisions
400 * when fed "random" data of the sort we expect to see. As long as
401 * the pool state differs for different inputs, we have preserved the
402 * input entropy and done a good job. The fact that an intelligent
403 * attacker can construct inputs that will produce controlled
404 * alterations to the pool's state is not important because we don't
405 * consider such inputs to contribute any randomness. The only
406 * property we need with respect to them is that the attacker can't
407 * increase his/her knowledge of the pool's state. Since all
408 * additions are reversible (knowing the final state and the input,
409 * you can reconstruct the initial state), if an attacker has any
410 * uncertainty about the initial state, he/she can only shuffle that
411 * uncertainty about, but never cause any collisions (which would
412 * decrease the uncertainty).
413 *
414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415 * Videau in their paper, "The Linux Pseudorandom Number Generator
416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
417 * paper, they point out that we are not using a true Twisted GFSR,
418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419 * is, with only three taps, instead of the six that we are using).
420 * As a result, the resulting polynomial is neither primitive nor
421 * irreducible, and hence does not have a maximal period over
422 * GF(2**32). They suggest a slight change to the generator
423 * polynomial which improves the resulting TGFSR polynomial to be
424 * irreducible, which we have made here.
425 */
426static const struct poolinfo {
427 int poolbitshift, poolwords, poolbytes, poolfracbits;
428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 int tap1, tap2, tap3, tap4, tap5;
430} poolinfo_table[] = {
431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 { S(128), 104, 76, 51, 25, 1 },
434};
435
436/*
437 * Static global variables
438 */
439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440static struct fasync_struct *fasync;
441
442static DEFINE_SPINLOCK(random_ready_list_lock);
443static LIST_HEAD(random_ready_list);
444
445struct crng_state {
446 __u32 state[16];
447 unsigned long init_time;
448 spinlock_t lock;
449};
450
451static struct crng_state primary_crng = {
452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453};
454
455/*
456 * crng_init = 0 --> Uninitialized
457 * 1 --> Initialized
458 * 2 --> Initialized from input_pool
459 *
460 * crng_init is protected by primary_crng->lock, and only increases
461 * its value (from 0->1->2).
462 */
463static int crng_init = 0;
464#define crng_ready() (likely(crng_init > 1))
465static int crng_init_cnt = 0;
466static unsigned long crng_global_init_time = 0;
467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469static void _crng_backtrack_protect(struct crng_state *crng,
470 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471static void process_random_ready_list(void);
472static void _get_random_bytes(void *buf, int nbytes);
473
474static struct ratelimit_state unseeded_warning =
475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476static struct ratelimit_state urandom_warning =
477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
478
479static int ratelimit_disable __read_mostly;
480
481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
483
484/**********************************************************************
485 *
486 * OS independent entropy store. Here are the functions which handle
487 * storing entropy in an entropy pool.
488 *
489 **********************************************************************/
490
491struct entropy_store;
492struct entropy_store {
493 /* read-only data: */
494 const struct poolinfo *poolinfo;
495 __u32 *pool;
496 const char *name;
497
498 /* read-write data: */
499 spinlock_t lock;
500 unsigned short add_ptr;
501 unsigned short input_rotate;
502 int entropy_count;
503 unsigned int initialized:1;
504 unsigned int last_data_init:1;
505 __u8 last_data[EXTRACT_SIZE];
506};
507
508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
509 size_t nbytes, int min, int rsvd);
510static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
511 size_t nbytes, int fips);
512
513static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
514static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
515
516static struct entropy_store input_pool = {
517 .poolinfo = &poolinfo_table[0],
518 .name = "input",
519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
520 .pool = input_pool_data
521};
522
523static __u32 const twist_table[8] = {
524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
526
527/*
528 * This function adds bytes into the entropy "pool". It does not
529 * update the entropy estimate. The caller should call
530 * credit_entropy_bits if this is appropriate.
531 *
532 * The pool is stirred with a primitive polynomial of the appropriate
533 * degree, and then twisted. We twist by three bits at a time because
534 * it's cheap to do so and helps slightly in the expected case where
535 * the entropy is concentrated in the low-order bits.
536 */
537static void _mix_pool_bytes(struct entropy_store *r, const void *in,
538 int nbytes)
539{
540 unsigned long i, tap1, tap2, tap3, tap4, tap5;
541 int input_rotate;
542 int wordmask = r->poolinfo->poolwords - 1;
543 const char *bytes = in;
544 __u32 w;
545
546 tap1 = r->poolinfo->tap1;
547 tap2 = r->poolinfo->tap2;
548 tap3 = r->poolinfo->tap3;
549 tap4 = r->poolinfo->tap4;
550 tap5 = r->poolinfo->tap5;
551
552 input_rotate = r->input_rotate;
553 i = r->add_ptr;
554
555 /* mix one byte at a time to simplify size handling and churn faster */
556 while (nbytes--) {
557 w = rol32(*bytes++, input_rotate);
558 i = (i - 1) & wordmask;
559
560 /* XOR in the various taps */
561 w ^= r->pool[i];
562 w ^= r->pool[(i + tap1) & wordmask];
563 w ^= r->pool[(i + tap2) & wordmask];
564 w ^= r->pool[(i + tap3) & wordmask];
565 w ^= r->pool[(i + tap4) & wordmask];
566 w ^= r->pool[(i + tap5) & wordmask];
567
568 /* Mix the result back in with a twist */
569 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
570
571 /*
572 * Normally, we add 7 bits of rotation to the pool.
573 * At the beginning of the pool, add an extra 7 bits
574 * rotation, so that successive passes spread the
575 * input bits across the pool evenly.
576 */
577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
578 }
579
580 r->input_rotate = input_rotate;
581 r->add_ptr = i;
582}
583
584static void __mix_pool_bytes(struct entropy_store *r, const void *in,
585 int nbytes)
586{
587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
588 _mix_pool_bytes(r, in, nbytes);
589}
590
591static void mix_pool_bytes(struct entropy_store *r, const void *in,
592 int nbytes)
593{
594 unsigned long flags;
595
596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
597 spin_lock_irqsave(&r->lock, flags);
598 _mix_pool_bytes(r, in, nbytes);
599 spin_unlock_irqrestore(&r->lock, flags);
600}
601
602struct fast_pool {
603 __u32 pool[4];
604 unsigned long last;
605 unsigned short reg_idx;
606 unsigned char count;
607};
608
609/*
610 * This is a fast mixing routine used by the interrupt randomness
611 * collector. It's hardcoded for an 128 bit pool and assumes that any
612 * locks that might be needed are taken by the caller.
613 */
614static void fast_mix(struct fast_pool *f)
615{
616 __u32 a = f->pool[0], b = f->pool[1];
617 __u32 c = f->pool[2], d = f->pool[3];
618
619 a += b; c += d;
620 b = rol32(b, 6); d = rol32(d, 27);
621 d ^= a; b ^= c;
622
623 a += b; c += d;
624 b = rol32(b, 16); d = rol32(d, 14);
625 d ^= a; b ^= c;
626
627 a += b; c += d;
628 b = rol32(b, 6); d = rol32(d, 27);
629 d ^= a; b ^= c;
630
631 a += b; c += d;
632 b = rol32(b, 16); d = rol32(d, 14);
633 d ^= a; b ^= c;
634
635 f->pool[0] = a; f->pool[1] = b;
636 f->pool[2] = c; f->pool[3] = d;
637 f->count++;
638}
639
640static void process_random_ready_list(void)
641{
642 unsigned long flags;
643 struct random_ready_callback *rdy, *tmp;
644
645 spin_lock_irqsave(&random_ready_list_lock, flags);
646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
647 struct module *owner = rdy->owner;
648
649 list_del_init(&rdy->list);
650 rdy->func(rdy);
651 module_put(owner);
652 }
653 spin_unlock_irqrestore(&random_ready_list_lock, flags);
654}
655
656/*
657 * Credit (or debit) the entropy store with n bits of entropy.
658 * Use credit_entropy_bits_safe() if the value comes from userspace
659 * or otherwise should be checked for extreme values.
660 */
661static void credit_entropy_bits(struct entropy_store *r, int nbits)
662{
663 int entropy_count, orig, has_initialized = 0;
664 const int pool_size = r->poolinfo->poolfracbits;
665 int nfrac = nbits << ENTROPY_SHIFT;
666
667 if (!nbits)
668 return;
669
670retry:
671 entropy_count = orig = READ_ONCE(r->entropy_count);
672 if (nfrac < 0) {
673 /* Debit */
674 entropy_count += nfrac;
675 } else {
676 /*
677 * Credit: we have to account for the possibility of
678 * overwriting already present entropy. Even in the
679 * ideal case of pure Shannon entropy, new contributions
680 * approach the full value asymptotically:
681 *
682 * entropy <- entropy + (pool_size - entropy) *
683 * (1 - exp(-add_entropy/pool_size))
684 *
685 * For add_entropy <= pool_size/2 then
686 * (1 - exp(-add_entropy/pool_size)) >=
687 * (add_entropy/pool_size)*0.7869...
688 * so we can approximate the exponential with
689 * 3/4*add_entropy/pool_size and still be on the
690 * safe side by adding at most pool_size/2 at a time.
691 *
692 * The use of pool_size-2 in the while statement is to
693 * prevent rounding artifacts from making the loop
694 * arbitrarily long; this limits the loop to log2(pool_size)*2
695 * turns no matter how large nbits is.
696 */
697 int pnfrac = nfrac;
698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
699 /* The +2 corresponds to the /4 in the denominator */
700
701 do {
702 unsigned int anfrac = min(pnfrac, pool_size/2);
703 unsigned int add =
704 ((pool_size - entropy_count)*anfrac*3) >> s;
705
706 entropy_count += add;
707 pnfrac -= anfrac;
708 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
709 }
710
711 if (WARN_ON(entropy_count < 0)) {
712 pr_warn("negative entropy/overflow: pool %s count %d\n",
713 r->name, entropy_count);
714 entropy_count = 0;
715 } else if (entropy_count > pool_size)
716 entropy_count = pool_size;
717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
718 goto retry;
719
720 if (has_initialized) {
721 r->initialized = 1;
722 kill_fasync(&fasync, SIGIO, POLL_IN);
723 }
724
725 trace_credit_entropy_bits(r->name, nbits,
726 entropy_count >> ENTROPY_SHIFT, _RET_IP_);
727
728 if (r == &input_pool) {
729 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
730
731 if (crng_init < 2) {
732 if (entropy_bits < 128)
733 return;
734 crng_reseed(&primary_crng, r);
735 entropy_bits = ENTROPY_BITS(r);
736 }
737 }
738}
739
740static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
741{
742 const int nbits_max = r->poolinfo->poolwords * 32;
743
744 if (nbits < 0)
745 return -EINVAL;
746
747 /* Cap the value to avoid overflows */
748 nbits = min(nbits, nbits_max);
749
750 credit_entropy_bits(r, nbits);
751 return 0;
752}
753
754/*********************************************************************
755 *
756 * CRNG using CHACHA20
757 *
758 *********************************************************************/
759
760#define CRNG_RESEED_INTERVAL (300*HZ)
761
762static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
763
764#ifdef CONFIG_NUMA
765/*
766 * Hack to deal with crazy userspace progams when they are all trying
767 * to access /dev/urandom in parallel. The programs are almost
768 * certainly doing something terribly wrong, but we'll work around
769 * their brain damage.
770 */
771static struct crng_state **crng_node_pool __read_mostly;
772#endif
773
774static void invalidate_batched_entropy(void);
775static void numa_crng_init(void);
776
777static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
778static int __init parse_trust_cpu(char *arg)
779{
780 return kstrtobool(arg, &trust_cpu);
781}
782early_param("random.trust_cpu", parse_trust_cpu);
783
784static void crng_initialize(struct crng_state *crng)
785{
786 int i;
787 int arch_init = 1;
788 unsigned long rv;
789
790 memcpy(&crng->state[0], "expand 32-byte k", 16);
791 if (crng == &primary_crng)
792 _extract_entropy(&input_pool, &crng->state[4],
793 sizeof(__u32) * 12, 0);
794 else
795 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
796 for (i = 4; i < 16; i++) {
797 if (!arch_get_random_seed_long(&rv) &&
798 !arch_get_random_long(&rv)) {
799 rv = random_get_entropy();
800 arch_init = 0;
801 }
802 crng->state[i] ^= rv;
803 }
804 if (trust_cpu && arch_init && crng == &primary_crng) {
805 invalidate_batched_entropy();
806 numa_crng_init();
807 crng_init = 2;
808 pr_notice("crng done (trusting CPU's manufacturer)\n");
809 }
810 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
811}
812
813#ifdef CONFIG_NUMA
814static void do_numa_crng_init(struct work_struct *work)
815{
816 int i;
817 struct crng_state *crng;
818 struct crng_state **pool;
819
820 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
821 for_each_online_node(i) {
822 crng = kmalloc_node(sizeof(struct crng_state),
823 GFP_KERNEL | __GFP_NOFAIL, i);
824 spin_lock_init(&crng->lock);
825 crng_initialize(crng);
826 pool[i] = crng;
827 }
828 mb();
829 if (cmpxchg(&crng_node_pool, NULL, pool)) {
830 for_each_node(i)
831 kfree(pool[i]);
832 kfree(pool);
833 }
834}
835
836static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
837
838static void numa_crng_init(void)
839{
840 schedule_work(&numa_crng_init_work);
841}
842#else
843static void numa_crng_init(void) {}
844#endif
845
846/*
847 * crng_fast_load() can be called by code in the interrupt service
848 * path. So we can't afford to dilly-dally.
849 */
850static int crng_fast_load(const char *cp, size_t len)
851{
852 unsigned long flags;
853 char *p;
854
855 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
856 return 0;
857 if (crng_init != 0) {
858 spin_unlock_irqrestore(&primary_crng.lock, flags);
859 return 0;
860 }
861 p = (unsigned char *) &primary_crng.state[4];
862 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
863 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
864 cp++; crng_init_cnt++; len--;
865 }
866 spin_unlock_irqrestore(&primary_crng.lock, flags);
867 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
868 invalidate_batched_entropy();
869 crng_init = 1;
870 pr_notice("fast init done\n");
871 }
872 return 1;
873}
874
875/*
876 * crng_slow_load() is called by add_device_randomness, which has two
877 * attributes. (1) We can't trust the buffer passed to it is
878 * guaranteed to be unpredictable (so it might not have any entropy at
879 * all), and (2) it doesn't have the performance constraints of
880 * crng_fast_load().
881 *
882 * So we do something more comprehensive which is guaranteed to touch
883 * all of the primary_crng's state, and which uses a LFSR with a
884 * period of 255 as part of the mixing algorithm. Finally, we do
885 * *not* advance crng_init_cnt since buffer we may get may be something
886 * like a fixed DMI table (for example), which might very well be
887 * unique to the machine, but is otherwise unvarying.
888 */
889static int crng_slow_load(const char *cp, size_t len)
890{
891 unsigned long flags;
892 static unsigned char lfsr = 1;
893 unsigned char tmp;
894 unsigned i, max = CHACHA_KEY_SIZE;
895 const char * src_buf = cp;
896 char * dest_buf = (char *) &primary_crng.state[4];
897
898 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
899 return 0;
900 if (crng_init != 0) {
901 spin_unlock_irqrestore(&primary_crng.lock, flags);
902 return 0;
903 }
904 if (len > max)
905 max = len;
906
907 for (i = 0; i < max ; i++) {
908 tmp = lfsr;
909 lfsr >>= 1;
910 if (tmp & 1)
911 lfsr ^= 0xE1;
912 tmp = dest_buf[i % CHACHA_KEY_SIZE];
913 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
914 lfsr += (tmp << 3) | (tmp >> 5);
915 }
916 spin_unlock_irqrestore(&primary_crng.lock, flags);
917 return 1;
918}
919
920static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
921{
922 unsigned long flags;
923 int i, num;
924 union {
925 __u8 block[CHACHA_BLOCK_SIZE];
926 __u32 key[8];
927 } buf;
928
929 if (r) {
930 num = extract_entropy(r, &buf, 32, 16, 0);
931 if (num == 0)
932 return;
933 } else {
934 _extract_crng(&primary_crng, buf.block);
935 _crng_backtrack_protect(&primary_crng, buf.block,
936 CHACHA_KEY_SIZE);
937 }
938 spin_lock_irqsave(&crng->lock, flags);
939 for (i = 0; i < 8; i++) {
940 unsigned long rv;
941 if (!arch_get_random_seed_long(&rv) &&
942 !arch_get_random_long(&rv))
943 rv = random_get_entropy();
944 crng->state[i+4] ^= buf.key[i] ^ rv;
945 }
946 memzero_explicit(&buf, sizeof(buf));
947 crng->init_time = jiffies;
948 spin_unlock_irqrestore(&crng->lock, flags);
949 if (crng == &primary_crng && crng_init < 2) {
950 invalidate_batched_entropy();
951 numa_crng_init();
952 crng_init = 2;
953 process_random_ready_list();
954 wake_up_interruptible(&crng_init_wait);
955 kill_fasync(&fasync, SIGIO, POLL_IN);
956 pr_notice("crng init done\n");
957 if (unseeded_warning.missed) {
958 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
959 unseeded_warning.missed);
960 unseeded_warning.missed = 0;
961 }
962 if (urandom_warning.missed) {
963 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
964 urandom_warning.missed);
965 urandom_warning.missed = 0;
966 }
967 }
968}
969
970static void _extract_crng(struct crng_state *crng,
971 __u8 out[CHACHA_BLOCK_SIZE])
972{
973 unsigned long v, flags;
974
975 if (crng_ready() &&
976 (time_after(crng_global_init_time, crng->init_time) ||
977 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
978 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
979 spin_lock_irqsave(&crng->lock, flags);
980 if (arch_get_random_long(&v))
981 crng->state[14] ^= v;
982 chacha20_block(&crng->state[0], out);
983 if (crng->state[12] == 0)
984 crng->state[13]++;
985 spin_unlock_irqrestore(&crng->lock, flags);
986}
987
988static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
989{
990 struct crng_state *crng = NULL;
991
992#ifdef CONFIG_NUMA
993 if (crng_node_pool)
994 crng = crng_node_pool[numa_node_id()];
995 if (crng == NULL)
996#endif
997 crng = &primary_crng;
998 _extract_crng(crng, out);
999}
1000
1001/*
1002 * Use the leftover bytes from the CRNG block output (if there is
1003 * enough) to mutate the CRNG key to provide backtracking protection.
1004 */
1005static void _crng_backtrack_protect(struct crng_state *crng,
1006 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1007{
1008 unsigned long flags;
1009 __u32 *s, *d;
1010 int i;
1011
1012 used = round_up(used, sizeof(__u32));
1013 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1014 extract_crng(tmp);
1015 used = 0;
1016 }
1017 spin_lock_irqsave(&crng->lock, flags);
1018 s = (__u32 *) &tmp[used];
1019 d = &crng->state[4];
1020 for (i=0; i < 8; i++)
1021 *d++ ^= *s++;
1022 spin_unlock_irqrestore(&crng->lock, flags);
1023}
1024
1025static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1026{
1027 struct crng_state *crng = NULL;
1028
1029#ifdef CONFIG_NUMA
1030 if (crng_node_pool)
1031 crng = crng_node_pool[numa_node_id()];
1032 if (crng == NULL)
1033#endif
1034 crng = &primary_crng;
1035 _crng_backtrack_protect(crng, tmp, used);
1036}
1037
1038static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1039{
1040 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1041 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1042 int large_request = (nbytes > 256);
1043
1044 while (nbytes) {
1045 if (large_request && need_resched()) {
1046 if (signal_pending(current)) {
1047 if (ret == 0)
1048 ret = -ERESTARTSYS;
1049 break;
1050 }
1051 schedule();
1052 }
1053
1054 extract_crng(tmp);
1055 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1056 if (copy_to_user(buf, tmp, i)) {
1057 ret = -EFAULT;
1058 break;
1059 }
1060
1061 nbytes -= i;
1062 buf += i;
1063 ret += i;
1064 }
1065 crng_backtrack_protect(tmp, i);
1066
1067 /* Wipe data just written to memory */
1068 memzero_explicit(tmp, sizeof(tmp));
1069
1070 return ret;
1071}
1072
1073
1074/*********************************************************************
1075 *
1076 * Entropy input management
1077 *
1078 *********************************************************************/
1079
1080/* There is one of these per entropy source */
1081struct timer_rand_state {
1082 cycles_t last_time;
1083 long last_delta, last_delta2;
1084};
1085
1086#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1087
1088/*
1089 * Add device- or boot-specific data to the input pool to help
1090 * initialize it.
1091 *
1092 * None of this adds any entropy; it is meant to avoid the problem of
1093 * the entropy pool having similar initial state across largely
1094 * identical devices.
1095 */
1096void add_device_randomness(const void *buf, unsigned int size)
1097{
1098 unsigned long time = random_get_entropy() ^ jiffies;
1099 unsigned long flags;
1100
1101 if (!crng_ready() && size)
1102 crng_slow_load(buf, size);
1103
1104 trace_add_device_randomness(size, _RET_IP_);
1105 spin_lock_irqsave(&input_pool.lock, flags);
1106 _mix_pool_bytes(&input_pool, buf, size);
1107 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1108 spin_unlock_irqrestore(&input_pool.lock, flags);
1109}
1110EXPORT_SYMBOL(add_device_randomness);
1111
1112static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1113
1114/*
1115 * This function adds entropy to the entropy "pool" by using timing
1116 * delays. It uses the timer_rand_state structure to make an estimate
1117 * of how many bits of entropy this call has added to the pool.
1118 *
1119 * The number "num" is also added to the pool - it should somehow describe
1120 * the type of event which just happened. This is currently 0-255 for
1121 * keyboard scan codes, and 256 upwards for interrupts.
1122 *
1123 */
1124static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1125{
1126 struct entropy_store *r;
1127 struct {
1128 long jiffies;
1129 unsigned cycles;
1130 unsigned num;
1131 } sample;
1132 long delta, delta2, delta3;
1133
1134 sample.jiffies = jiffies;
1135 sample.cycles = random_get_entropy();
1136 sample.num = num;
1137 r = &input_pool;
1138 mix_pool_bytes(r, &sample, sizeof(sample));
1139
1140 /*
1141 * Calculate number of bits of randomness we probably added.
1142 * We take into account the first, second and third-order deltas
1143 * in order to make our estimate.
1144 */
1145 delta = sample.jiffies - state->last_time;
1146 state->last_time = sample.jiffies;
1147
1148 delta2 = delta - state->last_delta;
1149 state->last_delta = delta;
1150
1151 delta3 = delta2 - state->last_delta2;
1152 state->last_delta2 = delta2;
1153
1154 if (delta < 0)
1155 delta = -delta;
1156 if (delta2 < 0)
1157 delta2 = -delta2;
1158 if (delta3 < 0)
1159 delta3 = -delta3;
1160 if (delta > delta2)
1161 delta = delta2;
1162 if (delta > delta3)
1163 delta = delta3;
1164
1165 /*
1166 * delta is now minimum absolute delta.
1167 * Round down by 1 bit on general principles,
1168 * and limit entropy estimate to 12 bits.
1169 */
1170 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1171}
1172
1173void add_input_randomness(unsigned int type, unsigned int code,
1174 unsigned int value)
1175{
1176 static unsigned char last_value;
1177
1178 /* ignore autorepeat and the like */
1179 if (value == last_value)
1180 return;
1181
1182 last_value = value;
1183 add_timer_randomness(&input_timer_state,
1184 (type << 4) ^ code ^ (code >> 4) ^ value);
1185 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1186}
1187EXPORT_SYMBOL_GPL(add_input_randomness);
1188
1189static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1190
1191#ifdef ADD_INTERRUPT_BENCH
1192static unsigned long avg_cycles, avg_deviation;
1193
1194#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1195#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1196
1197static void add_interrupt_bench(cycles_t start)
1198{
1199 long delta = random_get_entropy() - start;
1200
1201 /* Use a weighted moving average */
1202 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1203 avg_cycles += delta;
1204 /* And average deviation */
1205 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1206 avg_deviation += delta;
1207}
1208#else
1209#define add_interrupt_bench(x)
1210#endif
1211
1212static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1213{
1214 __u32 *ptr = (__u32 *) regs;
1215 unsigned int idx;
1216
1217 if (regs == NULL)
1218 return 0;
1219 idx = READ_ONCE(f->reg_idx);
1220 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1221 idx = 0;
1222 ptr += idx++;
1223 WRITE_ONCE(f->reg_idx, idx);
1224 return *ptr;
1225}
1226
1227void add_interrupt_randomness(int irq, int irq_flags)
1228{
1229 struct entropy_store *r;
1230 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1231 struct pt_regs *regs = get_irq_regs();
1232 unsigned long now = jiffies;
1233 cycles_t cycles = random_get_entropy();
1234 __u32 c_high, j_high;
1235 __u64 ip;
1236 unsigned long seed;
1237 int credit = 0;
1238
1239 if (cycles == 0)
1240 cycles = get_reg(fast_pool, regs);
1241 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1242 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1243 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1244 fast_pool->pool[1] ^= now ^ c_high;
1245 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1246 fast_pool->pool[2] ^= ip;
1247 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1248 get_reg(fast_pool, regs);
1249
1250 fast_mix(fast_pool);
1251 add_interrupt_bench(cycles);
1252
1253 if (unlikely(crng_init == 0)) {
1254 if ((fast_pool->count >= 64) &&
1255 crng_fast_load((char *) fast_pool->pool,
1256 sizeof(fast_pool->pool))) {
1257 fast_pool->count = 0;
1258 fast_pool->last = now;
1259 }
1260 return;
1261 }
1262
1263 if ((fast_pool->count < 64) &&
1264 !time_after(now, fast_pool->last + HZ))
1265 return;
1266
1267 r = &input_pool;
1268 if (!spin_trylock(&r->lock))
1269 return;
1270
1271 fast_pool->last = now;
1272 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1273
1274 /*
1275 * If we have architectural seed generator, produce a seed and
1276 * add it to the pool. For the sake of paranoia don't let the
1277 * architectural seed generator dominate the input from the
1278 * interrupt noise.
1279 */
1280 if (arch_get_random_seed_long(&seed)) {
1281 __mix_pool_bytes(r, &seed, sizeof(seed));
1282 credit = 1;
1283 }
1284 spin_unlock(&r->lock);
1285
1286 fast_pool->count = 0;
1287
1288 /* award one bit for the contents of the fast pool */
1289 credit_entropy_bits(r, credit + 1);
1290}
1291EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1292
1293#ifdef CONFIG_BLOCK
1294void add_disk_randomness(struct gendisk *disk)
1295{
1296 if (!disk || !disk->random)
1297 return;
1298 /* first major is 1, so we get >= 0x200 here */
1299 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1300 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1301}
1302EXPORT_SYMBOL_GPL(add_disk_randomness);
1303#endif
1304
1305/*********************************************************************
1306 *
1307 * Entropy extraction routines
1308 *
1309 *********************************************************************/
1310
1311/*
1312 * This function decides how many bytes to actually take from the
1313 * given pool, and also debits the entropy count accordingly.
1314 */
1315static size_t account(struct entropy_store *r, size_t nbytes, int min,
1316 int reserved)
1317{
1318 int entropy_count, orig, have_bytes;
1319 size_t ibytes, nfrac;
1320
1321 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1322
1323 /* Can we pull enough? */
1324retry:
1325 entropy_count = orig = READ_ONCE(r->entropy_count);
1326 ibytes = nbytes;
1327 /* never pull more than available */
1328 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1329
1330 if ((have_bytes -= reserved) < 0)
1331 have_bytes = 0;
1332 ibytes = min_t(size_t, ibytes, have_bytes);
1333 if (ibytes < min)
1334 ibytes = 0;
1335
1336 if (WARN_ON(entropy_count < 0)) {
1337 pr_warn("negative entropy count: pool %s count %d\n",
1338 r->name, entropy_count);
1339 entropy_count = 0;
1340 }
1341 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1342 if ((size_t) entropy_count > nfrac)
1343 entropy_count -= nfrac;
1344 else
1345 entropy_count = 0;
1346
1347 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1348 goto retry;
1349
1350 trace_debit_entropy(r->name, 8 * ibytes);
1351 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1352 wake_up_interruptible(&random_write_wait);
1353 kill_fasync(&fasync, SIGIO, POLL_OUT);
1354 }
1355
1356 return ibytes;
1357}
1358
1359/*
1360 * This function does the actual extraction for extract_entropy and
1361 * extract_entropy_user.
1362 *
1363 * Note: we assume that .poolwords is a multiple of 16 words.
1364 */
1365static void extract_buf(struct entropy_store *r, __u8 *out)
1366{
1367 int i;
1368 union {
1369 __u32 w[5];
1370 unsigned long l[LONGS(20)];
1371 } hash;
1372 __u32 workspace[SHA_WORKSPACE_WORDS];
1373 unsigned long flags;
1374
1375 /*
1376 * If we have an architectural hardware random number
1377 * generator, use it for SHA's initial vector
1378 */
1379 sha_init(hash.w);
1380 for (i = 0; i < LONGS(20); i++) {
1381 unsigned long v;
1382 if (!arch_get_random_long(&v))
1383 break;
1384 hash.l[i] = v;
1385 }
1386
1387 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1388 spin_lock_irqsave(&r->lock, flags);
1389 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1390 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1391
1392 /*
1393 * We mix the hash back into the pool to prevent backtracking
1394 * attacks (where the attacker knows the state of the pool
1395 * plus the current outputs, and attempts to find previous
1396 * ouputs), unless the hash function can be inverted. By
1397 * mixing at least a SHA1 worth of hash data back, we make
1398 * brute-forcing the feedback as hard as brute-forcing the
1399 * hash.
1400 */
1401 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1402 spin_unlock_irqrestore(&r->lock, flags);
1403
1404 memzero_explicit(workspace, sizeof(workspace));
1405
1406 /*
1407 * In case the hash function has some recognizable output
1408 * pattern, we fold it in half. Thus, we always feed back
1409 * twice as much data as we output.
1410 */
1411 hash.w[0] ^= hash.w[3];
1412 hash.w[1] ^= hash.w[4];
1413 hash.w[2] ^= rol32(hash.w[2], 16);
1414
1415 memcpy(out, &hash, EXTRACT_SIZE);
1416 memzero_explicit(&hash, sizeof(hash));
1417}
1418
1419static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1420 size_t nbytes, int fips)
1421{
1422 ssize_t ret = 0, i;
1423 __u8 tmp[EXTRACT_SIZE];
1424 unsigned long flags;
1425
1426 while (nbytes) {
1427 extract_buf(r, tmp);
1428
1429 if (fips) {
1430 spin_lock_irqsave(&r->lock, flags);
1431 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1432 panic("Hardware RNG duplicated output!\n");
1433 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1434 spin_unlock_irqrestore(&r->lock, flags);
1435 }
1436 i = min_t(int, nbytes, EXTRACT_SIZE);
1437 memcpy(buf, tmp, i);
1438 nbytes -= i;
1439 buf += i;
1440 ret += i;
1441 }
1442
1443 /* Wipe data just returned from memory */
1444 memzero_explicit(tmp, sizeof(tmp));
1445
1446 return ret;
1447}
1448
1449/*
1450 * This function extracts randomness from the "entropy pool", and
1451 * returns it in a buffer.
1452 *
1453 * The min parameter specifies the minimum amount we can pull before
1454 * failing to avoid races that defeat catastrophic reseeding while the
1455 * reserved parameter indicates how much entropy we must leave in the
1456 * pool after each pull to avoid starving other readers.
1457 */
1458static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1459 size_t nbytes, int min, int reserved)
1460{
1461 __u8 tmp[EXTRACT_SIZE];
1462 unsigned long flags;
1463
1464 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1465 if (fips_enabled) {
1466 spin_lock_irqsave(&r->lock, flags);
1467 if (!r->last_data_init) {
1468 r->last_data_init = 1;
1469 spin_unlock_irqrestore(&r->lock, flags);
1470 trace_extract_entropy(r->name, EXTRACT_SIZE,
1471 ENTROPY_BITS(r), _RET_IP_);
1472 extract_buf(r, tmp);
1473 spin_lock_irqsave(&r->lock, flags);
1474 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1475 }
1476 spin_unlock_irqrestore(&r->lock, flags);
1477 }
1478
1479 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1480 nbytes = account(r, nbytes, min, reserved);
1481
1482 return _extract_entropy(r, buf, nbytes, fips_enabled);
1483}
1484
1485#define warn_unseeded_randomness(previous) \
1486 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1487
1488static void _warn_unseeded_randomness(const char *func_name, void *caller,
1489 void **previous)
1490{
1491#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1492 const bool print_once = false;
1493#else
1494 static bool print_once __read_mostly;
1495#endif
1496
1497 if (print_once ||
1498 crng_ready() ||
1499 (previous && (caller == READ_ONCE(*previous))))
1500 return;
1501 WRITE_ONCE(*previous, caller);
1502#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1503 print_once = true;
1504#endif
1505 if (__ratelimit(&unseeded_warning))
1506 printk_deferred(KERN_NOTICE "random: %s called from %pS "
1507 "with crng_init=%d\n", func_name, caller,
1508 crng_init);
1509}
1510
1511/*
1512 * This function is the exported kernel interface. It returns some
1513 * number of good random numbers, suitable for key generation, seeding
1514 * TCP sequence numbers, etc. It does not rely on the hardware random
1515 * number generator. For random bytes direct from the hardware RNG
1516 * (when available), use get_random_bytes_arch(). In order to ensure
1517 * that the randomness provided by this function is okay, the function
1518 * wait_for_random_bytes() should be called and return 0 at least once
1519 * at any point prior.
1520 */
1521static void _get_random_bytes(void *buf, int nbytes)
1522{
1523 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1524
1525 trace_get_random_bytes(nbytes, _RET_IP_);
1526
1527 while (nbytes >= CHACHA_BLOCK_SIZE) {
1528 extract_crng(buf);
1529 buf += CHACHA_BLOCK_SIZE;
1530 nbytes -= CHACHA_BLOCK_SIZE;
1531 }
1532
1533 if (nbytes > 0) {
1534 extract_crng(tmp);
1535 memcpy(buf, tmp, nbytes);
1536 crng_backtrack_protect(tmp, nbytes);
1537 } else
1538 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1539 memzero_explicit(tmp, sizeof(tmp));
1540}
1541
1542void get_random_bytes(void *buf, int nbytes)
1543{
1544 static void *previous;
1545
1546 warn_unseeded_randomness(&previous);
1547 _get_random_bytes(buf, nbytes);
1548}
1549EXPORT_SYMBOL(get_random_bytes);
1550
1551
1552/*
1553 * Each time the timer fires, we expect that we got an unpredictable
1554 * jump in the cycle counter. Even if the timer is running on another
1555 * CPU, the timer activity will be touching the stack of the CPU that is
1556 * generating entropy..
1557 *
1558 * Note that we don't re-arm the timer in the timer itself - we are
1559 * happy to be scheduled away, since that just makes the load more
1560 * complex, but we do not want the timer to keep ticking unless the
1561 * entropy loop is running.
1562 *
1563 * So the re-arming always happens in the entropy loop itself.
1564 */
1565static void entropy_timer(struct timer_list *t)
1566{
1567 credit_entropy_bits(&input_pool, 1);
1568}
1569
1570/*
1571 * If we have an actual cycle counter, see if we can
1572 * generate enough entropy with timing noise
1573 */
1574static void try_to_generate_entropy(void)
1575{
1576 struct {
1577 unsigned long now;
1578 struct timer_list timer;
1579 } stack;
1580
1581 stack.now = random_get_entropy();
1582
1583 /* Slow counter - or none. Don't even bother */
1584 if (stack.now == random_get_entropy())
1585 return;
1586
1587 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1588 while (!crng_ready()) {
1589 if (!timer_pending(&stack.timer))
1590 mod_timer(&stack.timer, jiffies+1);
1591 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1592 schedule();
1593 stack.now = random_get_entropy();
1594 }
1595
1596 del_timer_sync(&stack.timer);
1597 destroy_timer_on_stack(&stack.timer);
1598 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1599}
1600
1601/*
1602 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1603 * cryptographically secure random numbers. This applies to: the /dev/urandom
1604 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1605 * family of functions. Using any of these functions without first calling
1606 * this function forfeits the guarantee of security.
1607 *
1608 * Returns: 0 if the urandom pool has been seeded.
1609 * -ERESTARTSYS if the function was interrupted by a signal.
1610 */
1611int wait_for_random_bytes(void)
1612{
1613 if (likely(crng_ready()))
1614 return 0;
1615
1616 do {
1617 int ret;
1618 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1619 if (ret)
1620 return ret > 0 ? 0 : ret;
1621
1622 try_to_generate_entropy();
1623 } while (!crng_ready());
1624
1625 return 0;
1626}
1627EXPORT_SYMBOL(wait_for_random_bytes);
1628
1629/*
1630 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1631 * to supply cryptographically secure random numbers. This applies to: the
1632 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1633 * ,u64,int,long} family of functions.
1634 *
1635 * Returns: true if the urandom pool has been seeded.
1636 * false if the urandom pool has not been seeded.
1637 */
1638bool rng_is_initialized(void)
1639{
1640 return crng_ready();
1641}
1642EXPORT_SYMBOL(rng_is_initialized);
1643
1644/*
1645 * Add a callback function that will be invoked when the nonblocking
1646 * pool is initialised.
1647 *
1648 * returns: 0 if callback is successfully added
1649 * -EALREADY if pool is already initialised (callback not called)
1650 * -ENOENT if module for callback is not alive
1651 */
1652int add_random_ready_callback(struct random_ready_callback *rdy)
1653{
1654 struct module *owner;
1655 unsigned long flags;
1656 int err = -EALREADY;
1657
1658 if (crng_ready())
1659 return err;
1660
1661 owner = rdy->owner;
1662 if (!try_module_get(owner))
1663 return -ENOENT;
1664
1665 spin_lock_irqsave(&random_ready_list_lock, flags);
1666 if (crng_ready())
1667 goto out;
1668
1669 owner = NULL;
1670
1671 list_add(&rdy->list, &random_ready_list);
1672 err = 0;
1673
1674out:
1675 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1676
1677 module_put(owner);
1678
1679 return err;
1680}
1681EXPORT_SYMBOL(add_random_ready_callback);
1682
1683/*
1684 * Delete a previously registered readiness callback function.
1685 */
1686void del_random_ready_callback(struct random_ready_callback *rdy)
1687{
1688 unsigned long flags;
1689 struct module *owner = NULL;
1690
1691 spin_lock_irqsave(&random_ready_list_lock, flags);
1692 if (!list_empty(&rdy->list)) {
1693 list_del_init(&rdy->list);
1694 owner = rdy->owner;
1695 }
1696 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1697
1698 module_put(owner);
1699}
1700EXPORT_SYMBOL(del_random_ready_callback);
1701
1702/*
1703 * This function will use the architecture-specific hardware random
1704 * number generator if it is available. The arch-specific hw RNG will
1705 * almost certainly be faster than what we can do in software, but it
1706 * is impossible to verify that it is implemented securely (as
1707 * opposed, to, say, the AES encryption of a sequence number using a
1708 * key known by the NSA). So it's useful if we need the speed, but
1709 * only if we're willing to trust the hardware manufacturer not to
1710 * have put in a back door.
1711 *
1712 * Return number of bytes filled in.
1713 */
1714int __must_check get_random_bytes_arch(void *buf, int nbytes)
1715{
1716 int left = nbytes;
1717 char *p = buf;
1718
1719 trace_get_random_bytes_arch(left, _RET_IP_);
1720 while (left) {
1721 unsigned long v;
1722 int chunk = min_t(int, left, sizeof(unsigned long));
1723
1724 if (!arch_get_random_long(&v))
1725 break;
1726
1727 memcpy(p, &v, chunk);
1728 p += chunk;
1729 left -= chunk;
1730 }
1731
1732 return nbytes - left;
1733}
1734EXPORT_SYMBOL(get_random_bytes_arch);
1735
1736/*
1737 * init_std_data - initialize pool with system data
1738 *
1739 * @r: pool to initialize
1740 *
1741 * This function clears the pool's entropy count and mixes some system
1742 * data into the pool to prepare it for use. The pool is not cleared
1743 * as that can only decrease the entropy in the pool.
1744 */
1745static void __init init_std_data(struct entropy_store *r)
1746{
1747 int i;
1748 ktime_t now = ktime_get_real();
1749 unsigned long rv;
1750
1751 mix_pool_bytes(r, &now, sizeof(now));
1752 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1753 if (!arch_get_random_seed_long(&rv) &&
1754 !arch_get_random_long(&rv))
1755 rv = random_get_entropy();
1756 mix_pool_bytes(r, &rv, sizeof(rv));
1757 }
1758 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1759}
1760
1761/*
1762 * Note that setup_arch() may call add_device_randomness()
1763 * long before we get here. This allows seeding of the pools
1764 * with some platform dependent data very early in the boot
1765 * process. But it limits our options here. We must use
1766 * statically allocated structures that already have all
1767 * initializations complete at compile time. We should also
1768 * take care not to overwrite the precious per platform data
1769 * we were given.
1770 */
1771int __init rand_initialize(void)
1772{
1773 init_std_data(&input_pool);
1774 crng_initialize(&primary_crng);
1775 crng_global_init_time = jiffies;
1776 if (ratelimit_disable) {
1777 urandom_warning.interval = 0;
1778 unseeded_warning.interval = 0;
1779 }
1780 return 0;
1781}
1782
1783#ifdef CONFIG_BLOCK
1784void rand_initialize_disk(struct gendisk *disk)
1785{
1786 struct timer_rand_state *state;
1787
1788 /*
1789 * If kzalloc returns null, we just won't use that entropy
1790 * source.
1791 */
1792 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1793 if (state) {
1794 state->last_time = INITIAL_JIFFIES;
1795 disk->random = state;
1796 }
1797}
1798#endif
1799
1800static ssize_t
1801urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1802 loff_t *ppos)
1803{
1804 int ret;
1805
1806 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1807 ret = extract_crng_user(buf, nbytes);
1808 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1809 return ret;
1810}
1811
1812static ssize_t
1813urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1814{
1815 unsigned long flags;
1816 static int maxwarn = 10;
1817
1818 if (!crng_ready() && maxwarn > 0) {
1819 maxwarn--;
1820 if (__ratelimit(&urandom_warning))
1821 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1822 current->comm, nbytes);
1823 spin_lock_irqsave(&primary_crng.lock, flags);
1824 crng_init_cnt = 0;
1825 spin_unlock_irqrestore(&primary_crng.lock, flags);
1826 }
1827
1828 return urandom_read_nowarn(file, buf, nbytes, ppos);
1829}
1830
1831static ssize_t
1832random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1833{
1834 int ret;
1835
1836 ret = wait_for_random_bytes();
1837 if (ret != 0)
1838 return ret;
1839 return urandom_read_nowarn(file, buf, nbytes, ppos);
1840}
1841
1842static __poll_t
1843random_poll(struct file *file, poll_table * wait)
1844{
1845 __poll_t mask;
1846
1847 poll_wait(file, &crng_init_wait, wait);
1848 poll_wait(file, &random_write_wait, wait);
1849 mask = 0;
1850 if (crng_ready())
1851 mask |= EPOLLIN | EPOLLRDNORM;
1852 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1853 mask |= EPOLLOUT | EPOLLWRNORM;
1854 return mask;
1855}
1856
1857static int
1858write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1859{
1860 size_t bytes;
1861 __u32 t, buf[16];
1862 const char __user *p = buffer;
1863
1864 while (count > 0) {
1865 int b, i = 0;
1866
1867 bytes = min(count, sizeof(buf));
1868 if (copy_from_user(&buf, p, bytes))
1869 return -EFAULT;
1870
1871 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1872 if (!arch_get_random_int(&t))
1873 break;
1874 buf[i] ^= t;
1875 }
1876
1877 count -= bytes;
1878 p += bytes;
1879
1880 mix_pool_bytes(r, buf, bytes);
1881 cond_resched();
1882 }
1883
1884 return 0;
1885}
1886
1887static ssize_t random_write(struct file *file, const char __user *buffer,
1888 size_t count, loff_t *ppos)
1889{
1890 size_t ret;
1891
1892 ret = write_pool(&input_pool, buffer, count);
1893 if (ret)
1894 return ret;
1895
1896 return (ssize_t)count;
1897}
1898
1899static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1900{
1901 int size, ent_count;
1902 int __user *p = (int __user *)arg;
1903 int retval;
1904
1905 switch (cmd) {
1906 case RNDGETENTCNT:
1907 /* inherently racy, no point locking */
1908 ent_count = ENTROPY_BITS(&input_pool);
1909 if (put_user(ent_count, p))
1910 return -EFAULT;
1911 return 0;
1912 case RNDADDTOENTCNT:
1913 if (!capable(CAP_SYS_ADMIN))
1914 return -EPERM;
1915 if (get_user(ent_count, p))
1916 return -EFAULT;
1917 return credit_entropy_bits_safe(&input_pool, ent_count);
1918 case RNDADDENTROPY:
1919 if (!capable(CAP_SYS_ADMIN))
1920 return -EPERM;
1921 if (get_user(ent_count, p++))
1922 return -EFAULT;
1923 if (ent_count < 0)
1924 return -EINVAL;
1925 if (get_user(size, p++))
1926 return -EFAULT;
1927 retval = write_pool(&input_pool, (const char __user *)p,
1928 size);
1929 if (retval < 0)
1930 return retval;
1931 return credit_entropy_bits_safe(&input_pool, ent_count);
1932 case RNDZAPENTCNT:
1933 case RNDCLEARPOOL:
1934 /*
1935 * Clear the entropy pool counters. We no longer clear
1936 * the entropy pool, as that's silly.
1937 */
1938 if (!capable(CAP_SYS_ADMIN))
1939 return -EPERM;
1940 input_pool.entropy_count = 0;
1941 return 0;
1942 case RNDRESEEDCRNG:
1943 if (!capable(CAP_SYS_ADMIN))
1944 return -EPERM;
1945 if (crng_init < 2)
1946 return -ENODATA;
1947 crng_reseed(&primary_crng, NULL);
1948 crng_global_init_time = jiffies - 1;
1949 return 0;
1950 default:
1951 return -EINVAL;
1952 }
1953}
1954
1955static int random_fasync(int fd, struct file *filp, int on)
1956{
1957 return fasync_helper(fd, filp, on, &fasync);
1958}
1959
1960const struct file_operations random_fops = {
1961 .read = random_read,
1962 .write = random_write,
1963 .poll = random_poll,
1964 .unlocked_ioctl = random_ioctl,
1965 .compat_ioctl = compat_ptr_ioctl,
1966 .fasync = random_fasync,
1967 .llseek = noop_llseek,
1968};
1969
1970const struct file_operations urandom_fops = {
1971 .read = urandom_read,
1972 .write = random_write,
1973 .unlocked_ioctl = random_ioctl,
1974 .compat_ioctl = compat_ptr_ioctl,
1975 .fasync = random_fasync,
1976 .llseek = noop_llseek,
1977};
1978
1979SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1980 unsigned int, flags)
1981{
1982 int ret;
1983
1984 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
1985 return -EINVAL;
1986
1987 /*
1988 * Requesting insecure and blocking randomness at the same time makes
1989 * no sense.
1990 */
1991 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1992 return -EINVAL;
1993
1994 if (count > INT_MAX)
1995 count = INT_MAX;
1996
1997 if (!(flags & GRND_INSECURE) && !crng_ready()) {
1998 if (flags & GRND_NONBLOCK)
1999 return -EAGAIN;
2000 ret = wait_for_random_bytes();
2001 if (unlikely(ret))
2002 return ret;
2003 }
2004 return urandom_read_nowarn(NULL, buf, count, NULL);
2005}
2006
2007/********************************************************************
2008 *
2009 * Sysctl interface
2010 *
2011 ********************************************************************/
2012
2013#ifdef CONFIG_SYSCTL
2014
2015#include <linux/sysctl.h>
2016
2017static int min_write_thresh;
2018static int max_write_thresh = INPUT_POOL_WORDS * 32;
2019static int random_min_urandom_seed = 60;
2020static char sysctl_bootid[16];
2021
2022/*
2023 * This function is used to return both the bootid UUID, and random
2024 * UUID. The difference is in whether table->data is NULL; if it is,
2025 * then a new UUID is generated and returned to the user.
2026 *
2027 * If the user accesses this via the proc interface, the UUID will be
2028 * returned as an ASCII string in the standard UUID format; if via the
2029 * sysctl system call, as 16 bytes of binary data.
2030 */
2031static int proc_do_uuid(struct ctl_table *table, int write,
2032 void __user *buffer, size_t *lenp, loff_t *ppos)
2033{
2034 struct ctl_table fake_table;
2035 unsigned char buf[64], tmp_uuid[16], *uuid;
2036
2037 uuid = table->data;
2038 if (!uuid) {
2039 uuid = tmp_uuid;
2040 generate_random_uuid(uuid);
2041 } else {
2042 static DEFINE_SPINLOCK(bootid_spinlock);
2043
2044 spin_lock(&bootid_spinlock);
2045 if (!uuid[8])
2046 generate_random_uuid(uuid);
2047 spin_unlock(&bootid_spinlock);
2048 }
2049
2050 sprintf(buf, "%pU", uuid);
2051
2052 fake_table.data = buf;
2053 fake_table.maxlen = sizeof(buf);
2054
2055 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2056}
2057
2058/*
2059 * Return entropy available scaled to integral bits
2060 */
2061static int proc_do_entropy(struct ctl_table *table, int write,
2062 void __user *buffer, size_t *lenp, loff_t *ppos)
2063{
2064 struct ctl_table fake_table;
2065 int entropy_count;
2066
2067 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2068
2069 fake_table.data = &entropy_count;
2070 fake_table.maxlen = sizeof(entropy_count);
2071
2072 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2073}
2074
2075static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2076extern struct ctl_table random_table[];
2077struct ctl_table random_table[] = {
2078 {
2079 .procname = "poolsize",
2080 .data = &sysctl_poolsize,
2081 .maxlen = sizeof(int),
2082 .mode = 0444,
2083 .proc_handler = proc_dointvec,
2084 },
2085 {
2086 .procname = "entropy_avail",
2087 .maxlen = sizeof(int),
2088 .mode = 0444,
2089 .proc_handler = proc_do_entropy,
2090 .data = &input_pool.entropy_count,
2091 },
2092 {
2093 .procname = "write_wakeup_threshold",
2094 .data = &random_write_wakeup_bits,
2095 .maxlen = sizeof(int),
2096 .mode = 0644,
2097 .proc_handler = proc_dointvec_minmax,
2098 .extra1 = &min_write_thresh,
2099 .extra2 = &max_write_thresh,
2100 },
2101 {
2102 .procname = "urandom_min_reseed_secs",
2103 .data = &random_min_urandom_seed,
2104 .maxlen = sizeof(int),
2105 .mode = 0644,
2106 .proc_handler = proc_dointvec,
2107 },
2108 {
2109 .procname = "boot_id",
2110 .data = &sysctl_bootid,
2111 .maxlen = 16,
2112 .mode = 0444,
2113 .proc_handler = proc_do_uuid,
2114 },
2115 {
2116 .procname = "uuid",
2117 .maxlen = 16,
2118 .mode = 0444,
2119 .proc_handler = proc_do_uuid,
2120 },
2121#ifdef ADD_INTERRUPT_BENCH
2122 {
2123 .procname = "add_interrupt_avg_cycles",
2124 .data = &avg_cycles,
2125 .maxlen = sizeof(avg_cycles),
2126 .mode = 0444,
2127 .proc_handler = proc_doulongvec_minmax,
2128 },
2129 {
2130 .procname = "add_interrupt_avg_deviation",
2131 .data = &avg_deviation,
2132 .maxlen = sizeof(avg_deviation),
2133 .mode = 0444,
2134 .proc_handler = proc_doulongvec_minmax,
2135 },
2136#endif
2137 { }
2138};
2139#endif /* CONFIG_SYSCTL */
2140
2141struct batched_entropy {
2142 union {
2143 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2144 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2145 };
2146 unsigned int position;
2147 spinlock_t batch_lock;
2148};
2149
2150/*
2151 * Get a random word for internal kernel use only. The quality of the random
2152 * number is either as good as RDRAND or as good as /dev/urandom, with the
2153 * goal of being quite fast and not depleting entropy. In order to ensure
2154 * that the randomness provided by this function is okay, the function
2155 * wait_for_random_bytes() should be called and return 0 at least once
2156 * at any point prior.
2157 */
2158static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2159 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2160};
2161
2162u64 get_random_u64(void)
2163{
2164 u64 ret;
2165 unsigned long flags;
2166 struct batched_entropy *batch;
2167 static void *previous;
2168
2169#if BITS_PER_LONG == 64
2170 if (arch_get_random_long((unsigned long *)&ret))
2171 return ret;
2172#else
2173 if (arch_get_random_long((unsigned long *)&ret) &&
2174 arch_get_random_long((unsigned long *)&ret + 1))
2175 return ret;
2176#endif
2177
2178 warn_unseeded_randomness(&previous);
2179
2180 batch = raw_cpu_ptr(&batched_entropy_u64);
2181 spin_lock_irqsave(&batch->batch_lock, flags);
2182 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2183 extract_crng((u8 *)batch->entropy_u64);
2184 batch->position = 0;
2185 }
2186 ret = batch->entropy_u64[batch->position++];
2187 spin_unlock_irqrestore(&batch->batch_lock, flags);
2188 return ret;
2189}
2190EXPORT_SYMBOL(get_random_u64);
2191
2192static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2193 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2194};
2195u32 get_random_u32(void)
2196{
2197 u32 ret;
2198 unsigned long flags;
2199 struct batched_entropy *batch;
2200 static void *previous;
2201
2202 if (arch_get_random_int(&ret))
2203 return ret;
2204
2205 warn_unseeded_randomness(&previous);
2206
2207 batch = raw_cpu_ptr(&batched_entropy_u32);
2208 spin_lock_irqsave(&batch->batch_lock, flags);
2209 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2210 extract_crng((u8 *)batch->entropy_u32);
2211 batch->position = 0;
2212 }
2213 ret = batch->entropy_u32[batch->position++];
2214 spin_unlock_irqrestore(&batch->batch_lock, flags);
2215 return ret;
2216}
2217EXPORT_SYMBOL(get_random_u32);
2218
2219/* It's important to invalidate all potential batched entropy that might
2220 * be stored before the crng is initialized, which we can do lazily by
2221 * simply resetting the counter to zero so that it's re-extracted on the
2222 * next usage. */
2223static void invalidate_batched_entropy(void)
2224{
2225 int cpu;
2226 unsigned long flags;
2227
2228 for_each_possible_cpu (cpu) {
2229 struct batched_entropy *batched_entropy;
2230
2231 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2232 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2233 batched_entropy->position = 0;
2234 spin_unlock(&batched_entropy->batch_lock);
2235
2236 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2237 spin_lock(&batched_entropy->batch_lock);
2238 batched_entropy->position = 0;
2239 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2240 }
2241}
2242
2243/**
2244 * randomize_page - Generate a random, page aligned address
2245 * @start: The smallest acceptable address the caller will take.
2246 * @range: The size of the area, starting at @start, within which the
2247 * random address must fall.
2248 *
2249 * If @start + @range would overflow, @range is capped.
2250 *
2251 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2252 * @start was already page aligned. We now align it regardless.
2253 *
2254 * Return: A page aligned address within [start, start + range). On error,
2255 * @start is returned.
2256 */
2257unsigned long
2258randomize_page(unsigned long start, unsigned long range)
2259{
2260 if (!PAGE_ALIGNED(start)) {
2261 range -= PAGE_ALIGN(start) - start;
2262 start = PAGE_ALIGN(start);
2263 }
2264
2265 if (start > ULONG_MAX - range)
2266 range = ULONG_MAX - start;
2267
2268 range >>= PAGE_SHIFT;
2269
2270 if (range == 0)
2271 return start;
2272
2273 return start + (get_random_long() % range << PAGE_SHIFT);
2274}
2275
2276/* Interface for in-kernel drivers of true hardware RNGs.
2277 * Those devices may produce endless random bits and will be throttled
2278 * when our pool is full.
2279 */
2280void add_hwgenerator_randomness(const char *buffer, size_t count,
2281 size_t entropy)
2282{
2283 struct entropy_store *poolp = &input_pool;
2284
2285 if (unlikely(crng_init == 0)) {
2286 crng_fast_load(buffer, count);
2287 return;
2288 }
2289
2290 /* Suspend writing if we're above the trickle threshold.
2291 * We'll be woken up again once below random_write_wakeup_thresh,
2292 * or when the calling thread is about to terminate.
2293 */
2294 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2295 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2296 mix_pool_bytes(poolp, buffer, count);
2297 credit_entropy_bits(poolp, entropy);
2298}
2299EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2300
2301/* Handle random seed passed by bootloader.
2302 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2303 * it would be regarded as device data.
2304 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2305 */
2306void add_bootloader_randomness(const void *buf, unsigned int size)
2307{
2308 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2309 add_hwgenerator_randomness(buf, size, size * 8);
2310 else
2311 add_device_randomness(buf, size);
2312}
2313EXPORT_SYMBOL_GPL(add_bootloader_randomness);