Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9#include <linux/debugfs.h>
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/overflow.h>
21
22#include "internal.h"
23
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
27static DEFINE_IDR(icc_idr);
28static LIST_HEAD(icc_providers);
29static DEFINE_MUTEX(icc_lock);
30static struct dentry *icc_debugfs_dir;
31
32static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33{
34 if (!n)
35 return;
36
37 seq_printf(s, "%-42s %12u %12u\n",
38 n->name, n->avg_bw, n->peak_bw);
39}
40
41static int icc_summary_show(struct seq_file *s, void *data)
42{
43 struct icc_provider *provider;
44
45 seq_puts(s, " node tag avg peak\n");
46 seq_puts(s, "--------------------------------------------------------------------\n");
47
48 mutex_lock(&icc_lock);
49
50 list_for_each_entry(provider, &icc_providers, provider_list) {
51 struct icc_node *n;
52
53 list_for_each_entry(n, &provider->nodes, node_list) {
54 struct icc_req *r;
55
56 icc_summary_show_one(s, n);
57 hlist_for_each_entry(r, &n->req_list, req_node) {
58 if (!r->dev)
59 continue;
60
61 seq_printf(s, " %-27s %12u %12u %12u\n",
62 dev_name(r->dev), r->tag, r->avg_bw,
63 r->peak_bw);
64 }
65 }
66 }
67
68 mutex_unlock(&icc_lock);
69
70 return 0;
71}
72DEFINE_SHOW_ATTRIBUTE(icc_summary);
73
74static void icc_graph_show_link(struct seq_file *s, int level,
75 struct icc_node *n, struct icc_node *m)
76{
77 seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
78 level == 2 ? "\t\t" : "\t",
79 n->id, n->name, m->id, m->name);
80}
81
82static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
83{
84 seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
85 n->id, n->name, n->id, n->name);
86 seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
87 seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
88 seq_puts(s, "\"]\n");
89}
90
91static int icc_graph_show(struct seq_file *s, void *data)
92{
93 struct icc_provider *provider;
94 struct icc_node *n;
95 int cluster_index = 0;
96 int i;
97
98 seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
99 mutex_lock(&icc_lock);
100
101 /* draw providers as cluster subgraphs */
102 cluster_index = 0;
103 list_for_each_entry(provider, &icc_providers, provider_list) {
104 seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
105 if (provider->dev)
106 seq_printf(s, "\t\tlabel = \"%s\"\n",
107 dev_name(provider->dev));
108
109 /* draw nodes */
110 list_for_each_entry(n, &provider->nodes, node_list)
111 icc_graph_show_node(s, n);
112
113 /* draw internal links */
114 list_for_each_entry(n, &provider->nodes, node_list)
115 for (i = 0; i < n->num_links; ++i)
116 if (n->provider == n->links[i]->provider)
117 icc_graph_show_link(s, 2, n,
118 n->links[i]);
119
120 seq_puts(s, "\t}\n");
121 }
122
123 /* draw external links */
124 list_for_each_entry(provider, &icc_providers, provider_list)
125 list_for_each_entry(n, &provider->nodes, node_list)
126 for (i = 0; i < n->num_links; ++i)
127 if (n->provider != n->links[i]->provider)
128 icc_graph_show_link(s, 1, n,
129 n->links[i]);
130
131 mutex_unlock(&icc_lock);
132 seq_puts(s, "}");
133
134 return 0;
135}
136DEFINE_SHOW_ATTRIBUTE(icc_graph);
137
138static struct icc_node *node_find(const int id)
139{
140 return idr_find(&icc_idr, id);
141}
142
143static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
144 ssize_t num_nodes)
145{
146 struct icc_node *node = dst;
147 struct icc_path *path;
148 int i;
149
150 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
151 if (!path)
152 return ERR_PTR(-ENOMEM);
153
154 path->num_nodes = num_nodes;
155
156 for (i = num_nodes - 1; i >= 0; i--) {
157 node->provider->users++;
158 hlist_add_head(&path->reqs[i].req_node, &node->req_list);
159 path->reqs[i].node = node;
160 path->reqs[i].dev = dev;
161 /* reference to previous node was saved during path traversal */
162 node = node->reverse;
163 }
164
165 return path;
166}
167
168static struct icc_path *path_find(struct device *dev, struct icc_node *src,
169 struct icc_node *dst)
170{
171 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
172 struct icc_node *n, *node = NULL;
173 struct list_head traverse_list;
174 struct list_head edge_list;
175 struct list_head visited_list;
176 size_t i, depth = 1;
177 bool found = false;
178
179 INIT_LIST_HEAD(&traverse_list);
180 INIT_LIST_HEAD(&edge_list);
181 INIT_LIST_HEAD(&visited_list);
182
183 list_add(&src->search_list, &traverse_list);
184 src->reverse = NULL;
185
186 do {
187 list_for_each_entry_safe(node, n, &traverse_list, search_list) {
188 if (node == dst) {
189 found = true;
190 list_splice_init(&edge_list, &visited_list);
191 list_splice_init(&traverse_list, &visited_list);
192 break;
193 }
194 for (i = 0; i < node->num_links; i++) {
195 struct icc_node *tmp = node->links[i];
196
197 if (!tmp) {
198 path = ERR_PTR(-ENOENT);
199 goto out;
200 }
201
202 if (tmp->is_traversed)
203 continue;
204
205 tmp->is_traversed = true;
206 tmp->reverse = node;
207 list_add_tail(&tmp->search_list, &edge_list);
208 }
209 }
210
211 if (found)
212 break;
213
214 list_splice_init(&traverse_list, &visited_list);
215 list_splice_init(&edge_list, &traverse_list);
216
217 /* count the hops including the source */
218 depth++;
219
220 } while (!list_empty(&traverse_list));
221
222out:
223
224 /* reset the traversed state */
225 list_for_each_entry_reverse(n, &visited_list, search_list)
226 n->is_traversed = false;
227
228 if (found)
229 path = path_init(dev, dst, depth);
230
231 return path;
232}
233
234/*
235 * We want the path to honor all bandwidth requests, so the average and peak
236 * bandwidth requirements from each consumer are aggregated at each node.
237 * The aggregation is platform specific, so each platform can customize it by
238 * implementing its own aggregate() function.
239 */
240
241static int aggregate_requests(struct icc_node *node)
242{
243 struct icc_provider *p = node->provider;
244 struct icc_req *r;
245
246 node->avg_bw = 0;
247 node->peak_bw = 0;
248
249 if (p->pre_aggregate)
250 p->pre_aggregate(node);
251
252 hlist_for_each_entry(r, &node->req_list, req_node)
253 p->aggregate(node, r->tag, r->avg_bw, r->peak_bw,
254 &node->avg_bw, &node->peak_bw);
255
256 return 0;
257}
258
259static int apply_constraints(struct icc_path *path)
260{
261 struct icc_node *next, *prev = NULL;
262 int ret = -EINVAL;
263 int i;
264
265 for (i = 0; i < path->num_nodes; i++) {
266 next = path->reqs[i].node;
267
268 /*
269 * Both endpoints should be valid master-slave pairs of the
270 * same interconnect provider that will be configured.
271 */
272 if (!prev || next->provider != prev->provider) {
273 prev = next;
274 continue;
275 }
276
277 /* set the constraints */
278 ret = next->provider->set(prev, next);
279 if (ret)
280 goto out;
281
282 prev = next;
283 }
284out:
285 return ret;
286}
287
288int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
289 u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
290{
291 *agg_avg += avg_bw;
292 *agg_peak = max(*agg_peak, peak_bw);
293
294 return 0;
295}
296EXPORT_SYMBOL_GPL(icc_std_aggregate);
297
298/* of_icc_xlate_onecell() - Translate function using a single index.
299 * @spec: OF phandle args to map into an interconnect node.
300 * @data: private data (pointer to struct icc_onecell_data)
301 *
302 * This is a generic translate function that can be used to model simple
303 * interconnect providers that have one device tree node and provide
304 * multiple interconnect nodes. A single cell is used as an index into
305 * an array of icc nodes specified in the icc_onecell_data struct when
306 * registering the provider.
307 */
308struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
309 void *data)
310{
311 struct icc_onecell_data *icc_data = data;
312 unsigned int idx = spec->args[0];
313
314 if (idx >= icc_data->num_nodes) {
315 pr_err("%s: invalid index %u\n", __func__, idx);
316 return ERR_PTR(-EINVAL);
317 }
318
319 return icc_data->nodes[idx];
320}
321EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
322
323/**
324 * of_icc_get_from_provider() - Look-up interconnect node
325 * @spec: OF phandle args to use for look-up
326 *
327 * Looks for interconnect provider under the node specified by @spec and if
328 * found, uses xlate function of the provider to map phandle args to node.
329 *
330 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
331 * on failure.
332 */
333static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
334{
335 struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
336 struct icc_provider *provider;
337
338 if (!spec || spec->args_count != 1)
339 return ERR_PTR(-EINVAL);
340
341 mutex_lock(&icc_lock);
342 list_for_each_entry(provider, &icc_providers, provider_list) {
343 if (provider->dev->of_node == spec->np)
344 node = provider->xlate(spec, provider->data);
345 if (!IS_ERR(node))
346 break;
347 }
348 mutex_unlock(&icc_lock);
349
350 return node;
351}
352
353/**
354 * of_icc_get() - get a path handle from a DT node based on name
355 * @dev: device pointer for the consumer device
356 * @name: interconnect path name
357 *
358 * This function will search for a path between two endpoints and return an
359 * icc_path handle on success. Use icc_put() to release constraints when they
360 * are not needed anymore.
361 * If the interconnect API is disabled, NULL is returned and the consumer
362 * drivers will still build. Drivers are free to handle this specifically,
363 * but they don't have to.
364 *
365 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
366 * when the API is disabled or the "interconnects" DT property is missing.
367 */
368struct icc_path *of_icc_get(struct device *dev, const char *name)
369{
370 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
371 struct icc_node *src_node, *dst_node;
372 struct device_node *np = NULL;
373 struct of_phandle_args src_args, dst_args;
374 int idx = 0;
375 int ret;
376
377 if (!dev || !dev->of_node)
378 return ERR_PTR(-ENODEV);
379
380 np = dev->of_node;
381
382 /*
383 * When the consumer DT node do not have "interconnects" property
384 * return a NULL path to skip setting constraints.
385 */
386 if (!of_find_property(np, "interconnects", NULL))
387 return NULL;
388
389 /*
390 * We use a combination of phandle and specifier for endpoint. For now
391 * lets support only global ids and extend this in the future if needed
392 * without breaking DT compatibility.
393 */
394 if (name) {
395 idx = of_property_match_string(np, "interconnect-names", name);
396 if (idx < 0)
397 return ERR_PTR(idx);
398 }
399
400 ret = of_parse_phandle_with_args(np, "interconnects",
401 "#interconnect-cells", idx * 2,
402 &src_args);
403 if (ret)
404 return ERR_PTR(ret);
405
406 of_node_put(src_args.np);
407
408 ret = of_parse_phandle_with_args(np, "interconnects",
409 "#interconnect-cells", idx * 2 + 1,
410 &dst_args);
411 if (ret)
412 return ERR_PTR(ret);
413
414 of_node_put(dst_args.np);
415
416 src_node = of_icc_get_from_provider(&src_args);
417
418 if (IS_ERR(src_node)) {
419 if (PTR_ERR(src_node) != -EPROBE_DEFER)
420 dev_err(dev, "error finding src node: %ld\n",
421 PTR_ERR(src_node));
422 return ERR_CAST(src_node);
423 }
424
425 dst_node = of_icc_get_from_provider(&dst_args);
426
427 if (IS_ERR(dst_node)) {
428 if (PTR_ERR(dst_node) != -EPROBE_DEFER)
429 dev_err(dev, "error finding dst node: %ld\n",
430 PTR_ERR(dst_node));
431 return ERR_CAST(dst_node);
432 }
433
434 mutex_lock(&icc_lock);
435 path = path_find(dev, src_node, dst_node);
436 mutex_unlock(&icc_lock);
437 if (IS_ERR(path)) {
438 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
439 return path;
440 }
441
442 if (name)
443 path->name = kstrdup_const(name, GFP_KERNEL);
444 else
445 path->name = kasprintf(GFP_KERNEL, "%s-%s",
446 src_node->name, dst_node->name);
447
448 return path;
449}
450EXPORT_SYMBOL_GPL(of_icc_get);
451
452/**
453 * icc_set_tag() - set an optional tag on a path
454 * @path: the path we want to tag
455 * @tag: the tag value
456 *
457 * This function allows consumers to append a tag to the requests associated
458 * with a path, so that a different aggregation could be done based on this tag.
459 */
460void icc_set_tag(struct icc_path *path, u32 tag)
461{
462 int i;
463
464 if (!path)
465 return;
466
467 mutex_lock(&icc_lock);
468
469 for (i = 0; i < path->num_nodes; i++)
470 path->reqs[i].tag = tag;
471
472 mutex_unlock(&icc_lock);
473}
474EXPORT_SYMBOL_GPL(icc_set_tag);
475
476/**
477 * icc_set_bw() - set bandwidth constraints on an interconnect path
478 * @path: reference to the path returned by icc_get()
479 * @avg_bw: average bandwidth in kilobytes per second
480 * @peak_bw: peak bandwidth in kilobytes per second
481 *
482 * This function is used by an interconnect consumer to express its own needs
483 * in terms of bandwidth for a previously requested path between two endpoints.
484 * The requests are aggregated and each node is updated accordingly. The entire
485 * path is locked by a mutex to ensure that the set() is completed.
486 * The @path can be NULL when the "interconnects" DT properties is missing,
487 * which will mean that no constraints will be set.
488 *
489 * Returns 0 on success, or an appropriate error code otherwise.
490 */
491int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
492{
493 struct icc_node *node;
494 u32 old_avg, old_peak;
495 size_t i;
496 int ret;
497
498 if (!path)
499 return 0;
500
501 if (WARN_ON(IS_ERR(path) || !path->num_nodes))
502 return -EINVAL;
503
504 mutex_lock(&icc_lock);
505
506 old_avg = path->reqs[0].avg_bw;
507 old_peak = path->reqs[0].peak_bw;
508
509 for (i = 0; i < path->num_nodes; i++) {
510 node = path->reqs[i].node;
511
512 /* update the consumer request for this path */
513 path->reqs[i].avg_bw = avg_bw;
514 path->reqs[i].peak_bw = peak_bw;
515
516 /* aggregate requests for this node */
517 aggregate_requests(node);
518
519 trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
520 }
521
522 ret = apply_constraints(path);
523 if (ret) {
524 pr_debug("interconnect: error applying constraints (%d)\n",
525 ret);
526
527 for (i = 0; i < path->num_nodes; i++) {
528 node = path->reqs[i].node;
529 path->reqs[i].avg_bw = old_avg;
530 path->reqs[i].peak_bw = old_peak;
531 aggregate_requests(node);
532 }
533 apply_constraints(path);
534 }
535
536 mutex_unlock(&icc_lock);
537
538 trace_icc_set_bw_end(path, ret);
539
540 return ret;
541}
542EXPORT_SYMBOL_GPL(icc_set_bw);
543
544/**
545 * icc_get() - return a handle for path between two endpoints
546 * @dev: the device requesting the path
547 * @src_id: source device port id
548 * @dst_id: destination device port id
549 *
550 * This function will search for a path between two endpoints and return an
551 * icc_path handle on success. Use icc_put() to release
552 * constraints when they are not needed anymore.
553 * If the interconnect API is disabled, NULL is returned and the consumer
554 * drivers will still build. Drivers are free to handle this specifically,
555 * but they don't have to.
556 *
557 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
558 * interconnect API is disabled.
559 */
560struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
561{
562 struct icc_node *src, *dst;
563 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
564
565 mutex_lock(&icc_lock);
566
567 src = node_find(src_id);
568 if (!src)
569 goto out;
570
571 dst = node_find(dst_id);
572 if (!dst)
573 goto out;
574
575 path = path_find(dev, src, dst);
576 if (IS_ERR(path)) {
577 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
578 goto out;
579 }
580
581 path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
582out:
583 mutex_unlock(&icc_lock);
584 return path;
585}
586EXPORT_SYMBOL_GPL(icc_get);
587
588/**
589 * icc_put() - release the reference to the icc_path
590 * @path: interconnect path
591 *
592 * Use this function to release the constraints on a path when the path is
593 * no longer needed. The constraints will be re-aggregated.
594 */
595void icc_put(struct icc_path *path)
596{
597 struct icc_node *node;
598 size_t i;
599 int ret;
600
601 if (!path || WARN_ON(IS_ERR(path)))
602 return;
603
604 ret = icc_set_bw(path, 0, 0);
605 if (ret)
606 pr_err("%s: error (%d)\n", __func__, ret);
607
608 mutex_lock(&icc_lock);
609 for (i = 0; i < path->num_nodes; i++) {
610 node = path->reqs[i].node;
611 hlist_del(&path->reqs[i].req_node);
612 if (!WARN_ON(!node->provider->users))
613 node->provider->users--;
614 }
615 mutex_unlock(&icc_lock);
616
617 kfree_const(path->name);
618 kfree(path);
619}
620EXPORT_SYMBOL_GPL(icc_put);
621
622static struct icc_node *icc_node_create_nolock(int id)
623{
624 struct icc_node *node;
625
626 /* check if node already exists */
627 node = node_find(id);
628 if (node)
629 return node;
630
631 node = kzalloc(sizeof(*node), GFP_KERNEL);
632 if (!node)
633 return ERR_PTR(-ENOMEM);
634
635 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
636 if (id < 0) {
637 WARN(1, "%s: couldn't get idr\n", __func__);
638 kfree(node);
639 return ERR_PTR(id);
640 }
641
642 node->id = id;
643
644 return node;
645}
646
647/**
648 * icc_node_create() - create a node
649 * @id: node id
650 *
651 * Return: icc_node pointer on success, or ERR_PTR() on error
652 */
653struct icc_node *icc_node_create(int id)
654{
655 struct icc_node *node;
656
657 mutex_lock(&icc_lock);
658
659 node = icc_node_create_nolock(id);
660
661 mutex_unlock(&icc_lock);
662
663 return node;
664}
665EXPORT_SYMBOL_GPL(icc_node_create);
666
667/**
668 * icc_node_destroy() - destroy a node
669 * @id: node id
670 */
671void icc_node_destroy(int id)
672{
673 struct icc_node *node;
674
675 mutex_lock(&icc_lock);
676
677 node = node_find(id);
678 if (node) {
679 idr_remove(&icc_idr, node->id);
680 WARN_ON(!hlist_empty(&node->req_list));
681 }
682
683 mutex_unlock(&icc_lock);
684
685 kfree(node);
686}
687EXPORT_SYMBOL_GPL(icc_node_destroy);
688
689/**
690 * icc_link_create() - create a link between two nodes
691 * @node: source node id
692 * @dst_id: destination node id
693 *
694 * Create a link between two nodes. The nodes might belong to different
695 * interconnect providers and the @dst_id node might not exist (if the
696 * provider driver has not probed yet). So just create the @dst_id node
697 * and when the actual provider driver is probed, the rest of the node
698 * data is filled.
699 *
700 * Return: 0 on success, or an error code otherwise
701 */
702int icc_link_create(struct icc_node *node, const int dst_id)
703{
704 struct icc_node *dst;
705 struct icc_node **new;
706 int ret = 0;
707
708 if (!node->provider)
709 return -EINVAL;
710
711 mutex_lock(&icc_lock);
712
713 dst = node_find(dst_id);
714 if (!dst) {
715 dst = icc_node_create_nolock(dst_id);
716
717 if (IS_ERR(dst)) {
718 ret = PTR_ERR(dst);
719 goto out;
720 }
721 }
722
723 new = krealloc(node->links,
724 (node->num_links + 1) * sizeof(*node->links),
725 GFP_KERNEL);
726 if (!new) {
727 ret = -ENOMEM;
728 goto out;
729 }
730
731 node->links = new;
732 node->links[node->num_links++] = dst;
733
734out:
735 mutex_unlock(&icc_lock);
736
737 return ret;
738}
739EXPORT_SYMBOL_GPL(icc_link_create);
740
741/**
742 * icc_link_destroy() - destroy a link between two nodes
743 * @src: pointer to source node
744 * @dst: pointer to destination node
745 *
746 * Return: 0 on success, or an error code otherwise
747 */
748int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
749{
750 struct icc_node **new;
751 size_t slot;
752 int ret = 0;
753
754 if (IS_ERR_OR_NULL(src))
755 return -EINVAL;
756
757 if (IS_ERR_OR_NULL(dst))
758 return -EINVAL;
759
760 mutex_lock(&icc_lock);
761
762 for (slot = 0; slot < src->num_links; slot++)
763 if (src->links[slot] == dst)
764 break;
765
766 if (WARN_ON(slot == src->num_links)) {
767 ret = -ENXIO;
768 goto out;
769 }
770
771 src->links[slot] = src->links[--src->num_links];
772
773 new = krealloc(src->links, src->num_links * sizeof(*src->links),
774 GFP_KERNEL);
775 if (new)
776 src->links = new;
777
778out:
779 mutex_unlock(&icc_lock);
780
781 return ret;
782}
783EXPORT_SYMBOL_GPL(icc_link_destroy);
784
785/**
786 * icc_node_add() - add interconnect node to interconnect provider
787 * @node: pointer to the interconnect node
788 * @provider: pointer to the interconnect provider
789 */
790void icc_node_add(struct icc_node *node, struct icc_provider *provider)
791{
792 mutex_lock(&icc_lock);
793
794 node->provider = provider;
795 list_add_tail(&node->node_list, &provider->nodes);
796
797 mutex_unlock(&icc_lock);
798}
799EXPORT_SYMBOL_GPL(icc_node_add);
800
801/**
802 * icc_node_del() - delete interconnect node from interconnect provider
803 * @node: pointer to the interconnect node
804 */
805void icc_node_del(struct icc_node *node)
806{
807 mutex_lock(&icc_lock);
808
809 list_del(&node->node_list);
810
811 mutex_unlock(&icc_lock);
812}
813EXPORT_SYMBOL_GPL(icc_node_del);
814
815/**
816 * icc_nodes_remove() - remove all previously added nodes from provider
817 * @provider: the interconnect provider we are removing nodes from
818 *
819 * Return: 0 on success, or an error code otherwise
820 */
821int icc_nodes_remove(struct icc_provider *provider)
822{
823 struct icc_node *n, *tmp;
824
825 if (WARN_ON(IS_ERR_OR_NULL(provider)))
826 return -EINVAL;
827
828 list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
829 icc_node_del(n);
830 icc_node_destroy(n->id);
831 }
832
833 return 0;
834}
835EXPORT_SYMBOL_GPL(icc_nodes_remove);
836
837/**
838 * icc_provider_add() - add a new interconnect provider
839 * @provider: the interconnect provider that will be added into topology
840 *
841 * Return: 0 on success, or an error code otherwise
842 */
843int icc_provider_add(struct icc_provider *provider)
844{
845 if (WARN_ON(!provider->set))
846 return -EINVAL;
847 if (WARN_ON(!provider->xlate))
848 return -EINVAL;
849
850 mutex_lock(&icc_lock);
851
852 INIT_LIST_HEAD(&provider->nodes);
853 list_add_tail(&provider->provider_list, &icc_providers);
854
855 mutex_unlock(&icc_lock);
856
857 dev_dbg(provider->dev, "interconnect provider added to topology\n");
858
859 return 0;
860}
861EXPORT_SYMBOL_GPL(icc_provider_add);
862
863/**
864 * icc_provider_del() - delete previously added interconnect provider
865 * @provider: the interconnect provider that will be removed from topology
866 *
867 * Return: 0 on success, or an error code otherwise
868 */
869int icc_provider_del(struct icc_provider *provider)
870{
871 mutex_lock(&icc_lock);
872 if (provider->users) {
873 pr_warn("interconnect provider still has %d users\n",
874 provider->users);
875 mutex_unlock(&icc_lock);
876 return -EBUSY;
877 }
878
879 if (!list_empty(&provider->nodes)) {
880 pr_warn("interconnect provider still has nodes\n");
881 mutex_unlock(&icc_lock);
882 return -EBUSY;
883 }
884
885 list_del(&provider->provider_list);
886 mutex_unlock(&icc_lock);
887
888 return 0;
889}
890EXPORT_SYMBOL_GPL(icc_provider_del);
891
892static int __init icc_init(void)
893{
894 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
895 debugfs_create_file("interconnect_summary", 0444,
896 icc_debugfs_dir, NULL, &icc_summary_fops);
897 debugfs_create_file("interconnect_graph", 0444,
898 icc_debugfs_dir, NULL, &icc_graph_fops);
899 return 0;
900}
901
902static void __exit icc_exit(void)
903{
904 debugfs_remove_recursive(icc_debugfs_dir);
905}
906module_init(icc_init);
907module_exit(icc_exit);
908
909MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
910MODULE_DESCRIPTION("Interconnect Driver Core");
911MODULE_LICENSE("GPL v2");