Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/ethtool.h>
92#include <linux/skbuff.h>
93#include <linux/bpf.h>
94#include <linux/bpf_trace.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <net/busy_poll.h>
98#include <linux/rtnetlink.h>
99#include <linux/stat.h>
100#include <net/dst.h>
101#include <net/dst_metadata.h>
102#include <net/pkt_sched.h>
103#include <net/pkt_cls.h>
104#include <net/checksum.h>
105#include <net/xfrm.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/module.h>
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
112#include <net/iw_handler.h>
113#include <asm/current.h>
114#include <linux/audit.h>
115#include <linux/dmaengine.h>
116#include <linux/err.h>
117#include <linux/ctype.h>
118#include <linux/if_arp.h>
119#include <linux/if_vlan.h>
120#include <linux/ip.h>
121#include <net/ip.h>
122#include <net/mpls.h>
123#include <linux/ipv6.h>
124#include <linux/in.h>
125#include <linux/jhash.h>
126#include <linux/random.h>
127#include <trace/events/napi.h>
128#include <trace/events/net.h>
129#include <trace/events/skb.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138#include <linux/netfilter_ingress.h>
139#include <linux/crash_dump.h>
140#include <linux/sctp.h>
141#include <net/udp_tunnel.h>
142#include <linux/net_namespace.h>
143#include <linux/indirect_call_wrapper.h>
144#include <net/devlink.h>
145
146#include "net-sysfs.h"
147
148#define MAX_GRO_SKBS 8
149
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153static DEFINE_SPINLOCK(ptype_lock);
154static DEFINE_SPINLOCK(offload_lock);
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
157static struct list_head offload_base __read_mostly;
158
159static int netif_rx_internal(struct sk_buff *skb);
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 const char *name)
233{
234 struct netdev_name_node *name_node;
235
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 if (!name_node)
238 return NULL;
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
242 return name_node;
243}
244
245static struct netdev_name_node *
246netdev_name_node_head_alloc(struct net_device *dev)
247{
248 struct netdev_name_node *name_node;
249
250 name_node = netdev_name_node_alloc(dev, dev->name);
251 if (!name_node)
252 return NULL;
253 INIT_LIST_HEAD(&name_node->list);
254 return name_node;
255}
256
257static void netdev_name_node_free(struct netdev_name_node *name_node)
258{
259 kfree(name_node);
260}
261
262static void netdev_name_node_add(struct net *net,
263 struct netdev_name_node *name_node)
264{
265 hlist_add_head_rcu(&name_node->hlist,
266 dev_name_hash(net, name_node->name));
267}
268
269static void netdev_name_node_del(struct netdev_name_node *name_node)
270{
271 hlist_del_rcu(&name_node->hlist);
272}
273
274static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 const char *name)
276{
277 struct hlist_head *head = dev_name_hash(net, name);
278 struct netdev_name_node *name_node;
279
280 hlist_for_each_entry(name_node, head, hlist)
281 if (!strcmp(name_node->name, name))
282 return name_node;
283 return NULL;
284}
285
286static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 const char *name)
288{
289 struct hlist_head *head = dev_name_hash(net, name);
290 struct netdev_name_node *name_node;
291
292 hlist_for_each_entry_rcu(name_node, head, hlist)
293 if (!strcmp(name_node->name, name))
294 return name_node;
295 return NULL;
296}
297
298int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299{
300 struct netdev_name_node *name_node;
301 struct net *net = dev_net(dev);
302
303 name_node = netdev_name_node_lookup(net, name);
304 if (name_node)
305 return -EEXIST;
306 name_node = netdev_name_node_alloc(dev, name);
307 if (!name_node)
308 return -ENOMEM;
309 netdev_name_node_add(net, name_node);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node->list, &dev->name_node->list);
312
313 return 0;
314}
315EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318{
319 list_del(&name_node->list);
320 netdev_name_node_del(name_node);
321 kfree(name_node->name);
322 netdev_name_node_free(name_node);
323}
324
325int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (!name_node)
332 return -ENOENT;
333 /* lookup might have found our primary name or a name belonging
334 * to another device.
335 */
336 if (name_node == dev->name_node || name_node->dev != dev)
337 return -EINVAL;
338
339 __netdev_name_node_alt_destroy(name_node);
340
341 return 0;
342}
343EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345static void netdev_name_node_alt_flush(struct net_device *dev)
346{
347 struct netdev_name_node *name_node, *tmp;
348
349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 __netdev_name_node_alt_destroy(name_node);
351}
352
353/* Device list insertion */
354static void list_netdevice(struct net_device *dev)
355{
356 struct net *net = dev_net(dev);
357
358 ASSERT_RTNL();
359
360 write_lock_bh(&dev_base_lock);
361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 netdev_name_node_add(net, dev->name_node);
363 hlist_add_head_rcu(&dev->index_hlist,
364 dev_index_hash(net, dev->ifindex));
365 write_unlock_bh(&dev_base_lock);
366
367 dev_base_seq_inc(net);
368}
369
370/* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
372 */
373static void unlist_netdevice(struct net_device *dev)
374{
375 ASSERT_RTNL();
376
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock);
379 list_del_rcu(&dev->dev_list);
380 netdev_name_node_del(dev->name_node);
381 hlist_del_rcu(&dev->index_hlist);
382 write_unlock_bh(&dev_base_lock);
383
384 dev_base_seq_inc(dev_net(dev));
385}
386
387/*
388 * Our notifier list
389 */
390
391static RAW_NOTIFIER_HEAD(netdev_chain);
392
393/*
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
396 */
397
398DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401/*******************************************************************************
402 *
403 * Protocol management and registration routines
404 *
405 *******************************************************************************/
406
407
408/*
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
411 * here.
412 *
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
421 * --ANK (980803)
422 */
423
424static inline struct list_head *ptype_head(const struct packet_type *pt)
425{
426 if (pt->type == htons(ETH_P_ALL))
427 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 else
429 return pt->dev ? &pt->dev->ptype_specific :
430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431}
432
433/**
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
436 *
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
440 *
441 * This call does not sleep therefore it can not
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
444 */
445
446void dev_add_pack(struct packet_type *pt)
447{
448 struct list_head *head = ptype_head(pt);
449
450 spin_lock(&ptype_lock);
451 list_add_rcu(&pt->list, head);
452 spin_unlock(&ptype_lock);
453}
454EXPORT_SYMBOL(dev_add_pack);
455
456/**
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
459 *
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
463 * returns.
464 *
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
468 */
469void __dev_remove_pack(struct packet_type *pt)
470{
471 struct list_head *head = ptype_head(pt);
472 struct packet_type *pt1;
473
474 spin_lock(&ptype_lock);
475
476 list_for_each_entry(pt1, head, list) {
477 if (pt == pt1) {
478 list_del_rcu(&pt->list);
479 goto out;
480 }
481 }
482
483 pr_warn("dev_remove_pack: %p not found\n", pt);
484out:
485 spin_unlock(&ptype_lock);
486}
487EXPORT_SYMBOL(__dev_remove_pack);
488
489/**
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
492 *
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
496 * returns.
497 *
498 * This call sleeps to guarantee that no CPU is looking at the packet
499 * type after return.
500 */
501void dev_remove_pack(struct packet_type *pt)
502{
503 __dev_remove_pack(pt);
504
505 synchronize_net();
506}
507EXPORT_SYMBOL(dev_remove_pack);
508
509
510/**
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
513 *
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
517 *
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
521 */
522void dev_add_offload(struct packet_offload *po)
523{
524 struct packet_offload *elem;
525
526 spin_lock(&offload_lock);
527 list_for_each_entry(elem, &offload_base, list) {
528 if (po->priority < elem->priority)
529 break;
530 }
531 list_add_rcu(&po->list, elem->list.prev);
532 spin_unlock(&offload_lock);
533}
534EXPORT_SYMBOL(dev_add_offload);
535
536/**
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
539 *
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
543 * function returns.
544 *
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
548 */
549static void __dev_remove_offload(struct packet_offload *po)
550{
551 struct list_head *head = &offload_base;
552 struct packet_offload *po1;
553
554 spin_lock(&offload_lock);
555
556 list_for_each_entry(po1, head, list) {
557 if (po == po1) {
558 list_del_rcu(&po->list);
559 goto out;
560 }
561 }
562
563 pr_warn("dev_remove_offload: %p not found\n", po);
564out:
565 spin_unlock(&offload_lock);
566}
567
568/**
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
571 *
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
575 * function returns.
576 *
577 * This call sleeps to guarantee that no CPU is looking at the packet
578 * type after return.
579 */
580void dev_remove_offload(struct packet_offload *po)
581{
582 __dev_remove_offload(po);
583
584 synchronize_net();
585}
586EXPORT_SYMBOL(dev_remove_offload);
587
588/******************************************************************************
589 *
590 * Device Boot-time Settings Routines
591 *
592 ******************************************************************************/
593
594/* Boot time configuration table */
595static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597/**
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
601 *
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
604 * all netdevices.
605 */
606static int netdev_boot_setup_add(char *name, struct ifmap *map)
607{
608 struct netdev_boot_setup *s;
609 int i;
610
611 s = dev_boot_setup;
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 memset(s[i].name, 0, sizeof(s[i].name));
615 strlcpy(s[i].name, name, IFNAMSIZ);
616 memcpy(&s[i].map, map, sizeof(s[i].map));
617 break;
618 }
619 }
620
621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622}
623
624/**
625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
627 *
628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
632 */
633int netdev_boot_setup_check(struct net_device *dev)
634{
635 struct netdev_boot_setup *s = dev_boot_setup;
636 int i;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 !strcmp(dev->name, s[i].name)) {
641 dev->irq = s[i].map.irq;
642 dev->base_addr = s[i].map.base_addr;
643 dev->mem_start = s[i].map.mem_start;
644 dev->mem_end = s[i].map.mem_end;
645 return 1;
646 }
647 }
648 return 0;
649}
650EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653/**
654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
657 *
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
662 */
663unsigned long netdev_boot_base(const char *prefix, int unit)
664{
665 const struct netdev_boot_setup *s = dev_boot_setup;
666 char name[IFNAMSIZ];
667 int i;
668
669 sprintf(name, "%s%d", prefix, unit);
670
671 /*
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
674 */
675 if (__dev_get_by_name(&init_net, name))
676 return 1;
677
678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 if (!strcmp(name, s[i].name))
680 return s[i].map.base_addr;
681 return 0;
682}
683
684/*
685 * Saves at boot time configured settings for any netdevice.
686 */
687int __init netdev_boot_setup(char *str)
688{
689 int ints[5];
690 struct ifmap map;
691
692 str = get_options(str, ARRAY_SIZE(ints), ints);
693 if (!str || !*str)
694 return 0;
695
696 /* Save settings */
697 memset(&map, 0, sizeof(map));
698 if (ints[0] > 0)
699 map.irq = ints[1];
700 if (ints[0] > 1)
701 map.base_addr = ints[2];
702 if (ints[0] > 2)
703 map.mem_start = ints[3];
704 if (ints[0] > 3)
705 map.mem_end = ints[4];
706
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str, &map);
709}
710
711__setup("netdev=", netdev_boot_setup);
712
713/*******************************************************************************
714 *
715 * Device Interface Subroutines
716 *
717 *******************************************************************************/
718
719/**
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
722 *
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
725 */
726
727int dev_get_iflink(const struct net_device *dev)
728{
729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 return dev->netdev_ops->ndo_get_iflink(dev);
731
732 return dev->ifindex;
733}
734EXPORT_SYMBOL(dev_get_iflink);
735
736/**
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
739 * @skb: The packet.
740 *
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
744 */
745int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746{
747 struct ip_tunnel_info *info;
748
749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
750 return -EINVAL;
751
752 info = skb_tunnel_info_unclone(skb);
753 if (!info)
754 return -ENOMEM;
755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 return -EINVAL;
757
758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759}
760EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762/**
763 * __dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
766 *
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
772 */
773
774struct net_device *__dev_get_by_name(struct net *net, const char *name)
775{
776 struct netdev_name_node *node_name;
777
778 node_name = netdev_name_node_lookup(net, name);
779 return node_name ? node_name->dev : NULL;
780}
781EXPORT_SYMBOL(__dev_get_by_name);
782
783/**
784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
787 *
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
793 */
794
795struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796{
797 struct netdev_name_node *node_name;
798
799 node_name = netdev_name_node_lookup_rcu(net, name);
800 return node_name ? node_name->dev : NULL;
801}
802EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804/**
805 * dev_get_by_name - find a device by its name
806 * @net: the applicable net namespace
807 * @name: name to find
808 *
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
814 */
815
816struct net_device *dev_get_by_name(struct net *net, const char *name)
817{
818 struct net_device *dev;
819
820 rcu_read_lock();
821 dev = dev_get_by_name_rcu(net, name);
822 if (dev)
823 dev_hold(dev);
824 rcu_read_unlock();
825 return dev;
826}
827EXPORT_SYMBOL(dev_get_by_name);
828
829/**
830 * __dev_get_by_index - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
838 * or @dev_base_lock.
839 */
840
841struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842{
843 struct net_device *dev;
844 struct hlist_head *head = dev_index_hash(net, ifindex);
845
846 hlist_for_each_entry(dev, head, index_hlist)
847 if (dev->ifindex == ifindex)
848 return dev;
849
850 return NULL;
851}
852EXPORT_SYMBOL(__dev_get_by_index);
853
854/**
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
858 *
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
863 */
864
865struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866{
867 struct net_device *dev;
868 struct hlist_head *head = dev_index_hash(net, ifindex);
869
870 hlist_for_each_entry_rcu(dev, head, index_hlist)
871 if (dev->ifindex == ifindex)
872 return dev;
873
874 return NULL;
875}
876EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879/**
880 * dev_get_by_index - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 *
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
888 */
889
890struct net_device *dev_get_by_index(struct net *net, int ifindex)
891{
892 struct net_device *dev;
893
894 rcu_read_lock();
895 dev = dev_get_by_index_rcu(net, ifindex);
896 if (dev)
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900}
901EXPORT_SYMBOL(dev_get_by_index);
902
903/**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914{
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925}
926EXPORT_SYMBOL(dev_get_by_napi_id);
927
928/**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 *
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
936 * to complete when CONFIG_PREEMPTION is not set.
937 */
938int netdev_get_name(struct net *net, char *name, int ifindex)
939{
940 struct net_device *dev;
941 unsigned int seq;
942
943retry:
944 seq = raw_seqcount_begin(&devnet_rename_seq);
945 rcu_read_lock();
946 dev = dev_get_by_index_rcu(net, ifindex);
947 if (!dev) {
948 rcu_read_unlock();
949 return -ENODEV;
950 }
951
952 strcpy(name, dev->name);
953 rcu_read_unlock();
954 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 cond_resched();
956 goto retry;
957 }
958
959 return 0;
960}
961
962/**
963 * dev_getbyhwaddr_rcu - find a device by its hardware address
964 * @net: the applicable net namespace
965 * @type: media type of device
966 * @ha: hardware address
967 *
968 * Search for an interface by MAC address. Returns NULL if the device
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
971 * The returned device has not had its ref count increased
972 * and the caller must therefore be careful about locking
973 *
974 */
975
976struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 const char *ha)
978{
979 struct net_device *dev;
980
981 for_each_netdev_rcu(net, dev)
982 if (dev->type == type &&
983 !memcmp(dev->dev_addr, ha, dev->addr_len))
984 return dev;
985
986 return NULL;
987}
988EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991{
992 struct net_device *dev;
993
994 ASSERT_RTNL();
995 for_each_netdev(net, dev)
996 if (dev->type == type)
997 return dev;
998
999 return NULL;
1000}
1001EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004{
1005 struct net_device *dev, *ret = NULL;
1006
1007 rcu_read_lock();
1008 for_each_netdev_rcu(net, dev)
1009 if (dev->type == type) {
1010 dev_hold(dev);
1011 ret = dev;
1012 break;
1013 }
1014 rcu_read_unlock();
1015 return ret;
1016}
1017EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019/**
1020 * __dev_get_by_flags - find any device with given flags
1021 * @net: the applicable net namespace
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1024 *
1025 * Search for any interface with the given flags. Returns NULL if a device
1026 * is not found or a pointer to the device. Must be called inside
1027 * rtnl_lock(), and result refcount is unchanged.
1028 */
1029
1030struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 unsigned short mask)
1032{
1033 struct net_device *dev, *ret;
1034
1035 ASSERT_RTNL();
1036
1037 ret = NULL;
1038 for_each_netdev(net, dev) {
1039 if (((dev->flags ^ if_flags) & mask) == 0) {
1040 ret = dev;
1041 break;
1042 }
1043 }
1044 return ret;
1045}
1046EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048/**
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1051 *
1052 * Network device names need to be valid file names to
1053 * to allow sysfs to work. We also disallow any kind of
1054 * whitespace.
1055 */
1056bool dev_valid_name(const char *name)
1057{
1058 if (*name == '\0')
1059 return false;
1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 return false;
1062 if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 return false;
1064
1065 while (*name) {
1066 if (*name == '/' || *name == ':' || isspace(*name))
1067 return false;
1068 name++;
1069 }
1070 return true;
1071}
1072EXPORT_SYMBOL(dev_valid_name);
1073
1074/**
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1077 * @name: name format string
1078 * @buf: scratch buffer and result name string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090{
1091 int i = 0;
1092 const char *p;
1093 const int max_netdevices = 8*PAGE_SIZE;
1094 unsigned long *inuse;
1095 struct net_device *d;
1096
1097 if (!dev_valid_name(name))
1098 return -EINVAL;
1099
1100 p = strchr(name, '%');
1101 if (p) {
1102 /*
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1105 * characters.
1106 */
1107 if (p[1] != 'd' || strchr(p + 2, '%'))
1108 return -EINVAL;
1109
1110 /* Use one page as a bit array of possible slots */
1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 if (!inuse)
1113 return -ENOMEM;
1114
1115 for_each_netdev(net, d) {
1116 if (!sscanf(d->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf, IFNAMSIZ, name, i);
1123 if (!strncmp(buf, d->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126
1127 i = find_first_zero_bit(inuse, max_netdevices);
1128 free_page((unsigned long) inuse);
1129 }
1130
1131 snprintf(buf, IFNAMSIZ, name, i);
1132 if (!__dev_get_by_name(net, buf))
1133 return i;
1134
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1138 */
1139 return -ENFILE;
1140}
1141
1142static int dev_alloc_name_ns(struct net *net,
1143 struct net_device *dev,
1144 const char *name)
1145{
1146 char buf[IFNAMSIZ];
1147 int ret;
1148
1149 BUG_ON(!net);
1150 ret = __dev_alloc_name(net, name, buf);
1151 if (ret >= 0)
1152 strlcpy(dev->name, buf, IFNAMSIZ);
1153 return ret;
1154}
1155
1156/**
1157 * dev_alloc_name - allocate a name for a device
1158 * @dev: device
1159 * @name: name format string
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1168 */
1169
1170int dev_alloc_name(struct net_device *dev, const char *name)
1171{
1172 return dev_alloc_name_ns(dev_net(dev), dev, name);
1173}
1174EXPORT_SYMBOL(dev_alloc_name);
1175
1176static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 const char *name)
1178{
1179 BUG_ON(!net);
1180
1181 if (!dev_valid_name(name))
1182 return -EINVAL;
1183
1184 if (strchr(name, '%'))
1185 return dev_alloc_name_ns(net, dev, name);
1186 else if (__dev_get_by_name(net, name))
1187 return -EEXIST;
1188 else if (dev->name != name)
1189 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191 return 0;
1192}
1193
1194/**
1195 * dev_change_name - change name of a device
1196 * @dev: device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1198 *
1199 * Change name of a device, can pass format strings "eth%d".
1200 * for wildcarding.
1201 */
1202int dev_change_name(struct net_device *dev, const char *newname)
1203{
1204 unsigned char old_assign_type;
1205 char oldname[IFNAMSIZ];
1206 int err = 0;
1207 int ret;
1208 struct net *net;
1209
1210 ASSERT_RTNL();
1211 BUG_ON(!dev_net(dev));
1212
1213 net = dev_net(dev);
1214
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1220 * up and running.
1221 *
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1225 * directly.
1226 */
1227 if (dev->flags & IFF_UP &&
1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 return -EBUSY;
1230
1231 write_seqcount_begin(&devnet_rename_seq);
1232
1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 write_seqcount_end(&devnet_rename_seq);
1235 return 0;
1236 }
1237
1238 memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240 err = dev_get_valid_name(net, dev, newname);
1241 if (err < 0) {
1242 write_seqcount_end(&devnet_rename_seq);
1243 return err;
1244 }
1245
1246 if (oldname[0] && !strchr(oldname, '%'))
1247 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249 old_assign_type = dev->name_assign_type;
1250 dev->name_assign_type = NET_NAME_RENAMED;
1251
1252rollback:
1253 ret = device_rename(&dev->dev, dev->name);
1254 if (ret) {
1255 memcpy(dev->name, oldname, IFNAMSIZ);
1256 dev->name_assign_type = old_assign_type;
1257 write_seqcount_end(&devnet_rename_seq);
1258 return ret;
1259 }
1260
1261 write_seqcount_end(&devnet_rename_seq);
1262
1263 netdev_adjacent_rename_links(dev, oldname);
1264
1265 write_lock_bh(&dev_base_lock);
1266 netdev_name_node_del(dev->name_node);
1267 write_unlock_bh(&dev_base_lock);
1268
1269 synchronize_rcu();
1270
1271 write_lock_bh(&dev_base_lock);
1272 netdev_name_node_add(net, dev->name_node);
1273 write_unlock_bh(&dev_base_lock);
1274
1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 ret = notifier_to_errno(ret);
1277
1278 if (ret) {
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280 if (err >= 0) {
1281 err = ret;
1282 write_seqcount_begin(&devnet_rename_seq);
1283 memcpy(dev->name, oldname, IFNAMSIZ);
1284 memcpy(oldname, newname, IFNAMSIZ);
1285 dev->name_assign_type = old_assign_type;
1286 old_assign_type = NET_NAME_RENAMED;
1287 goto rollback;
1288 } else {
1289 pr_err("%s: name change rollback failed: %d\n",
1290 dev->name, ret);
1291 }
1292 }
1293
1294 return err;
1295}
1296
1297/**
1298 * dev_set_alias - change ifalias of a device
1299 * @dev: device
1300 * @alias: name up to IFALIASZ
1301 * @len: limit of bytes to copy from info
1302 *
1303 * Set ifalias for a device,
1304 */
1305int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306{
1307 struct dev_ifalias *new_alias = NULL;
1308
1309 if (len >= IFALIASZ)
1310 return -EINVAL;
1311
1312 if (len) {
1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 if (!new_alias)
1315 return -ENOMEM;
1316
1317 memcpy(new_alias->ifalias, alias, len);
1318 new_alias->ifalias[len] = 0;
1319 }
1320
1321 mutex_lock(&ifalias_mutex);
1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 mutex_is_locked(&ifalias_mutex));
1324 mutex_unlock(&ifalias_mutex);
1325
1326 if (new_alias)
1327 kfree_rcu(new_alias, rcuhead);
1328
1329 return len;
1330}
1331EXPORT_SYMBOL(dev_set_alias);
1332
1333/**
1334 * dev_get_alias - get ifalias of a device
1335 * @dev: device
1336 * @name: buffer to store name of ifalias
1337 * @len: size of buffer
1338 *
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1341 */
1342int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343{
1344 const struct dev_ifalias *alias;
1345 int ret = 0;
1346
1347 rcu_read_lock();
1348 alias = rcu_dereference(dev->ifalias);
1349 if (alias)
1350 ret = snprintf(name, len, "%s", alias->ifalias);
1351 rcu_read_unlock();
1352
1353 return ret;
1354}
1355
1356/**
1357 * netdev_features_change - device changes features
1358 * @dev: device to cause notification
1359 *
1360 * Called to indicate a device has changed features.
1361 */
1362void netdev_features_change(struct net_device *dev)
1363{
1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365}
1366EXPORT_SYMBOL(netdev_features_change);
1367
1368/**
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1371 *
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1375 */
1376void netdev_state_change(struct net_device *dev)
1377{
1378 if (dev->flags & IFF_UP) {
1379 struct netdev_notifier_change_info change_info = {
1380 .info.dev = dev,
1381 };
1382
1383 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 &change_info.info);
1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 }
1387}
1388EXPORT_SYMBOL(netdev_state_change);
1389
1390/**
1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
1393 *
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1398 * migration.
1399 */
1400void netdev_notify_peers(struct net_device *dev)
1401{
1402 rtnl_lock();
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 rtnl_unlock();
1406}
1407EXPORT_SYMBOL(netdev_notify_peers);
1408
1409static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410{
1411 const struct net_device_ops *ops = dev->netdev_ops;
1412 int ret;
1413
1414 ASSERT_RTNL();
1415
1416 if (!netif_device_present(dev))
1417 return -ENODEV;
1418
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1422 */
1423 netpoll_poll_disable(dev);
1424
1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 ret = notifier_to_errno(ret);
1427 if (ret)
1428 return ret;
1429
1430 set_bit(__LINK_STATE_START, &dev->state);
1431
1432 if (ops->ndo_validate_addr)
1433 ret = ops->ndo_validate_addr(dev);
1434
1435 if (!ret && ops->ndo_open)
1436 ret = ops->ndo_open(dev);
1437
1438 netpoll_poll_enable(dev);
1439
1440 if (ret)
1441 clear_bit(__LINK_STATE_START, &dev->state);
1442 else {
1443 dev->flags |= IFF_UP;
1444 dev_set_rx_mode(dev);
1445 dev_activate(dev);
1446 add_device_randomness(dev->dev_addr, dev->addr_len);
1447 }
1448
1449 return ret;
1450}
1451
1452/**
1453 * dev_open - prepare an interface for use.
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1456 *
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1461 *
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1464 */
1465int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466{
1467 int ret;
1468
1469 if (dev->flags & IFF_UP)
1470 return 0;
1471
1472 ret = __dev_open(dev, extack);
1473 if (ret < 0)
1474 return ret;
1475
1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479 return ret;
1480}
1481EXPORT_SYMBOL(dev_open);
1482
1483static void __dev_close_many(struct list_head *head)
1484{
1485 struct net_device *dev;
1486
1487 ASSERT_RTNL();
1488 might_sleep();
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 /* Temporarily disable netpoll until the interface is down */
1492 netpoll_poll_disable(dev);
1493
1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1500 *
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1503 */
1504 smp_mb__after_atomic(); /* Commit netif_running(). */
1505 }
1506
1507 dev_deactivate_many(head);
1508
1509 list_for_each_entry(dev, head, close_list) {
1510 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512 /*
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1515 *
1516 * We allow it to be called even after a DETACH hot-plug
1517 * event.
1518 */
1519 if (ops->ndo_stop)
1520 ops->ndo_stop(dev);
1521
1522 dev->flags &= ~IFF_UP;
1523 netpoll_poll_enable(dev);
1524 }
1525}
1526
1527static void __dev_close(struct net_device *dev)
1528{
1529 LIST_HEAD(single);
1530
1531 list_add(&dev->close_list, &single);
1532 __dev_close_many(&single);
1533 list_del(&single);
1534}
1535
1536void dev_close_many(struct list_head *head, bool unlink)
1537{
1538 struct net_device *dev, *tmp;
1539
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev, tmp, head, close_list)
1542 if (!(dev->flags & IFF_UP))
1543 list_del_init(&dev->close_list);
1544
1545 __dev_close_many(head);
1546
1547 list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 if (unlink)
1551 list_del_init(&dev->close_list);
1552 }
1553}
1554EXPORT_SYMBOL(dev_close_many);
1555
1556/**
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1559 *
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563 * chain.
1564 */
1565void dev_close(struct net_device *dev)
1566{
1567 if (dev->flags & IFF_UP) {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 dev_close_many(&single, true);
1572 list_del(&single);
1573 }
1574}
1575EXPORT_SYMBOL(dev_close);
1576
1577
1578/**
1579 * dev_disable_lro - disable Large Receive Offload on a device
1580 * @dev: device
1581 *
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1585 */
1586void dev_disable_lro(struct net_device *dev)
1587{
1588 struct net_device *lower_dev;
1589 struct list_head *iter;
1590
1591 dev->wanted_features &= ~NETIF_F_LRO;
1592 netdev_update_features(dev);
1593
1594 if (unlikely(dev->features & NETIF_F_LRO))
1595 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597 netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 dev_disable_lro(lower_dev);
1599}
1600EXPORT_SYMBOL(dev_disable_lro);
1601
1602/**
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604 * @dev: device
1605 *
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1608 * the device.
1609 */
1610static void dev_disable_gro_hw(struct net_device *dev)
1611{
1612 dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 netdev_update_features(dev);
1614
1615 if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617}
1618
1619const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620{
1621#define N(val) \
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1624 switch (cmd) {
1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 N(PRE_CHANGEADDR)
1635 }
1636#undef N
1637 return "UNKNOWN_NETDEV_EVENT";
1638}
1639EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 struct net_device *dev)
1643{
1644 struct netdev_notifier_info info = {
1645 .dev = dev,
1646 };
1647
1648 return nb->notifier_call(nb, val, &info);
1649}
1650
1651static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 int err;
1655
1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 err = notifier_to_errno(err);
1658 if (err)
1659 return err;
1660
1661 if (!(dev->flags & IFF_UP))
1662 return 0;
1663
1664 call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 return 0;
1666}
1667
1668static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 struct net_device *dev)
1670{
1671 if (dev->flags & IFF_UP) {
1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 dev);
1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 }
1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677}
1678
1679static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683 int err;
1684
1685 for_each_netdev(net, dev) {
1686 err = call_netdevice_register_notifiers(nb, dev);
1687 if (err)
1688 goto rollback;
1689 }
1690 return 0;
1691
1692rollback:
1693 for_each_netdev_continue_reverse(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1695 return err;
1696}
1697
1698static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 struct net *net)
1700{
1701 struct net_device *dev;
1702
1703 for_each_netdev(net, dev)
1704 call_netdevice_unregister_notifiers(nb, dev);
1705}
1706
1707static int dev_boot_phase = 1;
1708
1709/**
1710 * register_netdevice_notifier - register a network notifier block
1711 * @nb: notifier
1712 *
1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1717 *
1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1721 */
1722
1723int register_netdevice_notifier(struct notifier_block *nb)
1724{
1725 struct net *net;
1726 int err;
1727
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem);
1730 rtnl_lock();
1731 err = raw_notifier_chain_register(&netdev_chain, nb);
1732 if (err)
1733 goto unlock;
1734 if (dev_boot_phase)
1735 goto unlock;
1736 for_each_net(net) {
1737 err = call_netdevice_register_net_notifiers(nb, net);
1738 if (err)
1739 goto rollback;
1740 }
1741
1742unlock:
1743 rtnl_unlock();
1744 up_write(&pernet_ops_rwsem);
1745 return err;
1746
1747rollback:
1748 for_each_net_continue_reverse(net)
1749 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751 raw_notifier_chain_unregister(&netdev_chain, nb);
1752 goto unlock;
1753}
1754EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756/**
1757 * unregister_netdevice_notifier - unregister a network notifier block
1758 * @nb: notifier
1759 *
1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
1764 *
1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1768 */
1769
1770int unregister_netdevice_notifier(struct notifier_block *nb)
1771{
1772 struct net *net;
1773 int err;
1774
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem);
1777 rtnl_lock();
1778 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 if (err)
1780 goto unlock;
1781
1782 for_each_net(net)
1783 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785unlock:
1786 rtnl_unlock();
1787 up_write(&pernet_ops_rwsem);
1788 return err;
1789}
1790EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792static int __register_netdevice_notifier_net(struct net *net,
1793 struct notifier_block *nb,
1794 bool ignore_call_fail)
1795{
1796 int err;
1797
1798 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 if (err)
1800 return err;
1801 if (dev_boot_phase)
1802 return 0;
1803
1804 err = call_netdevice_register_net_notifiers(nb, net);
1805 if (err && !ignore_call_fail)
1806 goto chain_unregister;
1807
1808 return 0;
1809
1810chain_unregister:
1811 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 return err;
1813}
1814
1815static int __unregister_netdevice_notifier_net(struct net *net,
1816 struct notifier_block *nb)
1817{
1818 int err;
1819
1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 if (err)
1822 return err;
1823
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825 return 0;
1826}
1827
1828/**
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1831 * @nb: notifier
1832 *
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1837 *
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1841 */
1842
1843int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844{
1845 int err;
1846
1847 rtnl_lock();
1848 err = __register_netdevice_notifier_net(net, nb, false);
1849 rtnl_unlock();
1850 return err;
1851}
1852EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854/**
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1858 * @nb: notifier
1859 *
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1864 *
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1868 */
1869
1870int unregister_netdevice_notifier_net(struct net *net,
1871 struct notifier_block *nb)
1872{
1873 int err;
1874
1875 rtnl_lock();
1876 err = __unregister_netdevice_notifier_net(net, nb);
1877 rtnl_unlock();
1878 return err;
1879}
1880EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 struct notifier_block *nb,
1884 struct netdev_net_notifier *nn)
1885{
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 if (!err) {
1891 nn->nb = nb;
1892 list_add(&nn->list, &dev->net_notifier_list);
1893 }
1894 rtnl_unlock();
1895 return err;
1896}
1897EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 struct notifier_block *nb,
1901 struct netdev_net_notifier *nn)
1902{
1903 int err;
1904
1905 rtnl_lock();
1906 list_del(&nn->list);
1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 rtnl_unlock();
1909 return err;
1910}
1911EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 struct net *net)
1915{
1916 struct netdev_net_notifier *nn;
1917
1918 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 __register_netdevice_notifier_net(net, nn->nb, true);
1921 }
1922}
1923
1924/**
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
1927 * @info: notifier information data
1928 *
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1931 */
1932
1933static int call_netdevice_notifiers_info(unsigned long val,
1934 struct netdev_notifier_info *info)
1935{
1936 struct net *net = dev_net(info->dev);
1937 int ret;
1938
1939 ASSERT_RTNL();
1940
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1944 */
1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 if (ret & NOTIFY_STOP_MASK)
1947 return ret;
1948 return raw_notifier_call_chain(&netdev_chain, val, info);
1949}
1950
1951static int call_netdevice_notifiers_extack(unsigned long val,
1952 struct net_device *dev,
1953 struct netlink_ext_ack *extack)
1954{
1955 struct netdev_notifier_info info = {
1956 .dev = dev,
1957 .extack = extack,
1958 };
1959
1960 return call_netdevice_notifiers_info(val, &info);
1961}
1962
1963/**
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
1966 * @dev: net_device pointer passed unmodified to notifier function
1967 *
1968 * Call all network notifier blocks. Parameters and return value
1969 * are as for raw_notifier_call_chain().
1970 */
1971
1972int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973{
1974 return call_netdevice_notifiers_extack(val, dev, NULL);
1975}
1976EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978/**
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987static int call_netdevice_notifiers_mtu(unsigned long val,
1988 struct net_device *dev, u32 arg)
1989{
1990 struct netdev_notifier_info_ext info = {
1991 .info.dev = dev,
1992 .ext.mtu = arg,
1993 };
1994
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997 return call_netdevice_notifiers_info(val, &info.info);
1998}
1999
2000#ifdef CONFIG_NET_INGRESS
2001static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003void net_inc_ingress_queue(void)
2004{
2005 static_branch_inc(&ingress_needed_key);
2006}
2007EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009void net_dec_ingress_queue(void)
2010{
2011 static_branch_dec(&ingress_needed_key);
2012}
2013EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014#endif
2015
2016#ifdef CONFIG_NET_EGRESS
2017static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019void net_inc_egress_queue(void)
2020{
2021 static_branch_inc(&egress_needed_key);
2022}
2023EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025void net_dec_egress_queue(void)
2026{
2027 static_branch_dec(&egress_needed_key);
2028}
2029EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030#endif
2031
2032static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033#ifdef CONFIG_JUMP_LABEL
2034static atomic_t netstamp_needed_deferred;
2035static atomic_t netstamp_wanted;
2036static void netstamp_clear(struct work_struct *work)
2037{
2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 int wanted;
2040
2041 wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 if (wanted > 0)
2043 static_branch_enable(&netstamp_needed_key);
2044 else
2045 static_branch_disable(&netstamp_needed_key);
2046}
2047static DECLARE_WORK(netstamp_work, netstamp_clear);
2048#endif
2049
2050void net_enable_timestamp(void)
2051{
2052#ifdef CONFIG_JUMP_LABEL
2053 int wanted;
2054
2055 while (1) {
2056 wanted = atomic_read(&netstamp_wanted);
2057 if (wanted <= 0)
2058 break;
2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 return;
2061 }
2062 atomic_inc(&netstamp_needed_deferred);
2063 schedule_work(&netstamp_work);
2064#else
2065 static_branch_inc(&netstamp_needed_key);
2066#endif
2067}
2068EXPORT_SYMBOL(net_enable_timestamp);
2069
2070void net_disable_timestamp(void)
2071{
2072#ifdef CONFIG_JUMP_LABEL
2073 int wanted;
2074
2075 while (1) {
2076 wanted = atomic_read(&netstamp_wanted);
2077 if (wanted <= 1)
2078 break;
2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 return;
2081 }
2082 atomic_dec(&netstamp_needed_deferred);
2083 schedule_work(&netstamp_work);
2084#else
2085 static_branch_dec(&netstamp_needed_key);
2086#endif
2087}
2088EXPORT_SYMBOL(net_disable_timestamp);
2089
2090static inline void net_timestamp_set(struct sk_buff *skb)
2091{
2092 skb->tstamp = 0;
2093 if (static_branch_unlikely(&netstamp_needed_key))
2094 __net_timestamp(skb);
2095}
2096
2097#define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2101 } \
2102
2103bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104{
2105 unsigned int len;
2106
2107 if (!(dev->flags & IFF_UP))
2108 return false;
2109
2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 if (skb->len <= len)
2112 return true;
2113
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2116 */
2117 if (skb_is_gso(skb))
2118 return true;
2119
2120 return false;
2121}
2122EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125{
2126 int ret = ____dev_forward_skb(dev, skb);
2127
2128 if (likely(!ret)) {
2129 skb->protocol = eth_type_trans(skb, dev);
2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 }
2132
2133 return ret;
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161static inline int deliver_skb(struct sk_buff *skb,
2162 struct packet_type *pt_prev,
2163 struct net_device *orig_dev)
2164{
2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 return -ENOMEM;
2167 refcount_inc(&skb->users);
2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169}
2170
2171static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 struct packet_type **pt,
2173 struct net_device *orig_dev,
2174 __be16 type,
2175 struct list_head *ptype_list)
2176{
2177 struct packet_type *ptype, *pt_prev = *pt;
2178
2179 list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 if (ptype->type != type)
2181 continue;
2182 if (pt_prev)
2183 deliver_skb(skb, pt_prev, orig_dev);
2184 pt_prev = ptype;
2185 }
2186 *pt = pt_prev;
2187}
2188
2189static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190{
2191 if (!ptype->af_packet_priv || !skb->sk)
2192 return false;
2193
2194 if (ptype->id_match)
2195 return ptype->id_match(ptype, skb->sk);
2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 return true;
2198
2199 return false;
2200}
2201
2202/**
2203 * dev_nit_active - return true if any network interface taps are in use
2204 *
2205 * @dev: network device to check for the presence of taps
2206 */
2207bool dev_nit_active(struct net_device *dev)
2208{
2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210}
2211EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213/*
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2216 */
2217
2218void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219{
2220 struct packet_type *ptype;
2221 struct sk_buff *skb2 = NULL;
2222 struct packet_type *pt_prev = NULL;
2223 struct list_head *ptype_list = &ptype_all;
2224
2225 rcu_read_lock();
2226again:
2227 list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 if (ptype->ignore_outgoing)
2229 continue;
2230
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2233 */
2234 if (skb_loop_sk(ptype, skb))
2235 continue;
2236
2237 if (pt_prev) {
2238 deliver_skb(skb2, pt_prev, skb->dev);
2239 pt_prev = ptype;
2240 continue;
2241 }
2242
2243 /* need to clone skb, done only once */
2244 skb2 = skb_clone(skb, GFP_ATOMIC);
2245 if (!skb2)
2246 goto out_unlock;
2247
2248 net_timestamp_set(skb2);
2249
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2253 */
2254 skb_reset_mac_header(skb2);
2255
2256 if (skb_network_header(skb2) < skb2->data ||
2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2->protocol),
2260 dev->name);
2261 skb_reset_network_header(skb2);
2262 }
2263
2264 skb2->transport_header = skb2->network_header;
2265 skb2->pkt_type = PACKET_OUTGOING;
2266 pt_prev = ptype;
2267 }
2268
2269 if (ptype_list == &ptype_all) {
2270 ptype_list = &dev->ptype_all;
2271 goto again;
2272 }
2273out_unlock:
2274 if (pt_prev) {
2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 else
2278 kfree_skb(skb2);
2279 }
2280 rcu_read_unlock();
2281}
2282EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284/**
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286 * @dev: Network device
2287 * @txq: number of queues available
2288 *
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2296 */
2297static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298{
2299 int i;
2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc->offset + tc->count > txq) {
2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 dev->num_tc = 0;
2306 return;
2307 }
2308
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i = 1; i < TC_BITMASK + 1; i++) {
2311 int q = netdev_get_prio_tc_map(dev, i);
2312
2313 tc = &dev->tc_to_txq[q];
2314 if (tc->offset + tc->count > txq) {
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 i, q);
2317 netdev_set_prio_tc_map(dev, i, 0);
2318 }
2319 }
2320}
2321
2322int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323{
2324 if (dev->num_tc) {
2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 int i;
2327
2328 /* walk through the TCs and see if it falls into any of them */
2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 if ((txq - tc->offset) < tc->count)
2331 return i;
2332 }
2333
2334 /* didn't find it, just return -1 to indicate no match */
2335 return -1;
2336 }
2337
2338 return 0;
2339}
2340EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342#ifdef CONFIG_XPS
2343struct static_key xps_needed __read_mostly;
2344EXPORT_SYMBOL(xps_needed);
2345struct static_key xps_rxqs_needed __read_mostly;
2346EXPORT_SYMBOL(xps_rxqs_needed);
2347static DEFINE_MUTEX(xps_map_mutex);
2348#define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 int tci, u16 index)
2353{
2354 struct xps_map *map = NULL;
2355 int pos;
2356
2357 if (dev_maps)
2358 map = xmap_dereference(dev_maps->attr_map[tci]);
2359 if (!map)
2360 return false;
2361
2362 for (pos = map->len; pos--;) {
2363 if (map->queues[pos] != index)
2364 continue;
2365
2366 if (map->len > 1) {
2367 map->queues[pos] = map->queues[--map->len];
2368 break;
2369 }
2370
2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 kfree_rcu(map, rcu);
2373 return false;
2374 }
2375
2376 return true;
2377}
2378
2379static bool remove_xps_queue_cpu(struct net_device *dev,
2380 struct xps_dev_maps *dev_maps,
2381 int cpu, u16 offset, u16 count)
2382{
2383 int num_tc = dev->num_tc ? : 1;
2384 bool active = false;
2385 int tci;
2386
2387 for (tci = cpu * num_tc; num_tc--; tci++) {
2388 int i, j;
2389
2390 for (i = count, j = offset; i--; j++) {
2391 if (!remove_xps_queue(dev_maps, tci, j))
2392 break;
2393 }
2394
2395 active |= i < 0;
2396 }
2397
2398 return active;
2399}
2400
2401static void reset_xps_maps(struct net_device *dev,
2402 struct xps_dev_maps *dev_maps,
2403 bool is_rxqs_map)
2404{
2405 if (is_rxqs_map) {
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 } else {
2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 }
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 kfree_rcu(dev_maps, rcu);
2413}
2414
2415static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 u16 offset, u16 count, bool is_rxqs_map)
2418{
2419 bool active = false;
2420 int i, j;
2421
2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 j < nr_ids;)
2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 count);
2426 if (!active)
2427 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429 if (!is_rxqs_map) {
2430 for (i = offset + (count - 1); count--; i--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev, i),
2433 NUMA_NO_NODE);
2434 }
2435 }
2436}
2437
2438static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 u16 count)
2440{
2441 const unsigned long *possible_mask = NULL;
2442 struct xps_dev_maps *dev_maps;
2443 unsigned int nr_ids;
2444
2445 if (!static_key_false(&xps_needed))
2446 return;
2447
2448 cpus_read_lock();
2449 mutex_lock(&xps_map_mutex);
2450
2451 if (static_key_false(&xps_rxqs_needed)) {
2452 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 if (dev_maps) {
2454 nr_ids = dev->num_rx_queues;
2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 offset, count, true);
2457 }
2458 }
2459
2460 dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 if (!dev_maps)
2462 goto out_no_maps;
2463
2464 if (num_possible_cpus() > 1)
2465 possible_mask = cpumask_bits(cpu_possible_mask);
2466 nr_ids = nr_cpu_ids;
2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 false);
2469
2470out_no_maps:
2471 mutex_unlock(&xps_map_mutex);
2472 cpus_read_unlock();
2473}
2474
2475static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476{
2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478}
2479
2480static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 u16 index, bool is_rxqs_map)
2482{
2483 struct xps_map *new_map;
2484 int alloc_len = XPS_MIN_MAP_ALLOC;
2485 int i, pos;
2486
2487 for (pos = 0; map && pos < map->len; pos++) {
2488 if (map->queues[pos] != index)
2489 continue;
2490 return map;
2491 }
2492
2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 if (map) {
2495 if (pos < map->alloc_len)
2496 return map;
2497
2498 alloc_len = map->alloc_len * 2;
2499 }
2500
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 * map
2503 */
2504 if (is_rxqs_map)
2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 else
2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 cpu_to_node(attr_index));
2509 if (!new_map)
2510 return NULL;
2511
2512 for (i = 0; i < pos; i++)
2513 new_map->queues[i] = map->queues[i];
2514 new_map->alloc_len = alloc_len;
2515 new_map->len = pos;
2516
2517 return new_map;
2518}
2519
2520/* Must be called under cpus_read_lock */
2521int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 u16 index, bool is_rxqs_map)
2523{
2524 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 int i, j, tci, numa_node_id = -2;
2527 int maps_sz, num_tc = 1, tc = 0;
2528 struct xps_map *map, *new_map;
2529 bool active = false;
2530 unsigned int nr_ids;
2531
2532 if (dev->num_tc) {
2533 /* Do not allow XPS on subordinate device directly */
2534 num_tc = dev->num_tc;
2535 if (num_tc < 0)
2536 return -EINVAL;
2537
2538 /* If queue belongs to subordinate dev use its map */
2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541 tc = netdev_txq_to_tc(dev, index);
2542 if (tc < 0)
2543 return -EINVAL;
2544 }
2545
2546 mutex_lock(&xps_map_mutex);
2547 if (is_rxqs_map) {
2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 nr_ids = dev->num_rx_queues;
2551 } else {
2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 if (num_possible_cpus() > 1) {
2554 online_mask = cpumask_bits(cpu_online_mask);
2555 possible_mask = cpumask_bits(cpu_possible_mask);
2556 }
2557 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 nr_ids = nr_cpu_ids;
2559 }
2560
2561 if (maps_sz < L1_CACHE_BYTES)
2562 maps_sz = L1_CACHE_BYTES;
2563
2564 /* allocate memory for queue storage */
2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 j < nr_ids;) {
2567 if (!new_dev_maps)
2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 if (!new_dev_maps) {
2570 mutex_unlock(&xps_map_mutex);
2571 return -ENOMEM;
2572 }
2573
2574 tci = j * num_tc + tc;
2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 NULL;
2577
2578 map = expand_xps_map(map, j, index, is_rxqs_map);
2579 if (!map)
2580 goto error;
2581
2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 }
2584
2585 if (!new_dev_maps)
2586 goto out_no_new_maps;
2587
2588 if (!dev_maps) {
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed);
2591 if (is_rxqs_map)
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 }
2594
2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 j < nr_ids;) {
2597 /* copy maps belonging to foreign traffic classes */
2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 /* fill in the new device map from the old device map */
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 }
2603
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2606 */
2607 tci = j * num_tc + tc;
2608
2609 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 netif_attr_test_online(j, online_mask, nr_ids)) {
2611 /* add tx-queue to CPU/rx-queue maps */
2612 int pos = 0;
2613
2614 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 while ((pos < map->len) && (map->queues[pos] != index))
2616 pos++;
2617
2618 if (pos == map->len)
2619 map->queues[map->len++] = index;
2620#ifdef CONFIG_NUMA
2621 if (!is_rxqs_map) {
2622 if (numa_node_id == -2)
2623 numa_node_id = cpu_to_node(j);
2624 else if (numa_node_id != cpu_to_node(j))
2625 numa_node_id = -1;
2626 }
2627#endif
2628 } else if (dev_maps) {
2629 /* fill in the new device map from the old device map */
2630 map = xmap_dereference(dev_maps->attr_map[tci]);
2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 }
2633
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 /* fill in the new device map from the old device map */
2637 map = xmap_dereference(dev_maps->attr_map[tci]);
2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 }
2640 }
2641
2642 if (is_rxqs_map)
2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 else
2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647 /* Cleanup old maps */
2648 if (!dev_maps)
2649 goto out_no_old_maps;
2650
2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 j < nr_ids;) {
2653 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 map = xmap_dereference(dev_maps->attr_map[tci]);
2656 if (map && map != new_map)
2657 kfree_rcu(map, rcu);
2658 }
2659 }
2660
2661 kfree_rcu(dev_maps, rcu);
2662
2663out_no_old_maps:
2664 dev_maps = new_dev_maps;
2665 active = true;
2666
2667out_no_new_maps:
2668 if (!is_rxqs_map) {
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 (numa_node_id >= 0) ?
2672 numa_node_id : NUMA_NO_NODE);
2673 }
2674
2675 if (!dev_maps)
2676 goto out_no_maps;
2677
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 j < nr_ids;) {
2681 for (i = tc, tci = j * num_tc; i--; tci++)
2682 active |= remove_xps_queue(dev_maps, tci, index);
2683 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 !netif_attr_test_online(j, online_mask, nr_ids))
2685 active |= remove_xps_queue(dev_maps, tci, index);
2686 for (i = num_tc - tc, tci++; --i; tci++)
2687 active |= remove_xps_queue(dev_maps, tci, index);
2688 }
2689
2690 /* free map if not active */
2691 if (!active)
2692 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694out_no_maps:
2695 mutex_unlock(&xps_map_mutex);
2696
2697 return 0;
2698error:
2699 /* remove any maps that we added */
2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 j < nr_ids;) {
2702 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 map = dev_maps ?
2705 xmap_dereference(dev_maps->attr_map[tci]) :
2706 NULL;
2707 if (new_map && new_map != map)
2708 kfree(new_map);
2709 }
2710 }
2711
2712 mutex_unlock(&xps_map_mutex);
2713
2714 kfree(new_dev_maps);
2715 return -ENOMEM;
2716}
2717EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 u16 index)
2721{
2722 int ret;
2723
2724 cpus_read_lock();
2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 cpus_read_unlock();
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732#endif
2733static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734{
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 /* Unbind any subordinate channels */
2738 while (txq-- != &dev->_tx[0]) {
2739 if (txq->sb_dev)
2740 netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 }
2742}
2743
2744void netdev_reset_tc(struct net_device *dev)
2745{
2746#ifdef CONFIG_XPS
2747 netif_reset_xps_queues_gt(dev, 0);
2748#endif
2749 netdev_unbind_all_sb_channels(dev);
2750
2751 /* Reset TC configuration of device */
2752 dev->num_tc = 0;
2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755}
2756EXPORT_SYMBOL(netdev_reset_tc);
2757
2758int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759{
2760 if (tc >= dev->num_tc)
2761 return -EINVAL;
2762
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues(dev, offset, count);
2765#endif
2766 dev->tc_to_txq[tc].count = count;
2767 dev->tc_to_txq[tc].offset = offset;
2768 return 0;
2769}
2770EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773{
2774 if (num_tc > TC_MAX_QUEUE)
2775 return -EINVAL;
2776
2777#ifdef CONFIG_XPS
2778 netif_reset_xps_queues_gt(dev, 0);
2779#endif
2780 netdev_unbind_all_sb_channels(dev);
2781
2782 dev->num_tc = num_tc;
2783 return 0;
2784}
2785EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787void netdev_unbind_sb_channel(struct net_device *dev,
2788 struct net_device *sb_dev)
2789{
2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792#ifdef CONFIG_XPS
2793 netif_reset_xps_queues_gt(sb_dev, 0);
2794#endif
2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798 while (txq-- != &dev->_tx[0]) {
2799 if (txq->sb_dev == sb_dev)
2800 txq->sb_dev = NULL;
2801 }
2802}
2803EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 struct net_device *sb_dev,
2807 u8 tc, u16 count, u16 offset)
2808{
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 return -EINVAL;
2812
2813 /* We cannot hand out queues we don't have */
2814 if ((offset + count) > dev->real_num_tx_queues)
2815 return -EINVAL;
2816
2817 /* Record the mapping */
2818 sb_dev->tc_to_txq[tc].count = count;
2819 sb_dev->tc_to_txq[tc].offset = offset;
2820
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2823 */
2824 while (count--)
2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832{
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev))
2835 return -ENODEV;
2836
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2841 */
2842 if (channel > S16_MAX)
2843 return -EINVAL;
2844
2845 dev->num_tc = -channel;
2846
2847 return 0;
2848}
2849EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851/*
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854 */
2855int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856{
2857 bool disabling;
2858 int rc;
2859
2860 disabling = txq < dev->real_num_tx_queues;
2861
2862 if (txq < 1 || txq > dev->num_tx_queues)
2863 return -EINVAL;
2864
2865 if (dev->reg_state == NETREG_REGISTERED ||
2866 dev->reg_state == NETREG_UNREGISTERING) {
2867 ASSERT_RTNL();
2868
2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 txq);
2871 if (rc)
2872 return rc;
2873
2874 if (dev->num_tc)
2875 netif_setup_tc(dev, txq);
2876
2877 dev->real_num_tx_queues = txq;
2878
2879 if (disabling) {
2880 synchronize_net();
2881 qdisc_reset_all_tx_gt(dev, txq);
2882#ifdef CONFIG_XPS
2883 netif_reset_xps_queues_gt(dev, txq);
2884#endif
2885 }
2886 } else {
2887 dev->real_num_tx_queues = txq;
2888 }
2889
2890 return 0;
2891}
2892EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894#ifdef CONFIG_SYSFS
2895/**
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2899 *
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
2902 * negative error code. If called before registration, it always
2903 * succeeds.
2904 */
2905int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906{
2907 int rc;
2908
2909 if (rxq < 1 || rxq > dev->num_rx_queues)
2910 return -EINVAL;
2911
2912 if (dev->reg_state == NETREG_REGISTERED) {
2913 ASSERT_RTNL();
2914
2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 rxq);
2917 if (rc)
2918 return rc;
2919 }
2920
2921 dev->real_num_rx_queues = rxq;
2922 return 0;
2923}
2924EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925#endif
2926
2927/**
2928 * netif_get_num_default_rss_queues - default number of RSS queues
2929 *
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2932 */
2933int netif_get_num_default_rss_queues(void)
2934{
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937}
2938EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940static void __netif_reschedule(struct Qdisc *q)
2941{
2942 struct softnet_data *sd;
2943 unsigned long flags;
2944
2945 local_irq_save(flags);
2946 sd = this_cpu_ptr(&softnet_data);
2947 q->next_sched = NULL;
2948 *sd->output_queue_tailp = q;
2949 sd->output_queue_tailp = &q->next_sched;
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 local_irq_restore(flags);
2952}
2953
2954void __netif_schedule(struct Qdisc *q)
2955{
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 __netif_reschedule(q);
2958}
2959EXPORT_SYMBOL(__netif_schedule);
2960
2961struct dev_kfree_skb_cb {
2962 enum skb_free_reason reason;
2963};
2964
2965static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966{
2967 return (struct dev_kfree_skb_cb *)skb->cb;
2968}
2969
2970void netif_schedule_queue(struct netdev_queue *txq)
2971{
2972 rcu_read_lock();
2973 if (!netif_xmit_stopped(txq)) {
2974 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976 __netif_schedule(q);
2977 }
2978 rcu_read_unlock();
2979}
2980EXPORT_SYMBOL(netif_schedule_queue);
2981
2982void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983{
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 struct Qdisc *q;
2986
2987 rcu_read_lock();
2988 q = rcu_dereference(dev_queue->qdisc);
2989 __netif_schedule(q);
2990 rcu_read_unlock();
2991 }
2992}
2993EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996{
2997 unsigned long flags;
2998
2999 if (unlikely(!skb))
3000 return;
3001
3002 if (likely(refcount_read(&skb->users) == 1)) {
3003 smp_rmb();
3004 refcount_set(&skb->users, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 return;
3007 }
3008 get_kfree_skb_cb(skb)->reason = reason;
3009 local_irq_save(flags);
3010 skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 __this_cpu_write(softnet_data.completion_queue, skb);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 local_irq_restore(flags);
3014}
3015EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018{
3019 if (in_irq() || irqs_disabled())
3020 __dev_kfree_skb_irq(skb, reason);
3021 else
3022 dev_kfree_skb(skb);
3023}
3024EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027/**
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3030 *
3031 * Mark device as removed from system and therefore no longer available.
3032 */
3033void netif_device_detach(struct net_device *dev)
3034{
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 netif_running(dev)) {
3037 netif_tx_stop_all_queues(dev);
3038 }
3039}
3040EXPORT_SYMBOL(netif_device_detach);
3041
3042/**
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3045 *
3046 * Mark device as attached from system and restart if needed.
3047 */
3048void netif_device_attach(struct net_device *dev)
3049{
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 netif_running(dev)) {
3052 netif_tx_wake_all_queues(dev);
3053 __netdev_watchdog_up(dev);
3054 }
3055}
3056EXPORT_SYMBOL(netif_device_attach);
3057
3058/*
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3061 */
3062static u16 skb_tx_hash(const struct net_device *dev,
3063 const struct net_device *sb_dev,
3064 struct sk_buff *skb)
3065{
3066 u32 hash;
3067 u16 qoffset = 0;
3068 u16 qcount = dev->real_num_tx_queues;
3069
3070 if (dev->num_tc) {
3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073 qoffset = sb_dev->tc_to_txq[tc].offset;
3074 qcount = sb_dev->tc_to_txq[tc].count;
3075 }
3076
3077 if (skb_rx_queue_recorded(skb)) {
3078 hash = skb_get_rx_queue(skb);
3079 while (unlikely(hash >= qcount))
3080 hash -= qcount;
3081 return hash + qoffset;
3082 }
3083
3084 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3085}
3086
3087static void skb_warn_bad_offload(const struct sk_buff *skb)
3088{
3089 static const netdev_features_t null_features;
3090 struct net_device *dev = skb->dev;
3091 const char *name = "";
3092
3093 if (!net_ratelimit())
3094 return;
3095
3096 if (dev) {
3097 if (dev->dev.parent)
3098 name = dev_driver_string(dev->dev.parent);
3099 else
3100 name = netdev_name(dev);
3101 }
3102 skb_dump(KERN_WARNING, skb, false);
3103 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3104 name, dev ? &dev->features : &null_features,
3105 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3106}
3107
3108/*
3109 * Invalidate hardware checksum when packet is to be mangled, and
3110 * complete checksum manually on outgoing path.
3111 */
3112int skb_checksum_help(struct sk_buff *skb)
3113{
3114 __wsum csum;
3115 int ret = 0, offset;
3116
3117 if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 goto out_set_summed;
3119
3120 if (unlikely(skb_shinfo(skb)->gso_size)) {
3121 skb_warn_bad_offload(skb);
3122 return -EINVAL;
3123 }
3124
3125 /* Before computing a checksum, we should make sure no frag could
3126 * be modified by an external entity : checksum could be wrong.
3127 */
3128 if (skb_has_shared_frag(skb)) {
3129 ret = __skb_linearize(skb);
3130 if (ret)
3131 goto out;
3132 }
3133
3134 offset = skb_checksum_start_offset(skb);
3135 BUG_ON(offset >= skb_headlen(skb));
3136 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3137
3138 offset += skb->csum_offset;
3139 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3140
3141 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3142 if (ret)
3143 goto out;
3144
3145 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3146out_set_summed:
3147 skb->ip_summed = CHECKSUM_NONE;
3148out:
3149 return ret;
3150}
3151EXPORT_SYMBOL(skb_checksum_help);
3152
3153int skb_crc32c_csum_help(struct sk_buff *skb)
3154{
3155 __le32 crc32c_csum;
3156 int ret = 0, offset, start;
3157
3158 if (skb->ip_summed != CHECKSUM_PARTIAL)
3159 goto out;
3160
3161 if (unlikely(skb_is_gso(skb)))
3162 goto out;
3163
3164 /* Before computing a checksum, we should make sure no frag could
3165 * be modified by an external entity : checksum could be wrong.
3166 */
3167 if (unlikely(skb_has_shared_frag(skb))) {
3168 ret = __skb_linearize(skb);
3169 if (ret)
3170 goto out;
3171 }
3172 start = skb_checksum_start_offset(skb);
3173 offset = start + offsetof(struct sctphdr, checksum);
3174 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3175 ret = -EINVAL;
3176 goto out;
3177 }
3178
3179 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3180 if (ret)
3181 goto out;
3182
3183 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3184 skb->len - start, ~(__u32)0,
3185 crc32c_csum_stub));
3186 *(__le32 *)(skb->data + offset) = crc32c_csum;
3187 skb->ip_summed = CHECKSUM_NONE;
3188 skb->csum_not_inet = 0;
3189out:
3190 return ret;
3191}
3192
3193__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3194{
3195 __be16 type = skb->protocol;
3196
3197 /* Tunnel gso handlers can set protocol to ethernet. */
3198 if (type == htons(ETH_P_TEB)) {
3199 struct ethhdr *eth;
3200
3201 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3202 return 0;
3203
3204 eth = (struct ethhdr *)skb->data;
3205 type = eth->h_proto;
3206 }
3207
3208 return __vlan_get_protocol(skb, type, depth);
3209}
3210
3211/**
3212 * skb_mac_gso_segment - mac layer segmentation handler.
3213 * @skb: buffer to segment
3214 * @features: features for the output path (see dev->features)
3215 */
3216struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3217 netdev_features_t features)
3218{
3219 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3220 struct packet_offload *ptype;
3221 int vlan_depth = skb->mac_len;
3222 __be16 type = skb_network_protocol(skb, &vlan_depth);
3223
3224 if (unlikely(!type))
3225 return ERR_PTR(-EINVAL);
3226
3227 __skb_pull(skb, vlan_depth);
3228
3229 rcu_read_lock();
3230 list_for_each_entry_rcu(ptype, &offload_base, list) {
3231 if (ptype->type == type && ptype->callbacks.gso_segment) {
3232 segs = ptype->callbacks.gso_segment(skb, features);
3233 break;
3234 }
3235 }
3236 rcu_read_unlock();
3237
3238 __skb_push(skb, skb->data - skb_mac_header(skb));
3239
3240 return segs;
3241}
3242EXPORT_SYMBOL(skb_mac_gso_segment);
3243
3244
3245/* openvswitch calls this on rx path, so we need a different check.
3246 */
3247static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3248{
3249 if (tx_path)
3250 return skb->ip_summed != CHECKSUM_PARTIAL &&
3251 skb->ip_summed != CHECKSUM_UNNECESSARY;
3252
3253 return skb->ip_summed == CHECKSUM_NONE;
3254}
3255
3256/**
3257 * __skb_gso_segment - Perform segmentation on skb.
3258 * @skb: buffer to segment
3259 * @features: features for the output path (see dev->features)
3260 * @tx_path: whether it is called in TX path
3261 *
3262 * This function segments the given skb and returns a list of segments.
3263 *
3264 * It may return NULL if the skb requires no segmentation. This is
3265 * only possible when GSO is used for verifying header integrity.
3266 *
3267 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3268 */
3269struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3270 netdev_features_t features, bool tx_path)
3271{
3272 struct sk_buff *segs;
3273
3274 if (unlikely(skb_needs_check(skb, tx_path))) {
3275 int err;
3276
3277 /* We're going to init ->check field in TCP or UDP header */
3278 err = skb_cow_head(skb, 0);
3279 if (err < 0)
3280 return ERR_PTR(err);
3281 }
3282
3283 /* Only report GSO partial support if it will enable us to
3284 * support segmentation on this frame without needing additional
3285 * work.
3286 */
3287 if (features & NETIF_F_GSO_PARTIAL) {
3288 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3289 struct net_device *dev = skb->dev;
3290
3291 partial_features |= dev->features & dev->gso_partial_features;
3292 if (!skb_gso_ok(skb, features | partial_features))
3293 features &= ~NETIF_F_GSO_PARTIAL;
3294 }
3295
3296 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3297 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3298
3299 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3300 SKB_GSO_CB(skb)->encap_level = 0;
3301
3302 skb_reset_mac_header(skb);
3303 skb_reset_mac_len(skb);
3304
3305 segs = skb_mac_gso_segment(skb, features);
3306
3307 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3308 skb_warn_bad_offload(skb);
3309
3310 return segs;
3311}
3312EXPORT_SYMBOL(__skb_gso_segment);
3313
3314/* Take action when hardware reception checksum errors are detected. */
3315#ifdef CONFIG_BUG
3316void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3317{
3318 if (net_ratelimit()) {
3319 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3320 skb_dump(KERN_ERR, skb, true);
3321 dump_stack();
3322 }
3323}
3324EXPORT_SYMBOL(netdev_rx_csum_fault);
3325#endif
3326
3327/* XXX: check that highmem exists at all on the given machine. */
3328static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3329{
3330#ifdef CONFIG_HIGHMEM
3331 int i;
3332
3333 if (!(dev->features & NETIF_F_HIGHDMA)) {
3334 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3335 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3336
3337 if (PageHighMem(skb_frag_page(frag)))
3338 return 1;
3339 }
3340 }
3341#endif
3342 return 0;
3343}
3344
3345/* If MPLS offload request, verify we are testing hardware MPLS features
3346 * instead of standard features for the netdev.
3347 */
3348#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3349static netdev_features_t net_mpls_features(struct sk_buff *skb,
3350 netdev_features_t features,
3351 __be16 type)
3352{
3353 if (eth_p_mpls(type))
3354 features &= skb->dev->mpls_features;
3355
3356 return features;
3357}
3358#else
3359static netdev_features_t net_mpls_features(struct sk_buff *skb,
3360 netdev_features_t features,
3361 __be16 type)
3362{
3363 return features;
3364}
3365#endif
3366
3367static netdev_features_t harmonize_features(struct sk_buff *skb,
3368 netdev_features_t features)
3369{
3370 int tmp;
3371 __be16 type;
3372
3373 type = skb_network_protocol(skb, &tmp);
3374 features = net_mpls_features(skb, features, type);
3375
3376 if (skb->ip_summed != CHECKSUM_NONE &&
3377 !can_checksum_protocol(features, type)) {
3378 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3379 }
3380 if (illegal_highdma(skb->dev, skb))
3381 features &= ~NETIF_F_SG;
3382
3383 return features;
3384}
3385
3386netdev_features_t passthru_features_check(struct sk_buff *skb,
3387 struct net_device *dev,
3388 netdev_features_t features)
3389{
3390 return features;
3391}
3392EXPORT_SYMBOL(passthru_features_check);
3393
3394static netdev_features_t dflt_features_check(struct sk_buff *skb,
3395 struct net_device *dev,
3396 netdev_features_t features)
3397{
3398 return vlan_features_check(skb, features);
3399}
3400
3401static netdev_features_t gso_features_check(const struct sk_buff *skb,
3402 struct net_device *dev,
3403 netdev_features_t features)
3404{
3405 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3406
3407 if (gso_segs > dev->gso_max_segs)
3408 return features & ~NETIF_F_GSO_MASK;
3409
3410 /* Support for GSO partial features requires software
3411 * intervention before we can actually process the packets
3412 * so we need to strip support for any partial features now
3413 * and we can pull them back in after we have partially
3414 * segmented the frame.
3415 */
3416 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3417 features &= ~dev->gso_partial_features;
3418
3419 /* Make sure to clear the IPv4 ID mangling feature if the
3420 * IPv4 header has the potential to be fragmented.
3421 */
3422 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3423 struct iphdr *iph = skb->encapsulation ?
3424 inner_ip_hdr(skb) : ip_hdr(skb);
3425
3426 if (!(iph->frag_off & htons(IP_DF)))
3427 features &= ~NETIF_F_TSO_MANGLEID;
3428 }
3429
3430 return features;
3431}
3432
3433netdev_features_t netif_skb_features(struct sk_buff *skb)
3434{
3435 struct net_device *dev = skb->dev;
3436 netdev_features_t features = dev->features;
3437
3438 if (skb_is_gso(skb))
3439 features = gso_features_check(skb, dev, features);
3440
3441 /* If encapsulation offload request, verify we are testing
3442 * hardware encapsulation features instead of standard
3443 * features for the netdev
3444 */
3445 if (skb->encapsulation)
3446 features &= dev->hw_enc_features;
3447
3448 if (skb_vlan_tagged(skb))
3449 features = netdev_intersect_features(features,
3450 dev->vlan_features |
3451 NETIF_F_HW_VLAN_CTAG_TX |
3452 NETIF_F_HW_VLAN_STAG_TX);
3453
3454 if (dev->netdev_ops->ndo_features_check)
3455 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3456 features);
3457 else
3458 features &= dflt_features_check(skb, dev, features);
3459
3460 return harmonize_features(skb, features);
3461}
3462EXPORT_SYMBOL(netif_skb_features);
3463
3464static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3465 struct netdev_queue *txq, bool more)
3466{
3467 unsigned int len;
3468 int rc;
3469
3470 if (dev_nit_active(dev))
3471 dev_queue_xmit_nit(skb, dev);
3472
3473 len = skb->len;
3474 trace_net_dev_start_xmit(skb, dev);
3475 rc = netdev_start_xmit(skb, dev, txq, more);
3476 trace_net_dev_xmit(skb, rc, dev, len);
3477
3478 return rc;
3479}
3480
3481struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3482 struct netdev_queue *txq, int *ret)
3483{
3484 struct sk_buff *skb = first;
3485 int rc = NETDEV_TX_OK;
3486
3487 while (skb) {
3488 struct sk_buff *next = skb->next;
3489
3490 skb_mark_not_on_list(skb);
3491 rc = xmit_one(skb, dev, txq, next != NULL);
3492 if (unlikely(!dev_xmit_complete(rc))) {
3493 skb->next = next;
3494 goto out;
3495 }
3496
3497 skb = next;
3498 if (netif_tx_queue_stopped(txq) && skb) {
3499 rc = NETDEV_TX_BUSY;
3500 break;
3501 }
3502 }
3503
3504out:
3505 *ret = rc;
3506 return skb;
3507}
3508
3509static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3510 netdev_features_t features)
3511{
3512 if (skb_vlan_tag_present(skb) &&
3513 !vlan_hw_offload_capable(features, skb->vlan_proto))
3514 skb = __vlan_hwaccel_push_inside(skb);
3515 return skb;
3516}
3517
3518int skb_csum_hwoffload_help(struct sk_buff *skb,
3519 const netdev_features_t features)
3520{
3521 if (unlikely(skb->csum_not_inet))
3522 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3523 skb_crc32c_csum_help(skb);
3524
3525 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3526}
3527EXPORT_SYMBOL(skb_csum_hwoffload_help);
3528
3529static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3530{
3531 netdev_features_t features;
3532
3533 features = netif_skb_features(skb);
3534 skb = validate_xmit_vlan(skb, features);
3535 if (unlikely(!skb))
3536 goto out_null;
3537
3538 skb = sk_validate_xmit_skb(skb, dev);
3539 if (unlikely(!skb))
3540 goto out_null;
3541
3542 if (netif_needs_gso(skb, features)) {
3543 struct sk_buff *segs;
3544
3545 segs = skb_gso_segment(skb, features);
3546 if (IS_ERR(segs)) {
3547 goto out_kfree_skb;
3548 } else if (segs) {
3549 consume_skb(skb);
3550 skb = segs;
3551 }
3552 } else {
3553 if (skb_needs_linearize(skb, features) &&
3554 __skb_linearize(skb))
3555 goto out_kfree_skb;
3556
3557 /* If packet is not checksummed and device does not
3558 * support checksumming for this protocol, complete
3559 * checksumming here.
3560 */
3561 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3562 if (skb->encapsulation)
3563 skb_set_inner_transport_header(skb,
3564 skb_checksum_start_offset(skb));
3565 else
3566 skb_set_transport_header(skb,
3567 skb_checksum_start_offset(skb));
3568 if (skb_csum_hwoffload_help(skb, features))
3569 goto out_kfree_skb;
3570 }
3571 }
3572
3573 skb = validate_xmit_xfrm(skb, features, again);
3574
3575 return skb;
3576
3577out_kfree_skb:
3578 kfree_skb(skb);
3579out_null:
3580 atomic_long_inc(&dev->tx_dropped);
3581 return NULL;
3582}
3583
3584struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3585{
3586 struct sk_buff *next, *head = NULL, *tail;
3587
3588 for (; skb != NULL; skb = next) {
3589 next = skb->next;
3590 skb_mark_not_on_list(skb);
3591
3592 /* in case skb wont be segmented, point to itself */
3593 skb->prev = skb;
3594
3595 skb = validate_xmit_skb(skb, dev, again);
3596 if (!skb)
3597 continue;
3598
3599 if (!head)
3600 head = skb;
3601 else
3602 tail->next = skb;
3603 /* If skb was segmented, skb->prev points to
3604 * the last segment. If not, it still contains skb.
3605 */
3606 tail = skb->prev;
3607 }
3608 return head;
3609}
3610EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3611
3612static void qdisc_pkt_len_init(struct sk_buff *skb)
3613{
3614 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3615
3616 qdisc_skb_cb(skb)->pkt_len = skb->len;
3617
3618 /* To get more precise estimation of bytes sent on wire,
3619 * we add to pkt_len the headers size of all segments
3620 */
3621 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3622 unsigned int hdr_len;
3623 u16 gso_segs = shinfo->gso_segs;
3624
3625 /* mac layer + network layer */
3626 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3627
3628 /* + transport layer */
3629 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3630 const struct tcphdr *th;
3631 struct tcphdr _tcphdr;
3632
3633 th = skb_header_pointer(skb, skb_transport_offset(skb),
3634 sizeof(_tcphdr), &_tcphdr);
3635 if (likely(th))
3636 hdr_len += __tcp_hdrlen(th);
3637 } else {
3638 struct udphdr _udphdr;
3639
3640 if (skb_header_pointer(skb, skb_transport_offset(skb),
3641 sizeof(_udphdr), &_udphdr))
3642 hdr_len += sizeof(struct udphdr);
3643 }
3644
3645 if (shinfo->gso_type & SKB_GSO_DODGY)
3646 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3647 shinfo->gso_size);
3648
3649 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3650 }
3651}
3652
3653static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3654 struct net_device *dev,
3655 struct netdev_queue *txq)
3656{
3657 spinlock_t *root_lock = qdisc_lock(q);
3658 struct sk_buff *to_free = NULL;
3659 bool contended;
3660 int rc;
3661
3662 qdisc_calculate_pkt_len(skb, q);
3663
3664 if (q->flags & TCQ_F_NOLOCK) {
3665 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3666 qdisc_run(q);
3667
3668 if (unlikely(to_free))
3669 kfree_skb_list(to_free);
3670 return rc;
3671 }
3672
3673 /*
3674 * Heuristic to force contended enqueues to serialize on a
3675 * separate lock before trying to get qdisc main lock.
3676 * This permits qdisc->running owner to get the lock more
3677 * often and dequeue packets faster.
3678 */
3679 contended = qdisc_is_running(q);
3680 if (unlikely(contended))
3681 spin_lock(&q->busylock);
3682
3683 spin_lock(root_lock);
3684 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3685 __qdisc_drop(skb, &to_free);
3686 rc = NET_XMIT_DROP;
3687 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3688 qdisc_run_begin(q)) {
3689 /*
3690 * This is a work-conserving queue; there are no old skbs
3691 * waiting to be sent out; and the qdisc is not running -
3692 * xmit the skb directly.
3693 */
3694
3695 qdisc_bstats_update(q, skb);
3696
3697 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3698 if (unlikely(contended)) {
3699 spin_unlock(&q->busylock);
3700 contended = false;
3701 }
3702 __qdisc_run(q);
3703 }
3704
3705 qdisc_run_end(q);
3706 rc = NET_XMIT_SUCCESS;
3707 } else {
3708 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3709 if (qdisc_run_begin(q)) {
3710 if (unlikely(contended)) {
3711 spin_unlock(&q->busylock);
3712 contended = false;
3713 }
3714 __qdisc_run(q);
3715 qdisc_run_end(q);
3716 }
3717 }
3718 spin_unlock(root_lock);
3719 if (unlikely(to_free))
3720 kfree_skb_list(to_free);
3721 if (unlikely(contended))
3722 spin_unlock(&q->busylock);
3723 return rc;
3724}
3725
3726#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3727static void skb_update_prio(struct sk_buff *skb)
3728{
3729 const struct netprio_map *map;
3730 const struct sock *sk;
3731 unsigned int prioidx;
3732
3733 if (skb->priority)
3734 return;
3735 map = rcu_dereference_bh(skb->dev->priomap);
3736 if (!map)
3737 return;
3738 sk = skb_to_full_sk(skb);
3739 if (!sk)
3740 return;
3741
3742 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3743
3744 if (prioidx < map->priomap_len)
3745 skb->priority = map->priomap[prioidx];
3746}
3747#else
3748#define skb_update_prio(skb)
3749#endif
3750
3751/**
3752 * dev_loopback_xmit - loop back @skb
3753 * @net: network namespace this loopback is happening in
3754 * @sk: sk needed to be a netfilter okfn
3755 * @skb: buffer to transmit
3756 */
3757int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3758{
3759 skb_reset_mac_header(skb);
3760 __skb_pull(skb, skb_network_offset(skb));
3761 skb->pkt_type = PACKET_LOOPBACK;
3762 skb->ip_summed = CHECKSUM_UNNECESSARY;
3763 WARN_ON(!skb_dst(skb));
3764 skb_dst_force(skb);
3765 netif_rx_ni(skb);
3766 return 0;
3767}
3768EXPORT_SYMBOL(dev_loopback_xmit);
3769
3770#ifdef CONFIG_NET_EGRESS
3771static struct sk_buff *
3772sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3773{
3774 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3775 struct tcf_result cl_res;
3776
3777 if (!miniq)
3778 return skb;
3779
3780 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3781 mini_qdisc_bstats_cpu_update(miniq, skb);
3782
3783 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3784 case TC_ACT_OK:
3785 case TC_ACT_RECLASSIFY:
3786 skb->tc_index = TC_H_MIN(cl_res.classid);
3787 break;
3788 case TC_ACT_SHOT:
3789 mini_qdisc_qstats_cpu_drop(miniq);
3790 *ret = NET_XMIT_DROP;
3791 kfree_skb(skb);
3792 return NULL;
3793 case TC_ACT_STOLEN:
3794 case TC_ACT_QUEUED:
3795 case TC_ACT_TRAP:
3796 *ret = NET_XMIT_SUCCESS;
3797 consume_skb(skb);
3798 return NULL;
3799 case TC_ACT_REDIRECT:
3800 /* No need to push/pop skb's mac_header here on egress! */
3801 skb_do_redirect(skb);
3802 *ret = NET_XMIT_SUCCESS;
3803 return NULL;
3804 default:
3805 break;
3806 }
3807
3808 return skb;
3809}
3810#endif /* CONFIG_NET_EGRESS */
3811
3812#ifdef CONFIG_XPS
3813static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3814 struct xps_dev_maps *dev_maps, unsigned int tci)
3815{
3816 struct xps_map *map;
3817 int queue_index = -1;
3818
3819 if (dev->num_tc) {
3820 tci *= dev->num_tc;
3821 tci += netdev_get_prio_tc_map(dev, skb->priority);
3822 }
3823
3824 map = rcu_dereference(dev_maps->attr_map[tci]);
3825 if (map) {
3826 if (map->len == 1)
3827 queue_index = map->queues[0];
3828 else
3829 queue_index = map->queues[reciprocal_scale(
3830 skb_get_hash(skb), map->len)];
3831 if (unlikely(queue_index >= dev->real_num_tx_queues))
3832 queue_index = -1;
3833 }
3834 return queue_index;
3835}
3836#endif
3837
3838static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3839 struct sk_buff *skb)
3840{
3841#ifdef CONFIG_XPS
3842 struct xps_dev_maps *dev_maps;
3843 struct sock *sk = skb->sk;
3844 int queue_index = -1;
3845
3846 if (!static_key_false(&xps_needed))
3847 return -1;
3848
3849 rcu_read_lock();
3850 if (!static_key_false(&xps_rxqs_needed))
3851 goto get_cpus_map;
3852
3853 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3854 if (dev_maps) {
3855 int tci = sk_rx_queue_get(sk);
3856
3857 if (tci >= 0 && tci < dev->num_rx_queues)
3858 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3859 tci);
3860 }
3861
3862get_cpus_map:
3863 if (queue_index < 0) {
3864 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3865 if (dev_maps) {
3866 unsigned int tci = skb->sender_cpu - 1;
3867
3868 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3869 tci);
3870 }
3871 }
3872 rcu_read_unlock();
3873
3874 return queue_index;
3875#else
3876 return -1;
3877#endif
3878}
3879
3880u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3881 struct net_device *sb_dev)
3882{
3883 return 0;
3884}
3885EXPORT_SYMBOL(dev_pick_tx_zero);
3886
3887u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3888 struct net_device *sb_dev)
3889{
3890 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3891}
3892EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3893
3894u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3895 struct net_device *sb_dev)
3896{
3897 struct sock *sk = skb->sk;
3898 int queue_index = sk_tx_queue_get(sk);
3899
3900 sb_dev = sb_dev ? : dev;
3901
3902 if (queue_index < 0 || skb->ooo_okay ||
3903 queue_index >= dev->real_num_tx_queues) {
3904 int new_index = get_xps_queue(dev, sb_dev, skb);
3905
3906 if (new_index < 0)
3907 new_index = skb_tx_hash(dev, sb_dev, skb);
3908
3909 if (queue_index != new_index && sk &&
3910 sk_fullsock(sk) &&
3911 rcu_access_pointer(sk->sk_dst_cache))
3912 sk_tx_queue_set(sk, new_index);
3913
3914 queue_index = new_index;
3915 }
3916
3917 return queue_index;
3918}
3919EXPORT_SYMBOL(netdev_pick_tx);
3920
3921struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3922 struct sk_buff *skb,
3923 struct net_device *sb_dev)
3924{
3925 int queue_index = 0;
3926
3927#ifdef CONFIG_XPS
3928 u32 sender_cpu = skb->sender_cpu - 1;
3929
3930 if (sender_cpu >= (u32)NR_CPUS)
3931 skb->sender_cpu = raw_smp_processor_id() + 1;
3932#endif
3933
3934 if (dev->real_num_tx_queues != 1) {
3935 const struct net_device_ops *ops = dev->netdev_ops;
3936
3937 if (ops->ndo_select_queue)
3938 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3939 else
3940 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3941
3942 queue_index = netdev_cap_txqueue(dev, queue_index);
3943 }
3944
3945 skb_set_queue_mapping(skb, queue_index);
3946 return netdev_get_tx_queue(dev, queue_index);
3947}
3948
3949/**
3950 * __dev_queue_xmit - transmit a buffer
3951 * @skb: buffer to transmit
3952 * @sb_dev: suboordinate device used for L2 forwarding offload
3953 *
3954 * Queue a buffer for transmission to a network device. The caller must
3955 * have set the device and priority and built the buffer before calling
3956 * this function. The function can be called from an interrupt.
3957 *
3958 * A negative errno code is returned on a failure. A success does not
3959 * guarantee the frame will be transmitted as it may be dropped due
3960 * to congestion or traffic shaping.
3961 *
3962 * -----------------------------------------------------------------------------------
3963 * I notice this method can also return errors from the queue disciplines,
3964 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3965 * be positive.
3966 *
3967 * Regardless of the return value, the skb is consumed, so it is currently
3968 * difficult to retry a send to this method. (You can bump the ref count
3969 * before sending to hold a reference for retry if you are careful.)
3970 *
3971 * When calling this method, interrupts MUST be enabled. This is because
3972 * the BH enable code must have IRQs enabled so that it will not deadlock.
3973 * --BLG
3974 */
3975static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3976{
3977 struct net_device *dev = skb->dev;
3978 struct netdev_queue *txq;
3979 struct Qdisc *q;
3980 int rc = -ENOMEM;
3981 bool again = false;
3982
3983 skb_reset_mac_header(skb);
3984
3985 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3986 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3987
3988 /* Disable soft irqs for various locks below. Also
3989 * stops preemption for RCU.
3990 */
3991 rcu_read_lock_bh();
3992
3993 skb_update_prio(skb);
3994
3995 qdisc_pkt_len_init(skb);
3996#ifdef CONFIG_NET_CLS_ACT
3997 skb->tc_at_ingress = 0;
3998# ifdef CONFIG_NET_EGRESS
3999 if (static_branch_unlikely(&egress_needed_key)) {
4000 skb = sch_handle_egress(skb, &rc, dev);
4001 if (!skb)
4002 goto out;
4003 }
4004# endif
4005#endif
4006 /* If device/qdisc don't need skb->dst, release it right now while
4007 * its hot in this cpu cache.
4008 */
4009 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4010 skb_dst_drop(skb);
4011 else
4012 skb_dst_force(skb);
4013
4014 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4015 q = rcu_dereference_bh(txq->qdisc);
4016
4017 trace_net_dev_queue(skb);
4018 if (q->enqueue) {
4019 rc = __dev_xmit_skb(skb, q, dev, txq);
4020 goto out;
4021 }
4022
4023 /* The device has no queue. Common case for software devices:
4024 * loopback, all the sorts of tunnels...
4025
4026 * Really, it is unlikely that netif_tx_lock protection is necessary
4027 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4028 * counters.)
4029 * However, it is possible, that they rely on protection
4030 * made by us here.
4031
4032 * Check this and shot the lock. It is not prone from deadlocks.
4033 *Either shot noqueue qdisc, it is even simpler 8)
4034 */
4035 if (dev->flags & IFF_UP) {
4036 int cpu = smp_processor_id(); /* ok because BHs are off */
4037
4038 if (txq->xmit_lock_owner != cpu) {
4039 if (dev_xmit_recursion())
4040 goto recursion_alert;
4041
4042 skb = validate_xmit_skb(skb, dev, &again);
4043 if (!skb)
4044 goto out;
4045
4046 HARD_TX_LOCK(dev, txq, cpu);
4047
4048 if (!netif_xmit_stopped(txq)) {
4049 dev_xmit_recursion_inc();
4050 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4051 dev_xmit_recursion_dec();
4052 if (dev_xmit_complete(rc)) {
4053 HARD_TX_UNLOCK(dev, txq);
4054 goto out;
4055 }
4056 }
4057 HARD_TX_UNLOCK(dev, txq);
4058 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4059 dev->name);
4060 } else {
4061 /* Recursion is detected! It is possible,
4062 * unfortunately
4063 */
4064recursion_alert:
4065 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4066 dev->name);
4067 }
4068 }
4069
4070 rc = -ENETDOWN;
4071 rcu_read_unlock_bh();
4072
4073 atomic_long_inc(&dev->tx_dropped);
4074 kfree_skb_list(skb);
4075 return rc;
4076out:
4077 rcu_read_unlock_bh();
4078 return rc;
4079}
4080
4081int dev_queue_xmit(struct sk_buff *skb)
4082{
4083 return __dev_queue_xmit(skb, NULL);
4084}
4085EXPORT_SYMBOL(dev_queue_xmit);
4086
4087int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4088{
4089 return __dev_queue_xmit(skb, sb_dev);
4090}
4091EXPORT_SYMBOL(dev_queue_xmit_accel);
4092
4093int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4094{
4095 struct net_device *dev = skb->dev;
4096 struct sk_buff *orig_skb = skb;
4097 struct netdev_queue *txq;
4098 int ret = NETDEV_TX_BUSY;
4099 bool again = false;
4100
4101 if (unlikely(!netif_running(dev) ||
4102 !netif_carrier_ok(dev)))
4103 goto drop;
4104
4105 skb = validate_xmit_skb_list(skb, dev, &again);
4106 if (skb != orig_skb)
4107 goto drop;
4108
4109 skb_set_queue_mapping(skb, queue_id);
4110 txq = skb_get_tx_queue(dev, skb);
4111
4112 local_bh_disable();
4113
4114 HARD_TX_LOCK(dev, txq, smp_processor_id());
4115 if (!netif_xmit_frozen_or_drv_stopped(txq))
4116 ret = netdev_start_xmit(skb, dev, txq, false);
4117 HARD_TX_UNLOCK(dev, txq);
4118
4119 local_bh_enable();
4120
4121 if (!dev_xmit_complete(ret))
4122 kfree_skb(skb);
4123
4124 return ret;
4125drop:
4126 atomic_long_inc(&dev->tx_dropped);
4127 kfree_skb_list(skb);
4128 return NET_XMIT_DROP;
4129}
4130EXPORT_SYMBOL(dev_direct_xmit);
4131
4132/*************************************************************************
4133 * Receiver routines
4134 *************************************************************************/
4135
4136int netdev_max_backlog __read_mostly = 1000;
4137EXPORT_SYMBOL(netdev_max_backlog);
4138
4139int netdev_tstamp_prequeue __read_mostly = 1;
4140int netdev_budget __read_mostly = 300;
4141unsigned int __read_mostly netdev_budget_usecs = 2000;
4142int weight_p __read_mostly = 64; /* old backlog weight */
4143int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4144int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4145int dev_rx_weight __read_mostly = 64;
4146int dev_tx_weight __read_mostly = 64;
4147/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4148int gro_normal_batch __read_mostly = 8;
4149
4150/* Called with irq disabled */
4151static inline void ____napi_schedule(struct softnet_data *sd,
4152 struct napi_struct *napi)
4153{
4154 list_add_tail(&napi->poll_list, &sd->poll_list);
4155 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4156}
4157
4158#ifdef CONFIG_RPS
4159
4160/* One global table that all flow-based protocols share. */
4161struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4162EXPORT_SYMBOL(rps_sock_flow_table);
4163u32 rps_cpu_mask __read_mostly;
4164EXPORT_SYMBOL(rps_cpu_mask);
4165
4166struct static_key_false rps_needed __read_mostly;
4167EXPORT_SYMBOL(rps_needed);
4168struct static_key_false rfs_needed __read_mostly;
4169EXPORT_SYMBOL(rfs_needed);
4170
4171static struct rps_dev_flow *
4172set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4173 struct rps_dev_flow *rflow, u16 next_cpu)
4174{
4175 if (next_cpu < nr_cpu_ids) {
4176#ifdef CONFIG_RFS_ACCEL
4177 struct netdev_rx_queue *rxqueue;
4178 struct rps_dev_flow_table *flow_table;
4179 struct rps_dev_flow *old_rflow;
4180 u32 flow_id;
4181 u16 rxq_index;
4182 int rc;
4183
4184 /* Should we steer this flow to a different hardware queue? */
4185 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4186 !(dev->features & NETIF_F_NTUPLE))
4187 goto out;
4188 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4189 if (rxq_index == skb_get_rx_queue(skb))
4190 goto out;
4191
4192 rxqueue = dev->_rx + rxq_index;
4193 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4194 if (!flow_table)
4195 goto out;
4196 flow_id = skb_get_hash(skb) & flow_table->mask;
4197 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4198 rxq_index, flow_id);
4199 if (rc < 0)
4200 goto out;
4201 old_rflow = rflow;
4202 rflow = &flow_table->flows[flow_id];
4203 rflow->filter = rc;
4204 if (old_rflow->filter == rflow->filter)
4205 old_rflow->filter = RPS_NO_FILTER;
4206 out:
4207#endif
4208 rflow->last_qtail =
4209 per_cpu(softnet_data, next_cpu).input_queue_head;
4210 }
4211
4212 rflow->cpu = next_cpu;
4213 return rflow;
4214}
4215
4216/*
4217 * get_rps_cpu is called from netif_receive_skb and returns the target
4218 * CPU from the RPS map of the receiving queue for a given skb.
4219 * rcu_read_lock must be held on entry.
4220 */
4221static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4222 struct rps_dev_flow **rflowp)
4223{
4224 const struct rps_sock_flow_table *sock_flow_table;
4225 struct netdev_rx_queue *rxqueue = dev->_rx;
4226 struct rps_dev_flow_table *flow_table;
4227 struct rps_map *map;
4228 int cpu = -1;
4229 u32 tcpu;
4230 u32 hash;
4231
4232 if (skb_rx_queue_recorded(skb)) {
4233 u16 index = skb_get_rx_queue(skb);
4234
4235 if (unlikely(index >= dev->real_num_rx_queues)) {
4236 WARN_ONCE(dev->real_num_rx_queues > 1,
4237 "%s received packet on queue %u, but number "
4238 "of RX queues is %u\n",
4239 dev->name, index, dev->real_num_rx_queues);
4240 goto done;
4241 }
4242 rxqueue += index;
4243 }
4244
4245 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4246
4247 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4248 map = rcu_dereference(rxqueue->rps_map);
4249 if (!flow_table && !map)
4250 goto done;
4251
4252 skb_reset_network_header(skb);
4253 hash = skb_get_hash(skb);
4254 if (!hash)
4255 goto done;
4256
4257 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4258 if (flow_table && sock_flow_table) {
4259 struct rps_dev_flow *rflow;
4260 u32 next_cpu;
4261 u32 ident;
4262
4263 /* First check into global flow table if there is a match */
4264 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4265 if ((ident ^ hash) & ~rps_cpu_mask)
4266 goto try_rps;
4267
4268 next_cpu = ident & rps_cpu_mask;
4269
4270 /* OK, now we know there is a match,
4271 * we can look at the local (per receive queue) flow table
4272 */
4273 rflow = &flow_table->flows[hash & flow_table->mask];
4274 tcpu = rflow->cpu;
4275
4276 /*
4277 * If the desired CPU (where last recvmsg was done) is
4278 * different from current CPU (one in the rx-queue flow
4279 * table entry), switch if one of the following holds:
4280 * - Current CPU is unset (>= nr_cpu_ids).
4281 * - Current CPU is offline.
4282 * - The current CPU's queue tail has advanced beyond the
4283 * last packet that was enqueued using this table entry.
4284 * This guarantees that all previous packets for the flow
4285 * have been dequeued, thus preserving in order delivery.
4286 */
4287 if (unlikely(tcpu != next_cpu) &&
4288 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4289 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4290 rflow->last_qtail)) >= 0)) {
4291 tcpu = next_cpu;
4292 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4293 }
4294
4295 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4296 *rflowp = rflow;
4297 cpu = tcpu;
4298 goto done;
4299 }
4300 }
4301
4302try_rps:
4303
4304 if (map) {
4305 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4306 if (cpu_online(tcpu)) {
4307 cpu = tcpu;
4308 goto done;
4309 }
4310 }
4311
4312done:
4313 return cpu;
4314}
4315
4316#ifdef CONFIG_RFS_ACCEL
4317
4318/**
4319 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4320 * @dev: Device on which the filter was set
4321 * @rxq_index: RX queue index
4322 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4323 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4324 *
4325 * Drivers that implement ndo_rx_flow_steer() should periodically call
4326 * this function for each installed filter and remove the filters for
4327 * which it returns %true.
4328 */
4329bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4330 u32 flow_id, u16 filter_id)
4331{
4332 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4333 struct rps_dev_flow_table *flow_table;
4334 struct rps_dev_flow *rflow;
4335 bool expire = true;
4336 unsigned int cpu;
4337
4338 rcu_read_lock();
4339 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4340 if (flow_table && flow_id <= flow_table->mask) {
4341 rflow = &flow_table->flows[flow_id];
4342 cpu = READ_ONCE(rflow->cpu);
4343 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4344 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4345 rflow->last_qtail) <
4346 (int)(10 * flow_table->mask)))
4347 expire = false;
4348 }
4349 rcu_read_unlock();
4350 return expire;
4351}
4352EXPORT_SYMBOL(rps_may_expire_flow);
4353
4354#endif /* CONFIG_RFS_ACCEL */
4355
4356/* Called from hardirq (IPI) context */
4357static void rps_trigger_softirq(void *data)
4358{
4359 struct softnet_data *sd = data;
4360
4361 ____napi_schedule(sd, &sd->backlog);
4362 sd->received_rps++;
4363}
4364
4365#endif /* CONFIG_RPS */
4366
4367/*
4368 * Check if this softnet_data structure is another cpu one
4369 * If yes, queue it to our IPI list and return 1
4370 * If no, return 0
4371 */
4372static int rps_ipi_queued(struct softnet_data *sd)
4373{
4374#ifdef CONFIG_RPS
4375 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4376
4377 if (sd != mysd) {
4378 sd->rps_ipi_next = mysd->rps_ipi_list;
4379 mysd->rps_ipi_list = sd;
4380
4381 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4382 return 1;
4383 }
4384#endif /* CONFIG_RPS */
4385 return 0;
4386}
4387
4388#ifdef CONFIG_NET_FLOW_LIMIT
4389int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4390#endif
4391
4392static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4393{
4394#ifdef CONFIG_NET_FLOW_LIMIT
4395 struct sd_flow_limit *fl;
4396 struct softnet_data *sd;
4397 unsigned int old_flow, new_flow;
4398
4399 if (qlen < (netdev_max_backlog >> 1))
4400 return false;
4401
4402 sd = this_cpu_ptr(&softnet_data);
4403
4404 rcu_read_lock();
4405 fl = rcu_dereference(sd->flow_limit);
4406 if (fl) {
4407 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4408 old_flow = fl->history[fl->history_head];
4409 fl->history[fl->history_head] = new_flow;
4410
4411 fl->history_head++;
4412 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4413
4414 if (likely(fl->buckets[old_flow]))
4415 fl->buckets[old_flow]--;
4416
4417 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4418 fl->count++;
4419 rcu_read_unlock();
4420 return true;
4421 }
4422 }
4423 rcu_read_unlock();
4424#endif
4425 return false;
4426}
4427
4428/*
4429 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4430 * queue (may be a remote CPU queue).
4431 */
4432static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4433 unsigned int *qtail)
4434{
4435 struct softnet_data *sd;
4436 unsigned long flags;
4437 unsigned int qlen;
4438
4439 sd = &per_cpu(softnet_data, cpu);
4440
4441 local_irq_save(flags);
4442
4443 rps_lock(sd);
4444 if (!netif_running(skb->dev))
4445 goto drop;
4446 qlen = skb_queue_len(&sd->input_pkt_queue);
4447 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4448 if (qlen) {
4449enqueue:
4450 __skb_queue_tail(&sd->input_pkt_queue, skb);
4451 input_queue_tail_incr_save(sd, qtail);
4452 rps_unlock(sd);
4453 local_irq_restore(flags);
4454 return NET_RX_SUCCESS;
4455 }
4456
4457 /* Schedule NAPI for backlog device
4458 * We can use non atomic operation since we own the queue lock
4459 */
4460 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4461 if (!rps_ipi_queued(sd))
4462 ____napi_schedule(sd, &sd->backlog);
4463 }
4464 goto enqueue;
4465 }
4466
4467drop:
4468 sd->dropped++;
4469 rps_unlock(sd);
4470
4471 local_irq_restore(flags);
4472
4473 atomic_long_inc(&skb->dev->rx_dropped);
4474 kfree_skb(skb);
4475 return NET_RX_DROP;
4476}
4477
4478static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4479{
4480 struct net_device *dev = skb->dev;
4481 struct netdev_rx_queue *rxqueue;
4482
4483 rxqueue = dev->_rx;
4484
4485 if (skb_rx_queue_recorded(skb)) {
4486 u16 index = skb_get_rx_queue(skb);
4487
4488 if (unlikely(index >= dev->real_num_rx_queues)) {
4489 WARN_ONCE(dev->real_num_rx_queues > 1,
4490 "%s received packet on queue %u, but number "
4491 "of RX queues is %u\n",
4492 dev->name, index, dev->real_num_rx_queues);
4493
4494 return rxqueue; /* Return first rxqueue */
4495 }
4496 rxqueue += index;
4497 }
4498 return rxqueue;
4499}
4500
4501static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4502 struct xdp_buff *xdp,
4503 struct bpf_prog *xdp_prog)
4504{
4505 struct netdev_rx_queue *rxqueue;
4506 void *orig_data, *orig_data_end;
4507 u32 metalen, act = XDP_DROP;
4508 __be16 orig_eth_type;
4509 struct ethhdr *eth;
4510 bool orig_bcast;
4511 int hlen, off;
4512 u32 mac_len;
4513
4514 /* Reinjected packets coming from act_mirred or similar should
4515 * not get XDP generic processing.
4516 */
4517 if (skb_is_tc_redirected(skb))
4518 return XDP_PASS;
4519
4520 /* XDP packets must be linear and must have sufficient headroom
4521 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4522 * native XDP provides, thus we need to do it here as well.
4523 */
4524 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4525 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4526 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4527 int troom = skb->tail + skb->data_len - skb->end;
4528
4529 /* In case we have to go down the path and also linearize,
4530 * then lets do the pskb_expand_head() work just once here.
4531 */
4532 if (pskb_expand_head(skb,
4533 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4534 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4535 goto do_drop;
4536 if (skb_linearize(skb))
4537 goto do_drop;
4538 }
4539
4540 /* The XDP program wants to see the packet starting at the MAC
4541 * header.
4542 */
4543 mac_len = skb->data - skb_mac_header(skb);
4544 hlen = skb_headlen(skb) + mac_len;
4545 xdp->data = skb->data - mac_len;
4546 xdp->data_meta = xdp->data;
4547 xdp->data_end = xdp->data + hlen;
4548 xdp->data_hard_start = skb->data - skb_headroom(skb);
4549 orig_data_end = xdp->data_end;
4550 orig_data = xdp->data;
4551 eth = (struct ethhdr *)xdp->data;
4552 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4553 orig_eth_type = eth->h_proto;
4554
4555 rxqueue = netif_get_rxqueue(skb);
4556 xdp->rxq = &rxqueue->xdp_rxq;
4557
4558 act = bpf_prog_run_xdp(xdp_prog, xdp);
4559
4560 /* check if bpf_xdp_adjust_head was used */
4561 off = xdp->data - orig_data;
4562 if (off) {
4563 if (off > 0)
4564 __skb_pull(skb, off);
4565 else if (off < 0)
4566 __skb_push(skb, -off);
4567
4568 skb->mac_header += off;
4569 skb_reset_network_header(skb);
4570 }
4571
4572 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4573 * pckt.
4574 */
4575 off = orig_data_end - xdp->data_end;
4576 if (off != 0) {
4577 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4578 skb->len -= off;
4579
4580 }
4581
4582 /* check if XDP changed eth hdr such SKB needs update */
4583 eth = (struct ethhdr *)xdp->data;
4584 if ((orig_eth_type != eth->h_proto) ||
4585 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4586 __skb_push(skb, ETH_HLEN);
4587 skb->protocol = eth_type_trans(skb, skb->dev);
4588 }
4589
4590 switch (act) {
4591 case XDP_REDIRECT:
4592 case XDP_TX:
4593 __skb_push(skb, mac_len);
4594 break;
4595 case XDP_PASS:
4596 metalen = xdp->data - xdp->data_meta;
4597 if (metalen)
4598 skb_metadata_set(skb, metalen);
4599 break;
4600 default:
4601 bpf_warn_invalid_xdp_action(act);
4602 /* fall through */
4603 case XDP_ABORTED:
4604 trace_xdp_exception(skb->dev, xdp_prog, act);
4605 /* fall through */
4606 case XDP_DROP:
4607 do_drop:
4608 kfree_skb(skb);
4609 break;
4610 }
4611
4612 return act;
4613}
4614
4615/* When doing generic XDP we have to bypass the qdisc layer and the
4616 * network taps in order to match in-driver-XDP behavior.
4617 */
4618void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4619{
4620 struct net_device *dev = skb->dev;
4621 struct netdev_queue *txq;
4622 bool free_skb = true;
4623 int cpu, rc;
4624
4625 txq = netdev_core_pick_tx(dev, skb, NULL);
4626 cpu = smp_processor_id();
4627 HARD_TX_LOCK(dev, txq, cpu);
4628 if (!netif_xmit_stopped(txq)) {
4629 rc = netdev_start_xmit(skb, dev, txq, 0);
4630 if (dev_xmit_complete(rc))
4631 free_skb = false;
4632 }
4633 HARD_TX_UNLOCK(dev, txq);
4634 if (free_skb) {
4635 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4636 kfree_skb(skb);
4637 }
4638}
4639EXPORT_SYMBOL_GPL(generic_xdp_tx);
4640
4641static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4642
4643int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4644{
4645 if (xdp_prog) {
4646 struct xdp_buff xdp;
4647 u32 act;
4648 int err;
4649
4650 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4651 if (act != XDP_PASS) {
4652 switch (act) {
4653 case XDP_REDIRECT:
4654 err = xdp_do_generic_redirect(skb->dev, skb,
4655 &xdp, xdp_prog);
4656 if (err)
4657 goto out_redir;
4658 break;
4659 case XDP_TX:
4660 generic_xdp_tx(skb, xdp_prog);
4661 break;
4662 }
4663 return XDP_DROP;
4664 }
4665 }
4666 return XDP_PASS;
4667out_redir:
4668 kfree_skb(skb);
4669 return XDP_DROP;
4670}
4671EXPORT_SYMBOL_GPL(do_xdp_generic);
4672
4673static int netif_rx_internal(struct sk_buff *skb)
4674{
4675 int ret;
4676
4677 net_timestamp_check(netdev_tstamp_prequeue, skb);
4678
4679 trace_netif_rx(skb);
4680
4681#ifdef CONFIG_RPS
4682 if (static_branch_unlikely(&rps_needed)) {
4683 struct rps_dev_flow voidflow, *rflow = &voidflow;
4684 int cpu;
4685
4686 preempt_disable();
4687 rcu_read_lock();
4688
4689 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4690 if (cpu < 0)
4691 cpu = smp_processor_id();
4692
4693 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4694
4695 rcu_read_unlock();
4696 preempt_enable();
4697 } else
4698#endif
4699 {
4700 unsigned int qtail;
4701
4702 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4703 put_cpu();
4704 }
4705 return ret;
4706}
4707
4708/**
4709 * netif_rx - post buffer to the network code
4710 * @skb: buffer to post
4711 *
4712 * This function receives a packet from a device driver and queues it for
4713 * the upper (protocol) levels to process. It always succeeds. The buffer
4714 * may be dropped during processing for congestion control or by the
4715 * protocol layers.
4716 *
4717 * return values:
4718 * NET_RX_SUCCESS (no congestion)
4719 * NET_RX_DROP (packet was dropped)
4720 *
4721 */
4722
4723int netif_rx(struct sk_buff *skb)
4724{
4725 int ret;
4726
4727 trace_netif_rx_entry(skb);
4728
4729 ret = netif_rx_internal(skb);
4730 trace_netif_rx_exit(ret);
4731
4732 return ret;
4733}
4734EXPORT_SYMBOL(netif_rx);
4735
4736int netif_rx_ni(struct sk_buff *skb)
4737{
4738 int err;
4739
4740 trace_netif_rx_ni_entry(skb);
4741
4742 preempt_disable();
4743 err = netif_rx_internal(skb);
4744 if (local_softirq_pending())
4745 do_softirq();
4746 preempt_enable();
4747 trace_netif_rx_ni_exit(err);
4748
4749 return err;
4750}
4751EXPORT_SYMBOL(netif_rx_ni);
4752
4753static __latent_entropy void net_tx_action(struct softirq_action *h)
4754{
4755 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4756
4757 if (sd->completion_queue) {
4758 struct sk_buff *clist;
4759
4760 local_irq_disable();
4761 clist = sd->completion_queue;
4762 sd->completion_queue = NULL;
4763 local_irq_enable();
4764
4765 while (clist) {
4766 struct sk_buff *skb = clist;
4767
4768 clist = clist->next;
4769
4770 WARN_ON(refcount_read(&skb->users));
4771 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4772 trace_consume_skb(skb);
4773 else
4774 trace_kfree_skb(skb, net_tx_action);
4775
4776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4777 __kfree_skb(skb);
4778 else
4779 __kfree_skb_defer(skb);
4780 }
4781
4782 __kfree_skb_flush();
4783 }
4784
4785 if (sd->output_queue) {
4786 struct Qdisc *head;
4787
4788 local_irq_disable();
4789 head = sd->output_queue;
4790 sd->output_queue = NULL;
4791 sd->output_queue_tailp = &sd->output_queue;
4792 local_irq_enable();
4793
4794 while (head) {
4795 struct Qdisc *q = head;
4796 spinlock_t *root_lock = NULL;
4797
4798 head = head->next_sched;
4799
4800 if (!(q->flags & TCQ_F_NOLOCK)) {
4801 root_lock = qdisc_lock(q);
4802 spin_lock(root_lock);
4803 }
4804 /* We need to make sure head->next_sched is read
4805 * before clearing __QDISC_STATE_SCHED
4806 */
4807 smp_mb__before_atomic();
4808 clear_bit(__QDISC_STATE_SCHED, &q->state);
4809 qdisc_run(q);
4810 if (root_lock)
4811 spin_unlock(root_lock);
4812 }
4813 }
4814
4815 xfrm_dev_backlog(sd);
4816}
4817
4818#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4819/* This hook is defined here for ATM LANE */
4820int (*br_fdb_test_addr_hook)(struct net_device *dev,
4821 unsigned char *addr) __read_mostly;
4822EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4823#endif
4824
4825static inline struct sk_buff *
4826sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4827 struct net_device *orig_dev)
4828{
4829#ifdef CONFIG_NET_CLS_ACT
4830 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4831 struct tcf_result cl_res;
4832
4833 /* If there's at least one ingress present somewhere (so
4834 * we get here via enabled static key), remaining devices
4835 * that are not configured with an ingress qdisc will bail
4836 * out here.
4837 */
4838 if (!miniq)
4839 return skb;
4840
4841 if (*pt_prev) {
4842 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4843 *pt_prev = NULL;
4844 }
4845
4846 qdisc_skb_cb(skb)->pkt_len = skb->len;
4847 skb->tc_at_ingress = 1;
4848 mini_qdisc_bstats_cpu_update(miniq, skb);
4849
4850 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4851 case TC_ACT_OK:
4852 case TC_ACT_RECLASSIFY:
4853 skb->tc_index = TC_H_MIN(cl_res.classid);
4854 break;
4855 case TC_ACT_SHOT:
4856 mini_qdisc_qstats_cpu_drop(miniq);
4857 kfree_skb(skb);
4858 return NULL;
4859 case TC_ACT_STOLEN:
4860 case TC_ACT_QUEUED:
4861 case TC_ACT_TRAP:
4862 consume_skb(skb);
4863 return NULL;
4864 case TC_ACT_REDIRECT:
4865 /* skb_mac_header check was done by cls/act_bpf, so
4866 * we can safely push the L2 header back before
4867 * redirecting to another netdev
4868 */
4869 __skb_push(skb, skb->mac_len);
4870 skb_do_redirect(skb);
4871 return NULL;
4872 case TC_ACT_CONSUMED:
4873 return NULL;
4874 default:
4875 break;
4876 }
4877#endif /* CONFIG_NET_CLS_ACT */
4878 return skb;
4879}
4880
4881/**
4882 * netdev_is_rx_handler_busy - check if receive handler is registered
4883 * @dev: device to check
4884 *
4885 * Check if a receive handler is already registered for a given device.
4886 * Return true if there one.
4887 *
4888 * The caller must hold the rtnl_mutex.
4889 */
4890bool netdev_is_rx_handler_busy(struct net_device *dev)
4891{
4892 ASSERT_RTNL();
4893 return dev && rtnl_dereference(dev->rx_handler);
4894}
4895EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4896
4897/**
4898 * netdev_rx_handler_register - register receive handler
4899 * @dev: device to register a handler for
4900 * @rx_handler: receive handler to register
4901 * @rx_handler_data: data pointer that is used by rx handler
4902 *
4903 * Register a receive handler for a device. This handler will then be
4904 * called from __netif_receive_skb. A negative errno code is returned
4905 * on a failure.
4906 *
4907 * The caller must hold the rtnl_mutex.
4908 *
4909 * For a general description of rx_handler, see enum rx_handler_result.
4910 */
4911int netdev_rx_handler_register(struct net_device *dev,
4912 rx_handler_func_t *rx_handler,
4913 void *rx_handler_data)
4914{
4915 if (netdev_is_rx_handler_busy(dev))
4916 return -EBUSY;
4917
4918 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4919 return -EINVAL;
4920
4921 /* Note: rx_handler_data must be set before rx_handler */
4922 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4923 rcu_assign_pointer(dev->rx_handler, rx_handler);
4924
4925 return 0;
4926}
4927EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4928
4929/**
4930 * netdev_rx_handler_unregister - unregister receive handler
4931 * @dev: device to unregister a handler from
4932 *
4933 * Unregister a receive handler from a device.
4934 *
4935 * The caller must hold the rtnl_mutex.
4936 */
4937void netdev_rx_handler_unregister(struct net_device *dev)
4938{
4939
4940 ASSERT_RTNL();
4941 RCU_INIT_POINTER(dev->rx_handler, NULL);
4942 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4943 * section has a guarantee to see a non NULL rx_handler_data
4944 * as well.
4945 */
4946 synchronize_net();
4947 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4948}
4949EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4950
4951/*
4952 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4953 * the special handling of PFMEMALLOC skbs.
4954 */
4955static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4956{
4957 switch (skb->protocol) {
4958 case htons(ETH_P_ARP):
4959 case htons(ETH_P_IP):
4960 case htons(ETH_P_IPV6):
4961 case htons(ETH_P_8021Q):
4962 case htons(ETH_P_8021AD):
4963 return true;
4964 default:
4965 return false;
4966 }
4967}
4968
4969static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4970 int *ret, struct net_device *orig_dev)
4971{
4972 if (nf_hook_ingress_active(skb)) {
4973 int ingress_retval;
4974
4975 if (*pt_prev) {
4976 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4977 *pt_prev = NULL;
4978 }
4979
4980 rcu_read_lock();
4981 ingress_retval = nf_hook_ingress(skb);
4982 rcu_read_unlock();
4983 return ingress_retval;
4984 }
4985 return 0;
4986}
4987
4988static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4989 struct packet_type **ppt_prev)
4990{
4991 struct packet_type *ptype, *pt_prev;
4992 rx_handler_func_t *rx_handler;
4993 struct net_device *orig_dev;
4994 bool deliver_exact = false;
4995 int ret = NET_RX_DROP;
4996 __be16 type;
4997
4998 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4999
5000 trace_netif_receive_skb(skb);
5001
5002 orig_dev = skb->dev;
5003
5004 skb_reset_network_header(skb);
5005 if (!skb_transport_header_was_set(skb))
5006 skb_reset_transport_header(skb);
5007 skb_reset_mac_len(skb);
5008
5009 pt_prev = NULL;
5010
5011another_round:
5012 skb->skb_iif = skb->dev->ifindex;
5013
5014 __this_cpu_inc(softnet_data.processed);
5015
5016 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5017 int ret2;
5018
5019 preempt_disable();
5020 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5021 preempt_enable();
5022
5023 if (ret2 != XDP_PASS)
5024 return NET_RX_DROP;
5025 skb_reset_mac_len(skb);
5026 }
5027
5028 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5029 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5030 skb = skb_vlan_untag(skb);
5031 if (unlikely(!skb))
5032 goto out;
5033 }
5034
5035 if (skb_skip_tc_classify(skb))
5036 goto skip_classify;
5037
5038 if (pfmemalloc)
5039 goto skip_taps;
5040
5041 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5042 if (pt_prev)
5043 ret = deliver_skb(skb, pt_prev, orig_dev);
5044 pt_prev = ptype;
5045 }
5046
5047 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5048 if (pt_prev)
5049 ret = deliver_skb(skb, pt_prev, orig_dev);
5050 pt_prev = ptype;
5051 }
5052
5053skip_taps:
5054#ifdef CONFIG_NET_INGRESS
5055 if (static_branch_unlikely(&ingress_needed_key)) {
5056 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5057 if (!skb)
5058 goto out;
5059
5060 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5061 goto out;
5062 }
5063#endif
5064 skb_reset_tc(skb);
5065skip_classify:
5066 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5067 goto drop;
5068
5069 if (skb_vlan_tag_present(skb)) {
5070 if (pt_prev) {
5071 ret = deliver_skb(skb, pt_prev, orig_dev);
5072 pt_prev = NULL;
5073 }
5074 if (vlan_do_receive(&skb))
5075 goto another_round;
5076 else if (unlikely(!skb))
5077 goto out;
5078 }
5079
5080 rx_handler = rcu_dereference(skb->dev->rx_handler);
5081 if (rx_handler) {
5082 if (pt_prev) {
5083 ret = deliver_skb(skb, pt_prev, orig_dev);
5084 pt_prev = NULL;
5085 }
5086 switch (rx_handler(&skb)) {
5087 case RX_HANDLER_CONSUMED:
5088 ret = NET_RX_SUCCESS;
5089 goto out;
5090 case RX_HANDLER_ANOTHER:
5091 goto another_round;
5092 case RX_HANDLER_EXACT:
5093 deliver_exact = true;
5094 case RX_HANDLER_PASS:
5095 break;
5096 default:
5097 BUG();
5098 }
5099 }
5100
5101 if (unlikely(skb_vlan_tag_present(skb))) {
5102check_vlan_id:
5103 if (skb_vlan_tag_get_id(skb)) {
5104 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5105 * find vlan device.
5106 */
5107 skb->pkt_type = PACKET_OTHERHOST;
5108 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5109 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5110 /* Outer header is 802.1P with vlan 0, inner header is
5111 * 802.1Q or 802.1AD and vlan_do_receive() above could
5112 * not find vlan dev for vlan id 0.
5113 */
5114 __vlan_hwaccel_clear_tag(skb);
5115 skb = skb_vlan_untag(skb);
5116 if (unlikely(!skb))
5117 goto out;
5118 if (vlan_do_receive(&skb))
5119 /* After stripping off 802.1P header with vlan 0
5120 * vlan dev is found for inner header.
5121 */
5122 goto another_round;
5123 else if (unlikely(!skb))
5124 goto out;
5125 else
5126 /* We have stripped outer 802.1P vlan 0 header.
5127 * But could not find vlan dev.
5128 * check again for vlan id to set OTHERHOST.
5129 */
5130 goto check_vlan_id;
5131 }
5132 /* Note: we might in the future use prio bits
5133 * and set skb->priority like in vlan_do_receive()
5134 * For the time being, just ignore Priority Code Point
5135 */
5136 __vlan_hwaccel_clear_tag(skb);
5137 }
5138
5139 type = skb->protocol;
5140
5141 /* deliver only exact match when indicated */
5142 if (likely(!deliver_exact)) {
5143 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5144 &ptype_base[ntohs(type) &
5145 PTYPE_HASH_MASK]);
5146 }
5147
5148 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5149 &orig_dev->ptype_specific);
5150
5151 if (unlikely(skb->dev != orig_dev)) {
5152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5153 &skb->dev->ptype_specific);
5154 }
5155
5156 if (pt_prev) {
5157 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5158 goto drop;
5159 *ppt_prev = pt_prev;
5160 } else {
5161drop:
5162 if (!deliver_exact)
5163 atomic_long_inc(&skb->dev->rx_dropped);
5164 else
5165 atomic_long_inc(&skb->dev->rx_nohandler);
5166 kfree_skb(skb);
5167 /* Jamal, now you will not able to escape explaining
5168 * me how you were going to use this. :-)
5169 */
5170 ret = NET_RX_DROP;
5171 }
5172
5173out:
5174 return ret;
5175}
5176
5177static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5178{
5179 struct net_device *orig_dev = skb->dev;
5180 struct packet_type *pt_prev = NULL;
5181 int ret;
5182
5183 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5184 if (pt_prev)
5185 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5186 skb->dev, pt_prev, orig_dev);
5187 return ret;
5188}
5189
5190/**
5191 * netif_receive_skb_core - special purpose version of netif_receive_skb
5192 * @skb: buffer to process
5193 *
5194 * More direct receive version of netif_receive_skb(). It should
5195 * only be used by callers that have a need to skip RPS and Generic XDP.
5196 * Caller must also take care of handling if (page_is_)pfmemalloc.
5197 *
5198 * This function may only be called from softirq context and interrupts
5199 * should be enabled.
5200 *
5201 * Return values (usually ignored):
5202 * NET_RX_SUCCESS: no congestion
5203 * NET_RX_DROP: packet was dropped
5204 */
5205int netif_receive_skb_core(struct sk_buff *skb)
5206{
5207 int ret;
5208
5209 rcu_read_lock();
5210 ret = __netif_receive_skb_one_core(skb, false);
5211 rcu_read_unlock();
5212
5213 return ret;
5214}
5215EXPORT_SYMBOL(netif_receive_skb_core);
5216
5217static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5218 struct packet_type *pt_prev,
5219 struct net_device *orig_dev)
5220{
5221 struct sk_buff *skb, *next;
5222
5223 if (!pt_prev)
5224 return;
5225 if (list_empty(head))
5226 return;
5227 if (pt_prev->list_func != NULL)
5228 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5229 ip_list_rcv, head, pt_prev, orig_dev);
5230 else
5231 list_for_each_entry_safe(skb, next, head, list) {
5232 skb_list_del_init(skb);
5233 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5234 }
5235}
5236
5237static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5238{
5239 /* Fast-path assumptions:
5240 * - There is no RX handler.
5241 * - Only one packet_type matches.
5242 * If either of these fails, we will end up doing some per-packet
5243 * processing in-line, then handling the 'last ptype' for the whole
5244 * sublist. This can't cause out-of-order delivery to any single ptype,
5245 * because the 'last ptype' must be constant across the sublist, and all
5246 * other ptypes are handled per-packet.
5247 */
5248 /* Current (common) ptype of sublist */
5249 struct packet_type *pt_curr = NULL;
5250 /* Current (common) orig_dev of sublist */
5251 struct net_device *od_curr = NULL;
5252 struct list_head sublist;
5253 struct sk_buff *skb, *next;
5254
5255 INIT_LIST_HEAD(&sublist);
5256 list_for_each_entry_safe(skb, next, head, list) {
5257 struct net_device *orig_dev = skb->dev;
5258 struct packet_type *pt_prev = NULL;
5259
5260 skb_list_del_init(skb);
5261 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5262 if (!pt_prev)
5263 continue;
5264 if (pt_curr != pt_prev || od_curr != orig_dev) {
5265 /* dispatch old sublist */
5266 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5267 /* start new sublist */
5268 INIT_LIST_HEAD(&sublist);
5269 pt_curr = pt_prev;
5270 od_curr = orig_dev;
5271 }
5272 list_add_tail(&skb->list, &sublist);
5273 }
5274
5275 /* dispatch final sublist */
5276 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5277}
5278
5279static int __netif_receive_skb(struct sk_buff *skb)
5280{
5281 int ret;
5282
5283 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5284 unsigned int noreclaim_flag;
5285
5286 /*
5287 * PFMEMALLOC skbs are special, they should
5288 * - be delivered to SOCK_MEMALLOC sockets only
5289 * - stay away from userspace
5290 * - have bounded memory usage
5291 *
5292 * Use PF_MEMALLOC as this saves us from propagating the allocation
5293 * context down to all allocation sites.
5294 */
5295 noreclaim_flag = memalloc_noreclaim_save();
5296 ret = __netif_receive_skb_one_core(skb, true);
5297 memalloc_noreclaim_restore(noreclaim_flag);
5298 } else
5299 ret = __netif_receive_skb_one_core(skb, false);
5300
5301 return ret;
5302}
5303
5304static void __netif_receive_skb_list(struct list_head *head)
5305{
5306 unsigned long noreclaim_flag = 0;
5307 struct sk_buff *skb, *next;
5308 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5309
5310 list_for_each_entry_safe(skb, next, head, list) {
5311 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5312 struct list_head sublist;
5313
5314 /* Handle the previous sublist */
5315 list_cut_before(&sublist, head, &skb->list);
5316 if (!list_empty(&sublist))
5317 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5318 pfmemalloc = !pfmemalloc;
5319 /* See comments in __netif_receive_skb */
5320 if (pfmemalloc)
5321 noreclaim_flag = memalloc_noreclaim_save();
5322 else
5323 memalloc_noreclaim_restore(noreclaim_flag);
5324 }
5325 }
5326 /* Handle the remaining sublist */
5327 if (!list_empty(head))
5328 __netif_receive_skb_list_core(head, pfmemalloc);
5329 /* Restore pflags */
5330 if (pfmemalloc)
5331 memalloc_noreclaim_restore(noreclaim_flag);
5332}
5333
5334static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5335{
5336 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5337 struct bpf_prog *new = xdp->prog;
5338 int ret = 0;
5339
5340 switch (xdp->command) {
5341 case XDP_SETUP_PROG:
5342 rcu_assign_pointer(dev->xdp_prog, new);
5343 if (old)
5344 bpf_prog_put(old);
5345
5346 if (old && !new) {
5347 static_branch_dec(&generic_xdp_needed_key);
5348 } else if (new && !old) {
5349 static_branch_inc(&generic_xdp_needed_key);
5350 dev_disable_lro(dev);
5351 dev_disable_gro_hw(dev);
5352 }
5353 break;
5354
5355 case XDP_QUERY_PROG:
5356 xdp->prog_id = old ? old->aux->id : 0;
5357 break;
5358
5359 default:
5360 ret = -EINVAL;
5361 break;
5362 }
5363
5364 return ret;
5365}
5366
5367static int netif_receive_skb_internal(struct sk_buff *skb)
5368{
5369 int ret;
5370
5371 net_timestamp_check(netdev_tstamp_prequeue, skb);
5372
5373 if (skb_defer_rx_timestamp(skb))
5374 return NET_RX_SUCCESS;
5375
5376 rcu_read_lock();
5377#ifdef CONFIG_RPS
5378 if (static_branch_unlikely(&rps_needed)) {
5379 struct rps_dev_flow voidflow, *rflow = &voidflow;
5380 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5381
5382 if (cpu >= 0) {
5383 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384 rcu_read_unlock();
5385 return ret;
5386 }
5387 }
5388#endif
5389 ret = __netif_receive_skb(skb);
5390 rcu_read_unlock();
5391 return ret;
5392}
5393
5394static void netif_receive_skb_list_internal(struct list_head *head)
5395{
5396 struct sk_buff *skb, *next;
5397 struct list_head sublist;
5398
5399 INIT_LIST_HEAD(&sublist);
5400 list_for_each_entry_safe(skb, next, head, list) {
5401 net_timestamp_check(netdev_tstamp_prequeue, skb);
5402 skb_list_del_init(skb);
5403 if (!skb_defer_rx_timestamp(skb))
5404 list_add_tail(&skb->list, &sublist);
5405 }
5406 list_splice_init(&sublist, head);
5407
5408 rcu_read_lock();
5409#ifdef CONFIG_RPS
5410 if (static_branch_unlikely(&rps_needed)) {
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 struct rps_dev_flow voidflow, *rflow = &voidflow;
5413 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5414
5415 if (cpu >= 0) {
5416 /* Will be handled, remove from list */
5417 skb_list_del_init(skb);
5418 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5419 }
5420 }
5421 }
5422#endif
5423 __netif_receive_skb_list(head);
5424 rcu_read_unlock();
5425}
5426
5427/**
5428 * netif_receive_skb - process receive buffer from network
5429 * @skb: buffer to process
5430 *
5431 * netif_receive_skb() is the main receive data processing function.
5432 * It always succeeds. The buffer may be dropped during processing
5433 * for congestion control or by the protocol layers.
5434 *
5435 * This function may only be called from softirq context and interrupts
5436 * should be enabled.
5437 *
5438 * Return values (usually ignored):
5439 * NET_RX_SUCCESS: no congestion
5440 * NET_RX_DROP: packet was dropped
5441 */
5442int netif_receive_skb(struct sk_buff *skb)
5443{
5444 int ret;
5445
5446 trace_netif_receive_skb_entry(skb);
5447
5448 ret = netif_receive_skb_internal(skb);
5449 trace_netif_receive_skb_exit(ret);
5450
5451 return ret;
5452}
5453EXPORT_SYMBOL(netif_receive_skb);
5454
5455/**
5456 * netif_receive_skb_list - process many receive buffers from network
5457 * @head: list of skbs to process.
5458 *
5459 * Since return value of netif_receive_skb() is normally ignored, and
5460 * wouldn't be meaningful for a list, this function returns void.
5461 *
5462 * This function may only be called from softirq context and interrupts
5463 * should be enabled.
5464 */
5465void netif_receive_skb_list(struct list_head *head)
5466{
5467 struct sk_buff *skb;
5468
5469 if (list_empty(head))
5470 return;
5471 if (trace_netif_receive_skb_list_entry_enabled()) {
5472 list_for_each_entry(skb, head, list)
5473 trace_netif_receive_skb_list_entry(skb);
5474 }
5475 netif_receive_skb_list_internal(head);
5476 trace_netif_receive_skb_list_exit(0);
5477}
5478EXPORT_SYMBOL(netif_receive_skb_list);
5479
5480DEFINE_PER_CPU(struct work_struct, flush_works);
5481
5482/* Network device is going away, flush any packets still pending */
5483static void flush_backlog(struct work_struct *work)
5484{
5485 struct sk_buff *skb, *tmp;
5486 struct softnet_data *sd;
5487
5488 local_bh_disable();
5489 sd = this_cpu_ptr(&softnet_data);
5490
5491 local_irq_disable();
5492 rps_lock(sd);
5493 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5494 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5495 __skb_unlink(skb, &sd->input_pkt_queue);
5496 kfree_skb(skb);
5497 input_queue_head_incr(sd);
5498 }
5499 }
5500 rps_unlock(sd);
5501 local_irq_enable();
5502
5503 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5504 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5505 __skb_unlink(skb, &sd->process_queue);
5506 kfree_skb(skb);
5507 input_queue_head_incr(sd);
5508 }
5509 }
5510 local_bh_enable();
5511}
5512
5513static void flush_all_backlogs(void)
5514{
5515 unsigned int cpu;
5516
5517 get_online_cpus();
5518
5519 for_each_online_cpu(cpu)
5520 queue_work_on(cpu, system_highpri_wq,
5521 per_cpu_ptr(&flush_works, cpu));
5522
5523 for_each_online_cpu(cpu)
5524 flush_work(per_cpu_ptr(&flush_works, cpu));
5525
5526 put_online_cpus();
5527}
5528
5529/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5530static void gro_normal_list(struct napi_struct *napi)
5531{
5532 if (!napi->rx_count)
5533 return;
5534 netif_receive_skb_list_internal(&napi->rx_list);
5535 INIT_LIST_HEAD(&napi->rx_list);
5536 napi->rx_count = 0;
5537}
5538
5539/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5540 * pass the whole batch up to the stack.
5541 */
5542static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5543{
5544 list_add_tail(&skb->list, &napi->rx_list);
5545 if (++napi->rx_count >= gro_normal_batch)
5546 gro_normal_list(napi);
5547}
5548
5549INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5550INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5551static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5552{
5553 struct packet_offload *ptype;
5554 __be16 type = skb->protocol;
5555 struct list_head *head = &offload_base;
5556 int err = -ENOENT;
5557
5558 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5559
5560 if (NAPI_GRO_CB(skb)->count == 1) {
5561 skb_shinfo(skb)->gso_size = 0;
5562 goto out;
5563 }
5564
5565 rcu_read_lock();
5566 list_for_each_entry_rcu(ptype, head, list) {
5567 if (ptype->type != type || !ptype->callbacks.gro_complete)
5568 continue;
5569
5570 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5571 ipv6_gro_complete, inet_gro_complete,
5572 skb, 0);
5573 break;
5574 }
5575 rcu_read_unlock();
5576
5577 if (err) {
5578 WARN_ON(&ptype->list == head);
5579 kfree_skb(skb);
5580 return NET_RX_SUCCESS;
5581 }
5582
5583out:
5584 gro_normal_one(napi, skb);
5585 return NET_RX_SUCCESS;
5586}
5587
5588static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5589 bool flush_old)
5590{
5591 struct list_head *head = &napi->gro_hash[index].list;
5592 struct sk_buff *skb, *p;
5593
5594 list_for_each_entry_safe_reverse(skb, p, head, list) {
5595 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5596 return;
5597 skb_list_del_init(skb);
5598 napi_gro_complete(napi, skb);
5599 napi->gro_hash[index].count--;
5600 }
5601
5602 if (!napi->gro_hash[index].count)
5603 __clear_bit(index, &napi->gro_bitmask);
5604}
5605
5606/* napi->gro_hash[].list contains packets ordered by age.
5607 * youngest packets at the head of it.
5608 * Complete skbs in reverse order to reduce latencies.
5609 */
5610void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5611{
5612 unsigned long bitmask = napi->gro_bitmask;
5613 unsigned int i, base = ~0U;
5614
5615 while ((i = ffs(bitmask)) != 0) {
5616 bitmask >>= i;
5617 base += i;
5618 __napi_gro_flush_chain(napi, base, flush_old);
5619 }
5620}
5621EXPORT_SYMBOL(napi_gro_flush);
5622
5623static struct list_head *gro_list_prepare(struct napi_struct *napi,
5624 struct sk_buff *skb)
5625{
5626 unsigned int maclen = skb->dev->hard_header_len;
5627 u32 hash = skb_get_hash_raw(skb);
5628 struct list_head *head;
5629 struct sk_buff *p;
5630
5631 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5632 list_for_each_entry(p, head, list) {
5633 unsigned long diffs;
5634
5635 NAPI_GRO_CB(p)->flush = 0;
5636
5637 if (hash != skb_get_hash_raw(p)) {
5638 NAPI_GRO_CB(p)->same_flow = 0;
5639 continue;
5640 }
5641
5642 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5643 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5644 if (skb_vlan_tag_present(p))
5645 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5646 diffs |= skb_metadata_dst_cmp(p, skb);
5647 diffs |= skb_metadata_differs(p, skb);
5648 if (maclen == ETH_HLEN)
5649 diffs |= compare_ether_header(skb_mac_header(p),
5650 skb_mac_header(skb));
5651 else if (!diffs)
5652 diffs = memcmp(skb_mac_header(p),
5653 skb_mac_header(skb),
5654 maclen);
5655 NAPI_GRO_CB(p)->same_flow = !diffs;
5656 }
5657
5658 return head;
5659}
5660
5661static void skb_gro_reset_offset(struct sk_buff *skb)
5662{
5663 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5664 const skb_frag_t *frag0 = &pinfo->frags[0];
5665
5666 NAPI_GRO_CB(skb)->data_offset = 0;
5667 NAPI_GRO_CB(skb)->frag0 = NULL;
5668 NAPI_GRO_CB(skb)->frag0_len = 0;
5669
5670 if (!skb_headlen(skb) && pinfo->nr_frags &&
5671 !PageHighMem(skb_frag_page(frag0))) {
5672 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5673 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5674 skb_frag_size(frag0),
5675 skb->end - skb->tail);
5676 }
5677}
5678
5679static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5680{
5681 struct skb_shared_info *pinfo = skb_shinfo(skb);
5682
5683 BUG_ON(skb->end - skb->tail < grow);
5684
5685 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5686
5687 skb->data_len -= grow;
5688 skb->tail += grow;
5689
5690 skb_frag_off_add(&pinfo->frags[0], grow);
5691 skb_frag_size_sub(&pinfo->frags[0], grow);
5692
5693 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5694 skb_frag_unref(skb, 0);
5695 memmove(pinfo->frags, pinfo->frags + 1,
5696 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5697 }
5698}
5699
5700static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5701{
5702 struct sk_buff *oldest;
5703
5704 oldest = list_last_entry(head, struct sk_buff, list);
5705
5706 /* We are called with head length >= MAX_GRO_SKBS, so this is
5707 * impossible.
5708 */
5709 if (WARN_ON_ONCE(!oldest))
5710 return;
5711
5712 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5713 * SKB to the chain.
5714 */
5715 skb_list_del_init(oldest);
5716 napi_gro_complete(napi, oldest);
5717}
5718
5719INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5720 struct sk_buff *));
5721INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5722 struct sk_buff *));
5723static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5724{
5725 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5726 struct list_head *head = &offload_base;
5727 struct packet_offload *ptype;
5728 __be16 type = skb->protocol;
5729 struct list_head *gro_head;
5730 struct sk_buff *pp = NULL;
5731 enum gro_result ret;
5732 int same_flow;
5733 int grow;
5734
5735 if (netif_elide_gro(skb->dev))
5736 goto normal;
5737
5738 gro_head = gro_list_prepare(napi, skb);
5739
5740 rcu_read_lock();
5741 list_for_each_entry_rcu(ptype, head, list) {
5742 if (ptype->type != type || !ptype->callbacks.gro_receive)
5743 continue;
5744
5745 skb_set_network_header(skb, skb_gro_offset(skb));
5746 skb_reset_mac_len(skb);
5747 NAPI_GRO_CB(skb)->same_flow = 0;
5748 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5749 NAPI_GRO_CB(skb)->free = 0;
5750 NAPI_GRO_CB(skb)->encap_mark = 0;
5751 NAPI_GRO_CB(skb)->recursion_counter = 0;
5752 NAPI_GRO_CB(skb)->is_fou = 0;
5753 NAPI_GRO_CB(skb)->is_atomic = 1;
5754 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5755
5756 /* Setup for GRO checksum validation */
5757 switch (skb->ip_summed) {
5758 case CHECKSUM_COMPLETE:
5759 NAPI_GRO_CB(skb)->csum = skb->csum;
5760 NAPI_GRO_CB(skb)->csum_valid = 1;
5761 NAPI_GRO_CB(skb)->csum_cnt = 0;
5762 break;
5763 case CHECKSUM_UNNECESSARY:
5764 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5765 NAPI_GRO_CB(skb)->csum_valid = 0;
5766 break;
5767 default:
5768 NAPI_GRO_CB(skb)->csum_cnt = 0;
5769 NAPI_GRO_CB(skb)->csum_valid = 0;
5770 }
5771
5772 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5773 ipv6_gro_receive, inet_gro_receive,
5774 gro_head, skb);
5775 break;
5776 }
5777 rcu_read_unlock();
5778
5779 if (&ptype->list == head)
5780 goto normal;
5781
5782 if (PTR_ERR(pp) == -EINPROGRESS) {
5783 ret = GRO_CONSUMED;
5784 goto ok;
5785 }
5786
5787 same_flow = NAPI_GRO_CB(skb)->same_flow;
5788 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5789
5790 if (pp) {
5791 skb_list_del_init(pp);
5792 napi_gro_complete(napi, pp);
5793 napi->gro_hash[hash].count--;
5794 }
5795
5796 if (same_flow)
5797 goto ok;
5798
5799 if (NAPI_GRO_CB(skb)->flush)
5800 goto normal;
5801
5802 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5803 gro_flush_oldest(napi, gro_head);
5804 } else {
5805 napi->gro_hash[hash].count++;
5806 }
5807 NAPI_GRO_CB(skb)->count = 1;
5808 NAPI_GRO_CB(skb)->age = jiffies;
5809 NAPI_GRO_CB(skb)->last = skb;
5810 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5811 list_add(&skb->list, gro_head);
5812 ret = GRO_HELD;
5813
5814pull:
5815 grow = skb_gro_offset(skb) - skb_headlen(skb);
5816 if (grow > 0)
5817 gro_pull_from_frag0(skb, grow);
5818ok:
5819 if (napi->gro_hash[hash].count) {
5820 if (!test_bit(hash, &napi->gro_bitmask))
5821 __set_bit(hash, &napi->gro_bitmask);
5822 } else if (test_bit(hash, &napi->gro_bitmask)) {
5823 __clear_bit(hash, &napi->gro_bitmask);
5824 }
5825
5826 return ret;
5827
5828normal:
5829 ret = GRO_NORMAL;
5830 goto pull;
5831}
5832
5833struct packet_offload *gro_find_receive_by_type(__be16 type)
5834{
5835 struct list_head *offload_head = &offload_base;
5836 struct packet_offload *ptype;
5837
5838 list_for_each_entry_rcu(ptype, offload_head, list) {
5839 if (ptype->type != type || !ptype->callbacks.gro_receive)
5840 continue;
5841 return ptype;
5842 }
5843 return NULL;
5844}
5845EXPORT_SYMBOL(gro_find_receive_by_type);
5846
5847struct packet_offload *gro_find_complete_by_type(__be16 type)
5848{
5849 struct list_head *offload_head = &offload_base;
5850 struct packet_offload *ptype;
5851
5852 list_for_each_entry_rcu(ptype, offload_head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_complete)
5854 continue;
5855 return ptype;
5856 }
5857 return NULL;
5858}
5859EXPORT_SYMBOL(gro_find_complete_by_type);
5860
5861static void napi_skb_free_stolen_head(struct sk_buff *skb)
5862{
5863 skb_dst_drop(skb);
5864 skb_ext_put(skb);
5865 kmem_cache_free(skbuff_head_cache, skb);
5866}
5867
5868static gro_result_t napi_skb_finish(struct napi_struct *napi,
5869 struct sk_buff *skb,
5870 gro_result_t ret)
5871{
5872 switch (ret) {
5873 case GRO_NORMAL:
5874 gro_normal_one(napi, skb);
5875 break;
5876
5877 case GRO_DROP:
5878 kfree_skb(skb);
5879 break;
5880
5881 case GRO_MERGED_FREE:
5882 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5883 napi_skb_free_stolen_head(skb);
5884 else
5885 __kfree_skb(skb);
5886 break;
5887
5888 case GRO_HELD:
5889 case GRO_MERGED:
5890 case GRO_CONSUMED:
5891 break;
5892 }
5893
5894 return ret;
5895}
5896
5897gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5898{
5899 gro_result_t ret;
5900
5901 skb_mark_napi_id(skb, napi);
5902 trace_napi_gro_receive_entry(skb);
5903
5904 skb_gro_reset_offset(skb);
5905
5906 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5907 trace_napi_gro_receive_exit(ret);
5908
5909 return ret;
5910}
5911EXPORT_SYMBOL(napi_gro_receive);
5912
5913static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5914{
5915 if (unlikely(skb->pfmemalloc)) {
5916 consume_skb(skb);
5917 return;
5918 }
5919 __skb_pull(skb, skb_headlen(skb));
5920 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5921 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5922 __vlan_hwaccel_clear_tag(skb);
5923 skb->dev = napi->dev;
5924 skb->skb_iif = 0;
5925
5926 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5927 skb->pkt_type = PACKET_HOST;
5928
5929 skb->encapsulation = 0;
5930 skb_shinfo(skb)->gso_type = 0;
5931 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5932 skb_ext_reset(skb);
5933
5934 napi->skb = skb;
5935}
5936
5937struct sk_buff *napi_get_frags(struct napi_struct *napi)
5938{
5939 struct sk_buff *skb = napi->skb;
5940
5941 if (!skb) {
5942 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5943 if (skb) {
5944 napi->skb = skb;
5945 skb_mark_napi_id(skb, napi);
5946 }
5947 }
5948 return skb;
5949}
5950EXPORT_SYMBOL(napi_get_frags);
5951
5952static gro_result_t napi_frags_finish(struct napi_struct *napi,
5953 struct sk_buff *skb,
5954 gro_result_t ret)
5955{
5956 switch (ret) {
5957 case GRO_NORMAL:
5958 case GRO_HELD:
5959 __skb_push(skb, ETH_HLEN);
5960 skb->protocol = eth_type_trans(skb, skb->dev);
5961 if (ret == GRO_NORMAL)
5962 gro_normal_one(napi, skb);
5963 break;
5964
5965 case GRO_DROP:
5966 napi_reuse_skb(napi, skb);
5967 break;
5968
5969 case GRO_MERGED_FREE:
5970 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5971 napi_skb_free_stolen_head(skb);
5972 else
5973 napi_reuse_skb(napi, skb);
5974 break;
5975
5976 case GRO_MERGED:
5977 case GRO_CONSUMED:
5978 break;
5979 }
5980
5981 return ret;
5982}
5983
5984/* Upper GRO stack assumes network header starts at gro_offset=0
5985 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5986 * We copy ethernet header into skb->data to have a common layout.
5987 */
5988static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5989{
5990 struct sk_buff *skb = napi->skb;
5991 const struct ethhdr *eth;
5992 unsigned int hlen = sizeof(*eth);
5993
5994 napi->skb = NULL;
5995
5996 skb_reset_mac_header(skb);
5997 skb_gro_reset_offset(skb);
5998
5999 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6000 eth = skb_gro_header_slow(skb, hlen, 0);
6001 if (unlikely(!eth)) {
6002 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6003 __func__, napi->dev->name);
6004 napi_reuse_skb(napi, skb);
6005 return NULL;
6006 }
6007 } else {
6008 eth = (const struct ethhdr *)skb->data;
6009 gro_pull_from_frag0(skb, hlen);
6010 NAPI_GRO_CB(skb)->frag0 += hlen;
6011 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6012 }
6013 __skb_pull(skb, hlen);
6014
6015 /*
6016 * This works because the only protocols we care about don't require
6017 * special handling.
6018 * We'll fix it up properly in napi_frags_finish()
6019 */
6020 skb->protocol = eth->h_proto;
6021
6022 return skb;
6023}
6024
6025gro_result_t napi_gro_frags(struct napi_struct *napi)
6026{
6027 gro_result_t ret;
6028 struct sk_buff *skb = napi_frags_skb(napi);
6029
6030 if (!skb)
6031 return GRO_DROP;
6032
6033 trace_napi_gro_frags_entry(skb);
6034
6035 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6036 trace_napi_gro_frags_exit(ret);
6037
6038 return ret;
6039}
6040EXPORT_SYMBOL(napi_gro_frags);
6041
6042/* Compute the checksum from gro_offset and return the folded value
6043 * after adding in any pseudo checksum.
6044 */
6045__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6046{
6047 __wsum wsum;
6048 __sum16 sum;
6049
6050 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6051
6052 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6053 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6054 /* See comments in __skb_checksum_complete(). */
6055 if (likely(!sum)) {
6056 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6057 !skb->csum_complete_sw)
6058 netdev_rx_csum_fault(skb->dev, skb);
6059 }
6060
6061 NAPI_GRO_CB(skb)->csum = wsum;
6062 NAPI_GRO_CB(skb)->csum_valid = 1;
6063
6064 return sum;
6065}
6066EXPORT_SYMBOL(__skb_gro_checksum_complete);
6067
6068static void net_rps_send_ipi(struct softnet_data *remsd)
6069{
6070#ifdef CONFIG_RPS
6071 while (remsd) {
6072 struct softnet_data *next = remsd->rps_ipi_next;
6073
6074 if (cpu_online(remsd->cpu))
6075 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6076 remsd = next;
6077 }
6078#endif
6079}
6080
6081/*
6082 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6083 * Note: called with local irq disabled, but exits with local irq enabled.
6084 */
6085static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6086{
6087#ifdef CONFIG_RPS
6088 struct softnet_data *remsd = sd->rps_ipi_list;
6089
6090 if (remsd) {
6091 sd->rps_ipi_list = NULL;
6092
6093 local_irq_enable();
6094
6095 /* Send pending IPI's to kick RPS processing on remote cpus. */
6096 net_rps_send_ipi(remsd);
6097 } else
6098#endif
6099 local_irq_enable();
6100}
6101
6102static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6103{
6104#ifdef CONFIG_RPS
6105 return sd->rps_ipi_list != NULL;
6106#else
6107 return false;
6108#endif
6109}
6110
6111static int process_backlog(struct napi_struct *napi, int quota)
6112{
6113 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6114 bool again = true;
6115 int work = 0;
6116
6117 /* Check if we have pending ipi, its better to send them now,
6118 * not waiting net_rx_action() end.
6119 */
6120 if (sd_has_rps_ipi_waiting(sd)) {
6121 local_irq_disable();
6122 net_rps_action_and_irq_enable(sd);
6123 }
6124
6125 napi->weight = dev_rx_weight;
6126 while (again) {
6127 struct sk_buff *skb;
6128
6129 while ((skb = __skb_dequeue(&sd->process_queue))) {
6130 rcu_read_lock();
6131 __netif_receive_skb(skb);
6132 rcu_read_unlock();
6133 input_queue_head_incr(sd);
6134 if (++work >= quota)
6135 return work;
6136
6137 }
6138
6139 local_irq_disable();
6140 rps_lock(sd);
6141 if (skb_queue_empty(&sd->input_pkt_queue)) {
6142 /*
6143 * Inline a custom version of __napi_complete().
6144 * only current cpu owns and manipulates this napi,
6145 * and NAPI_STATE_SCHED is the only possible flag set
6146 * on backlog.
6147 * We can use a plain write instead of clear_bit(),
6148 * and we dont need an smp_mb() memory barrier.
6149 */
6150 napi->state = 0;
6151 again = false;
6152 } else {
6153 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6154 &sd->process_queue);
6155 }
6156 rps_unlock(sd);
6157 local_irq_enable();
6158 }
6159
6160 return work;
6161}
6162
6163/**
6164 * __napi_schedule - schedule for receive
6165 * @n: entry to schedule
6166 *
6167 * The entry's receive function will be scheduled to run.
6168 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6169 */
6170void __napi_schedule(struct napi_struct *n)
6171{
6172 unsigned long flags;
6173
6174 local_irq_save(flags);
6175 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6176 local_irq_restore(flags);
6177}
6178EXPORT_SYMBOL(__napi_schedule);
6179
6180/**
6181 * napi_schedule_prep - check if napi can be scheduled
6182 * @n: napi context
6183 *
6184 * Test if NAPI routine is already running, and if not mark
6185 * it as running. This is used as a condition variable
6186 * insure only one NAPI poll instance runs. We also make
6187 * sure there is no pending NAPI disable.
6188 */
6189bool napi_schedule_prep(struct napi_struct *n)
6190{
6191 unsigned long val, new;
6192
6193 do {
6194 val = READ_ONCE(n->state);
6195 if (unlikely(val & NAPIF_STATE_DISABLE))
6196 return false;
6197 new = val | NAPIF_STATE_SCHED;
6198
6199 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6200 * This was suggested by Alexander Duyck, as compiler
6201 * emits better code than :
6202 * if (val & NAPIF_STATE_SCHED)
6203 * new |= NAPIF_STATE_MISSED;
6204 */
6205 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6206 NAPIF_STATE_MISSED;
6207 } while (cmpxchg(&n->state, val, new) != val);
6208
6209 return !(val & NAPIF_STATE_SCHED);
6210}
6211EXPORT_SYMBOL(napi_schedule_prep);
6212
6213/**
6214 * __napi_schedule_irqoff - schedule for receive
6215 * @n: entry to schedule
6216 *
6217 * Variant of __napi_schedule() assuming hard irqs are masked
6218 */
6219void __napi_schedule_irqoff(struct napi_struct *n)
6220{
6221 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6222}
6223EXPORT_SYMBOL(__napi_schedule_irqoff);
6224
6225bool napi_complete_done(struct napi_struct *n, int work_done)
6226{
6227 unsigned long flags, val, new;
6228
6229 /*
6230 * 1) Don't let napi dequeue from the cpu poll list
6231 * just in case its running on a different cpu.
6232 * 2) If we are busy polling, do nothing here, we have
6233 * the guarantee we will be called later.
6234 */
6235 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6236 NAPIF_STATE_IN_BUSY_POLL)))
6237 return false;
6238
6239 if (n->gro_bitmask) {
6240 unsigned long timeout = 0;
6241
6242 if (work_done)
6243 timeout = n->dev->gro_flush_timeout;
6244
6245 /* When the NAPI instance uses a timeout and keeps postponing
6246 * it, we need to bound somehow the time packets are kept in
6247 * the GRO layer
6248 */
6249 napi_gro_flush(n, !!timeout);
6250 if (timeout)
6251 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6252 HRTIMER_MODE_REL_PINNED);
6253 }
6254
6255 gro_normal_list(n);
6256
6257 if (unlikely(!list_empty(&n->poll_list))) {
6258 /* If n->poll_list is not empty, we need to mask irqs */
6259 local_irq_save(flags);
6260 list_del_init(&n->poll_list);
6261 local_irq_restore(flags);
6262 }
6263
6264 do {
6265 val = READ_ONCE(n->state);
6266
6267 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6268
6269 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6270
6271 /* If STATE_MISSED was set, leave STATE_SCHED set,
6272 * because we will call napi->poll() one more time.
6273 * This C code was suggested by Alexander Duyck to help gcc.
6274 */
6275 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6276 NAPIF_STATE_SCHED;
6277 } while (cmpxchg(&n->state, val, new) != val);
6278
6279 if (unlikely(val & NAPIF_STATE_MISSED)) {
6280 __napi_schedule(n);
6281 return false;
6282 }
6283
6284 return true;
6285}
6286EXPORT_SYMBOL(napi_complete_done);
6287
6288/* must be called under rcu_read_lock(), as we dont take a reference */
6289static struct napi_struct *napi_by_id(unsigned int napi_id)
6290{
6291 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6292 struct napi_struct *napi;
6293
6294 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6295 if (napi->napi_id == napi_id)
6296 return napi;
6297
6298 return NULL;
6299}
6300
6301#if defined(CONFIG_NET_RX_BUSY_POLL)
6302
6303#define BUSY_POLL_BUDGET 8
6304
6305static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6306{
6307 int rc;
6308
6309 /* Busy polling means there is a high chance device driver hard irq
6310 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6311 * set in napi_schedule_prep().
6312 * Since we are about to call napi->poll() once more, we can safely
6313 * clear NAPI_STATE_MISSED.
6314 *
6315 * Note: x86 could use a single "lock and ..." instruction
6316 * to perform these two clear_bit()
6317 */
6318 clear_bit(NAPI_STATE_MISSED, &napi->state);
6319 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6320
6321 local_bh_disable();
6322
6323 /* All we really want here is to re-enable device interrupts.
6324 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6325 */
6326 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6327 /* We can't gro_normal_list() here, because napi->poll() might have
6328 * rearmed the napi (napi_complete_done()) in which case it could
6329 * already be running on another CPU.
6330 */
6331 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6332 netpoll_poll_unlock(have_poll_lock);
6333 if (rc == BUSY_POLL_BUDGET) {
6334 /* As the whole budget was spent, we still own the napi so can
6335 * safely handle the rx_list.
6336 */
6337 gro_normal_list(napi);
6338 __napi_schedule(napi);
6339 }
6340 local_bh_enable();
6341}
6342
6343void napi_busy_loop(unsigned int napi_id,
6344 bool (*loop_end)(void *, unsigned long),
6345 void *loop_end_arg)
6346{
6347 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6348 int (*napi_poll)(struct napi_struct *napi, int budget);
6349 void *have_poll_lock = NULL;
6350 struct napi_struct *napi;
6351
6352restart:
6353 napi_poll = NULL;
6354
6355 rcu_read_lock();
6356
6357 napi = napi_by_id(napi_id);
6358 if (!napi)
6359 goto out;
6360
6361 preempt_disable();
6362 for (;;) {
6363 int work = 0;
6364
6365 local_bh_disable();
6366 if (!napi_poll) {
6367 unsigned long val = READ_ONCE(napi->state);
6368
6369 /* If multiple threads are competing for this napi,
6370 * we avoid dirtying napi->state as much as we can.
6371 */
6372 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6373 NAPIF_STATE_IN_BUSY_POLL))
6374 goto count;
6375 if (cmpxchg(&napi->state, val,
6376 val | NAPIF_STATE_IN_BUSY_POLL |
6377 NAPIF_STATE_SCHED) != val)
6378 goto count;
6379 have_poll_lock = netpoll_poll_lock(napi);
6380 napi_poll = napi->poll;
6381 }
6382 work = napi_poll(napi, BUSY_POLL_BUDGET);
6383 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6384 gro_normal_list(napi);
6385count:
6386 if (work > 0)
6387 __NET_ADD_STATS(dev_net(napi->dev),
6388 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6389 local_bh_enable();
6390
6391 if (!loop_end || loop_end(loop_end_arg, start_time))
6392 break;
6393
6394 if (unlikely(need_resched())) {
6395 if (napi_poll)
6396 busy_poll_stop(napi, have_poll_lock);
6397 preempt_enable();
6398 rcu_read_unlock();
6399 cond_resched();
6400 if (loop_end(loop_end_arg, start_time))
6401 return;
6402 goto restart;
6403 }
6404 cpu_relax();
6405 }
6406 if (napi_poll)
6407 busy_poll_stop(napi, have_poll_lock);
6408 preempt_enable();
6409out:
6410 rcu_read_unlock();
6411}
6412EXPORT_SYMBOL(napi_busy_loop);
6413
6414#endif /* CONFIG_NET_RX_BUSY_POLL */
6415
6416static void napi_hash_add(struct napi_struct *napi)
6417{
6418 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6419 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6420 return;
6421
6422 spin_lock(&napi_hash_lock);
6423
6424 /* 0..NR_CPUS range is reserved for sender_cpu use */
6425 do {
6426 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6427 napi_gen_id = MIN_NAPI_ID;
6428 } while (napi_by_id(napi_gen_id));
6429 napi->napi_id = napi_gen_id;
6430
6431 hlist_add_head_rcu(&napi->napi_hash_node,
6432 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6433
6434 spin_unlock(&napi_hash_lock);
6435}
6436
6437/* Warning : caller is responsible to make sure rcu grace period
6438 * is respected before freeing memory containing @napi
6439 */
6440bool napi_hash_del(struct napi_struct *napi)
6441{
6442 bool rcu_sync_needed = false;
6443
6444 spin_lock(&napi_hash_lock);
6445
6446 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6447 rcu_sync_needed = true;
6448 hlist_del_rcu(&napi->napi_hash_node);
6449 }
6450 spin_unlock(&napi_hash_lock);
6451 return rcu_sync_needed;
6452}
6453EXPORT_SYMBOL_GPL(napi_hash_del);
6454
6455static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6456{
6457 struct napi_struct *napi;
6458
6459 napi = container_of(timer, struct napi_struct, timer);
6460
6461 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6462 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6463 */
6464 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6465 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6466 __napi_schedule_irqoff(napi);
6467
6468 return HRTIMER_NORESTART;
6469}
6470
6471static void init_gro_hash(struct napi_struct *napi)
6472{
6473 int i;
6474
6475 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6476 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6477 napi->gro_hash[i].count = 0;
6478 }
6479 napi->gro_bitmask = 0;
6480}
6481
6482void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6483 int (*poll)(struct napi_struct *, int), int weight)
6484{
6485 INIT_LIST_HEAD(&napi->poll_list);
6486 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6487 napi->timer.function = napi_watchdog;
6488 init_gro_hash(napi);
6489 napi->skb = NULL;
6490 INIT_LIST_HEAD(&napi->rx_list);
6491 napi->rx_count = 0;
6492 napi->poll = poll;
6493 if (weight > NAPI_POLL_WEIGHT)
6494 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6495 weight);
6496 napi->weight = weight;
6497 list_add(&napi->dev_list, &dev->napi_list);
6498 napi->dev = dev;
6499#ifdef CONFIG_NETPOLL
6500 napi->poll_owner = -1;
6501#endif
6502 set_bit(NAPI_STATE_SCHED, &napi->state);
6503 napi_hash_add(napi);
6504}
6505EXPORT_SYMBOL(netif_napi_add);
6506
6507void napi_disable(struct napi_struct *n)
6508{
6509 might_sleep();
6510 set_bit(NAPI_STATE_DISABLE, &n->state);
6511
6512 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6513 msleep(1);
6514 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6515 msleep(1);
6516
6517 hrtimer_cancel(&n->timer);
6518
6519 clear_bit(NAPI_STATE_DISABLE, &n->state);
6520}
6521EXPORT_SYMBOL(napi_disable);
6522
6523static void flush_gro_hash(struct napi_struct *napi)
6524{
6525 int i;
6526
6527 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6528 struct sk_buff *skb, *n;
6529
6530 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6531 kfree_skb(skb);
6532 napi->gro_hash[i].count = 0;
6533 }
6534}
6535
6536/* Must be called in process context */
6537void netif_napi_del(struct napi_struct *napi)
6538{
6539 might_sleep();
6540 if (napi_hash_del(napi))
6541 synchronize_net();
6542 list_del_init(&napi->dev_list);
6543 napi_free_frags(napi);
6544
6545 flush_gro_hash(napi);
6546 napi->gro_bitmask = 0;
6547}
6548EXPORT_SYMBOL(netif_napi_del);
6549
6550static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6551{
6552 void *have;
6553 int work, weight;
6554
6555 list_del_init(&n->poll_list);
6556
6557 have = netpoll_poll_lock(n);
6558
6559 weight = n->weight;
6560
6561 /* This NAPI_STATE_SCHED test is for avoiding a race
6562 * with netpoll's poll_napi(). Only the entity which
6563 * obtains the lock and sees NAPI_STATE_SCHED set will
6564 * actually make the ->poll() call. Therefore we avoid
6565 * accidentally calling ->poll() when NAPI is not scheduled.
6566 */
6567 work = 0;
6568 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6569 work = n->poll(n, weight);
6570 trace_napi_poll(n, work, weight);
6571 }
6572
6573 WARN_ON_ONCE(work > weight);
6574
6575 if (likely(work < weight))
6576 goto out_unlock;
6577
6578 /* Drivers must not modify the NAPI state if they
6579 * consume the entire weight. In such cases this code
6580 * still "owns" the NAPI instance and therefore can
6581 * move the instance around on the list at-will.
6582 */
6583 if (unlikely(napi_disable_pending(n))) {
6584 napi_complete(n);
6585 goto out_unlock;
6586 }
6587
6588 if (n->gro_bitmask) {
6589 /* flush too old packets
6590 * If HZ < 1000, flush all packets.
6591 */
6592 napi_gro_flush(n, HZ >= 1000);
6593 }
6594
6595 gro_normal_list(n);
6596
6597 /* Some drivers may have called napi_schedule
6598 * prior to exhausting their budget.
6599 */
6600 if (unlikely(!list_empty(&n->poll_list))) {
6601 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6602 n->dev ? n->dev->name : "backlog");
6603 goto out_unlock;
6604 }
6605
6606 list_add_tail(&n->poll_list, repoll);
6607
6608out_unlock:
6609 netpoll_poll_unlock(have);
6610
6611 return work;
6612}
6613
6614static __latent_entropy void net_rx_action(struct softirq_action *h)
6615{
6616 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6617 unsigned long time_limit = jiffies +
6618 usecs_to_jiffies(netdev_budget_usecs);
6619 int budget = netdev_budget;
6620 LIST_HEAD(list);
6621 LIST_HEAD(repoll);
6622
6623 local_irq_disable();
6624 list_splice_init(&sd->poll_list, &list);
6625 local_irq_enable();
6626
6627 for (;;) {
6628 struct napi_struct *n;
6629
6630 if (list_empty(&list)) {
6631 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6632 goto out;
6633 break;
6634 }
6635
6636 n = list_first_entry(&list, struct napi_struct, poll_list);
6637 budget -= napi_poll(n, &repoll);
6638
6639 /* If softirq window is exhausted then punt.
6640 * Allow this to run for 2 jiffies since which will allow
6641 * an average latency of 1.5/HZ.
6642 */
6643 if (unlikely(budget <= 0 ||
6644 time_after_eq(jiffies, time_limit))) {
6645 sd->time_squeeze++;
6646 break;
6647 }
6648 }
6649
6650 local_irq_disable();
6651
6652 list_splice_tail_init(&sd->poll_list, &list);
6653 list_splice_tail(&repoll, &list);
6654 list_splice(&list, &sd->poll_list);
6655 if (!list_empty(&sd->poll_list))
6656 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6657
6658 net_rps_action_and_irq_enable(sd);
6659out:
6660 __kfree_skb_flush();
6661}
6662
6663struct netdev_adjacent {
6664 struct net_device *dev;
6665
6666 /* upper master flag, there can only be one master device per list */
6667 bool master;
6668
6669 /* lookup ignore flag */
6670 bool ignore;
6671
6672 /* counter for the number of times this device was added to us */
6673 u16 ref_nr;
6674
6675 /* private field for the users */
6676 void *private;
6677
6678 struct list_head list;
6679 struct rcu_head rcu;
6680};
6681
6682static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6683 struct list_head *adj_list)
6684{
6685 struct netdev_adjacent *adj;
6686
6687 list_for_each_entry(adj, adj_list, list) {
6688 if (adj->dev == adj_dev)
6689 return adj;
6690 }
6691 return NULL;
6692}
6693
6694static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6695{
6696 struct net_device *dev = data;
6697
6698 return upper_dev == dev;
6699}
6700
6701/**
6702 * netdev_has_upper_dev - Check if device is linked to an upper device
6703 * @dev: device
6704 * @upper_dev: upper device to check
6705 *
6706 * Find out if a device is linked to specified upper device and return true
6707 * in case it is. Note that this checks only immediate upper device,
6708 * not through a complete stack of devices. The caller must hold the RTNL lock.
6709 */
6710bool netdev_has_upper_dev(struct net_device *dev,
6711 struct net_device *upper_dev)
6712{
6713 ASSERT_RTNL();
6714
6715 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6716 upper_dev);
6717}
6718EXPORT_SYMBOL(netdev_has_upper_dev);
6719
6720/**
6721 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6722 * @dev: device
6723 * @upper_dev: upper device to check
6724 *
6725 * Find out if a device is linked to specified upper device and return true
6726 * in case it is. Note that this checks the entire upper device chain.
6727 * The caller must hold rcu lock.
6728 */
6729
6730bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6731 struct net_device *upper_dev)
6732{
6733 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6734 upper_dev);
6735}
6736EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6737
6738/**
6739 * netdev_has_any_upper_dev - Check if device is linked to some device
6740 * @dev: device
6741 *
6742 * Find out if a device is linked to an upper device and return true in case
6743 * it is. The caller must hold the RTNL lock.
6744 */
6745bool netdev_has_any_upper_dev(struct net_device *dev)
6746{
6747 ASSERT_RTNL();
6748
6749 return !list_empty(&dev->adj_list.upper);
6750}
6751EXPORT_SYMBOL(netdev_has_any_upper_dev);
6752
6753/**
6754 * netdev_master_upper_dev_get - Get master upper device
6755 * @dev: device
6756 *
6757 * Find a master upper device and return pointer to it or NULL in case
6758 * it's not there. The caller must hold the RTNL lock.
6759 */
6760struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6761{
6762 struct netdev_adjacent *upper;
6763
6764 ASSERT_RTNL();
6765
6766 if (list_empty(&dev->adj_list.upper))
6767 return NULL;
6768
6769 upper = list_first_entry(&dev->adj_list.upper,
6770 struct netdev_adjacent, list);
6771 if (likely(upper->master))
6772 return upper->dev;
6773 return NULL;
6774}
6775EXPORT_SYMBOL(netdev_master_upper_dev_get);
6776
6777static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6778{
6779 struct netdev_adjacent *upper;
6780
6781 ASSERT_RTNL();
6782
6783 if (list_empty(&dev->adj_list.upper))
6784 return NULL;
6785
6786 upper = list_first_entry(&dev->adj_list.upper,
6787 struct netdev_adjacent, list);
6788 if (likely(upper->master) && !upper->ignore)
6789 return upper->dev;
6790 return NULL;
6791}
6792
6793/**
6794 * netdev_has_any_lower_dev - Check if device is linked to some device
6795 * @dev: device
6796 *
6797 * Find out if a device is linked to a lower device and return true in case
6798 * it is. The caller must hold the RTNL lock.
6799 */
6800static bool netdev_has_any_lower_dev(struct net_device *dev)
6801{
6802 ASSERT_RTNL();
6803
6804 return !list_empty(&dev->adj_list.lower);
6805}
6806
6807void *netdev_adjacent_get_private(struct list_head *adj_list)
6808{
6809 struct netdev_adjacent *adj;
6810
6811 adj = list_entry(adj_list, struct netdev_adjacent, list);
6812
6813 return adj->private;
6814}
6815EXPORT_SYMBOL(netdev_adjacent_get_private);
6816
6817/**
6818 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6819 * @dev: device
6820 * @iter: list_head ** of the current position
6821 *
6822 * Gets the next device from the dev's upper list, starting from iter
6823 * position. The caller must hold RCU read lock.
6824 */
6825struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6826 struct list_head **iter)
6827{
6828 struct netdev_adjacent *upper;
6829
6830 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6831
6832 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6833
6834 if (&upper->list == &dev->adj_list.upper)
6835 return NULL;
6836
6837 *iter = &upper->list;
6838
6839 return upper->dev;
6840}
6841EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6842
6843static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6844 struct list_head **iter,
6845 bool *ignore)
6846{
6847 struct netdev_adjacent *upper;
6848
6849 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6850
6851 if (&upper->list == &dev->adj_list.upper)
6852 return NULL;
6853
6854 *iter = &upper->list;
6855 *ignore = upper->ignore;
6856
6857 return upper->dev;
6858}
6859
6860static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6861 struct list_head **iter)
6862{
6863 struct netdev_adjacent *upper;
6864
6865 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6866
6867 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6868
6869 if (&upper->list == &dev->adj_list.upper)
6870 return NULL;
6871
6872 *iter = &upper->list;
6873
6874 return upper->dev;
6875}
6876
6877static int __netdev_walk_all_upper_dev(struct net_device *dev,
6878 int (*fn)(struct net_device *dev,
6879 void *data),
6880 void *data)
6881{
6882 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6883 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6884 int ret, cur = 0;
6885 bool ignore;
6886
6887 now = dev;
6888 iter = &dev->adj_list.upper;
6889
6890 while (1) {
6891 if (now != dev) {
6892 ret = fn(now, data);
6893 if (ret)
6894 return ret;
6895 }
6896
6897 next = NULL;
6898 while (1) {
6899 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6900 if (!udev)
6901 break;
6902 if (ignore)
6903 continue;
6904
6905 next = udev;
6906 niter = &udev->adj_list.upper;
6907 dev_stack[cur] = now;
6908 iter_stack[cur++] = iter;
6909 break;
6910 }
6911
6912 if (!next) {
6913 if (!cur)
6914 return 0;
6915 next = dev_stack[--cur];
6916 niter = iter_stack[cur];
6917 }
6918
6919 now = next;
6920 iter = niter;
6921 }
6922
6923 return 0;
6924}
6925
6926int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6927 int (*fn)(struct net_device *dev,
6928 void *data),
6929 void *data)
6930{
6931 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6932 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6933 int ret, cur = 0;
6934
6935 now = dev;
6936 iter = &dev->adj_list.upper;
6937
6938 while (1) {
6939 if (now != dev) {
6940 ret = fn(now, data);
6941 if (ret)
6942 return ret;
6943 }
6944
6945 next = NULL;
6946 while (1) {
6947 udev = netdev_next_upper_dev_rcu(now, &iter);
6948 if (!udev)
6949 break;
6950
6951 next = udev;
6952 niter = &udev->adj_list.upper;
6953 dev_stack[cur] = now;
6954 iter_stack[cur++] = iter;
6955 break;
6956 }
6957
6958 if (!next) {
6959 if (!cur)
6960 return 0;
6961 next = dev_stack[--cur];
6962 niter = iter_stack[cur];
6963 }
6964
6965 now = next;
6966 iter = niter;
6967 }
6968
6969 return 0;
6970}
6971EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6972
6973static bool __netdev_has_upper_dev(struct net_device *dev,
6974 struct net_device *upper_dev)
6975{
6976 ASSERT_RTNL();
6977
6978 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6979 upper_dev);
6980}
6981
6982/**
6983 * netdev_lower_get_next_private - Get the next ->private from the
6984 * lower neighbour list
6985 * @dev: device
6986 * @iter: list_head ** of the current position
6987 *
6988 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6989 * list, starting from iter position. The caller must hold either hold the
6990 * RTNL lock or its own locking that guarantees that the neighbour lower
6991 * list will remain unchanged.
6992 */
6993void *netdev_lower_get_next_private(struct net_device *dev,
6994 struct list_head **iter)
6995{
6996 struct netdev_adjacent *lower;
6997
6998 lower = list_entry(*iter, struct netdev_adjacent, list);
6999
7000 if (&lower->list == &dev->adj_list.lower)
7001 return NULL;
7002
7003 *iter = lower->list.next;
7004
7005 return lower->private;
7006}
7007EXPORT_SYMBOL(netdev_lower_get_next_private);
7008
7009/**
7010 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7011 * lower neighbour list, RCU
7012 * variant
7013 * @dev: device
7014 * @iter: list_head ** of the current position
7015 *
7016 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7017 * list, starting from iter position. The caller must hold RCU read lock.
7018 */
7019void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7020 struct list_head **iter)
7021{
7022 struct netdev_adjacent *lower;
7023
7024 WARN_ON_ONCE(!rcu_read_lock_held());
7025
7026 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7027
7028 if (&lower->list == &dev->adj_list.lower)
7029 return NULL;
7030
7031 *iter = &lower->list;
7032
7033 return lower->private;
7034}
7035EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7036
7037/**
7038 * netdev_lower_get_next - Get the next device from the lower neighbour
7039 * list
7040 * @dev: device
7041 * @iter: list_head ** of the current position
7042 *
7043 * Gets the next netdev_adjacent from the dev's lower neighbour
7044 * list, starting from iter position. The caller must hold RTNL lock or
7045 * its own locking that guarantees that the neighbour lower
7046 * list will remain unchanged.
7047 */
7048void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7049{
7050 struct netdev_adjacent *lower;
7051
7052 lower = list_entry(*iter, struct netdev_adjacent, list);
7053
7054 if (&lower->list == &dev->adj_list.lower)
7055 return NULL;
7056
7057 *iter = lower->list.next;
7058
7059 return lower->dev;
7060}
7061EXPORT_SYMBOL(netdev_lower_get_next);
7062
7063static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7064 struct list_head **iter)
7065{
7066 struct netdev_adjacent *lower;
7067
7068 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7069
7070 if (&lower->list == &dev->adj_list.lower)
7071 return NULL;
7072
7073 *iter = &lower->list;
7074
7075 return lower->dev;
7076}
7077
7078static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7079 struct list_head **iter,
7080 bool *ignore)
7081{
7082 struct netdev_adjacent *lower;
7083
7084 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7085
7086 if (&lower->list == &dev->adj_list.lower)
7087 return NULL;
7088
7089 *iter = &lower->list;
7090 *ignore = lower->ignore;
7091
7092 return lower->dev;
7093}
7094
7095int netdev_walk_all_lower_dev(struct net_device *dev,
7096 int (*fn)(struct net_device *dev,
7097 void *data),
7098 void *data)
7099{
7100 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7101 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7102 int ret, cur = 0;
7103
7104 now = dev;
7105 iter = &dev->adj_list.lower;
7106
7107 while (1) {
7108 if (now != dev) {
7109 ret = fn(now, data);
7110 if (ret)
7111 return ret;
7112 }
7113
7114 next = NULL;
7115 while (1) {
7116 ldev = netdev_next_lower_dev(now, &iter);
7117 if (!ldev)
7118 break;
7119
7120 next = ldev;
7121 niter = &ldev->adj_list.lower;
7122 dev_stack[cur] = now;
7123 iter_stack[cur++] = iter;
7124 break;
7125 }
7126
7127 if (!next) {
7128 if (!cur)
7129 return 0;
7130 next = dev_stack[--cur];
7131 niter = iter_stack[cur];
7132 }
7133
7134 now = next;
7135 iter = niter;
7136 }
7137
7138 return 0;
7139}
7140EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7141
7142static int __netdev_walk_all_lower_dev(struct net_device *dev,
7143 int (*fn)(struct net_device *dev,
7144 void *data),
7145 void *data)
7146{
7147 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7148 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7149 int ret, cur = 0;
7150 bool ignore;
7151
7152 now = dev;
7153 iter = &dev->adj_list.lower;
7154
7155 while (1) {
7156 if (now != dev) {
7157 ret = fn(now, data);
7158 if (ret)
7159 return ret;
7160 }
7161
7162 next = NULL;
7163 while (1) {
7164 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7165 if (!ldev)
7166 break;
7167 if (ignore)
7168 continue;
7169
7170 next = ldev;
7171 niter = &ldev->adj_list.lower;
7172 dev_stack[cur] = now;
7173 iter_stack[cur++] = iter;
7174 break;
7175 }
7176
7177 if (!next) {
7178 if (!cur)
7179 return 0;
7180 next = dev_stack[--cur];
7181 niter = iter_stack[cur];
7182 }
7183
7184 now = next;
7185 iter = niter;
7186 }
7187
7188 return 0;
7189}
7190
7191struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7192 struct list_head **iter)
7193{
7194 struct netdev_adjacent *lower;
7195
7196 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7197 if (&lower->list == &dev->adj_list.lower)
7198 return NULL;
7199
7200 *iter = &lower->list;
7201
7202 return lower->dev;
7203}
7204EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7205
7206static u8 __netdev_upper_depth(struct net_device *dev)
7207{
7208 struct net_device *udev;
7209 struct list_head *iter;
7210 u8 max_depth = 0;
7211 bool ignore;
7212
7213 for (iter = &dev->adj_list.upper,
7214 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7215 udev;
7216 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7217 if (ignore)
7218 continue;
7219 if (max_depth < udev->upper_level)
7220 max_depth = udev->upper_level;
7221 }
7222
7223 return max_depth;
7224}
7225
7226static u8 __netdev_lower_depth(struct net_device *dev)
7227{
7228 struct net_device *ldev;
7229 struct list_head *iter;
7230 u8 max_depth = 0;
7231 bool ignore;
7232
7233 for (iter = &dev->adj_list.lower,
7234 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7235 ldev;
7236 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7237 if (ignore)
7238 continue;
7239 if (max_depth < ldev->lower_level)
7240 max_depth = ldev->lower_level;
7241 }
7242
7243 return max_depth;
7244}
7245
7246static int __netdev_update_upper_level(struct net_device *dev, void *data)
7247{
7248 dev->upper_level = __netdev_upper_depth(dev) + 1;
7249 return 0;
7250}
7251
7252static int __netdev_update_lower_level(struct net_device *dev, void *data)
7253{
7254 dev->lower_level = __netdev_lower_depth(dev) + 1;
7255 return 0;
7256}
7257
7258int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7259 int (*fn)(struct net_device *dev,
7260 void *data),
7261 void *data)
7262{
7263 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7264 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265 int ret, cur = 0;
7266
7267 now = dev;
7268 iter = &dev->adj_list.lower;
7269
7270 while (1) {
7271 if (now != dev) {
7272 ret = fn(now, data);
7273 if (ret)
7274 return ret;
7275 }
7276
7277 next = NULL;
7278 while (1) {
7279 ldev = netdev_next_lower_dev_rcu(now, &iter);
7280 if (!ldev)
7281 break;
7282
7283 next = ldev;
7284 niter = &ldev->adj_list.lower;
7285 dev_stack[cur] = now;
7286 iter_stack[cur++] = iter;
7287 break;
7288 }
7289
7290 if (!next) {
7291 if (!cur)
7292 return 0;
7293 next = dev_stack[--cur];
7294 niter = iter_stack[cur];
7295 }
7296
7297 now = next;
7298 iter = niter;
7299 }
7300
7301 return 0;
7302}
7303EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7304
7305/**
7306 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7307 * lower neighbour list, RCU
7308 * variant
7309 * @dev: device
7310 *
7311 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7312 * list. The caller must hold RCU read lock.
7313 */
7314void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7315{
7316 struct netdev_adjacent *lower;
7317
7318 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7319 struct netdev_adjacent, list);
7320 if (lower)
7321 return lower->private;
7322 return NULL;
7323}
7324EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7325
7326/**
7327 * netdev_master_upper_dev_get_rcu - Get master upper device
7328 * @dev: device
7329 *
7330 * Find a master upper device and return pointer to it or NULL in case
7331 * it's not there. The caller must hold the RCU read lock.
7332 */
7333struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7334{
7335 struct netdev_adjacent *upper;
7336
7337 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7338 struct netdev_adjacent, list);
7339 if (upper && likely(upper->master))
7340 return upper->dev;
7341 return NULL;
7342}
7343EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7344
7345static int netdev_adjacent_sysfs_add(struct net_device *dev,
7346 struct net_device *adj_dev,
7347 struct list_head *dev_list)
7348{
7349 char linkname[IFNAMSIZ+7];
7350
7351 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7352 "upper_%s" : "lower_%s", adj_dev->name);
7353 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7354 linkname);
7355}
7356static void netdev_adjacent_sysfs_del(struct net_device *dev,
7357 char *name,
7358 struct list_head *dev_list)
7359{
7360 char linkname[IFNAMSIZ+7];
7361
7362 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7363 "upper_%s" : "lower_%s", name);
7364 sysfs_remove_link(&(dev->dev.kobj), linkname);
7365}
7366
7367static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7368 struct net_device *adj_dev,
7369 struct list_head *dev_list)
7370{
7371 return (dev_list == &dev->adj_list.upper ||
7372 dev_list == &dev->adj_list.lower) &&
7373 net_eq(dev_net(dev), dev_net(adj_dev));
7374}
7375
7376static int __netdev_adjacent_dev_insert(struct net_device *dev,
7377 struct net_device *adj_dev,
7378 struct list_head *dev_list,
7379 void *private, bool master)
7380{
7381 struct netdev_adjacent *adj;
7382 int ret;
7383
7384 adj = __netdev_find_adj(adj_dev, dev_list);
7385
7386 if (adj) {
7387 adj->ref_nr += 1;
7388 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7389 dev->name, adj_dev->name, adj->ref_nr);
7390
7391 return 0;
7392 }
7393
7394 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7395 if (!adj)
7396 return -ENOMEM;
7397
7398 adj->dev = adj_dev;
7399 adj->master = master;
7400 adj->ref_nr = 1;
7401 adj->private = private;
7402 adj->ignore = false;
7403 dev_hold(adj_dev);
7404
7405 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7406 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7407
7408 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7409 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7410 if (ret)
7411 goto free_adj;
7412 }
7413
7414 /* Ensure that master link is always the first item in list. */
7415 if (master) {
7416 ret = sysfs_create_link(&(dev->dev.kobj),
7417 &(adj_dev->dev.kobj), "master");
7418 if (ret)
7419 goto remove_symlinks;
7420
7421 list_add_rcu(&adj->list, dev_list);
7422 } else {
7423 list_add_tail_rcu(&adj->list, dev_list);
7424 }
7425
7426 return 0;
7427
7428remove_symlinks:
7429 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7430 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7431free_adj:
7432 kfree(adj);
7433 dev_put(adj_dev);
7434
7435 return ret;
7436}
7437
7438static void __netdev_adjacent_dev_remove(struct net_device *dev,
7439 struct net_device *adj_dev,
7440 u16 ref_nr,
7441 struct list_head *dev_list)
7442{
7443 struct netdev_adjacent *adj;
7444
7445 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7446 dev->name, adj_dev->name, ref_nr);
7447
7448 adj = __netdev_find_adj(adj_dev, dev_list);
7449
7450 if (!adj) {
7451 pr_err("Adjacency does not exist for device %s from %s\n",
7452 dev->name, adj_dev->name);
7453 WARN_ON(1);
7454 return;
7455 }
7456
7457 if (adj->ref_nr > ref_nr) {
7458 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7459 dev->name, adj_dev->name, ref_nr,
7460 adj->ref_nr - ref_nr);
7461 adj->ref_nr -= ref_nr;
7462 return;
7463 }
7464
7465 if (adj->master)
7466 sysfs_remove_link(&(dev->dev.kobj), "master");
7467
7468 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7469 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7470
7471 list_del_rcu(&adj->list);
7472 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7473 adj_dev->name, dev->name, adj_dev->name);
7474 dev_put(adj_dev);
7475 kfree_rcu(adj, rcu);
7476}
7477
7478static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7479 struct net_device *upper_dev,
7480 struct list_head *up_list,
7481 struct list_head *down_list,
7482 void *private, bool master)
7483{
7484 int ret;
7485
7486 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7487 private, master);
7488 if (ret)
7489 return ret;
7490
7491 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7492 private, false);
7493 if (ret) {
7494 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7495 return ret;
7496 }
7497
7498 return 0;
7499}
7500
7501static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7502 struct net_device *upper_dev,
7503 u16 ref_nr,
7504 struct list_head *up_list,
7505 struct list_head *down_list)
7506{
7507 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7508 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7509}
7510
7511static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7512 struct net_device *upper_dev,
7513 void *private, bool master)
7514{
7515 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7516 &dev->adj_list.upper,
7517 &upper_dev->adj_list.lower,
7518 private, master);
7519}
7520
7521static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7522 struct net_device *upper_dev)
7523{
7524 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7525 &dev->adj_list.upper,
7526 &upper_dev->adj_list.lower);
7527}
7528
7529static int __netdev_upper_dev_link(struct net_device *dev,
7530 struct net_device *upper_dev, bool master,
7531 void *upper_priv, void *upper_info,
7532 struct netlink_ext_ack *extack)
7533{
7534 struct netdev_notifier_changeupper_info changeupper_info = {
7535 .info = {
7536 .dev = dev,
7537 .extack = extack,
7538 },
7539 .upper_dev = upper_dev,
7540 .master = master,
7541 .linking = true,
7542 .upper_info = upper_info,
7543 };
7544 struct net_device *master_dev;
7545 int ret = 0;
7546
7547 ASSERT_RTNL();
7548
7549 if (dev == upper_dev)
7550 return -EBUSY;
7551
7552 /* To prevent loops, check if dev is not upper device to upper_dev. */
7553 if (__netdev_has_upper_dev(upper_dev, dev))
7554 return -EBUSY;
7555
7556 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7557 return -EMLINK;
7558
7559 if (!master) {
7560 if (__netdev_has_upper_dev(dev, upper_dev))
7561 return -EEXIST;
7562 } else {
7563 master_dev = __netdev_master_upper_dev_get(dev);
7564 if (master_dev)
7565 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7566 }
7567
7568 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7569 &changeupper_info.info);
7570 ret = notifier_to_errno(ret);
7571 if (ret)
7572 return ret;
7573
7574 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7575 master);
7576 if (ret)
7577 return ret;
7578
7579 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7580 &changeupper_info.info);
7581 ret = notifier_to_errno(ret);
7582 if (ret)
7583 goto rollback;
7584
7585 __netdev_update_upper_level(dev, NULL);
7586 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7587
7588 __netdev_update_lower_level(upper_dev, NULL);
7589 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7590 NULL);
7591
7592 return 0;
7593
7594rollback:
7595 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7596
7597 return ret;
7598}
7599
7600/**
7601 * netdev_upper_dev_link - Add a link to the upper device
7602 * @dev: device
7603 * @upper_dev: new upper device
7604 * @extack: netlink extended ack
7605 *
7606 * Adds a link to device which is upper to this one. The caller must hold
7607 * the RTNL lock. On a failure a negative errno code is returned.
7608 * On success the reference counts are adjusted and the function
7609 * returns zero.
7610 */
7611int netdev_upper_dev_link(struct net_device *dev,
7612 struct net_device *upper_dev,
7613 struct netlink_ext_ack *extack)
7614{
7615 return __netdev_upper_dev_link(dev, upper_dev, false,
7616 NULL, NULL, extack);
7617}
7618EXPORT_SYMBOL(netdev_upper_dev_link);
7619
7620/**
7621 * netdev_master_upper_dev_link - Add a master link to the upper device
7622 * @dev: device
7623 * @upper_dev: new upper device
7624 * @upper_priv: upper device private
7625 * @upper_info: upper info to be passed down via notifier
7626 * @extack: netlink extended ack
7627 *
7628 * Adds a link to device which is upper to this one. In this case, only
7629 * one master upper device can be linked, although other non-master devices
7630 * might be linked as well. The caller must hold the RTNL lock.
7631 * On a failure a negative errno code is returned. On success the reference
7632 * counts are adjusted and the function returns zero.
7633 */
7634int netdev_master_upper_dev_link(struct net_device *dev,
7635 struct net_device *upper_dev,
7636 void *upper_priv, void *upper_info,
7637 struct netlink_ext_ack *extack)
7638{
7639 return __netdev_upper_dev_link(dev, upper_dev, true,
7640 upper_priv, upper_info, extack);
7641}
7642EXPORT_SYMBOL(netdev_master_upper_dev_link);
7643
7644/**
7645 * netdev_upper_dev_unlink - Removes a link to upper device
7646 * @dev: device
7647 * @upper_dev: new upper device
7648 *
7649 * Removes a link to device which is upper to this one. The caller must hold
7650 * the RTNL lock.
7651 */
7652void netdev_upper_dev_unlink(struct net_device *dev,
7653 struct net_device *upper_dev)
7654{
7655 struct netdev_notifier_changeupper_info changeupper_info = {
7656 .info = {
7657 .dev = dev,
7658 },
7659 .upper_dev = upper_dev,
7660 .linking = false,
7661 };
7662
7663 ASSERT_RTNL();
7664
7665 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7666
7667 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7668 &changeupper_info.info);
7669
7670 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7671
7672 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7673 &changeupper_info.info);
7674
7675 __netdev_update_upper_level(dev, NULL);
7676 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7677
7678 __netdev_update_lower_level(upper_dev, NULL);
7679 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7680 NULL);
7681}
7682EXPORT_SYMBOL(netdev_upper_dev_unlink);
7683
7684static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7685 struct net_device *lower_dev,
7686 bool val)
7687{
7688 struct netdev_adjacent *adj;
7689
7690 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7691 if (adj)
7692 adj->ignore = val;
7693
7694 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7695 if (adj)
7696 adj->ignore = val;
7697}
7698
7699static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7700 struct net_device *lower_dev)
7701{
7702 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7703}
7704
7705static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7706 struct net_device *lower_dev)
7707{
7708 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7709}
7710
7711int netdev_adjacent_change_prepare(struct net_device *old_dev,
7712 struct net_device *new_dev,
7713 struct net_device *dev,
7714 struct netlink_ext_ack *extack)
7715{
7716 int err;
7717
7718 if (!new_dev)
7719 return 0;
7720
7721 if (old_dev && new_dev != old_dev)
7722 netdev_adjacent_dev_disable(dev, old_dev);
7723
7724 err = netdev_upper_dev_link(new_dev, dev, extack);
7725 if (err) {
7726 if (old_dev && new_dev != old_dev)
7727 netdev_adjacent_dev_enable(dev, old_dev);
7728 return err;
7729 }
7730
7731 return 0;
7732}
7733EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7734
7735void netdev_adjacent_change_commit(struct net_device *old_dev,
7736 struct net_device *new_dev,
7737 struct net_device *dev)
7738{
7739 if (!new_dev || !old_dev)
7740 return;
7741
7742 if (new_dev == old_dev)
7743 return;
7744
7745 netdev_adjacent_dev_enable(dev, old_dev);
7746 netdev_upper_dev_unlink(old_dev, dev);
7747}
7748EXPORT_SYMBOL(netdev_adjacent_change_commit);
7749
7750void netdev_adjacent_change_abort(struct net_device *old_dev,
7751 struct net_device *new_dev,
7752 struct net_device *dev)
7753{
7754 if (!new_dev)
7755 return;
7756
7757 if (old_dev && new_dev != old_dev)
7758 netdev_adjacent_dev_enable(dev, old_dev);
7759
7760 netdev_upper_dev_unlink(new_dev, dev);
7761}
7762EXPORT_SYMBOL(netdev_adjacent_change_abort);
7763
7764/**
7765 * netdev_bonding_info_change - Dispatch event about slave change
7766 * @dev: device
7767 * @bonding_info: info to dispatch
7768 *
7769 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7770 * The caller must hold the RTNL lock.
7771 */
7772void netdev_bonding_info_change(struct net_device *dev,
7773 struct netdev_bonding_info *bonding_info)
7774{
7775 struct netdev_notifier_bonding_info info = {
7776 .info.dev = dev,
7777 };
7778
7779 memcpy(&info.bonding_info, bonding_info,
7780 sizeof(struct netdev_bonding_info));
7781 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7782 &info.info);
7783}
7784EXPORT_SYMBOL(netdev_bonding_info_change);
7785
7786static void netdev_adjacent_add_links(struct net_device *dev)
7787{
7788 struct netdev_adjacent *iter;
7789
7790 struct net *net = dev_net(dev);
7791
7792 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7793 if (!net_eq(net, dev_net(iter->dev)))
7794 continue;
7795 netdev_adjacent_sysfs_add(iter->dev, dev,
7796 &iter->dev->adj_list.lower);
7797 netdev_adjacent_sysfs_add(dev, iter->dev,
7798 &dev->adj_list.upper);
7799 }
7800
7801 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7802 if (!net_eq(net, dev_net(iter->dev)))
7803 continue;
7804 netdev_adjacent_sysfs_add(iter->dev, dev,
7805 &iter->dev->adj_list.upper);
7806 netdev_adjacent_sysfs_add(dev, iter->dev,
7807 &dev->adj_list.lower);
7808 }
7809}
7810
7811static void netdev_adjacent_del_links(struct net_device *dev)
7812{
7813 struct netdev_adjacent *iter;
7814
7815 struct net *net = dev_net(dev);
7816
7817 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7818 if (!net_eq(net, dev_net(iter->dev)))
7819 continue;
7820 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7821 &iter->dev->adj_list.lower);
7822 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7823 &dev->adj_list.upper);
7824 }
7825
7826 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7827 if (!net_eq(net, dev_net(iter->dev)))
7828 continue;
7829 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7830 &iter->dev->adj_list.upper);
7831 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7832 &dev->adj_list.lower);
7833 }
7834}
7835
7836void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7837{
7838 struct netdev_adjacent *iter;
7839
7840 struct net *net = dev_net(dev);
7841
7842 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7843 if (!net_eq(net, dev_net(iter->dev)))
7844 continue;
7845 netdev_adjacent_sysfs_del(iter->dev, oldname,
7846 &iter->dev->adj_list.lower);
7847 netdev_adjacent_sysfs_add(iter->dev, dev,
7848 &iter->dev->adj_list.lower);
7849 }
7850
7851 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7852 if (!net_eq(net, dev_net(iter->dev)))
7853 continue;
7854 netdev_adjacent_sysfs_del(iter->dev, oldname,
7855 &iter->dev->adj_list.upper);
7856 netdev_adjacent_sysfs_add(iter->dev, dev,
7857 &iter->dev->adj_list.upper);
7858 }
7859}
7860
7861void *netdev_lower_dev_get_private(struct net_device *dev,
7862 struct net_device *lower_dev)
7863{
7864 struct netdev_adjacent *lower;
7865
7866 if (!lower_dev)
7867 return NULL;
7868 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7869 if (!lower)
7870 return NULL;
7871
7872 return lower->private;
7873}
7874EXPORT_SYMBOL(netdev_lower_dev_get_private);
7875
7876
7877/**
7878 * netdev_lower_change - Dispatch event about lower device state change
7879 * @lower_dev: device
7880 * @lower_state_info: state to dispatch
7881 *
7882 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7883 * The caller must hold the RTNL lock.
7884 */
7885void netdev_lower_state_changed(struct net_device *lower_dev,
7886 void *lower_state_info)
7887{
7888 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7889 .info.dev = lower_dev,
7890 };
7891
7892 ASSERT_RTNL();
7893 changelowerstate_info.lower_state_info = lower_state_info;
7894 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7895 &changelowerstate_info.info);
7896}
7897EXPORT_SYMBOL(netdev_lower_state_changed);
7898
7899static void dev_change_rx_flags(struct net_device *dev, int flags)
7900{
7901 const struct net_device_ops *ops = dev->netdev_ops;
7902
7903 if (ops->ndo_change_rx_flags)
7904 ops->ndo_change_rx_flags(dev, flags);
7905}
7906
7907static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7908{
7909 unsigned int old_flags = dev->flags;
7910 kuid_t uid;
7911 kgid_t gid;
7912
7913 ASSERT_RTNL();
7914
7915 dev->flags |= IFF_PROMISC;
7916 dev->promiscuity += inc;
7917 if (dev->promiscuity == 0) {
7918 /*
7919 * Avoid overflow.
7920 * If inc causes overflow, untouch promisc and return error.
7921 */
7922 if (inc < 0)
7923 dev->flags &= ~IFF_PROMISC;
7924 else {
7925 dev->promiscuity -= inc;
7926 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7927 dev->name);
7928 return -EOVERFLOW;
7929 }
7930 }
7931 if (dev->flags != old_flags) {
7932 pr_info("device %s %s promiscuous mode\n",
7933 dev->name,
7934 dev->flags & IFF_PROMISC ? "entered" : "left");
7935 if (audit_enabled) {
7936 current_uid_gid(&uid, &gid);
7937 audit_log(audit_context(), GFP_ATOMIC,
7938 AUDIT_ANOM_PROMISCUOUS,
7939 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7940 dev->name, (dev->flags & IFF_PROMISC),
7941 (old_flags & IFF_PROMISC),
7942 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7943 from_kuid(&init_user_ns, uid),
7944 from_kgid(&init_user_ns, gid),
7945 audit_get_sessionid(current));
7946 }
7947
7948 dev_change_rx_flags(dev, IFF_PROMISC);
7949 }
7950 if (notify)
7951 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7952 return 0;
7953}
7954
7955/**
7956 * dev_set_promiscuity - update promiscuity count on a device
7957 * @dev: device
7958 * @inc: modifier
7959 *
7960 * Add or remove promiscuity from a device. While the count in the device
7961 * remains above zero the interface remains promiscuous. Once it hits zero
7962 * the device reverts back to normal filtering operation. A negative inc
7963 * value is used to drop promiscuity on the device.
7964 * Return 0 if successful or a negative errno code on error.
7965 */
7966int dev_set_promiscuity(struct net_device *dev, int inc)
7967{
7968 unsigned int old_flags = dev->flags;
7969 int err;
7970
7971 err = __dev_set_promiscuity(dev, inc, true);
7972 if (err < 0)
7973 return err;
7974 if (dev->flags != old_flags)
7975 dev_set_rx_mode(dev);
7976 return err;
7977}
7978EXPORT_SYMBOL(dev_set_promiscuity);
7979
7980static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7981{
7982 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7983
7984 ASSERT_RTNL();
7985
7986 dev->flags |= IFF_ALLMULTI;
7987 dev->allmulti += inc;
7988 if (dev->allmulti == 0) {
7989 /*
7990 * Avoid overflow.
7991 * If inc causes overflow, untouch allmulti and return error.
7992 */
7993 if (inc < 0)
7994 dev->flags &= ~IFF_ALLMULTI;
7995 else {
7996 dev->allmulti -= inc;
7997 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7998 dev->name);
7999 return -EOVERFLOW;
8000 }
8001 }
8002 if (dev->flags ^ old_flags) {
8003 dev_change_rx_flags(dev, IFF_ALLMULTI);
8004 dev_set_rx_mode(dev);
8005 if (notify)
8006 __dev_notify_flags(dev, old_flags,
8007 dev->gflags ^ old_gflags);
8008 }
8009 return 0;
8010}
8011
8012/**
8013 * dev_set_allmulti - update allmulti count on a device
8014 * @dev: device
8015 * @inc: modifier
8016 *
8017 * Add or remove reception of all multicast frames to a device. While the
8018 * count in the device remains above zero the interface remains listening
8019 * to all interfaces. Once it hits zero the device reverts back to normal
8020 * filtering operation. A negative @inc value is used to drop the counter
8021 * when releasing a resource needing all multicasts.
8022 * Return 0 if successful or a negative errno code on error.
8023 */
8024
8025int dev_set_allmulti(struct net_device *dev, int inc)
8026{
8027 return __dev_set_allmulti(dev, inc, true);
8028}
8029EXPORT_SYMBOL(dev_set_allmulti);
8030
8031/*
8032 * Upload unicast and multicast address lists to device and
8033 * configure RX filtering. When the device doesn't support unicast
8034 * filtering it is put in promiscuous mode while unicast addresses
8035 * are present.
8036 */
8037void __dev_set_rx_mode(struct net_device *dev)
8038{
8039 const struct net_device_ops *ops = dev->netdev_ops;
8040
8041 /* dev_open will call this function so the list will stay sane. */
8042 if (!(dev->flags&IFF_UP))
8043 return;
8044
8045 if (!netif_device_present(dev))
8046 return;
8047
8048 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8049 /* Unicast addresses changes may only happen under the rtnl,
8050 * therefore calling __dev_set_promiscuity here is safe.
8051 */
8052 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8053 __dev_set_promiscuity(dev, 1, false);
8054 dev->uc_promisc = true;
8055 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8056 __dev_set_promiscuity(dev, -1, false);
8057 dev->uc_promisc = false;
8058 }
8059 }
8060
8061 if (ops->ndo_set_rx_mode)
8062 ops->ndo_set_rx_mode(dev);
8063}
8064
8065void dev_set_rx_mode(struct net_device *dev)
8066{
8067 netif_addr_lock_bh(dev);
8068 __dev_set_rx_mode(dev);
8069 netif_addr_unlock_bh(dev);
8070}
8071
8072/**
8073 * dev_get_flags - get flags reported to userspace
8074 * @dev: device
8075 *
8076 * Get the combination of flag bits exported through APIs to userspace.
8077 */
8078unsigned int dev_get_flags(const struct net_device *dev)
8079{
8080 unsigned int flags;
8081
8082 flags = (dev->flags & ~(IFF_PROMISC |
8083 IFF_ALLMULTI |
8084 IFF_RUNNING |
8085 IFF_LOWER_UP |
8086 IFF_DORMANT)) |
8087 (dev->gflags & (IFF_PROMISC |
8088 IFF_ALLMULTI));
8089
8090 if (netif_running(dev)) {
8091 if (netif_oper_up(dev))
8092 flags |= IFF_RUNNING;
8093 if (netif_carrier_ok(dev))
8094 flags |= IFF_LOWER_UP;
8095 if (netif_dormant(dev))
8096 flags |= IFF_DORMANT;
8097 }
8098
8099 return flags;
8100}
8101EXPORT_SYMBOL(dev_get_flags);
8102
8103int __dev_change_flags(struct net_device *dev, unsigned int flags,
8104 struct netlink_ext_ack *extack)
8105{
8106 unsigned int old_flags = dev->flags;
8107 int ret;
8108
8109 ASSERT_RTNL();
8110
8111 /*
8112 * Set the flags on our device.
8113 */
8114
8115 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8116 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8117 IFF_AUTOMEDIA)) |
8118 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8119 IFF_ALLMULTI));
8120
8121 /*
8122 * Load in the correct multicast list now the flags have changed.
8123 */
8124
8125 if ((old_flags ^ flags) & IFF_MULTICAST)
8126 dev_change_rx_flags(dev, IFF_MULTICAST);
8127
8128 dev_set_rx_mode(dev);
8129
8130 /*
8131 * Have we downed the interface. We handle IFF_UP ourselves
8132 * according to user attempts to set it, rather than blindly
8133 * setting it.
8134 */
8135
8136 ret = 0;
8137 if ((old_flags ^ flags) & IFF_UP) {
8138 if (old_flags & IFF_UP)
8139 __dev_close(dev);
8140 else
8141 ret = __dev_open(dev, extack);
8142 }
8143
8144 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8145 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8146 unsigned int old_flags = dev->flags;
8147
8148 dev->gflags ^= IFF_PROMISC;
8149
8150 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8151 if (dev->flags != old_flags)
8152 dev_set_rx_mode(dev);
8153 }
8154
8155 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8156 * is important. Some (broken) drivers set IFF_PROMISC, when
8157 * IFF_ALLMULTI is requested not asking us and not reporting.
8158 */
8159 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8160 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8161
8162 dev->gflags ^= IFF_ALLMULTI;
8163 __dev_set_allmulti(dev, inc, false);
8164 }
8165
8166 return ret;
8167}
8168
8169void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8170 unsigned int gchanges)
8171{
8172 unsigned int changes = dev->flags ^ old_flags;
8173
8174 if (gchanges)
8175 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8176
8177 if (changes & IFF_UP) {
8178 if (dev->flags & IFF_UP)
8179 call_netdevice_notifiers(NETDEV_UP, dev);
8180 else
8181 call_netdevice_notifiers(NETDEV_DOWN, dev);
8182 }
8183
8184 if (dev->flags & IFF_UP &&
8185 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8186 struct netdev_notifier_change_info change_info = {
8187 .info = {
8188 .dev = dev,
8189 },
8190 .flags_changed = changes,
8191 };
8192
8193 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8194 }
8195}
8196
8197/**
8198 * dev_change_flags - change device settings
8199 * @dev: device
8200 * @flags: device state flags
8201 * @extack: netlink extended ack
8202 *
8203 * Change settings on device based state flags. The flags are
8204 * in the userspace exported format.
8205 */
8206int dev_change_flags(struct net_device *dev, unsigned int flags,
8207 struct netlink_ext_ack *extack)
8208{
8209 int ret;
8210 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8211
8212 ret = __dev_change_flags(dev, flags, extack);
8213 if (ret < 0)
8214 return ret;
8215
8216 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8217 __dev_notify_flags(dev, old_flags, changes);
8218 return ret;
8219}
8220EXPORT_SYMBOL(dev_change_flags);
8221
8222int __dev_set_mtu(struct net_device *dev, int new_mtu)
8223{
8224 const struct net_device_ops *ops = dev->netdev_ops;
8225
8226 if (ops->ndo_change_mtu)
8227 return ops->ndo_change_mtu(dev, new_mtu);
8228
8229 /* Pairs with all the lockless reads of dev->mtu in the stack */
8230 WRITE_ONCE(dev->mtu, new_mtu);
8231 return 0;
8232}
8233EXPORT_SYMBOL(__dev_set_mtu);
8234
8235int dev_validate_mtu(struct net_device *dev, int new_mtu,
8236 struct netlink_ext_ack *extack)
8237{
8238 /* MTU must be positive, and in range */
8239 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8240 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8241 return -EINVAL;
8242 }
8243
8244 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8245 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8246 return -EINVAL;
8247 }
8248 return 0;
8249}
8250
8251/**
8252 * dev_set_mtu_ext - Change maximum transfer unit
8253 * @dev: device
8254 * @new_mtu: new transfer unit
8255 * @extack: netlink extended ack
8256 *
8257 * Change the maximum transfer size of the network device.
8258 */
8259int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8260 struct netlink_ext_ack *extack)
8261{
8262 int err, orig_mtu;
8263
8264 if (new_mtu == dev->mtu)
8265 return 0;
8266
8267 err = dev_validate_mtu(dev, new_mtu, extack);
8268 if (err)
8269 return err;
8270
8271 if (!netif_device_present(dev))
8272 return -ENODEV;
8273
8274 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8275 err = notifier_to_errno(err);
8276 if (err)
8277 return err;
8278
8279 orig_mtu = dev->mtu;
8280 err = __dev_set_mtu(dev, new_mtu);
8281
8282 if (!err) {
8283 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8284 orig_mtu);
8285 err = notifier_to_errno(err);
8286 if (err) {
8287 /* setting mtu back and notifying everyone again,
8288 * so that they have a chance to revert changes.
8289 */
8290 __dev_set_mtu(dev, orig_mtu);
8291 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8292 new_mtu);
8293 }
8294 }
8295 return err;
8296}
8297
8298int dev_set_mtu(struct net_device *dev, int new_mtu)
8299{
8300 struct netlink_ext_ack extack;
8301 int err;
8302
8303 memset(&extack, 0, sizeof(extack));
8304 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8305 if (err && extack._msg)
8306 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8307 return err;
8308}
8309EXPORT_SYMBOL(dev_set_mtu);
8310
8311/**
8312 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8313 * @dev: device
8314 * @new_len: new tx queue length
8315 */
8316int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8317{
8318 unsigned int orig_len = dev->tx_queue_len;
8319 int res;
8320
8321 if (new_len != (unsigned int)new_len)
8322 return -ERANGE;
8323
8324 if (new_len != orig_len) {
8325 dev->tx_queue_len = new_len;
8326 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8327 res = notifier_to_errno(res);
8328 if (res)
8329 goto err_rollback;
8330 res = dev_qdisc_change_tx_queue_len(dev);
8331 if (res)
8332 goto err_rollback;
8333 }
8334
8335 return 0;
8336
8337err_rollback:
8338 netdev_err(dev, "refused to change device tx_queue_len\n");
8339 dev->tx_queue_len = orig_len;
8340 return res;
8341}
8342
8343/**
8344 * dev_set_group - Change group this device belongs to
8345 * @dev: device
8346 * @new_group: group this device should belong to
8347 */
8348void dev_set_group(struct net_device *dev, int new_group)
8349{
8350 dev->group = new_group;
8351}
8352EXPORT_SYMBOL(dev_set_group);
8353
8354/**
8355 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8356 * @dev: device
8357 * @addr: new address
8358 * @extack: netlink extended ack
8359 */
8360int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8361 struct netlink_ext_ack *extack)
8362{
8363 struct netdev_notifier_pre_changeaddr_info info = {
8364 .info.dev = dev,
8365 .info.extack = extack,
8366 .dev_addr = addr,
8367 };
8368 int rc;
8369
8370 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8371 return notifier_to_errno(rc);
8372}
8373EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8374
8375/**
8376 * dev_set_mac_address - Change Media Access Control Address
8377 * @dev: device
8378 * @sa: new address
8379 * @extack: netlink extended ack
8380 *
8381 * Change the hardware (MAC) address of the device
8382 */
8383int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8384 struct netlink_ext_ack *extack)
8385{
8386 const struct net_device_ops *ops = dev->netdev_ops;
8387 int err;
8388
8389 if (!ops->ndo_set_mac_address)
8390 return -EOPNOTSUPP;
8391 if (sa->sa_family != dev->type)
8392 return -EINVAL;
8393 if (!netif_device_present(dev))
8394 return -ENODEV;
8395 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8396 if (err)
8397 return err;
8398 err = ops->ndo_set_mac_address(dev, sa);
8399 if (err)
8400 return err;
8401 dev->addr_assign_type = NET_ADDR_SET;
8402 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8403 add_device_randomness(dev->dev_addr, dev->addr_len);
8404 return 0;
8405}
8406EXPORT_SYMBOL(dev_set_mac_address);
8407
8408/**
8409 * dev_change_carrier - Change device carrier
8410 * @dev: device
8411 * @new_carrier: new value
8412 *
8413 * Change device carrier
8414 */
8415int dev_change_carrier(struct net_device *dev, bool new_carrier)
8416{
8417 const struct net_device_ops *ops = dev->netdev_ops;
8418
8419 if (!ops->ndo_change_carrier)
8420 return -EOPNOTSUPP;
8421 if (!netif_device_present(dev))
8422 return -ENODEV;
8423 return ops->ndo_change_carrier(dev, new_carrier);
8424}
8425EXPORT_SYMBOL(dev_change_carrier);
8426
8427/**
8428 * dev_get_phys_port_id - Get device physical port ID
8429 * @dev: device
8430 * @ppid: port ID
8431 *
8432 * Get device physical port ID
8433 */
8434int dev_get_phys_port_id(struct net_device *dev,
8435 struct netdev_phys_item_id *ppid)
8436{
8437 const struct net_device_ops *ops = dev->netdev_ops;
8438
8439 if (!ops->ndo_get_phys_port_id)
8440 return -EOPNOTSUPP;
8441 return ops->ndo_get_phys_port_id(dev, ppid);
8442}
8443EXPORT_SYMBOL(dev_get_phys_port_id);
8444
8445/**
8446 * dev_get_phys_port_name - Get device physical port name
8447 * @dev: device
8448 * @name: port name
8449 * @len: limit of bytes to copy to name
8450 *
8451 * Get device physical port name
8452 */
8453int dev_get_phys_port_name(struct net_device *dev,
8454 char *name, size_t len)
8455{
8456 const struct net_device_ops *ops = dev->netdev_ops;
8457 int err;
8458
8459 if (ops->ndo_get_phys_port_name) {
8460 err = ops->ndo_get_phys_port_name(dev, name, len);
8461 if (err != -EOPNOTSUPP)
8462 return err;
8463 }
8464 return devlink_compat_phys_port_name_get(dev, name, len);
8465}
8466EXPORT_SYMBOL(dev_get_phys_port_name);
8467
8468/**
8469 * dev_get_port_parent_id - Get the device's port parent identifier
8470 * @dev: network device
8471 * @ppid: pointer to a storage for the port's parent identifier
8472 * @recurse: allow/disallow recursion to lower devices
8473 *
8474 * Get the devices's port parent identifier
8475 */
8476int dev_get_port_parent_id(struct net_device *dev,
8477 struct netdev_phys_item_id *ppid,
8478 bool recurse)
8479{
8480 const struct net_device_ops *ops = dev->netdev_ops;
8481 struct netdev_phys_item_id first = { };
8482 struct net_device *lower_dev;
8483 struct list_head *iter;
8484 int err;
8485
8486 if (ops->ndo_get_port_parent_id) {
8487 err = ops->ndo_get_port_parent_id(dev, ppid);
8488 if (err != -EOPNOTSUPP)
8489 return err;
8490 }
8491
8492 err = devlink_compat_switch_id_get(dev, ppid);
8493 if (!err || err != -EOPNOTSUPP)
8494 return err;
8495
8496 if (!recurse)
8497 return -EOPNOTSUPP;
8498
8499 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8500 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8501 if (err)
8502 break;
8503 if (!first.id_len)
8504 first = *ppid;
8505 else if (memcmp(&first, ppid, sizeof(*ppid)))
8506 return -ENODATA;
8507 }
8508
8509 return err;
8510}
8511EXPORT_SYMBOL(dev_get_port_parent_id);
8512
8513/**
8514 * netdev_port_same_parent_id - Indicate if two network devices have
8515 * the same port parent identifier
8516 * @a: first network device
8517 * @b: second network device
8518 */
8519bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8520{
8521 struct netdev_phys_item_id a_id = { };
8522 struct netdev_phys_item_id b_id = { };
8523
8524 if (dev_get_port_parent_id(a, &a_id, true) ||
8525 dev_get_port_parent_id(b, &b_id, true))
8526 return false;
8527
8528 return netdev_phys_item_id_same(&a_id, &b_id);
8529}
8530EXPORT_SYMBOL(netdev_port_same_parent_id);
8531
8532/**
8533 * dev_change_proto_down - update protocol port state information
8534 * @dev: device
8535 * @proto_down: new value
8536 *
8537 * This info can be used by switch drivers to set the phys state of the
8538 * port.
8539 */
8540int dev_change_proto_down(struct net_device *dev, bool proto_down)
8541{
8542 const struct net_device_ops *ops = dev->netdev_ops;
8543
8544 if (!ops->ndo_change_proto_down)
8545 return -EOPNOTSUPP;
8546 if (!netif_device_present(dev))
8547 return -ENODEV;
8548 return ops->ndo_change_proto_down(dev, proto_down);
8549}
8550EXPORT_SYMBOL(dev_change_proto_down);
8551
8552/**
8553 * dev_change_proto_down_generic - generic implementation for
8554 * ndo_change_proto_down that sets carrier according to
8555 * proto_down.
8556 *
8557 * @dev: device
8558 * @proto_down: new value
8559 */
8560int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8561{
8562 if (proto_down)
8563 netif_carrier_off(dev);
8564 else
8565 netif_carrier_on(dev);
8566 dev->proto_down = proto_down;
8567 return 0;
8568}
8569EXPORT_SYMBOL(dev_change_proto_down_generic);
8570
8571u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8572 enum bpf_netdev_command cmd)
8573{
8574 struct netdev_bpf xdp;
8575
8576 if (!bpf_op)
8577 return 0;
8578
8579 memset(&xdp, 0, sizeof(xdp));
8580 xdp.command = cmd;
8581
8582 /* Query must always succeed. */
8583 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8584
8585 return xdp.prog_id;
8586}
8587
8588static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8589 struct netlink_ext_ack *extack, u32 flags,
8590 struct bpf_prog *prog)
8591{
8592 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8593 struct bpf_prog *prev_prog = NULL;
8594 struct netdev_bpf xdp;
8595 int err;
8596
8597 if (non_hw) {
8598 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8599 XDP_QUERY_PROG));
8600 if (IS_ERR(prev_prog))
8601 prev_prog = NULL;
8602 }
8603
8604 memset(&xdp, 0, sizeof(xdp));
8605 if (flags & XDP_FLAGS_HW_MODE)
8606 xdp.command = XDP_SETUP_PROG_HW;
8607 else
8608 xdp.command = XDP_SETUP_PROG;
8609 xdp.extack = extack;
8610 xdp.flags = flags;
8611 xdp.prog = prog;
8612
8613 err = bpf_op(dev, &xdp);
8614 if (!err && non_hw)
8615 bpf_prog_change_xdp(prev_prog, prog);
8616
8617 if (prev_prog)
8618 bpf_prog_put(prev_prog);
8619
8620 return err;
8621}
8622
8623static void dev_xdp_uninstall(struct net_device *dev)
8624{
8625 struct netdev_bpf xdp;
8626 bpf_op_t ndo_bpf;
8627
8628 /* Remove generic XDP */
8629 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8630
8631 /* Remove from the driver */
8632 ndo_bpf = dev->netdev_ops->ndo_bpf;
8633 if (!ndo_bpf)
8634 return;
8635
8636 memset(&xdp, 0, sizeof(xdp));
8637 xdp.command = XDP_QUERY_PROG;
8638 WARN_ON(ndo_bpf(dev, &xdp));
8639 if (xdp.prog_id)
8640 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8641 NULL));
8642
8643 /* Remove HW offload */
8644 memset(&xdp, 0, sizeof(xdp));
8645 xdp.command = XDP_QUERY_PROG_HW;
8646 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8647 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8648 NULL));
8649}
8650
8651/**
8652 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8653 * @dev: device
8654 * @extack: netlink extended ack
8655 * @fd: new program fd or negative value to clear
8656 * @flags: xdp-related flags
8657 *
8658 * Set or clear a bpf program for a device
8659 */
8660int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8661 int fd, u32 flags)
8662{
8663 const struct net_device_ops *ops = dev->netdev_ops;
8664 enum bpf_netdev_command query;
8665 struct bpf_prog *prog = NULL;
8666 bpf_op_t bpf_op, bpf_chk;
8667 bool offload;
8668 int err;
8669
8670 ASSERT_RTNL();
8671
8672 offload = flags & XDP_FLAGS_HW_MODE;
8673 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8674
8675 bpf_op = bpf_chk = ops->ndo_bpf;
8676 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8677 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8678 return -EOPNOTSUPP;
8679 }
8680 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8681 bpf_op = generic_xdp_install;
8682 if (bpf_op == bpf_chk)
8683 bpf_chk = generic_xdp_install;
8684
8685 if (fd >= 0) {
8686 u32 prog_id;
8687
8688 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8689 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8690 return -EEXIST;
8691 }
8692
8693 prog_id = __dev_xdp_query(dev, bpf_op, query);
8694 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8695 NL_SET_ERR_MSG(extack, "XDP program already attached");
8696 return -EBUSY;
8697 }
8698
8699 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8700 bpf_op == ops->ndo_bpf);
8701 if (IS_ERR(prog))
8702 return PTR_ERR(prog);
8703
8704 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8705 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8706 bpf_prog_put(prog);
8707 return -EINVAL;
8708 }
8709
8710 /* prog->aux->id may be 0 for orphaned device-bound progs */
8711 if (prog->aux->id && prog->aux->id == prog_id) {
8712 bpf_prog_put(prog);
8713 return 0;
8714 }
8715 } else {
8716 if (!__dev_xdp_query(dev, bpf_op, query))
8717 return 0;
8718 }
8719
8720 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8721 if (err < 0 && prog)
8722 bpf_prog_put(prog);
8723
8724 return err;
8725}
8726
8727/**
8728 * dev_new_index - allocate an ifindex
8729 * @net: the applicable net namespace
8730 *
8731 * Returns a suitable unique value for a new device interface
8732 * number. The caller must hold the rtnl semaphore or the
8733 * dev_base_lock to be sure it remains unique.
8734 */
8735static int dev_new_index(struct net *net)
8736{
8737 int ifindex = net->ifindex;
8738
8739 for (;;) {
8740 if (++ifindex <= 0)
8741 ifindex = 1;
8742 if (!__dev_get_by_index(net, ifindex))
8743 return net->ifindex = ifindex;
8744 }
8745}
8746
8747/* Delayed registration/unregisteration */
8748static LIST_HEAD(net_todo_list);
8749DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8750
8751static void net_set_todo(struct net_device *dev)
8752{
8753 list_add_tail(&dev->todo_list, &net_todo_list);
8754 dev_net(dev)->dev_unreg_count++;
8755}
8756
8757static void rollback_registered_many(struct list_head *head)
8758{
8759 struct net_device *dev, *tmp;
8760 LIST_HEAD(close_head);
8761
8762 BUG_ON(dev_boot_phase);
8763 ASSERT_RTNL();
8764
8765 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8766 /* Some devices call without registering
8767 * for initialization unwind. Remove those
8768 * devices and proceed with the remaining.
8769 */
8770 if (dev->reg_state == NETREG_UNINITIALIZED) {
8771 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8772 dev->name, dev);
8773
8774 WARN_ON(1);
8775 list_del(&dev->unreg_list);
8776 continue;
8777 }
8778 dev->dismantle = true;
8779 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8780 }
8781
8782 /* If device is running, close it first. */
8783 list_for_each_entry(dev, head, unreg_list)
8784 list_add_tail(&dev->close_list, &close_head);
8785 dev_close_many(&close_head, true);
8786
8787 list_for_each_entry(dev, head, unreg_list) {
8788 /* And unlink it from device chain. */
8789 unlist_netdevice(dev);
8790
8791 dev->reg_state = NETREG_UNREGISTERING;
8792 }
8793 flush_all_backlogs();
8794
8795 synchronize_net();
8796
8797 list_for_each_entry(dev, head, unreg_list) {
8798 struct sk_buff *skb = NULL;
8799
8800 /* Shutdown queueing discipline. */
8801 dev_shutdown(dev);
8802
8803 dev_xdp_uninstall(dev);
8804
8805 /* Notify protocols, that we are about to destroy
8806 * this device. They should clean all the things.
8807 */
8808 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8809
8810 if (!dev->rtnl_link_ops ||
8811 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8812 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8813 GFP_KERNEL, NULL, 0);
8814
8815 /*
8816 * Flush the unicast and multicast chains
8817 */
8818 dev_uc_flush(dev);
8819 dev_mc_flush(dev);
8820
8821 netdev_name_node_alt_flush(dev);
8822 netdev_name_node_free(dev->name_node);
8823
8824 if (dev->netdev_ops->ndo_uninit)
8825 dev->netdev_ops->ndo_uninit(dev);
8826
8827 if (skb)
8828 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8829
8830 /* Notifier chain MUST detach us all upper devices. */
8831 WARN_ON(netdev_has_any_upper_dev(dev));
8832 WARN_ON(netdev_has_any_lower_dev(dev));
8833
8834 /* Remove entries from kobject tree */
8835 netdev_unregister_kobject(dev);
8836#ifdef CONFIG_XPS
8837 /* Remove XPS queueing entries */
8838 netif_reset_xps_queues_gt(dev, 0);
8839#endif
8840 }
8841
8842 synchronize_net();
8843
8844 list_for_each_entry(dev, head, unreg_list)
8845 dev_put(dev);
8846}
8847
8848static void rollback_registered(struct net_device *dev)
8849{
8850 LIST_HEAD(single);
8851
8852 list_add(&dev->unreg_list, &single);
8853 rollback_registered_many(&single);
8854 list_del(&single);
8855}
8856
8857static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8858 struct net_device *upper, netdev_features_t features)
8859{
8860 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8861 netdev_features_t feature;
8862 int feature_bit;
8863
8864 for_each_netdev_feature(upper_disables, feature_bit) {
8865 feature = __NETIF_F_BIT(feature_bit);
8866 if (!(upper->wanted_features & feature)
8867 && (features & feature)) {
8868 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8869 &feature, upper->name);
8870 features &= ~feature;
8871 }
8872 }
8873
8874 return features;
8875}
8876
8877static void netdev_sync_lower_features(struct net_device *upper,
8878 struct net_device *lower, netdev_features_t features)
8879{
8880 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881 netdev_features_t feature;
8882 int feature_bit;
8883
8884 for_each_netdev_feature(upper_disables, feature_bit) {
8885 feature = __NETIF_F_BIT(feature_bit);
8886 if (!(features & feature) && (lower->features & feature)) {
8887 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8888 &feature, lower->name);
8889 lower->wanted_features &= ~feature;
8890 netdev_update_features(lower);
8891
8892 if (unlikely(lower->features & feature))
8893 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8894 &feature, lower->name);
8895 }
8896 }
8897}
8898
8899static netdev_features_t netdev_fix_features(struct net_device *dev,
8900 netdev_features_t features)
8901{
8902 /* Fix illegal checksum combinations */
8903 if ((features & NETIF_F_HW_CSUM) &&
8904 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8905 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8906 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8907 }
8908
8909 /* TSO requires that SG is present as well. */
8910 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8911 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8912 features &= ~NETIF_F_ALL_TSO;
8913 }
8914
8915 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8916 !(features & NETIF_F_IP_CSUM)) {
8917 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8918 features &= ~NETIF_F_TSO;
8919 features &= ~NETIF_F_TSO_ECN;
8920 }
8921
8922 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8923 !(features & NETIF_F_IPV6_CSUM)) {
8924 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8925 features &= ~NETIF_F_TSO6;
8926 }
8927
8928 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8929 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8930 features &= ~NETIF_F_TSO_MANGLEID;
8931
8932 /* TSO ECN requires that TSO is present as well. */
8933 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8934 features &= ~NETIF_F_TSO_ECN;
8935
8936 /* Software GSO depends on SG. */
8937 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8938 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8939 features &= ~NETIF_F_GSO;
8940 }
8941
8942 /* GSO partial features require GSO partial be set */
8943 if ((features & dev->gso_partial_features) &&
8944 !(features & NETIF_F_GSO_PARTIAL)) {
8945 netdev_dbg(dev,
8946 "Dropping partially supported GSO features since no GSO partial.\n");
8947 features &= ~dev->gso_partial_features;
8948 }
8949
8950 if (!(features & NETIF_F_RXCSUM)) {
8951 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8952 * successfully merged by hardware must also have the
8953 * checksum verified by hardware. If the user does not
8954 * want to enable RXCSUM, logically, we should disable GRO_HW.
8955 */
8956 if (features & NETIF_F_GRO_HW) {
8957 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8958 features &= ~NETIF_F_GRO_HW;
8959 }
8960 }
8961
8962 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8963 if (features & NETIF_F_RXFCS) {
8964 if (features & NETIF_F_LRO) {
8965 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8966 features &= ~NETIF_F_LRO;
8967 }
8968
8969 if (features & NETIF_F_GRO_HW) {
8970 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8971 features &= ~NETIF_F_GRO_HW;
8972 }
8973 }
8974
8975 return features;
8976}
8977
8978int __netdev_update_features(struct net_device *dev)
8979{
8980 struct net_device *upper, *lower;
8981 netdev_features_t features;
8982 struct list_head *iter;
8983 int err = -1;
8984
8985 ASSERT_RTNL();
8986
8987 features = netdev_get_wanted_features(dev);
8988
8989 if (dev->netdev_ops->ndo_fix_features)
8990 features = dev->netdev_ops->ndo_fix_features(dev, features);
8991
8992 /* driver might be less strict about feature dependencies */
8993 features = netdev_fix_features(dev, features);
8994
8995 /* some features can't be enabled if they're off an an upper device */
8996 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8997 features = netdev_sync_upper_features(dev, upper, features);
8998
8999 if (dev->features == features)
9000 goto sync_lower;
9001
9002 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9003 &dev->features, &features);
9004
9005 if (dev->netdev_ops->ndo_set_features)
9006 err = dev->netdev_ops->ndo_set_features(dev, features);
9007 else
9008 err = 0;
9009
9010 if (unlikely(err < 0)) {
9011 netdev_err(dev,
9012 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9013 err, &features, &dev->features);
9014 /* return non-0 since some features might have changed and
9015 * it's better to fire a spurious notification than miss it
9016 */
9017 return -1;
9018 }
9019
9020sync_lower:
9021 /* some features must be disabled on lower devices when disabled
9022 * on an upper device (think: bonding master or bridge)
9023 */
9024 netdev_for_each_lower_dev(dev, lower, iter)
9025 netdev_sync_lower_features(dev, lower, features);
9026
9027 if (!err) {
9028 netdev_features_t diff = features ^ dev->features;
9029
9030 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9031 /* udp_tunnel_{get,drop}_rx_info both need
9032 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9033 * device, or they won't do anything.
9034 * Thus we need to update dev->features
9035 * *before* calling udp_tunnel_get_rx_info,
9036 * but *after* calling udp_tunnel_drop_rx_info.
9037 */
9038 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9039 dev->features = features;
9040 udp_tunnel_get_rx_info(dev);
9041 } else {
9042 udp_tunnel_drop_rx_info(dev);
9043 }
9044 }
9045
9046 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9047 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9048 dev->features = features;
9049 err |= vlan_get_rx_ctag_filter_info(dev);
9050 } else {
9051 vlan_drop_rx_ctag_filter_info(dev);
9052 }
9053 }
9054
9055 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9056 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9057 dev->features = features;
9058 err |= vlan_get_rx_stag_filter_info(dev);
9059 } else {
9060 vlan_drop_rx_stag_filter_info(dev);
9061 }
9062 }
9063
9064 dev->features = features;
9065 }
9066
9067 return err < 0 ? 0 : 1;
9068}
9069
9070/**
9071 * netdev_update_features - recalculate device features
9072 * @dev: the device to check
9073 *
9074 * Recalculate dev->features set and send notifications if it
9075 * has changed. Should be called after driver or hardware dependent
9076 * conditions might have changed that influence the features.
9077 */
9078void netdev_update_features(struct net_device *dev)
9079{
9080 if (__netdev_update_features(dev))
9081 netdev_features_change(dev);
9082}
9083EXPORT_SYMBOL(netdev_update_features);
9084
9085/**
9086 * netdev_change_features - recalculate device features
9087 * @dev: the device to check
9088 *
9089 * Recalculate dev->features set and send notifications even
9090 * if they have not changed. Should be called instead of
9091 * netdev_update_features() if also dev->vlan_features might
9092 * have changed to allow the changes to be propagated to stacked
9093 * VLAN devices.
9094 */
9095void netdev_change_features(struct net_device *dev)
9096{
9097 __netdev_update_features(dev);
9098 netdev_features_change(dev);
9099}
9100EXPORT_SYMBOL(netdev_change_features);
9101
9102/**
9103 * netif_stacked_transfer_operstate - transfer operstate
9104 * @rootdev: the root or lower level device to transfer state from
9105 * @dev: the device to transfer operstate to
9106 *
9107 * Transfer operational state from root to device. This is normally
9108 * called when a stacking relationship exists between the root
9109 * device and the device(a leaf device).
9110 */
9111void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9112 struct net_device *dev)
9113{
9114 if (rootdev->operstate == IF_OPER_DORMANT)
9115 netif_dormant_on(dev);
9116 else
9117 netif_dormant_off(dev);
9118
9119 if (netif_carrier_ok(rootdev))
9120 netif_carrier_on(dev);
9121 else
9122 netif_carrier_off(dev);
9123}
9124EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9125
9126static int netif_alloc_rx_queues(struct net_device *dev)
9127{
9128 unsigned int i, count = dev->num_rx_queues;
9129 struct netdev_rx_queue *rx;
9130 size_t sz = count * sizeof(*rx);
9131 int err = 0;
9132
9133 BUG_ON(count < 1);
9134
9135 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9136 if (!rx)
9137 return -ENOMEM;
9138
9139 dev->_rx = rx;
9140
9141 for (i = 0; i < count; i++) {
9142 rx[i].dev = dev;
9143
9144 /* XDP RX-queue setup */
9145 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9146 if (err < 0)
9147 goto err_rxq_info;
9148 }
9149 return 0;
9150
9151err_rxq_info:
9152 /* Rollback successful reg's and free other resources */
9153 while (i--)
9154 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9155 kvfree(dev->_rx);
9156 dev->_rx = NULL;
9157 return err;
9158}
9159
9160static void netif_free_rx_queues(struct net_device *dev)
9161{
9162 unsigned int i, count = dev->num_rx_queues;
9163
9164 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9165 if (!dev->_rx)
9166 return;
9167
9168 for (i = 0; i < count; i++)
9169 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9170
9171 kvfree(dev->_rx);
9172}
9173
9174static void netdev_init_one_queue(struct net_device *dev,
9175 struct netdev_queue *queue, void *_unused)
9176{
9177 /* Initialize queue lock */
9178 spin_lock_init(&queue->_xmit_lock);
9179 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9180 queue->xmit_lock_owner = -1;
9181 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9182 queue->dev = dev;
9183#ifdef CONFIG_BQL
9184 dql_init(&queue->dql, HZ);
9185#endif
9186}
9187
9188static void netif_free_tx_queues(struct net_device *dev)
9189{
9190 kvfree(dev->_tx);
9191}
9192
9193static int netif_alloc_netdev_queues(struct net_device *dev)
9194{
9195 unsigned int count = dev->num_tx_queues;
9196 struct netdev_queue *tx;
9197 size_t sz = count * sizeof(*tx);
9198
9199 if (count < 1 || count > 0xffff)
9200 return -EINVAL;
9201
9202 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9203 if (!tx)
9204 return -ENOMEM;
9205
9206 dev->_tx = tx;
9207
9208 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9209 spin_lock_init(&dev->tx_global_lock);
9210
9211 return 0;
9212}
9213
9214void netif_tx_stop_all_queues(struct net_device *dev)
9215{
9216 unsigned int i;
9217
9218 for (i = 0; i < dev->num_tx_queues; i++) {
9219 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9220
9221 netif_tx_stop_queue(txq);
9222 }
9223}
9224EXPORT_SYMBOL(netif_tx_stop_all_queues);
9225
9226static void netdev_register_lockdep_key(struct net_device *dev)
9227{
9228 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9229 lockdep_register_key(&dev->qdisc_running_key);
9230 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9231 lockdep_register_key(&dev->addr_list_lock_key);
9232}
9233
9234static void netdev_unregister_lockdep_key(struct net_device *dev)
9235{
9236 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9237 lockdep_unregister_key(&dev->qdisc_running_key);
9238 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9239 lockdep_unregister_key(&dev->addr_list_lock_key);
9240}
9241
9242void netdev_update_lockdep_key(struct net_device *dev)
9243{
9244 lockdep_unregister_key(&dev->addr_list_lock_key);
9245 lockdep_register_key(&dev->addr_list_lock_key);
9246
9247 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9248}
9249EXPORT_SYMBOL(netdev_update_lockdep_key);
9250
9251/**
9252 * register_netdevice - register a network device
9253 * @dev: device to register
9254 *
9255 * Take a completed network device structure and add it to the kernel
9256 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9257 * chain. 0 is returned on success. A negative errno code is returned
9258 * on a failure to set up the device, or if the name is a duplicate.
9259 *
9260 * Callers must hold the rtnl semaphore. You may want
9261 * register_netdev() instead of this.
9262 *
9263 * BUGS:
9264 * The locking appears insufficient to guarantee two parallel registers
9265 * will not get the same name.
9266 */
9267
9268int register_netdevice(struct net_device *dev)
9269{
9270 int ret;
9271 struct net *net = dev_net(dev);
9272
9273 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9274 NETDEV_FEATURE_COUNT);
9275 BUG_ON(dev_boot_phase);
9276 ASSERT_RTNL();
9277
9278 might_sleep();
9279
9280 /* When net_device's are persistent, this will be fatal. */
9281 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9282 BUG_ON(!net);
9283
9284 spin_lock_init(&dev->addr_list_lock);
9285 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9286
9287 ret = dev_get_valid_name(net, dev, dev->name);
9288 if (ret < 0)
9289 goto out;
9290
9291 ret = -ENOMEM;
9292 dev->name_node = netdev_name_node_head_alloc(dev);
9293 if (!dev->name_node)
9294 goto out;
9295
9296 /* Init, if this function is available */
9297 if (dev->netdev_ops->ndo_init) {
9298 ret = dev->netdev_ops->ndo_init(dev);
9299 if (ret) {
9300 if (ret > 0)
9301 ret = -EIO;
9302 goto err_free_name;
9303 }
9304 }
9305
9306 if (((dev->hw_features | dev->features) &
9307 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9308 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9309 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9310 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9311 ret = -EINVAL;
9312 goto err_uninit;
9313 }
9314
9315 ret = -EBUSY;
9316 if (!dev->ifindex)
9317 dev->ifindex = dev_new_index(net);
9318 else if (__dev_get_by_index(net, dev->ifindex))
9319 goto err_uninit;
9320
9321 /* Transfer changeable features to wanted_features and enable
9322 * software offloads (GSO and GRO).
9323 */
9324 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9325 dev->features |= NETIF_F_SOFT_FEATURES;
9326
9327 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9328 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9329 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9330 }
9331
9332 dev->wanted_features = dev->features & dev->hw_features;
9333
9334 if (!(dev->flags & IFF_LOOPBACK))
9335 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9336
9337 /* If IPv4 TCP segmentation offload is supported we should also
9338 * allow the device to enable segmenting the frame with the option
9339 * of ignoring a static IP ID value. This doesn't enable the
9340 * feature itself but allows the user to enable it later.
9341 */
9342 if (dev->hw_features & NETIF_F_TSO)
9343 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9344 if (dev->vlan_features & NETIF_F_TSO)
9345 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9346 if (dev->mpls_features & NETIF_F_TSO)
9347 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9348 if (dev->hw_enc_features & NETIF_F_TSO)
9349 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9350
9351 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9352 */
9353 dev->vlan_features |= NETIF_F_HIGHDMA;
9354
9355 /* Make NETIF_F_SG inheritable to tunnel devices.
9356 */
9357 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9358
9359 /* Make NETIF_F_SG inheritable to MPLS.
9360 */
9361 dev->mpls_features |= NETIF_F_SG;
9362
9363 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9364 ret = notifier_to_errno(ret);
9365 if (ret)
9366 goto err_uninit;
9367
9368 ret = netdev_register_kobject(dev);
9369 if (ret) {
9370 dev->reg_state = NETREG_UNREGISTERED;
9371 goto err_uninit;
9372 }
9373 dev->reg_state = NETREG_REGISTERED;
9374
9375 __netdev_update_features(dev);
9376
9377 /*
9378 * Default initial state at registry is that the
9379 * device is present.
9380 */
9381
9382 set_bit(__LINK_STATE_PRESENT, &dev->state);
9383
9384 linkwatch_init_dev(dev);
9385
9386 dev_init_scheduler(dev);
9387 dev_hold(dev);
9388 list_netdevice(dev);
9389 add_device_randomness(dev->dev_addr, dev->addr_len);
9390
9391 /* If the device has permanent device address, driver should
9392 * set dev_addr and also addr_assign_type should be set to
9393 * NET_ADDR_PERM (default value).
9394 */
9395 if (dev->addr_assign_type == NET_ADDR_PERM)
9396 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9397
9398 /* Notify protocols, that a new device appeared. */
9399 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9400 ret = notifier_to_errno(ret);
9401 if (ret) {
9402 rollback_registered(dev);
9403 rcu_barrier();
9404
9405 dev->reg_state = NETREG_UNREGISTERED;
9406 }
9407 /*
9408 * Prevent userspace races by waiting until the network
9409 * device is fully setup before sending notifications.
9410 */
9411 if (!dev->rtnl_link_ops ||
9412 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9413 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9414
9415out:
9416 return ret;
9417
9418err_uninit:
9419 if (dev->netdev_ops->ndo_uninit)
9420 dev->netdev_ops->ndo_uninit(dev);
9421 if (dev->priv_destructor)
9422 dev->priv_destructor(dev);
9423err_free_name:
9424 netdev_name_node_free(dev->name_node);
9425 goto out;
9426}
9427EXPORT_SYMBOL(register_netdevice);
9428
9429/**
9430 * init_dummy_netdev - init a dummy network device for NAPI
9431 * @dev: device to init
9432 *
9433 * This takes a network device structure and initialize the minimum
9434 * amount of fields so it can be used to schedule NAPI polls without
9435 * registering a full blown interface. This is to be used by drivers
9436 * that need to tie several hardware interfaces to a single NAPI
9437 * poll scheduler due to HW limitations.
9438 */
9439int init_dummy_netdev(struct net_device *dev)
9440{
9441 /* Clear everything. Note we don't initialize spinlocks
9442 * are they aren't supposed to be taken by any of the
9443 * NAPI code and this dummy netdev is supposed to be
9444 * only ever used for NAPI polls
9445 */
9446 memset(dev, 0, sizeof(struct net_device));
9447
9448 /* make sure we BUG if trying to hit standard
9449 * register/unregister code path
9450 */
9451 dev->reg_state = NETREG_DUMMY;
9452
9453 /* NAPI wants this */
9454 INIT_LIST_HEAD(&dev->napi_list);
9455
9456 /* a dummy interface is started by default */
9457 set_bit(__LINK_STATE_PRESENT, &dev->state);
9458 set_bit(__LINK_STATE_START, &dev->state);
9459
9460 /* napi_busy_loop stats accounting wants this */
9461 dev_net_set(dev, &init_net);
9462
9463 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9464 * because users of this 'device' dont need to change
9465 * its refcount.
9466 */
9467
9468 return 0;
9469}
9470EXPORT_SYMBOL_GPL(init_dummy_netdev);
9471
9472
9473/**
9474 * register_netdev - register a network device
9475 * @dev: device to register
9476 *
9477 * Take a completed network device structure and add it to the kernel
9478 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9479 * chain. 0 is returned on success. A negative errno code is returned
9480 * on a failure to set up the device, or if the name is a duplicate.
9481 *
9482 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9483 * and expands the device name if you passed a format string to
9484 * alloc_netdev.
9485 */
9486int register_netdev(struct net_device *dev)
9487{
9488 int err;
9489
9490 if (rtnl_lock_killable())
9491 return -EINTR;
9492 err = register_netdevice(dev);
9493 rtnl_unlock();
9494 return err;
9495}
9496EXPORT_SYMBOL(register_netdev);
9497
9498int netdev_refcnt_read(const struct net_device *dev)
9499{
9500 int i, refcnt = 0;
9501
9502 for_each_possible_cpu(i)
9503 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9504 return refcnt;
9505}
9506EXPORT_SYMBOL(netdev_refcnt_read);
9507
9508/**
9509 * netdev_wait_allrefs - wait until all references are gone.
9510 * @dev: target net_device
9511 *
9512 * This is called when unregistering network devices.
9513 *
9514 * Any protocol or device that holds a reference should register
9515 * for netdevice notification, and cleanup and put back the
9516 * reference if they receive an UNREGISTER event.
9517 * We can get stuck here if buggy protocols don't correctly
9518 * call dev_put.
9519 */
9520static void netdev_wait_allrefs(struct net_device *dev)
9521{
9522 unsigned long rebroadcast_time, warning_time;
9523 int refcnt;
9524
9525 linkwatch_forget_dev(dev);
9526
9527 rebroadcast_time = warning_time = jiffies;
9528 refcnt = netdev_refcnt_read(dev);
9529
9530 while (refcnt != 0) {
9531 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9532 rtnl_lock();
9533
9534 /* Rebroadcast unregister notification */
9535 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9536
9537 __rtnl_unlock();
9538 rcu_barrier();
9539 rtnl_lock();
9540
9541 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9542 &dev->state)) {
9543 /* We must not have linkwatch events
9544 * pending on unregister. If this
9545 * happens, we simply run the queue
9546 * unscheduled, resulting in a noop
9547 * for this device.
9548 */
9549 linkwatch_run_queue();
9550 }
9551
9552 __rtnl_unlock();
9553
9554 rebroadcast_time = jiffies;
9555 }
9556
9557 msleep(250);
9558
9559 refcnt = netdev_refcnt_read(dev);
9560
9561 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9562 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9563 dev->name, refcnt);
9564 warning_time = jiffies;
9565 }
9566 }
9567}
9568
9569/* The sequence is:
9570 *
9571 * rtnl_lock();
9572 * ...
9573 * register_netdevice(x1);
9574 * register_netdevice(x2);
9575 * ...
9576 * unregister_netdevice(y1);
9577 * unregister_netdevice(y2);
9578 * ...
9579 * rtnl_unlock();
9580 * free_netdev(y1);
9581 * free_netdev(y2);
9582 *
9583 * We are invoked by rtnl_unlock().
9584 * This allows us to deal with problems:
9585 * 1) We can delete sysfs objects which invoke hotplug
9586 * without deadlocking with linkwatch via keventd.
9587 * 2) Since we run with the RTNL semaphore not held, we can sleep
9588 * safely in order to wait for the netdev refcnt to drop to zero.
9589 *
9590 * We must not return until all unregister events added during
9591 * the interval the lock was held have been completed.
9592 */
9593void netdev_run_todo(void)
9594{
9595 struct list_head list;
9596
9597 /* Snapshot list, allow later requests */
9598 list_replace_init(&net_todo_list, &list);
9599
9600 __rtnl_unlock();
9601
9602
9603 /* Wait for rcu callbacks to finish before next phase */
9604 if (!list_empty(&list))
9605 rcu_barrier();
9606
9607 while (!list_empty(&list)) {
9608 struct net_device *dev
9609 = list_first_entry(&list, struct net_device, todo_list);
9610 list_del(&dev->todo_list);
9611
9612 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9613 pr_err("network todo '%s' but state %d\n",
9614 dev->name, dev->reg_state);
9615 dump_stack();
9616 continue;
9617 }
9618
9619 dev->reg_state = NETREG_UNREGISTERED;
9620
9621 netdev_wait_allrefs(dev);
9622
9623 /* paranoia */
9624 BUG_ON(netdev_refcnt_read(dev));
9625 BUG_ON(!list_empty(&dev->ptype_all));
9626 BUG_ON(!list_empty(&dev->ptype_specific));
9627 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9628 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9629#if IS_ENABLED(CONFIG_DECNET)
9630 WARN_ON(dev->dn_ptr);
9631#endif
9632 if (dev->priv_destructor)
9633 dev->priv_destructor(dev);
9634 if (dev->needs_free_netdev)
9635 free_netdev(dev);
9636
9637 /* Report a network device has been unregistered */
9638 rtnl_lock();
9639 dev_net(dev)->dev_unreg_count--;
9640 __rtnl_unlock();
9641 wake_up(&netdev_unregistering_wq);
9642
9643 /* Free network device */
9644 kobject_put(&dev->dev.kobj);
9645 }
9646}
9647
9648/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9649 * all the same fields in the same order as net_device_stats, with only
9650 * the type differing, but rtnl_link_stats64 may have additional fields
9651 * at the end for newer counters.
9652 */
9653void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9654 const struct net_device_stats *netdev_stats)
9655{
9656#if BITS_PER_LONG == 64
9657 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9658 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9659 /* zero out counters that only exist in rtnl_link_stats64 */
9660 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9661 sizeof(*stats64) - sizeof(*netdev_stats));
9662#else
9663 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9664 const unsigned long *src = (const unsigned long *)netdev_stats;
9665 u64 *dst = (u64 *)stats64;
9666
9667 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9668 for (i = 0; i < n; i++)
9669 dst[i] = src[i];
9670 /* zero out counters that only exist in rtnl_link_stats64 */
9671 memset((char *)stats64 + n * sizeof(u64), 0,
9672 sizeof(*stats64) - n * sizeof(u64));
9673#endif
9674}
9675EXPORT_SYMBOL(netdev_stats_to_stats64);
9676
9677/**
9678 * dev_get_stats - get network device statistics
9679 * @dev: device to get statistics from
9680 * @storage: place to store stats
9681 *
9682 * Get network statistics from device. Return @storage.
9683 * The device driver may provide its own method by setting
9684 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9685 * otherwise the internal statistics structure is used.
9686 */
9687struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9688 struct rtnl_link_stats64 *storage)
9689{
9690 const struct net_device_ops *ops = dev->netdev_ops;
9691
9692 if (ops->ndo_get_stats64) {
9693 memset(storage, 0, sizeof(*storage));
9694 ops->ndo_get_stats64(dev, storage);
9695 } else if (ops->ndo_get_stats) {
9696 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9697 } else {
9698 netdev_stats_to_stats64(storage, &dev->stats);
9699 }
9700 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9701 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9702 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9703 return storage;
9704}
9705EXPORT_SYMBOL(dev_get_stats);
9706
9707struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9708{
9709 struct netdev_queue *queue = dev_ingress_queue(dev);
9710
9711#ifdef CONFIG_NET_CLS_ACT
9712 if (queue)
9713 return queue;
9714 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9715 if (!queue)
9716 return NULL;
9717 netdev_init_one_queue(dev, queue, NULL);
9718 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9719 queue->qdisc_sleeping = &noop_qdisc;
9720 rcu_assign_pointer(dev->ingress_queue, queue);
9721#endif
9722 return queue;
9723}
9724
9725static const struct ethtool_ops default_ethtool_ops;
9726
9727void netdev_set_default_ethtool_ops(struct net_device *dev,
9728 const struct ethtool_ops *ops)
9729{
9730 if (dev->ethtool_ops == &default_ethtool_ops)
9731 dev->ethtool_ops = ops;
9732}
9733EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9734
9735void netdev_freemem(struct net_device *dev)
9736{
9737 char *addr = (char *)dev - dev->padded;
9738
9739 kvfree(addr);
9740}
9741
9742/**
9743 * alloc_netdev_mqs - allocate network device
9744 * @sizeof_priv: size of private data to allocate space for
9745 * @name: device name format string
9746 * @name_assign_type: origin of device name
9747 * @setup: callback to initialize device
9748 * @txqs: the number of TX subqueues to allocate
9749 * @rxqs: the number of RX subqueues to allocate
9750 *
9751 * Allocates a struct net_device with private data area for driver use
9752 * and performs basic initialization. Also allocates subqueue structs
9753 * for each queue on the device.
9754 */
9755struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9756 unsigned char name_assign_type,
9757 void (*setup)(struct net_device *),
9758 unsigned int txqs, unsigned int rxqs)
9759{
9760 struct net_device *dev;
9761 unsigned int alloc_size;
9762 struct net_device *p;
9763
9764 BUG_ON(strlen(name) >= sizeof(dev->name));
9765
9766 if (txqs < 1) {
9767 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9768 return NULL;
9769 }
9770
9771 if (rxqs < 1) {
9772 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9773 return NULL;
9774 }
9775
9776 alloc_size = sizeof(struct net_device);
9777 if (sizeof_priv) {
9778 /* ensure 32-byte alignment of private area */
9779 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9780 alloc_size += sizeof_priv;
9781 }
9782 /* ensure 32-byte alignment of whole construct */
9783 alloc_size += NETDEV_ALIGN - 1;
9784
9785 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9786 if (!p)
9787 return NULL;
9788
9789 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9790 dev->padded = (char *)dev - (char *)p;
9791
9792 dev->pcpu_refcnt = alloc_percpu(int);
9793 if (!dev->pcpu_refcnt)
9794 goto free_dev;
9795
9796 if (dev_addr_init(dev))
9797 goto free_pcpu;
9798
9799 dev_mc_init(dev);
9800 dev_uc_init(dev);
9801
9802 dev_net_set(dev, &init_net);
9803
9804 netdev_register_lockdep_key(dev);
9805
9806 dev->gso_max_size = GSO_MAX_SIZE;
9807 dev->gso_max_segs = GSO_MAX_SEGS;
9808 dev->upper_level = 1;
9809 dev->lower_level = 1;
9810
9811 INIT_LIST_HEAD(&dev->napi_list);
9812 INIT_LIST_HEAD(&dev->unreg_list);
9813 INIT_LIST_HEAD(&dev->close_list);
9814 INIT_LIST_HEAD(&dev->link_watch_list);
9815 INIT_LIST_HEAD(&dev->adj_list.upper);
9816 INIT_LIST_HEAD(&dev->adj_list.lower);
9817 INIT_LIST_HEAD(&dev->ptype_all);
9818 INIT_LIST_HEAD(&dev->ptype_specific);
9819 INIT_LIST_HEAD(&dev->net_notifier_list);
9820#ifdef CONFIG_NET_SCHED
9821 hash_init(dev->qdisc_hash);
9822#endif
9823 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9824 setup(dev);
9825
9826 if (!dev->tx_queue_len) {
9827 dev->priv_flags |= IFF_NO_QUEUE;
9828 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9829 }
9830
9831 dev->num_tx_queues = txqs;
9832 dev->real_num_tx_queues = txqs;
9833 if (netif_alloc_netdev_queues(dev))
9834 goto free_all;
9835
9836 dev->num_rx_queues = rxqs;
9837 dev->real_num_rx_queues = rxqs;
9838 if (netif_alloc_rx_queues(dev))
9839 goto free_all;
9840
9841 strcpy(dev->name, name);
9842 dev->name_assign_type = name_assign_type;
9843 dev->group = INIT_NETDEV_GROUP;
9844 if (!dev->ethtool_ops)
9845 dev->ethtool_ops = &default_ethtool_ops;
9846
9847 nf_hook_ingress_init(dev);
9848
9849 return dev;
9850
9851free_all:
9852 free_netdev(dev);
9853 return NULL;
9854
9855free_pcpu:
9856 free_percpu(dev->pcpu_refcnt);
9857free_dev:
9858 netdev_freemem(dev);
9859 return NULL;
9860}
9861EXPORT_SYMBOL(alloc_netdev_mqs);
9862
9863/**
9864 * free_netdev - free network device
9865 * @dev: device
9866 *
9867 * This function does the last stage of destroying an allocated device
9868 * interface. The reference to the device object is released. If this
9869 * is the last reference then it will be freed.Must be called in process
9870 * context.
9871 */
9872void free_netdev(struct net_device *dev)
9873{
9874 struct napi_struct *p, *n;
9875
9876 might_sleep();
9877 netif_free_tx_queues(dev);
9878 netif_free_rx_queues(dev);
9879
9880 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9881
9882 /* Flush device addresses */
9883 dev_addr_flush(dev);
9884
9885 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9886 netif_napi_del(p);
9887
9888 free_percpu(dev->pcpu_refcnt);
9889 dev->pcpu_refcnt = NULL;
9890 free_percpu(dev->xdp_bulkq);
9891 dev->xdp_bulkq = NULL;
9892
9893 netdev_unregister_lockdep_key(dev);
9894
9895 /* Compatibility with error handling in drivers */
9896 if (dev->reg_state == NETREG_UNINITIALIZED) {
9897 netdev_freemem(dev);
9898 return;
9899 }
9900
9901 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9902 dev->reg_state = NETREG_RELEASED;
9903
9904 /* will free via device release */
9905 put_device(&dev->dev);
9906}
9907EXPORT_SYMBOL(free_netdev);
9908
9909/**
9910 * synchronize_net - Synchronize with packet receive processing
9911 *
9912 * Wait for packets currently being received to be done.
9913 * Does not block later packets from starting.
9914 */
9915void synchronize_net(void)
9916{
9917 might_sleep();
9918 if (rtnl_is_locked())
9919 synchronize_rcu_expedited();
9920 else
9921 synchronize_rcu();
9922}
9923EXPORT_SYMBOL(synchronize_net);
9924
9925/**
9926 * unregister_netdevice_queue - remove device from the kernel
9927 * @dev: device
9928 * @head: list
9929 *
9930 * This function shuts down a device interface and removes it
9931 * from the kernel tables.
9932 * If head not NULL, device is queued to be unregistered later.
9933 *
9934 * Callers must hold the rtnl semaphore. You may want
9935 * unregister_netdev() instead of this.
9936 */
9937
9938void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9939{
9940 ASSERT_RTNL();
9941
9942 if (head) {
9943 list_move_tail(&dev->unreg_list, head);
9944 } else {
9945 rollback_registered(dev);
9946 /* Finish processing unregister after unlock */
9947 net_set_todo(dev);
9948 }
9949}
9950EXPORT_SYMBOL(unregister_netdevice_queue);
9951
9952/**
9953 * unregister_netdevice_many - unregister many devices
9954 * @head: list of devices
9955 *
9956 * Note: As most callers use a stack allocated list_head,
9957 * we force a list_del() to make sure stack wont be corrupted later.
9958 */
9959void unregister_netdevice_many(struct list_head *head)
9960{
9961 struct net_device *dev;
9962
9963 if (!list_empty(head)) {
9964 rollback_registered_many(head);
9965 list_for_each_entry(dev, head, unreg_list)
9966 net_set_todo(dev);
9967 list_del(head);
9968 }
9969}
9970EXPORT_SYMBOL(unregister_netdevice_many);
9971
9972/**
9973 * unregister_netdev - remove device from the kernel
9974 * @dev: device
9975 *
9976 * This function shuts down a device interface and removes it
9977 * from the kernel tables.
9978 *
9979 * This is just a wrapper for unregister_netdevice that takes
9980 * the rtnl semaphore. In general you want to use this and not
9981 * unregister_netdevice.
9982 */
9983void unregister_netdev(struct net_device *dev)
9984{
9985 rtnl_lock();
9986 unregister_netdevice(dev);
9987 rtnl_unlock();
9988}
9989EXPORT_SYMBOL(unregister_netdev);
9990
9991/**
9992 * dev_change_net_namespace - move device to different nethost namespace
9993 * @dev: device
9994 * @net: network namespace
9995 * @pat: If not NULL name pattern to try if the current device name
9996 * is already taken in the destination network namespace.
9997 *
9998 * This function shuts down a device interface and moves it
9999 * to a new network namespace. On success 0 is returned, on
10000 * a failure a netagive errno code is returned.
10001 *
10002 * Callers must hold the rtnl semaphore.
10003 */
10004
10005int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10006{
10007 int err, new_nsid, new_ifindex;
10008
10009 ASSERT_RTNL();
10010
10011 /* Don't allow namespace local devices to be moved. */
10012 err = -EINVAL;
10013 if (dev->features & NETIF_F_NETNS_LOCAL)
10014 goto out;
10015
10016 /* Ensure the device has been registrered */
10017 if (dev->reg_state != NETREG_REGISTERED)
10018 goto out;
10019
10020 /* Get out if there is nothing todo */
10021 err = 0;
10022 if (net_eq(dev_net(dev), net))
10023 goto out;
10024
10025 /* Pick the destination device name, and ensure
10026 * we can use it in the destination network namespace.
10027 */
10028 err = -EEXIST;
10029 if (__dev_get_by_name(net, dev->name)) {
10030 /* We get here if we can't use the current device name */
10031 if (!pat)
10032 goto out;
10033 err = dev_get_valid_name(net, dev, pat);
10034 if (err < 0)
10035 goto out;
10036 }
10037
10038 /*
10039 * And now a mini version of register_netdevice unregister_netdevice.
10040 */
10041
10042 /* If device is running close it first. */
10043 dev_close(dev);
10044
10045 /* And unlink it from device chain */
10046 unlist_netdevice(dev);
10047
10048 synchronize_net();
10049
10050 /* Shutdown queueing discipline. */
10051 dev_shutdown(dev);
10052
10053 /* Notify protocols, that we are about to destroy
10054 * this device. They should clean all the things.
10055 *
10056 * Note that dev->reg_state stays at NETREG_REGISTERED.
10057 * This is wanted because this way 8021q and macvlan know
10058 * the device is just moving and can keep their slaves up.
10059 */
10060 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10061 rcu_barrier();
10062
10063 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10064 /* If there is an ifindex conflict assign a new one */
10065 if (__dev_get_by_index(net, dev->ifindex))
10066 new_ifindex = dev_new_index(net);
10067 else
10068 new_ifindex = dev->ifindex;
10069
10070 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10071 new_ifindex);
10072
10073 /*
10074 * Flush the unicast and multicast chains
10075 */
10076 dev_uc_flush(dev);
10077 dev_mc_flush(dev);
10078
10079 /* Send a netdev-removed uevent to the old namespace */
10080 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10081 netdev_adjacent_del_links(dev);
10082
10083 /* Move per-net netdevice notifiers that are following the netdevice */
10084 move_netdevice_notifiers_dev_net(dev, net);
10085
10086 /* Actually switch the network namespace */
10087 dev_net_set(dev, net);
10088 dev->ifindex = new_ifindex;
10089
10090 /* Send a netdev-add uevent to the new namespace */
10091 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10092 netdev_adjacent_add_links(dev);
10093
10094 /* Fixup kobjects */
10095 err = device_rename(&dev->dev, dev->name);
10096 WARN_ON(err);
10097
10098 /* Add the device back in the hashes */
10099 list_netdevice(dev);
10100
10101 /* Notify protocols, that a new device appeared. */
10102 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10103
10104 /*
10105 * Prevent userspace races by waiting until the network
10106 * device is fully setup before sending notifications.
10107 */
10108 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10109
10110 synchronize_net();
10111 err = 0;
10112out:
10113 return err;
10114}
10115EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10116
10117static int dev_cpu_dead(unsigned int oldcpu)
10118{
10119 struct sk_buff **list_skb;
10120 struct sk_buff *skb;
10121 unsigned int cpu;
10122 struct softnet_data *sd, *oldsd, *remsd = NULL;
10123
10124 local_irq_disable();
10125 cpu = smp_processor_id();
10126 sd = &per_cpu(softnet_data, cpu);
10127 oldsd = &per_cpu(softnet_data, oldcpu);
10128
10129 /* Find end of our completion_queue. */
10130 list_skb = &sd->completion_queue;
10131 while (*list_skb)
10132 list_skb = &(*list_skb)->next;
10133 /* Append completion queue from offline CPU. */
10134 *list_skb = oldsd->completion_queue;
10135 oldsd->completion_queue = NULL;
10136
10137 /* Append output queue from offline CPU. */
10138 if (oldsd->output_queue) {
10139 *sd->output_queue_tailp = oldsd->output_queue;
10140 sd->output_queue_tailp = oldsd->output_queue_tailp;
10141 oldsd->output_queue = NULL;
10142 oldsd->output_queue_tailp = &oldsd->output_queue;
10143 }
10144 /* Append NAPI poll list from offline CPU, with one exception :
10145 * process_backlog() must be called by cpu owning percpu backlog.
10146 * We properly handle process_queue & input_pkt_queue later.
10147 */
10148 while (!list_empty(&oldsd->poll_list)) {
10149 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10150 struct napi_struct,
10151 poll_list);
10152
10153 list_del_init(&napi->poll_list);
10154 if (napi->poll == process_backlog)
10155 napi->state = 0;
10156 else
10157 ____napi_schedule(sd, napi);
10158 }
10159
10160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10161 local_irq_enable();
10162
10163#ifdef CONFIG_RPS
10164 remsd = oldsd->rps_ipi_list;
10165 oldsd->rps_ipi_list = NULL;
10166#endif
10167 /* send out pending IPI's on offline CPU */
10168 net_rps_send_ipi(remsd);
10169
10170 /* Process offline CPU's input_pkt_queue */
10171 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10172 netif_rx_ni(skb);
10173 input_queue_head_incr(oldsd);
10174 }
10175 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10176 netif_rx_ni(skb);
10177 input_queue_head_incr(oldsd);
10178 }
10179
10180 return 0;
10181}
10182
10183/**
10184 * netdev_increment_features - increment feature set by one
10185 * @all: current feature set
10186 * @one: new feature set
10187 * @mask: mask feature set
10188 *
10189 * Computes a new feature set after adding a device with feature set
10190 * @one to the master device with current feature set @all. Will not
10191 * enable anything that is off in @mask. Returns the new feature set.
10192 */
10193netdev_features_t netdev_increment_features(netdev_features_t all,
10194 netdev_features_t one, netdev_features_t mask)
10195{
10196 if (mask & NETIF_F_HW_CSUM)
10197 mask |= NETIF_F_CSUM_MASK;
10198 mask |= NETIF_F_VLAN_CHALLENGED;
10199
10200 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10201 all &= one | ~NETIF_F_ALL_FOR_ALL;
10202
10203 /* If one device supports hw checksumming, set for all. */
10204 if (all & NETIF_F_HW_CSUM)
10205 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10206
10207 return all;
10208}
10209EXPORT_SYMBOL(netdev_increment_features);
10210
10211static struct hlist_head * __net_init netdev_create_hash(void)
10212{
10213 int i;
10214 struct hlist_head *hash;
10215
10216 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10217 if (hash != NULL)
10218 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10219 INIT_HLIST_HEAD(&hash[i]);
10220
10221 return hash;
10222}
10223
10224/* Initialize per network namespace state */
10225static int __net_init netdev_init(struct net *net)
10226{
10227 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10228 8 * sizeof_field(struct napi_struct, gro_bitmask));
10229
10230 if (net != &init_net)
10231 INIT_LIST_HEAD(&net->dev_base_head);
10232
10233 net->dev_name_head = netdev_create_hash();
10234 if (net->dev_name_head == NULL)
10235 goto err_name;
10236
10237 net->dev_index_head = netdev_create_hash();
10238 if (net->dev_index_head == NULL)
10239 goto err_idx;
10240
10241 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10242
10243 return 0;
10244
10245err_idx:
10246 kfree(net->dev_name_head);
10247err_name:
10248 return -ENOMEM;
10249}
10250
10251/**
10252 * netdev_drivername - network driver for the device
10253 * @dev: network device
10254 *
10255 * Determine network driver for device.
10256 */
10257const char *netdev_drivername(const struct net_device *dev)
10258{
10259 const struct device_driver *driver;
10260 const struct device *parent;
10261 const char *empty = "";
10262
10263 parent = dev->dev.parent;
10264 if (!parent)
10265 return empty;
10266
10267 driver = parent->driver;
10268 if (driver && driver->name)
10269 return driver->name;
10270 return empty;
10271}
10272
10273static void __netdev_printk(const char *level, const struct net_device *dev,
10274 struct va_format *vaf)
10275{
10276 if (dev && dev->dev.parent) {
10277 dev_printk_emit(level[1] - '0',
10278 dev->dev.parent,
10279 "%s %s %s%s: %pV",
10280 dev_driver_string(dev->dev.parent),
10281 dev_name(dev->dev.parent),
10282 netdev_name(dev), netdev_reg_state(dev),
10283 vaf);
10284 } else if (dev) {
10285 printk("%s%s%s: %pV",
10286 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10287 } else {
10288 printk("%s(NULL net_device): %pV", level, vaf);
10289 }
10290}
10291
10292void netdev_printk(const char *level, const struct net_device *dev,
10293 const char *format, ...)
10294{
10295 struct va_format vaf;
10296 va_list args;
10297
10298 va_start(args, format);
10299
10300 vaf.fmt = format;
10301 vaf.va = &args;
10302
10303 __netdev_printk(level, dev, &vaf);
10304
10305 va_end(args);
10306}
10307EXPORT_SYMBOL(netdev_printk);
10308
10309#define define_netdev_printk_level(func, level) \
10310void func(const struct net_device *dev, const char *fmt, ...) \
10311{ \
10312 struct va_format vaf; \
10313 va_list args; \
10314 \
10315 va_start(args, fmt); \
10316 \
10317 vaf.fmt = fmt; \
10318 vaf.va = &args; \
10319 \
10320 __netdev_printk(level, dev, &vaf); \
10321 \
10322 va_end(args); \
10323} \
10324EXPORT_SYMBOL(func);
10325
10326define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10327define_netdev_printk_level(netdev_alert, KERN_ALERT);
10328define_netdev_printk_level(netdev_crit, KERN_CRIT);
10329define_netdev_printk_level(netdev_err, KERN_ERR);
10330define_netdev_printk_level(netdev_warn, KERN_WARNING);
10331define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10332define_netdev_printk_level(netdev_info, KERN_INFO);
10333
10334static void __net_exit netdev_exit(struct net *net)
10335{
10336 kfree(net->dev_name_head);
10337 kfree(net->dev_index_head);
10338 if (net != &init_net)
10339 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10340}
10341
10342static struct pernet_operations __net_initdata netdev_net_ops = {
10343 .init = netdev_init,
10344 .exit = netdev_exit,
10345};
10346
10347static void __net_exit default_device_exit(struct net *net)
10348{
10349 struct net_device *dev, *aux;
10350 /*
10351 * Push all migratable network devices back to the
10352 * initial network namespace
10353 */
10354 rtnl_lock();
10355 for_each_netdev_safe(net, dev, aux) {
10356 int err;
10357 char fb_name[IFNAMSIZ];
10358
10359 /* Ignore unmoveable devices (i.e. loopback) */
10360 if (dev->features & NETIF_F_NETNS_LOCAL)
10361 continue;
10362
10363 /* Leave virtual devices for the generic cleanup */
10364 if (dev->rtnl_link_ops)
10365 continue;
10366
10367 /* Push remaining network devices to init_net */
10368 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10369 if (__dev_get_by_name(&init_net, fb_name))
10370 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10371 err = dev_change_net_namespace(dev, &init_net, fb_name);
10372 if (err) {
10373 pr_emerg("%s: failed to move %s to init_net: %d\n",
10374 __func__, dev->name, err);
10375 BUG();
10376 }
10377 }
10378 rtnl_unlock();
10379}
10380
10381static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10382{
10383 /* Return with the rtnl_lock held when there are no network
10384 * devices unregistering in any network namespace in net_list.
10385 */
10386 struct net *net;
10387 bool unregistering;
10388 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10389
10390 add_wait_queue(&netdev_unregistering_wq, &wait);
10391 for (;;) {
10392 unregistering = false;
10393 rtnl_lock();
10394 list_for_each_entry(net, net_list, exit_list) {
10395 if (net->dev_unreg_count > 0) {
10396 unregistering = true;
10397 break;
10398 }
10399 }
10400 if (!unregistering)
10401 break;
10402 __rtnl_unlock();
10403
10404 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10405 }
10406 remove_wait_queue(&netdev_unregistering_wq, &wait);
10407}
10408
10409static void __net_exit default_device_exit_batch(struct list_head *net_list)
10410{
10411 /* At exit all network devices most be removed from a network
10412 * namespace. Do this in the reverse order of registration.
10413 * Do this across as many network namespaces as possible to
10414 * improve batching efficiency.
10415 */
10416 struct net_device *dev;
10417 struct net *net;
10418 LIST_HEAD(dev_kill_list);
10419
10420 /* To prevent network device cleanup code from dereferencing
10421 * loopback devices or network devices that have been freed
10422 * wait here for all pending unregistrations to complete,
10423 * before unregistring the loopback device and allowing the
10424 * network namespace be freed.
10425 *
10426 * The netdev todo list containing all network devices
10427 * unregistrations that happen in default_device_exit_batch
10428 * will run in the rtnl_unlock() at the end of
10429 * default_device_exit_batch.
10430 */
10431 rtnl_lock_unregistering(net_list);
10432 list_for_each_entry(net, net_list, exit_list) {
10433 for_each_netdev_reverse(net, dev) {
10434 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10435 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10436 else
10437 unregister_netdevice_queue(dev, &dev_kill_list);
10438 }
10439 }
10440 unregister_netdevice_many(&dev_kill_list);
10441 rtnl_unlock();
10442}
10443
10444static struct pernet_operations __net_initdata default_device_ops = {
10445 .exit = default_device_exit,
10446 .exit_batch = default_device_exit_batch,
10447};
10448
10449/*
10450 * Initialize the DEV module. At boot time this walks the device list and
10451 * unhooks any devices that fail to initialise (normally hardware not
10452 * present) and leaves us with a valid list of present and active devices.
10453 *
10454 */
10455
10456/*
10457 * This is called single threaded during boot, so no need
10458 * to take the rtnl semaphore.
10459 */
10460static int __init net_dev_init(void)
10461{
10462 int i, rc = -ENOMEM;
10463
10464 BUG_ON(!dev_boot_phase);
10465
10466 if (dev_proc_init())
10467 goto out;
10468
10469 if (netdev_kobject_init())
10470 goto out;
10471
10472 INIT_LIST_HEAD(&ptype_all);
10473 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10474 INIT_LIST_HEAD(&ptype_base[i]);
10475
10476 INIT_LIST_HEAD(&offload_base);
10477
10478 if (register_pernet_subsys(&netdev_net_ops))
10479 goto out;
10480
10481 /*
10482 * Initialise the packet receive queues.
10483 */
10484
10485 for_each_possible_cpu(i) {
10486 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10487 struct softnet_data *sd = &per_cpu(softnet_data, i);
10488
10489 INIT_WORK(flush, flush_backlog);
10490
10491 skb_queue_head_init(&sd->input_pkt_queue);
10492 skb_queue_head_init(&sd->process_queue);
10493#ifdef CONFIG_XFRM_OFFLOAD
10494 skb_queue_head_init(&sd->xfrm_backlog);
10495#endif
10496 INIT_LIST_HEAD(&sd->poll_list);
10497 sd->output_queue_tailp = &sd->output_queue;
10498#ifdef CONFIG_RPS
10499 sd->csd.func = rps_trigger_softirq;
10500 sd->csd.info = sd;
10501 sd->cpu = i;
10502#endif
10503
10504 init_gro_hash(&sd->backlog);
10505 sd->backlog.poll = process_backlog;
10506 sd->backlog.weight = weight_p;
10507 }
10508
10509 dev_boot_phase = 0;
10510
10511 /* The loopback device is special if any other network devices
10512 * is present in a network namespace the loopback device must
10513 * be present. Since we now dynamically allocate and free the
10514 * loopback device ensure this invariant is maintained by
10515 * keeping the loopback device as the first device on the
10516 * list of network devices. Ensuring the loopback devices
10517 * is the first device that appears and the last network device
10518 * that disappears.
10519 */
10520 if (register_pernet_device(&loopback_net_ops))
10521 goto out;
10522
10523 if (register_pernet_device(&default_device_ops))
10524 goto out;
10525
10526 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10527 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10528
10529 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10530 NULL, dev_cpu_dead);
10531 WARN_ON(rc < 0);
10532 rc = 0;
10533out:
10534 return rc;
10535}
10536
10537subsys_initcall(net_dev_init);