Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56
57struct sfp_bus;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63/* UDP Tunnel offloads */
64struct udp_tunnel_info;
65struct bpf_prog;
66struct xdp_buff;
67
68void netdev_set_default_ethtool_ops(struct net_device *dev,
69 const struct ethtool_ops *ops);
70
71/* Backlog congestion levels */
72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73#define NET_RX_DROP 1 /* packet dropped */
74
75/*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously; in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89 * others are propagated to higher layers.
90 */
91
92/* qdisc ->enqueue() return codes. */
93#define NET_XMIT_SUCCESS 0x00
94#define NET_XMIT_DROP 0x01 /* skb dropped */
95#define NET_XMIT_CN 0x02 /* congestion notification */
96#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104/* Driver transmit return codes */
105#define NETDEV_TX_MASK 0xf0
106
107enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111};
112typedef enum netdev_tx netdev_tx_t;
113
114/*
115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117 */
118static inline bool dev_xmit_complete(int rc)
119{
120 /*
121 * Positive cases with an skb consumed by a driver:
122 * - successful transmission (rc == NETDEV_TX_OK)
123 * - error while transmitting (rc < 0)
124 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 */
126 if (likely(rc < NET_XMIT_MASK))
127 return true;
128
129 return false;
130}
131
132/*
133 * Compute the worst-case header length according to the protocols
134 * used.
135 */
136
137#if defined(CONFIG_HYPERV_NET)
138# define LL_MAX_HEADER 128
139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140# if defined(CONFIG_MAC80211_MESH)
141# define LL_MAX_HEADER 128
142# else
143# define LL_MAX_HEADER 96
144# endif
145#else
146# define LL_MAX_HEADER 32
147#endif
148
149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151#define MAX_HEADER LL_MAX_HEADER
152#else
153#define MAX_HEADER (LL_MAX_HEADER + 48)
154#endif
155
156/*
157 * Old network device statistics. Fields are native words
158 * (unsigned long) so they can be read and written atomically.
159 */
160
161struct net_device_stats {
162 unsigned long rx_packets;
163 unsigned long tx_packets;
164 unsigned long rx_bytes;
165 unsigned long tx_bytes;
166 unsigned long rx_errors;
167 unsigned long tx_errors;
168 unsigned long rx_dropped;
169 unsigned long tx_dropped;
170 unsigned long multicast;
171 unsigned long collisions;
172 unsigned long rx_length_errors;
173 unsigned long rx_over_errors;
174 unsigned long rx_crc_errors;
175 unsigned long rx_frame_errors;
176 unsigned long rx_fifo_errors;
177 unsigned long rx_missed_errors;
178 unsigned long tx_aborted_errors;
179 unsigned long tx_carrier_errors;
180 unsigned long tx_fifo_errors;
181 unsigned long tx_heartbeat_errors;
182 unsigned long tx_window_errors;
183 unsigned long rx_compressed;
184 unsigned long tx_compressed;
185};
186
187
188#include <linux/cache.h>
189#include <linux/skbuff.h>
190
191#ifdef CONFIG_RPS
192#include <linux/static_key.h>
193extern struct static_key_false rps_needed;
194extern struct static_key_false rfs_needed;
195#endif
196
197struct neighbour;
198struct neigh_parms;
199struct sk_buff;
200
201struct netdev_hw_addr {
202 struct list_head list;
203 unsigned char addr[MAX_ADDR_LEN];
204 unsigned char type;
205#define NETDEV_HW_ADDR_T_LAN 1
206#define NETDEV_HW_ADDR_T_SAN 2
207#define NETDEV_HW_ADDR_T_SLAVE 3
208#define NETDEV_HW_ADDR_T_UNICAST 4
209#define NETDEV_HW_ADDR_T_MULTICAST 5
210 bool global_use;
211 int sync_cnt;
212 int refcount;
213 int synced;
214 struct rcu_head rcu_head;
215};
216
217struct netdev_hw_addr_list {
218 struct list_head list;
219 int count;
220};
221
222#define netdev_hw_addr_list_count(l) ((l)->count)
223#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224#define netdev_hw_addr_list_for_each(ha, l) \
225 list_for_each_entry(ha, &(l)->list, list)
226
227#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229#define netdev_for_each_uc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231
232#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234#define netdev_for_each_mc_addr(ha, dev) \
235 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236
237struct hh_cache {
238 unsigned int hh_len;
239 seqlock_t hh_lock;
240
241 /* cached hardware header; allow for machine alignment needs. */
242#define HH_DATA_MOD 16
243#define HH_DATA_OFF(__len) \
244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245#define HH_DATA_ALIGN(__len) \
246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248};
249
250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251 * Alternative is:
252 * dev->hard_header_len ? (dev->hard_header_len +
253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254 *
255 * We could use other alignment values, but we must maintain the
256 * relationship HH alignment <= LL alignment.
257 */
258#define LL_RESERVED_SPACE(dev) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262
263struct header_ops {
264 int (*create) (struct sk_buff *skb, struct net_device *dev,
265 unsigned short type, const void *daddr,
266 const void *saddr, unsigned int len);
267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 void (*cache_update)(struct hh_cache *hh,
270 const struct net_device *dev,
271 const unsigned char *haddr);
272 bool (*validate)(const char *ll_header, unsigned int len);
273 __be16 (*parse_protocol)(const struct sk_buff *skb);
274};
275
276/* These flag bits are private to the generic network queueing
277 * layer; they may not be explicitly referenced by any other
278 * code.
279 */
280
281enum netdev_state_t {
282 __LINK_STATE_START,
283 __LINK_STATE_PRESENT,
284 __LINK_STATE_NOCARRIER,
285 __LINK_STATE_LINKWATCH_PENDING,
286 __LINK_STATE_DORMANT,
287};
288
289
290/*
291 * This structure holds boot-time configured netdevice settings. They
292 * are then used in the device probing.
293 */
294struct netdev_boot_setup {
295 char name[IFNAMSIZ];
296 struct ifmap map;
297};
298#define NETDEV_BOOT_SETUP_MAX 8
299
300int __init netdev_boot_setup(char *str);
301
302struct gro_list {
303 struct list_head list;
304 int count;
305};
306
307/*
308 * size of gro hash buckets, must less than bit number of
309 * napi_struct::gro_bitmask
310 */
311#define GRO_HASH_BUCKETS 8
312
313/*
314 * Structure for NAPI scheduling similar to tasklet but with weighting
315 */
316struct napi_struct {
317 /* The poll_list must only be managed by the entity which
318 * changes the state of the NAPI_STATE_SCHED bit. This means
319 * whoever atomically sets that bit can add this napi_struct
320 * to the per-CPU poll_list, and whoever clears that bit
321 * can remove from the list right before clearing the bit.
322 */
323 struct list_head poll_list;
324
325 unsigned long state;
326 int weight;
327 unsigned long gro_bitmask;
328 int (*poll)(struct napi_struct *, int);
329#ifdef CONFIG_NETPOLL
330 int poll_owner;
331#endif
332 struct net_device *dev;
333 struct gro_list gro_hash[GRO_HASH_BUCKETS];
334 struct sk_buff *skb;
335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
336 int rx_count; /* length of rx_list */
337 struct hrtimer timer;
338 struct list_head dev_list;
339 struct hlist_node napi_hash_node;
340 unsigned int napi_id;
341};
342
343enum {
344 NAPI_STATE_SCHED, /* Poll is scheduled */
345 NAPI_STATE_MISSED, /* reschedule a napi */
346 NAPI_STATE_DISABLE, /* Disable pending */
347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351};
352
353enum {
354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361};
362
363enum gro_result {
364 GRO_MERGED,
365 GRO_MERGED_FREE,
366 GRO_HELD,
367 GRO_NORMAL,
368 GRO_DROP,
369 GRO_CONSUMED,
370};
371typedef enum gro_result gro_result_t;
372
373/*
374 * enum rx_handler_result - Possible return values for rx_handlers.
375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376 * further.
377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378 * case skb->dev was changed by rx_handler.
379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381 *
382 * rx_handlers are functions called from inside __netif_receive_skb(), to do
383 * special processing of the skb, prior to delivery to protocol handlers.
384 *
385 * Currently, a net_device can only have a single rx_handler registered. Trying
386 * to register a second rx_handler will return -EBUSY.
387 *
388 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389 * To unregister a rx_handler on a net_device, use
390 * netdev_rx_handler_unregister().
391 *
392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393 * do with the skb.
394 *
395 * If the rx_handler consumed the skb in some way, it should return
396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397 * the skb to be delivered in some other way.
398 *
399 * If the rx_handler changed skb->dev, to divert the skb to another
400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401 * new device will be called if it exists.
402 *
403 * If the rx_handler decides the skb should be ignored, it should return
404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405 * are registered on exact device (ptype->dev == skb->dev).
406 *
407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408 * delivered, it should return RX_HANDLER_PASS.
409 *
410 * A device without a registered rx_handler will behave as if rx_handler
411 * returned RX_HANDLER_PASS.
412 */
413
414enum rx_handler_result {
415 RX_HANDLER_CONSUMED,
416 RX_HANDLER_ANOTHER,
417 RX_HANDLER_EXACT,
418 RX_HANDLER_PASS,
419};
420typedef enum rx_handler_result rx_handler_result_t;
421typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422
423void __napi_schedule(struct napi_struct *n);
424void __napi_schedule_irqoff(struct napi_struct *n);
425
426static inline bool napi_disable_pending(struct napi_struct *n)
427{
428 return test_bit(NAPI_STATE_DISABLE, &n->state);
429}
430
431bool napi_schedule_prep(struct napi_struct *n);
432
433/**
434 * napi_schedule - schedule NAPI poll
435 * @n: NAPI context
436 *
437 * Schedule NAPI poll routine to be called if it is not already
438 * running.
439 */
440static inline void napi_schedule(struct napi_struct *n)
441{
442 if (napi_schedule_prep(n))
443 __napi_schedule(n);
444}
445
446/**
447 * napi_schedule_irqoff - schedule NAPI poll
448 * @n: NAPI context
449 *
450 * Variant of napi_schedule(), assuming hard irqs are masked.
451 */
452static inline void napi_schedule_irqoff(struct napi_struct *n)
453{
454 if (napi_schedule_prep(n))
455 __napi_schedule_irqoff(n);
456}
457
458/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
459static inline bool napi_reschedule(struct napi_struct *napi)
460{
461 if (napi_schedule_prep(napi)) {
462 __napi_schedule(napi);
463 return true;
464 }
465 return false;
466}
467
468bool napi_complete_done(struct napi_struct *n, int work_done);
469/**
470 * napi_complete - NAPI processing complete
471 * @n: NAPI context
472 *
473 * Mark NAPI processing as complete.
474 * Consider using napi_complete_done() instead.
475 * Return false if device should avoid rearming interrupts.
476 */
477static inline bool napi_complete(struct napi_struct *n)
478{
479 return napi_complete_done(n, 0);
480}
481
482/**
483 * napi_hash_del - remove a NAPI from global table
484 * @napi: NAPI context
485 *
486 * Warning: caller must observe RCU grace period
487 * before freeing memory containing @napi, if
488 * this function returns true.
489 * Note: core networking stack automatically calls it
490 * from netif_napi_del().
491 * Drivers might want to call this helper to combine all
492 * the needed RCU grace periods into a single one.
493 */
494bool napi_hash_del(struct napi_struct *napi);
495
496/**
497 * napi_disable - prevent NAPI from scheduling
498 * @n: NAPI context
499 *
500 * Stop NAPI from being scheduled on this context.
501 * Waits till any outstanding processing completes.
502 */
503void napi_disable(struct napi_struct *n);
504
505/**
506 * napi_enable - enable NAPI scheduling
507 * @n: NAPI context
508 *
509 * Resume NAPI from being scheduled on this context.
510 * Must be paired with napi_disable.
511 */
512static inline void napi_enable(struct napi_struct *n)
513{
514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 smp_mb__before_atomic();
516 clear_bit(NAPI_STATE_SCHED, &n->state);
517 clear_bit(NAPI_STATE_NPSVC, &n->state);
518}
519
520/**
521 * napi_synchronize - wait until NAPI is not running
522 * @n: NAPI context
523 *
524 * Wait until NAPI is done being scheduled on this context.
525 * Waits till any outstanding processing completes but
526 * does not disable future activations.
527 */
528static inline void napi_synchronize(const struct napi_struct *n)
529{
530 if (IS_ENABLED(CONFIG_SMP))
531 while (test_bit(NAPI_STATE_SCHED, &n->state))
532 msleep(1);
533 else
534 barrier();
535}
536
537/**
538 * napi_if_scheduled_mark_missed - if napi is running, set the
539 * NAPIF_STATE_MISSED
540 * @n: NAPI context
541 *
542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543 * NAPI is scheduled.
544 **/
545static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546{
547 unsigned long val, new;
548
549 do {
550 val = READ_ONCE(n->state);
551 if (val & NAPIF_STATE_DISABLE)
552 return true;
553
554 if (!(val & NAPIF_STATE_SCHED))
555 return false;
556
557 new = val | NAPIF_STATE_MISSED;
558 } while (cmpxchg(&n->state, val, new) != val);
559
560 return true;
561}
562
563enum netdev_queue_state_t {
564 __QUEUE_STATE_DRV_XOFF,
565 __QUEUE_STATE_STACK_XOFF,
566 __QUEUE_STATE_FROZEN,
567};
568
569#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
570#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
571#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
572
573#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 QUEUE_STATE_FROZEN)
576#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 QUEUE_STATE_FROZEN)
578
579/*
580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
581 * netif_tx_* functions below are used to manipulate this flag. The
582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583 * queue independently. The netif_xmit_*stopped functions below are called
584 * to check if the queue has been stopped by the driver or stack (either
585 * of the XOFF bits are set in the state). Drivers should not need to call
586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
587 */
588
589struct netdev_queue {
590/*
591 * read-mostly part
592 */
593 struct net_device *dev;
594 struct Qdisc __rcu *qdisc;
595 struct Qdisc *qdisc_sleeping;
596#ifdef CONFIG_SYSFS
597 struct kobject kobj;
598#endif
599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 int numa_node;
601#endif
602 unsigned long tx_maxrate;
603 /*
604 * Number of TX timeouts for this queue
605 * (/sys/class/net/DEV/Q/trans_timeout)
606 */
607 unsigned long trans_timeout;
608
609 /* Subordinate device that the queue has been assigned to */
610 struct net_device *sb_dev;
611#ifdef CONFIG_XDP_SOCKETS
612 struct xdp_umem *umem;
613#endif
614/*
615 * write-mostly part
616 */
617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
618 int xmit_lock_owner;
619 /*
620 * Time (in jiffies) of last Tx
621 */
622 unsigned long trans_start;
623
624 unsigned long state;
625
626#ifdef CONFIG_BQL
627 struct dql dql;
628#endif
629} ____cacheline_aligned_in_smp;
630
631extern int sysctl_fb_tunnels_only_for_init_net;
632extern int sysctl_devconf_inherit_init_net;
633
634static inline bool net_has_fallback_tunnels(const struct net *net)
635{
636 return net == &init_net ||
637 !IS_ENABLED(CONFIG_SYSCTL) ||
638 !sysctl_fb_tunnels_only_for_init_net;
639}
640
641static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642{
643#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645#else
646 return NUMA_NO_NODE;
647#endif
648}
649
650static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651{
652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654#endif
655}
656
657#ifdef CONFIG_RPS
658/*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[0];
666};
667#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669/*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678};
679#define RPS_NO_FILTER 0xffff
680
681/*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[0];
688};
689#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692/*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[0] ____cacheline_aligned_in_smp;
706};
707#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709#define RPS_NO_CPU 0xffff
710
711extern u32 rps_cpu_mask;
712extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716{
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727}
728
729#ifdef CONFIG_RFS_ACCEL
730bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732#endif
733#endif /* CONFIG_RPS */
734
735/* This structure contains an instance of an RX queue. */
736struct netdev_rx_queue {
737#ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740#endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744#ifdef CONFIG_XDP_SOCKETS
745 struct xdp_umem *umem;
746#endif
747} ____cacheline_aligned_in_smp;
748
749/*
750 * RX queue sysfs structures and functions.
751 */
752struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757};
758
759#ifdef CONFIG_XPS
760/*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[0];
769};
770#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774/*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780};
781
782#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788#endif /* CONFIG_XPS */
789
790#define TC_MAX_QUEUE 16
791#define TC_BITMASK 15
792/* HW offloaded queuing disciplines txq count and offset maps */
793struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796};
797
798#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799/*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812};
813#endif
814
815#define MAX_PHYS_ITEM_ID_LEN 32
816
817/* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823};
824
825static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827{
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830}
831
832typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 TC_SETUP_QDISC_TAPRIO,
851 TC_SETUP_FT,
852 TC_SETUP_QDISC_ETS,
853 TC_SETUP_QDISC_TBF,
854};
855
856/* These structures hold the attributes of bpf state that are being passed
857 * to the netdevice through the bpf op.
858 */
859enum bpf_netdev_command {
860 /* Set or clear a bpf program used in the earliest stages of packet
861 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
862 * is responsible for calling bpf_prog_put on any old progs that are
863 * stored. In case of error, the callee need not release the new prog
864 * reference, but on success it takes ownership and must bpf_prog_put
865 * when it is no longer used.
866 */
867 XDP_SETUP_PROG,
868 XDP_SETUP_PROG_HW,
869 XDP_QUERY_PROG,
870 XDP_QUERY_PROG_HW,
871 /* BPF program for offload callbacks, invoked at program load time. */
872 BPF_OFFLOAD_MAP_ALLOC,
873 BPF_OFFLOAD_MAP_FREE,
874 XDP_SETUP_XSK_UMEM,
875};
876
877struct bpf_prog_offload_ops;
878struct netlink_ext_ack;
879struct xdp_umem;
880struct xdp_dev_bulk_queue;
881
882struct netdev_bpf {
883 enum bpf_netdev_command command;
884 union {
885 /* XDP_SETUP_PROG */
886 struct {
887 u32 flags;
888 struct bpf_prog *prog;
889 struct netlink_ext_ack *extack;
890 };
891 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
892 struct {
893 u32 prog_id;
894 /* flags with which program was installed */
895 u32 prog_flags;
896 };
897 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
898 struct {
899 struct bpf_offloaded_map *offmap;
900 };
901 /* XDP_SETUP_XSK_UMEM */
902 struct {
903 struct xdp_umem *umem;
904 u16 queue_id;
905 } xsk;
906 };
907};
908
909/* Flags for ndo_xsk_wakeup. */
910#define XDP_WAKEUP_RX (1 << 0)
911#define XDP_WAKEUP_TX (1 << 1)
912
913#ifdef CONFIG_XFRM_OFFLOAD
914struct xfrmdev_ops {
915 int (*xdo_dev_state_add) (struct xfrm_state *x);
916 void (*xdo_dev_state_delete) (struct xfrm_state *x);
917 void (*xdo_dev_state_free) (struct xfrm_state *x);
918 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
919 struct xfrm_state *x);
920 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
921};
922#endif
923
924struct dev_ifalias {
925 struct rcu_head rcuhead;
926 char ifalias[];
927};
928
929struct devlink;
930struct tlsdev_ops;
931
932struct netdev_name_node {
933 struct hlist_node hlist;
934 struct list_head list;
935 struct net_device *dev;
936 const char *name;
937};
938
939int netdev_name_node_alt_create(struct net_device *dev, const char *name);
940int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
941
942struct netdev_net_notifier {
943 struct list_head list;
944 struct notifier_block *nb;
945};
946
947/*
948 * This structure defines the management hooks for network devices.
949 * The following hooks can be defined; unless noted otherwise, they are
950 * optional and can be filled with a null pointer.
951 *
952 * int (*ndo_init)(struct net_device *dev);
953 * This function is called once when a network device is registered.
954 * The network device can use this for any late stage initialization
955 * or semantic validation. It can fail with an error code which will
956 * be propagated back to register_netdev.
957 *
958 * void (*ndo_uninit)(struct net_device *dev);
959 * This function is called when device is unregistered or when registration
960 * fails. It is not called if init fails.
961 *
962 * int (*ndo_open)(struct net_device *dev);
963 * This function is called when a network device transitions to the up
964 * state.
965 *
966 * int (*ndo_stop)(struct net_device *dev);
967 * This function is called when a network device transitions to the down
968 * state.
969 *
970 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
971 * struct net_device *dev);
972 * Called when a packet needs to be transmitted.
973 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
974 * the queue before that can happen; it's for obsolete devices and weird
975 * corner cases, but the stack really does a non-trivial amount
976 * of useless work if you return NETDEV_TX_BUSY.
977 * Required; cannot be NULL.
978 *
979 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
980 * struct net_device *dev
981 * netdev_features_t features);
982 * Called by core transmit path to determine if device is capable of
983 * performing offload operations on a given packet. This is to give
984 * the device an opportunity to implement any restrictions that cannot
985 * be otherwise expressed by feature flags. The check is called with
986 * the set of features that the stack has calculated and it returns
987 * those the driver believes to be appropriate.
988 *
989 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
990 * struct net_device *sb_dev);
991 * Called to decide which queue to use when device supports multiple
992 * transmit queues.
993 *
994 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
995 * This function is called to allow device receiver to make
996 * changes to configuration when multicast or promiscuous is enabled.
997 *
998 * void (*ndo_set_rx_mode)(struct net_device *dev);
999 * This function is called device changes address list filtering.
1000 * If driver handles unicast address filtering, it should set
1001 * IFF_UNICAST_FLT in its priv_flags.
1002 *
1003 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1004 * This function is called when the Media Access Control address
1005 * needs to be changed. If this interface is not defined, the
1006 * MAC address can not be changed.
1007 *
1008 * int (*ndo_validate_addr)(struct net_device *dev);
1009 * Test if Media Access Control address is valid for the device.
1010 *
1011 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1012 * Called when a user requests an ioctl which can't be handled by
1013 * the generic interface code. If not defined ioctls return
1014 * not supported error code.
1015 *
1016 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1017 * Used to set network devices bus interface parameters. This interface
1018 * is retained for legacy reasons; new devices should use the bus
1019 * interface (PCI) for low level management.
1020 *
1021 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1022 * Called when a user wants to change the Maximum Transfer Unit
1023 * of a device.
1024 *
1025 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1026 * Callback used when the transmitter has not made any progress
1027 * for dev->watchdog ticks.
1028 *
1029 * void (*ndo_get_stats64)(struct net_device *dev,
1030 * struct rtnl_link_stats64 *storage);
1031 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 * Called when a user wants to get the network device usage
1033 * statistics. Drivers must do one of the following:
1034 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1035 * rtnl_link_stats64 structure passed by the caller.
1036 * 2. Define @ndo_get_stats to update a net_device_stats structure
1037 * (which should normally be dev->stats) and return a pointer to
1038 * it. The structure may be changed asynchronously only if each
1039 * field is written atomically.
1040 * 3. Update dev->stats asynchronously and atomically, and define
1041 * neither operation.
1042 *
1043 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1044 * Return true if this device supports offload stats of this attr_id.
1045 *
1046 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1047 * void *attr_data)
1048 * Get statistics for offload operations by attr_id. Write it into the
1049 * attr_data pointer.
1050 *
1051 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1052 * If device supports VLAN filtering this function is called when a
1053 * VLAN id is registered.
1054 *
1055 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1056 * If device supports VLAN filtering this function is called when a
1057 * VLAN id is unregistered.
1058 *
1059 * void (*ndo_poll_controller)(struct net_device *dev);
1060 *
1061 * SR-IOV management functions.
1062 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1063 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1064 * u8 qos, __be16 proto);
1065 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1066 * int max_tx_rate);
1067 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1068 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1069 * int (*ndo_get_vf_config)(struct net_device *dev,
1070 * int vf, struct ifla_vf_info *ivf);
1071 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1072 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1073 * struct nlattr *port[]);
1074 *
1075 * Enable or disable the VF ability to query its RSS Redirection Table and
1076 * Hash Key. This is needed since on some devices VF share this information
1077 * with PF and querying it may introduce a theoretical security risk.
1078 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1079 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1080 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1081 * void *type_data);
1082 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1083 * This is always called from the stack with the rtnl lock held and netif
1084 * tx queues stopped. This allows the netdevice to perform queue
1085 * management safely.
1086 *
1087 * Fiber Channel over Ethernet (FCoE) offload functions.
1088 * int (*ndo_fcoe_enable)(struct net_device *dev);
1089 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1090 * so the underlying device can perform whatever needed configuration or
1091 * initialization to support acceleration of FCoE traffic.
1092 *
1093 * int (*ndo_fcoe_disable)(struct net_device *dev);
1094 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1095 * so the underlying device can perform whatever needed clean-ups to
1096 * stop supporting acceleration of FCoE traffic.
1097 *
1098 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1099 * struct scatterlist *sgl, unsigned int sgc);
1100 * Called when the FCoE Initiator wants to initialize an I/O that
1101 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1102 * perform necessary setup and returns 1 to indicate the device is set up
1103 * successfully to perform DDP on this I/O, otherwise this returns 0.
1104 *
1105 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1106 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1107 * indicated by the FC exchange id 'xid', so the underlying device can
1108 * clean up and reuse resources for later DDP requests.
1109 *
1110 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1111 * struct scatterlist *sgl, unsigned int sgc);
1112 * Called when the FCoE Target wants to initialize an I/O that
1113 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1114 * perform necessary setup and returns 1 to indicate the device is set up
1115 * successfully to perform DDP on this I/O, otherwise this returns 0.
1116 *
1117 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1118 * struct netdev_fcoe_hbainfo *hbainfo);
1119 * Called when the FCoE Protocol stack wants information on the underlying
1120 * device. This information is utilized by the FCoE protocol stack to
1121 * register attributes with Fiber Channel management service as per the
1122 * FC-GS Fabric Device Management Information(FDMI) specification.
1123 *
1124 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1125 * Called when the underlying device wants to override default World Wide
1126 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1127 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1128 * protocol stack to use.
1129 *
1130 * RFS acceleration.
1131 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1132 * u16 rxq_index, u32 flow_id);
1133 * Set hardware filter for RFS. rxq_index is the target queue index;
1134 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1135 * Return the filter ID on success, or a negative error code.
1136 *
1137 * Slave management functions (for bridge, bonding, etc).
1138 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1139 * Called to make another netdev an underling.
1140 *
1141 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1142 * Called to release previously enslaved netdev.
1143 *
1144 * Feature/offload setting functions.
1145 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1146 * netdev_features_t features);
1147 * Adjusts the requested feature flags according to device-specific
1148 * constraints, and returns the resulting flags. Must not modify
1149 * the device state.
1150 *
1151 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1152 * Called to update device configuration to new features. Passed
1153 * feature set might be less than what was returned by ndo_fix_features()).
1154 * Must return >0 or -errno if it changed dev->features itself.
1155 *
1156 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1157 * struct net_device *dev,
1158 * const unsigned char *addr, u16 vid, u16 flags,
1159 * struct netlink_ext_ack *extack);
1160 * Adds an FDB entry to dev for addr.
1161 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1162 * struct net_device *dev,
1163 * const unsigned char *addr, u16 vid)
1164 * Deletes the FDB entry from dev coresponding to addr.
1165 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1166 * struct net_device *dev, struct net_device *filter_dev,
1167 * int *idx)
1168 * Used to add FDB entries to dump requests. Implementers should add
1169 * entries to skb and update idx with the number of entries.
1170 *
1171 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1172 * u16 flags, struct netlink_ext_ack *extack)
1173 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1174 * struct net_device *dev, u32 filter_mask,
1175 * int nlflags)
1176 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1177 * u16 flags);
1178 *
1179 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1180 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1181 * which do not represent real hardware may define this to allow their
1182 * userspace components to manage their virtual carrier state. Devices
1183 * that determine carrier state from physical hardware properties (eg
1184 * network cables) or protocol-dependent mechanisms (eg
1185 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1186 *
1187 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1188 * struct netdev_phys_item_id *ppid);
1189 * Called to get ID of physical port of this device. If driver does
1190 * not implement this, it is assumed that the hw is not able to have
1191 * multiple net devices on single physical port.
1192 *
1193 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1194 * struct netdev_phys_item_id *ppid)
1195 * Called to get the parent ID of the physical port of this device.
1196 *
1197 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1198 * struct udp_tunnel_info *ti);
1199 * Called by UDP tunnel to notify a driver about the UDP port and socket
1200 * address family that a UDP tunnel is listnening to. It is called only
1201 * when a new port starts listening. The operation is protected by the
1202 * RTNL.
1203 *
1204 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1205 * struct udp_tunnel_info *ti);
1206 * Called by UDP tunnel to notify the driver about a UDP port and socket
1207 * address family that the UDP tunnel is not listening to anymore. The
1208 * operation is protected by the RTNL.
1209 *
1210 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1211 * struct net_device *dev)
1212 * Called by upper layer devices to accelerate switching or other
1213 * station functionality into hardware. 'pdev is the lowerdev
1214 * to use for the offload and 'dev' is the net device that will
1215 * back the offload. Returns a pointer to the private structure
1216 * the upper layer will maintain.
1217 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1218 * Called by upper layer device to delete the station created
1219 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1220 * the station and priv is the structure returned by the add
1221 * operation.
1222 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1223 * int queue_index, u32 maxrate);
1224 * Called when a user wants to set a max-rate limitation of specific
1225 * TX queue.
1226 * int (*ndo_get_iflink)(const struct net_device *dev);
1227 * Called to get the iflink value of this device.
1228 * void (*ndo_change_proto_down)(struct net_device *dev,
1229 * bool proto_down);
1230 * This function is used to pass protocol port error state information
1231 * to the switch driver. The switch driver can react to the proto_down
1232 * by doing a phys down on the associated switch port.
1233 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1234 * This function is used to get egress tunnel information for given skb.
1235 * This is useful for retrieving outer tunnel header parameters while
1236 * sampling packet.
1237 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1238 * This function is used to specify the headroom that the skb must
1239 * consider when allocation skb during packet reception. Setting
1240 * appropriate rx headroom value allows avoiding skb head copy on
1241 * forward. Setting a negative value resets the rx headroom to the
1242 * default value.
1243 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1244 * This function is used to set or query state related to XDP on the
1245 * netdevice and manage BPF offload. See definition of
1246 * enum bpf_netdev_command for details.
1247 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1248 * u32 flags);
1249 * This function is used to submit @n XDP packets for transmit on a
1250 * netdevice. Returns number of frames successfully transmitted, frames
1251 * that got dropped are freed/returned via xdp_return_frame().
1252 * Returns negative number, means general error invoking ndo, meaning
1253 * no frames were xmit'ed and core-caller will free all frames.
1254 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1255 * This function is used to wake up the softirq, ksoftirqd or kthread
1256 * responsible for sending and/or receiving packets on a specific
1257 * queue id bound to an AF_XDP socket. The flags field specifies if
1258 * only RX, only Tx, or both should be woken up using the flags
1259 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1260 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1261 * Get devlink port instance associated with a given netdev.
1262 * Called with a reference on the netdevice and devlink locks only,
1263 * rtnl_lock is not held.
1264 */
1265struct net_device_ops {
1266 int (*ndo_init)(struct net_device *dev);
1267 void (*ndo_uninit)(struct net_device *dev);
1268 int (*ndo_open)(struct net_device *dev);
1269 int (*ndo_stop)(struct net_device *dev);
1270 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1271 struct net_device *dev);
1272 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1273 struct net_device *dev,
1274 netdev_features_t features);
1275 u16 (*ndo_select_queue)(struct net_device *dev,
1276 struct sk_buff *skb,
1277 struct net_device *sb_dev);
1278 void (*ndo_change_rx_flags)(struct net_device *dev,
1279 int flags);
1280 void (*ndo_set_rx_mode)(struct net_device *dev);
1281 int (*ndo_set_mac_address)(struct net_device *dev,
1282 void *addr);
1283 int (*ndo_validate_addr)(struct net_device *dev);
1284 int (*ndo_do_ioctl)(struct net_device *dev,
1285 struct ifreq *ifr, int cmd);
1286 int (*ndo_set_config)(struct net_device *dev,
1287 struct ifmap *map);
1288 int (*ndo_change_mtu)(struct net_device *dev,
1289 int new_mtu);
1290 int (*ndo_neigh_setup)(struct net_device *dev,
1291 struct neigh_parms *);
1292 void (*ndo_tx_timeout) (struct net_device *dev,
1293 unsigned int txqueue);
1294
1295 void (*ndo_get_stats64)(struct net_device *dev,
1296 struct rtnl_link_stats64 *storage);
1297 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1298 int (*ndo_get_offload_stats)(int attr_id,
1299 const struct net_device *dev,
1300 void *attr_data);
1301 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1302
1303 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1304 __be16 proto, u16 vid);
1305 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1306 __be16 proto, u16 vid);
1307#ifdef CONFIG_NET_POLL_CONTROLLER
1308 void (*ndo_poll_controller)(struct net_device *dev);
1309 int (*ndo_netpoll_setup)(struct net_device *dev,
1310 struct netpoll_info *info);
1311 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1312#endif
1313 int (*ndo_set_vf_mac)(struct net_device *dev,
1314 int queue, u8 *mac);
1315 int (*ndo_set_vf_vlan)(struct net_device *dev,
1316 int queue, u16 vlan,
1317 u8 qos, __be16 proto);
1318 int (*ndo_set_vf_rate)(struct net_device *dev,
1319 int vf, int min_tx_rate,
1320 int max_tx_rate);
1321 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1322 int vf, bool setting);
1323 int (*ndo_set_vf_trust)(struct net_device *dev,
1324 int vf, bool setting);
1325 int (*ndo_get_vf_config)(struct net_device *dev,
1326 int vf,
1327 struct ifla_vf_info *ivf);
1328 int (*ndo_set_vf_link_state)(struct net_device *dev,
1329 int vf, int link_state);
1330 int (*ndo_get_vf_stats)(struct net_device *dev,
1331 int vf,
1332 struct ifla_vf_stats
1333 *vf_stats);
1334 int (*ndo_set_vf_port)(struct net_device *dev,
1335 int vf,
1336 struct nlattr *port[]);
1337 int (*ndo_get_vf_port)(struct net_device *dev,
1338 int vf, struct sk_buff *skb);
1339 int (*ndo_get_vf_guid)(struct net_device *dev,
1340 int vf,
1341 struct ifla_vf_guid *node_guid,
1342 struct ifla_vf_guid *port_guid);
1343 int (*ndo_set_vf_guid)(struct net_device *dev,
1344 int vf, u64 guid,
1345 int guid_type);
1346 int (*ndo_set_vf_rss_query_en)(
1347 struct net_device *dev,
1348 int vf, bool setting);
1349 int (*ndo_setup_tc)(struct net_device *dev,
1350 enum tc_setup_type type,
1351 void *type_data);
1352#if IS_ENABLED(CONFIG_FCOE)
1353 int (*ndo_fcoe_enable)(struct net_device *dev);
1354 int (*ndo_fcoe_disable)(struct net_device *dev);
1355 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1356 u16 xid,
1357 struct scatterlist *sgl,
1358 unsigned int sgc);
1359 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1360 u16 xid);
1361 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1362 u16 xid,
1363 struct scatterlist *sgl,
1364 unsigned int sgc);
1365 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1366 struct netdev_fcoe_hbainfo *hbainfo);
1367#endif
1368
1369#if IS_ENABLED(CONFIG_LIBFCOE)
1370#define NETDEV_FCOE_WWNN 0
1371#define NETDEV_FCOE_WWPN 1
1372 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1373 u64 *wwn, int type);
1374#endif
1375
1376#ifdef CONFIG_RFS_ACCEL
1377 int (*ndo_rx_flow_steer)(struct net_device *dev,
1378 const struct sk_buff *skb,
1379 u16 rxq_index,
1380 u32 flow_id);
1381#endif
1382 int (*ndo_add_slave)(struct net_device *dev,
1383 struct net_device *slave_dev,
1384 struct netlink_ext_ack *extack);
1385 int (*ndo_del_slave)(struct net_device *dev,
1386 struct net_device *slave_dev);
1387 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1388 netdev_features_t features);
1389 int (*ndo_set_features)(struct net_device *dev,
1390 netdev_features_t features);
1391 int (*ndo_neigh_construct)(struct net_device *dev,
1392 struct neighbour *n);
1393 void (*ndo_neigh_destroy)(struct net_device *dev,
1394 struct neighbour *n);
1395
1396 int (*ndo_fdb_add)(struct ndmsg *ndm,
1397 struct nlattr *tb[],
1398 struct net_device *dev,
1399 const unsigned char *addr,
1400 u16 vid,
1401 u16 flags,
1402 struct netlink_ext_ack *extack);
1403 int (*ndo_fdb_del)(struct ndmsg *ndm,
1404 struct nlattr *tb[],
1405 struct net_device *dev,
1406 const unsigned char *addr,
1407 u16 vid);
1408 int (*ndo_fdb_dump)(struct sk_buff *skb,
1409 struct netlink_callback *cb,
1410 struct net_device *dev,
1411 struct net_device *filter_dev,
1412 int *idx);
1413 int (*ndo_fdb_get)(struct sk_buff *skb,
1414 struct nlattr *tb[],
1415 struct net_device *dev,
1416 const unsigned char *addr,
1417 u16 vid, u32 portid, u32 seq,
1418 struct netlink_ext_ack *extack);
1419 int (*ndo_bridge_setlink)(struct net_device *dev,
1420 struct nlmsghdr *nlh,
1421 u16 flags,
1422 struct netlink_ext_ack *extack);
1423 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1424 u32 pid, u32 seq,
1425 struct net_device *dev,
1426 u32 filter_mask,
1427 int nlflags);
1428 int (*ndo_bridge_dellink)(struct net_device *dev,
1429 struct nlmsghdr *nlh,
1430 u16 flags);
1431 int (*ndo_change_carrier)(struct net_device *dev,
1432 bool new_carrier);
1433 int (*ndo_get_phys_port_id)(struct net_device *dev,
1434 struct netdev_phys_item_id *ppid);
1435 int (*ndo_get_port_parent_id)(struct net_device *dev,
1436 struct netdev_phys_item_id *ppid);
1437 int (*ndo_get_phys_port_name)(struct net_device *dev,
1438 char *name, size_t len);
1439 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1440 struct udp_tunnel_info *ti);
1441 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1442 struct udp_tunnel_info *ti);
1443 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1444 struct net_device *dev);
1445 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1446 void *priv);
1447
1448 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1449 int queue_index,
1450 u32 maxrate);
1451 int (*ndo_get_iflink)(const struct net_device *dev);
1452 int (*ndo_change_proto_down)(struct net_device *dev,
1453 bool proto_down);
1454 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1455 struct sk_buff *skb);
1456 void (*ndo_set_rx_headroom)(struct net_device *dev,
1457 int needed_headroom);
1458 int (*ndo_bpf)(struct net_device *dev,
1459 struct netdev_bpf *bpf);
1460 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1461 struct xdp_frame **xdp,
1462 u32 flags);
1463 int (*ndo_xsk_wakeup)(struct net_device *dev,
1464 u32 queue_id, u32 flags);
1465 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1466};
1467
1468/**
1469 * enum net_device_priv_flags - &struct net_device priv_flags
1470 *
1471 * These are the &struct net_device, they are only set internally
1472 * by drivers and used in the kernel. These flags are invisible to
1473 * userspace; this means that the order of these flags can change
1474 * during any kernel release.
1475 *
1476 * You should have a pretty good reason to be extending these flags.
1477 *
1478 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1479 * @IFF_EBRIDGE: Ethernet bridging device
1480 * @IFF_BONDING: bonding master or slave
1481 * @IFF_ISATAP: ISATAP interface (RFC4214)
1482 * @IFF_WAN_HDLC: WAN HDLC device
1483 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1484 * release skb->dst
1485 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1486 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1487 * @IFF_MACVLAN_PORT: device used as macvlan port
1488 * @IFF_BRIDGE_PORT: device used as bridge port
1489 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1490 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1491 * @IFF_UNICAST_FLT: Supports unicast filtering
1492 * @IFF_TEAM_PORT: device used as team port
1493 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1494 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1495 * change when it's running
1496 * @IFF_MACVLAN: Macvlan device
1497 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1498 * underlying stacked devices
1499 * @IFF_L3MDEV_MASTER: device is an L3 master device
1500 * @IFF_NO_QUEUE: device can run without qdisc attached
1501 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1502 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1503 * @IFF_TEAM: device is a team device
1504 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1505 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1506 * entity (i.e. the master device for bridged veth)
1507 * @IFF_MACSEC: device is a MACsec device
1508 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1509 * @IFF_FAILOVER: device is a failover master device
1510 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1511 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1512 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1513 */
1514enum netdev_priv_flags {
1515 IFF_802_1Q_VLAN = 1<<0,
1516 IFF_EBRIDGE = 1<<1,
1517 IFF_BONDING = 1<<2,
1518 IFF_ISATAP = 1<<3,
1519 IFF_WAN_HDLC = 1<<4,
1520 IFF_XMIT_DST_RELEASE = 1<<5,
1521 IFF_DONT_BRIDGE = 1<<6,
1522 IFF_DISABLE_NETPOLL = 1<<7,
1523 IFF_MACVLAN_PORT = 1<<8,
1524 IFF_BRIDGE_PORT = 1<<9,
1525 IFF_OVS_DATAPATH = 1<<10,
1526 IFF_TX_SKB_SHARING = 1<<11,
1527 IFF_UNICAST_FLT = 1<<12,
1528 IFF_TEAM_PORT = 1<<13,
1529 IFF_SUPP_NOFCS = 1<<14,
1530 IFF_LIVE_ADDR_CHANGE = 1<<15,
1531 IFF_MACVLAN = 1<<16,
1532 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1533 IFF_L3MDEV_MASTER = 1<<18,
1534 IFF_NO_QUEUE = 1<<19,
1535 IFF_OPENVSWITCH = 1<<20,
1536 IFF_L3MDEV_SLAVE = 1<<21,
1537 IFF_TEAM = 1<<22,
1538 IFF_RXFH_CONFIGURED = 1<<23,
1539 IFF_PHONY_HEADROOM = 1<<24,
1540 IFF_MACSEC = 1<<25,
1541 IFF_NO_RX_HANDLER = 1<<26,
1542 IFF_FAILOVER = 1<<27,
1543 IFF_FAILOVER_SLAVE = 1<<28,
1544 IFF_L3MDEV_RX_HANDLER = 1<<29,
1545 IFF_LIVE_RENAME_OK = 1<<30,
1546};
1547
1548#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1549#define IFF_EBRIDGE IFF_EBRIDGE
1550#define IFF_BONDING IFF_BONDING
1551#define IFF_ISATAP IFF_ISATAP
1552#define IFF_WAN_HDLC IFF_WAN_HDLC
1553#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1554#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1555#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1556#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1557#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1558#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1559#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1560#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1561#define IFF_TEAM_PORT IFF_TEAM_PORT
1562#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1563#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1564#define IFF_MACVLAN IFF_MACVLAN
1565#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1566#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1567#define IFF_NO_QUEUE IFF_NO_QUEUE
1568#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1569#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1570#define IFF_TEAM IFF_TEAM
1571#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1572#define IFF_MACSEC IFF_MACSEC
1573#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1574#define IFF_FAILOVER IFF_FAILOVER
1575#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1576#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1577#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1578
1579/**
1580 * struct net_device - The DEVICE structure.
1581 *
1582 * Actually, this whole structure is a big mistake. It mixes I/O
1583 * data with strictly "high-level" data, and it has to know about
1584 * almost every data structure used in the INET module.
1585 *
1586 * @name: This is the first field of the "visible" part of this structure
1587 * (i.e. as seen by users in the "Space.c" file). It is the name
1588 * of the interface.
1589 *
1590 * @name_node: Name hashlist node
1591 * @ifalias: SNMP alias
1592 * @mem_end: Shared memory end
1593 * @mem_start: Shared memory start
1594 * @base_addr: Device I/O address
1595 * @irq: Device IRQ number
1596 *
1597 * @state: Generic network queuing layer state, see netdev_state_t
1598 * @dev_list: The global list of network devices
1599 * @napi_list: List entry used for polling NAPI devices
1600 * @unreg_list: List entry when we are unregistering the
1601 * device; see the function unregister_netdev
1602 * @close_list: List entry used when we are closing the device
1603 * @ptype_all: Device-specific packet handlers for all protocols
1604 * @ptype_specific: Device-specific, protocol-specific packet handlers
1605 *
1606 * @adj_list: Directly linked devices, like slaves for bonding
1607 * @features: Currently active device features
1608 * @hw_features: User-changeable features
1609 *
1610 * @wanted_features: User-requested features
1611 * @vlan_features: Mask of features inheritable by VLAN devices
1612 *
1613 * @hw_enc_features: Mask of features inherited by encapsulating devices
1614 * This field indicates what encapsulation
1615 * offloads the hardware is capable of doing,
1616 * and drivers will need to set them appropriately.
1617 *
1618 * @mpls_features: Mask of features inheritable by MPLS
1619 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1620 *
1621 * @ifindex: interface index
1622 * @group: The group the device belongs to
1623 *
1624 * @stats: Statistics struct, which was left as a legacy, use
1625 * rtnl_link_stats64 instead
1626 *
1627 * @rx_dropped: Dropped packets by core network,
1628 * do not use this in drivers
1629 * @tx_dropped: Dropped packets by core network,
1630 * do not use this in drivers
1631 * @rx_nohandler: nohandler dropped packets by core network on
1632 * inactive devices, do not use this in drivers
1633 * @carrier_up_count: Number of times the carrier has been up
1634 * @carrier_down_count: Number of times the carrier has been down
1635 *
1636 * @wireless_handlers: List of functions to handle Wireless Extensions,
1637 * instead of ioctl,
1638 * see <net/iw_handler.h> for details.
1639 * @wireless_data: Instance data managed by the core of wireless extensions
1640 *
1641 * @netdev_ops: Includes several pointers to callbacks,
1642 * if one wants to override the ndo_*() functions
1643 * @ethtool_ops: Management operations
1644 * @l3mdev_ops: Layer 3 master device operations
1645 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1646 * discovery handling. Necessary for e.g. 6LoWPAN.
1647 * @xfrmdev_ops: Transformation offload operations
1648 * @tlsdev_ops: Transport Layer Security offload operations
1649 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1650 * of Layer 2 headers.
1651 *
1652 * @flags: Interface flags (a la BSD)
1653 * @priv_flags: Like 'flags' but invisible to userspace,
1654 * see if.h for the definitions
1655 * @gflags: Global flags ( kept as legacy )
1656 * @padded: How much padding added by alloc_netdev()
1657 * @operstate: RFC2863 operstate
1658 * @link_mode: Mapping policy to operstate
1659 * @if_port: Selectable AUI, TP, ...
1660 * @dma: DMA channel
1661 * @mtu: Interface MTU value
1662 * @min_mtu: Interface Minimum MTU value
1663 * @max_mtu: Interface Maximum MTU value
1664 * @type: Interface hardware type
1665 * @hard_header_len: Maximum hardware header length.
1666 * @min_header_len: Minimum hardware header length
1667 *
1668 * @needed_headroom: Extra headroom the hardware may need, but not in all
1669 * cases can this be guaranteed
1670 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1671 * cases can this be guaranteed. Some cases also use
1672 * LL_MAX_HEADER instead to allocate the skb
1673 *
1674 * interface address info:
1675 *
1676 * @perm_addr: Permanent hw address
1677 * @addr_assign_type: Hw address assignment type
1678 * @addr_len: Hardware address length
1679 * @upper_level: Maximum depth level of upper devices.
1680 * @lower_level: Maximum depth level of lower devices.
1681 * @neigh_priv_len: Used in neigh_alloc()
1682 * @dev_id: Used to differentiate devices that share
1683 * the same link layer address
1684 * @dev_port: Used to differentiate devices that share
1685 * the same function
1686 * @addr_list_lock: XXX: need comments on this one
1687 * @name_assign_type: network interface name assignment type
1688 * @uc_promisc: Counter that indicates promiscuous mode
1689 * has been enabled due to the need to listen to
1690 * additional unicast addresses in a device that
1691 * does not implement ndo_set_rx_mode()
1692 * @uc: unicast mac addresses
1693 * @mc: multicast mac addresses
1694 * @dev_addrs: list of device hw addresses
1695 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1696 * @promiscuity: Number of times the NIC is told to work in
1697 * promiscuous mode; if it becomes 0 the NIC will
1698 * exit promiscuous mode
1699 * @allmulti: Counter, enables or disables allmulticast mode
1700 *
1701 * @vlan_info: VLAN info
1702 * @dsa_ptr: dsa specific data
1703 * @tipc_ptr: TIPC specific data
1704 * @atalk_ptr: AppleTalk link
1705 * @ip_ptr: IPv4 specific data
1706 * @dn_ptr: DECnet specific data
1707 * @ip6_ptr: IPv6 specific data
1708 * @ax25_ptr: AX.25 specific data
1709 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1710 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1711 * device struct
1712 * @mpls_ptr: mpls_dev struct pointer
1713 *
1714 * @dev_addr: Hw address (before bcast,
1715 * because most packets are unicast)
1716 *
1717 * @_rx: Array of RX queues
1718 * @num_rx_queues: Number of RX queues
1719 * allocated at register_netdev() time
1720 * @real_num_rx_queues: Number of RX queues currently active in device
1721 * @xdp_prog: XDP sockets filter program pointer
1722 * @gro_flush_timeout: timeout for GRO layer in NAPI
1723 *
1724 * @rx_handler: handler for received packets
1725 * @rx_handler_data: XXX: need comments on this one
1726 * @miniq_ingress: ingress/clsact qdisc specific data for
1727 * ingress processing
1728 * @ingress_queue: XXX: need comments on this one
1729 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1730 * @broadcast: hw bcast address
1731 *
1732 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1733 * indexed by RX queue number. Assigned by driver.
1734 * This must only be set if the ndo_rx_flow_steer
1735 * operation is defined
1736 * @index_hlist: Device index hash chain
1737 *
1738 * @_tx: Array of TX queues
1739 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1740 * @real_num_tx_queues: Number of TX queues currently active in device
1741 * @qdisc: Root qdisc from userspace point of view
1742 * @tx_queue_len: Max frames per queue allowed
1743 * @tx_global_lock: XXX: need comments on this one
1744 * @xdp_bulkq: XDP device bulk queue
1745 * @xps_cpus_map: all CPUs map for XPS device
1746 * @xps_rxqs_map: all RXQs map for XPS device
1747 *
1748 * @xps_maps: XXX: need comments on this one
1749 * @miniq_egress: clsact qdisc specific data for
1750 * egress processing
1751 * @qdisc_hash: qdisc hash table
1752 * @watchdog_timeo: Represents the timeout that is used by
1753 * the watchdog (see dev_watchdog())
1754 * @watchdog_timer: List of timers
1755 *
1756 * @pcpu_refcnt: Number of references to this device
1757 * @todo_list: Delayed register/unregister
1758 * @link_watch_list: XXX: need comments on this one
1759 *
1760 * @reg_state: Register/unregister state machine
1761 * @dismantle: Device is going to be freed
1762 * @rtnl_link_state: This enum represents the phases of creating
1763 * a new link
1764 *
1765 * @needs_free_netdev: Should unregister perform free_netdev?
1766 * @priv_destructor: Called from unregister
1767 * @npinfo: XXX: need comments on this one
1768 * @nd_net: Network namespace this network device is inside
1769 *
1770 * @ml_priv: Mid-layer private
1771 * @lstats: Loopback statistics
1772 * @tstats: Tunnel statistics
1773 * @dstats: Dummy statistics
1774 * @vstats: Virtual ethernet statistics
1775 *
1776 * @garp_port: GARP
1777 * @mrp_port: MRP
1778 *
1779 * @dev: Class/net/name entry
1780 * @sysfs_groups: Space for optional device, statistics and wireless
1781 * sysfs groups
1782 *
1783 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1784 * @rtnl_link_ops: Rtnl_link_ops
1785 *
1786 * @gso_max_size: Maximum size of generic segmentation offload
1787 * @gso_max_segs: Maximum number of segments that can be passed to the
1788 * NIC for GSO
1789 *
1790 * @dcbnl_ops: Data Center Bridging netlink ops
1791 * @num_tc: Number of traffic classes in the net device
1792 * @tc_to_txq: XXX: need comments on this one
1793 * @prio_tc_map: XXX: need comments on this one
1794 *
1795 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1796 *
1797 * @priomap: XXX: need comments on this one
1798 * @phydev: Physical device may attach itself
1799 * for hardware timestamping
1800 * @sfp_bus: attached &struct sfp_bus structure.
1801 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1802 * spinlock
1803 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1804 * @qdisc_xmit_lock_key: lockdep class annotating
1805 * netdev_queue->_xmit_lock spinlock
1806 * @addr_list_lock_key: lockdep class annotating
1807 * net_device->addr_list_lock spinlock
1808 *
1809 * @proto_down: protocol port state information can be sent to the
1810 * switch driver and used to set the phys state of the
1811 * switch port.
1812 *
1813 * @wol_enabled: Wake-on-LAN is enabled
1814 *
1815 * @net_notifier_list: List of per-net netdev notifier block
1816 * that follow this device when it is moved
1817 * to another network namespace.
1818 *
1819 * FIXME: cleanup struct net_device such that network protocol info
1820 * moves out.
1821 */
1822
1823struct net_device {
1824 char name[IFNAMSIZ];
1825 struct netdev_name_node *name_node;
1826 struct dev_ifalias __rcu *ifalias;
1827 /*
1828 * I/O specific fields
1829 * FIXME: Merge these and struct ifmap into one
1830 */
1831 unsigned long mem_end;
1832 unsigned long mem_start;
1833 unsigned long base_addr;
1834 int irq;
1835
1836 /*
1837 * Some hardware also needs these fields (state,dev_list,
1838 * napi_list,unreg_list,close_list) but they are not
1839 * part of the usual set specified in Space.c.
1840 */
1841
1842 unsigned long state;
1843
1844 struct list_head dev_list;
1845 struct list_head napi_list;
1846 struct list_head unreg_list;
1847 struct list_head close_list;
1848 struct list_head ptype_all;
1849 struct list_head ptype_specific;
1850
1851 struct {
1852 struct list_head upper;
1853 struct list_head lower;
1854 } adj_list;
1855
1856 netdev_features_t features;
1857 netdev_features_t hw_features;
1858 netdev_features_t wanted_features;
1859 netdev_features_t vlan_features;
1860 netdev_features_t hw_enc_features;
1861 netdev_features_t mpls_features;
1862 netdev_features_t gso_partial_features;
1863
1864 int ifindex;
1865 int group;
1866
1867 struct net_device_stats stats;
1868
1869 atomic_long_t rx_dropped;
1870 atomic_long_t tx_dropped;
1871 atomic_long_t rx_nohandler;
1872
1873 /* Stats to monitor link on/off, flapping */
1874 atomic_t carrier_up_count;
1875 atomic_t carrier_down_count;
1876
1877#ifdef CONFIG_WIRELESS_EXT
1878 const struct iw_handler_def *wireless_handlers;
1879 struct iw_public_data *wireless_data;
1880#endif
1881 const struct net_device_ops *netdev_ops;
1882 const struct ethtool_ops *ethtool_ops;
1883#ifdef CONFIG_NET_L3_MASTER_DEV
1884 const struct l3mdev_ops *l3mdev_ops;
1885#endif
1886#if IS_ENABLED(CONFIG_IPV6)
1887 const struct ndisc_ops *ndisc_ops;
1888#endif
1889
1890#ifdef CONFIG_XFRM_OFFLOAD
1891 const struct xfrmdev_ops *xfrmdev_ops;
1892#endif
1893
1894#if IS_ENABLED(CONFIG_TLS_DEVICE)
1895 const struct tlsdev_ops *tlsdev_ops;
1896#endif
1897
1898 const struct header_ops *header_ops;
1899
1900 unsigned int flags;
1901 unsigned int priv_flags;
1902
1903 unsigned short gflags;
1904 unsigned short padded;
1905
1906 unsigned char operstate;
1907 unsigned char link_mode;
1908
1909 unsigned char if_port;
1910 unsigned char dma;
1911
1912 /* Note : dev->mtu is often read without holding a lock.
1913 * Writers usually hold RTNL.
1914 * It is recommended to use READ_ONCE() to annotate the reads,
1915 * and to use WRITE_ONCE() to annotate the writes.
1916 */
1917 unsigned int mtu;
1918 unsigned int min_mtu;
1919 unsigned int max_mtu;
1920 unsigned short type;
1921 unsigned short hard_header_len;
1922 unsigned char min_header_len;
1923
1924 unsigned short needed_headroom;
1925 unsigned short needed_tailroom;
1926
1927 /* Interface address info. */
1928 unsigned char perm_addr[MAX_ADDR_LEN];
1929 unsigned char addr_assign_type;
1930 unsigned char addr_len;
1931 unsigned char upper_level;
1932 unsigned char lower_level;
1933 unsigned short neigh_priv_len;
1934 unsigned short dev_id;
1935 unsigned short dev_port;
1936 spinlock_t addr_list_lock;
1937 unsigned char name_assign_type;
1938 bool uc_promisc;
1939 struct netdev_hw_addr_list uc;
1940 struct netdev_hw_addr_list mc;
1941 struct netdev_hw_addr_list dev_addrs;
1942
1943#ifdef CONFIG_SYSFS
1944 struct kset *queues_kset;
1945#endif
1946 unsigned int promiscuity;
1947 unsigned int allmulti;
1948
1949
1950 /* Protocol-specific pointers */
1951
1952#if IS_ENABLED(CONFIG_VLAN_8021Q)
1953 struct vlan_info __rcu *vlan_info;
1954#endif
1955#if IS_ENABLED(CONFIG_NET_DSA)
1956 struct dsa_port *dsa_ptr;
1957#endif
1958#if IS_ENABLED(CONFIG_TIPC)
1959 struct tipc_bearer __rcu *tipc_ptr;
1960#endif
1961#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1962 void *atalk_ptr;
1963#endif
1964 struct in_device __rcu *ip_ptr;
1965#if IS_ENABLED(CONFIG_DECNET)
1966 struct dn_dev __rcu *dn_ptr;
1967#endif
1968 struct inet6_dev __rcu *ip6_ptr;
1969#if IS_ENABLED(CONFIG_AX25)
1970 void *ax25_ptr;
1971#endif
1972 struct wireless_dev *ieee80211_ptr;
1973 struct wpan_dev *ieee802154_ptr;
1974#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1975 struct mpls_dev __rcu *mpls_ptr;
1976#endif
1977
1978/*
1979 * Cache lines mostly used on receive path (including eth_type_trans())
1980 */
1981 /* Interface address info used in eth_type_trans() */
1982 unsigned char *dev_addr;
1983
1984 struct netdev_rx_queue *_rx;
1985 unsigned int num_rx_queues;
1986 unsigned int real_num_rx_queues;
1987
1988 struct bpf_prog __rcu *xdp_prog;
1989 unsigned long gro_flush_timeout;
1990 rx_handler_func_t __rcu *rx_handler;
1991 void __rcu *rx_handler_data;
1992
1993#ifdef CONFIG_NET_CLS_ACT
1994 struct mini_Qdisc __rcu *miniq_ingress;
1995#endif
1996 struct netdev_queue __rcu *ingress_queue;
1997#ifdef CONFIG_NETFILTER_INGRESS
1998 struct nf_hook_entries __rcu *nf_hooks_ingress;
1999#endif
2000
2001 unsigned char broadcast[MAX_ADDR_LEN];
2002#ifdef CONFIG_RFS_ACCEL
2003 struct cpu_rmap *rx_cpu_rmap;
2004#endif
2005 struct hlist_node index_hlist;
2006
2007/*
2008 * Cache lines mostly used on transmit path
2009 */
2010 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2011 unsigned int num_tx_queues;
2012 unsigned int real_num_tx_queues;
2013 struct Qdisc *qdisc;
2014 unsigned int tx_queue_len;
2015 spinlock_t tx_global_lock;
2016
2017 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2018
2019#ifdef CONFIG_XPS
2020 struct xps_dev_maps __rcu *xps_cpus_map;
2021 struct xps_dev_maps __rcu *xps_rxqs_map;
2022#endif
2023#ifdef CONFIG_NET_CLS_ACT
2024 struct mini_Qdisc __rcu *miniq_egress;
2025#endif
2026
2027#ifdef CONFIG_NET_SCHED
2028 DECLARE_HASHTABLE (qdisc_hash, 4);
2029#endif
2030 /* These may be needed for future network-power-down code. */
2031 struct timer_list watchdog_timer;
2032 int watchdog_timeo;
2033
2034 struct list_head todo_list;
2035 int __percpu *pcpu_refcnt;
2036
2037 struct list_head link_watch_list;
2038
2039 enum { NETREG_UNINITIALIZED=0,
2040 NETREG_REGISTERED, /* completed register_netdevice */
2041 NETREG_UNREGISTERING, /* called unregister_netdevice */
2042 NETREG_UNREGISTERED, /* completed unregister todo */
2043 NETREG_RELEASED, /* called free_netdev */
2044 NETREG_DUMMY, /* dummy device for NAPI poll */
2045 } reg_state:8;
2046
2047 bool dismantle;
2048
2049 enum {
2050 RTNL_LINK_INITIALIZED,
2051 RTNL_LINK_INITIALIZING,
2052 } rtnl_link_state:16;
2053
2054 bool needs_free_netdev;
2055 void (*priv_destructor)(struct net_device *dev);
2056
2057#ifdef CONFIG_NETPOLL
2058 struct netpoll_info __rcu *npinfo;
2059#endif
2060
2061 possible_net_t nd_net;
2062
2063 /* mid-layer private */
2064 union {
2065 void *ml_priv;
2066 struct pcpu_lstats __percpu *lstats;
2067 struct pcpu_sw_netstats __percpu *tstats;
2068 struct pcpu_dstats __percpu *dstats;
2069 };
2070
2071#if IS_ENABLED(CONFIG_GARP)
2072 struct garp_port __rcu *garp_port;
2073#endif
2074#if IS_ENABLED(CONFIG_MRP)
2075 struct mrp_port __rcu *mrp_port;
2076#endif
2077
2078 struct device dev;
2079 const struct attribute_group *sysfs_groups[4];
2080 const struct attribute_group *sysfs_rx_queue_group;
2081
2082 const struct rtnl_link_ops *rtnl_link_ops;
2083
2084 /* for setting kernel sock attribute on TCP connection setup */
2085#define GSO_MAX_SIZE 65536
2086 unsigned int gso_max_size;
2087#define GSO_MAX_SEGS 65535
2088 u16 gso_max_segs;
2089
2090#ifdef CONFIG_DCB
2091 const struct dcbnl_rtnl_ops *dcbnl_ops;
2092#endif
2093 s16 num_tc;
2094 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2095 u8 prio_tc_map[TC_BITMASK + 1];
2096
2097#if IS_ENABLED(CONFIG_FCOE)
2098 unsigned int fcoe_ddp_xid;
2099#endif
2100#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2101 struct netprio_map __rcu *priomap;
2102#endif
2103 struct phy_device *phydev;
2104 struct sfp_bus *sfp_bus;
2105 struct lock_class_key qdisc_tx_busylock_key;
2106 struct lock_class_key qdisc_running_key;
2107 struct lock_class_key qdisc_xmit_lock_key;
2108 struct lock_class_key addr_list_lock_key;
2109 bool proto_down;
2110 unsigned wol_enabled:1;
2111
2112 struct list_head net_notifier_list;
2113};
2114#define to_net_dev(d) container_of(d, struct net_device, dev)
2115
2116static inline bool netif_elide_gro(const struct net_device *dev)
2117{
2118 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2119 return true;
2120 return false;
2121}
2122
2123#define NETDEV_ALIGN 32
2124
2125static inline
2126int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2127{
2128 return dev->prio_tc_map[prio & TC_BITMASK];
2129}
2130
2131static inline
2132int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2133{
2134 if (tc >= dev->num_tc)
2135 return -EINVAL;
2136
2137 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2138 return 0;
2139}
2140
2141int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2142void netdev_reset_tc(struct net_device *dev);
2143int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2144int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2145
2146static inline
2147int netdev_get_num_tc(struct net_device *dev)
2148{
2149 return dev->num_tc;
2150}
2151
2152void netdev_unbind_sb_channel(struct net_device *dev,
2153 struct net_device *sb_dev);
2154int netdev_bind_sb_channel_queue(struct net_device *dev,
2155 struct net_device *sb_dev,
2156 u8 tc, u16 count, u16 offset);
2157int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2158static inline int netdev_get_sb_channel(struct net_device *dev)
2159{
2160 return max_t(int, -dev->num_tc, 0);
2161}
2162
2163static inline
2164struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2165 unsigned int index)
2166{
2167 return &dev->_tx[index];
2168}
2169
2170static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2171 const struct sk_buff *skb)
2172{
2173 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2174}
2175
2176static inline void netdev_for_each_tx_queue(struct net_device *dev,
2177 void (*f)(struct net_device *,
2178 struct netdev_queue *,
2179 void *),
2180 void *arg)
2181{
2182 unsigned int i;
2183
2184 for (i = 0; i < dev->num_tx_queues; i++)
2185 f(dev, &dev->_tx[i], arg);
2186}
2187
2188u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2189 struct net_device *sb_dev);
2190struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2191 struct sk_buff *skb,
2192 struct net_device *sb_dev);
2193
2194/* returns the headroom that the master device needs to take in account
2195 * when forwarding to this dev
2196 */
2197static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2198{
2199 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2200}
2201
2202static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2203{
2204 if (dev->netdev_ops->ndo_set_rx_headroom)
2205 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2206}
2207
2208/* set the device rx headroom to the dev's default */
2209static inline void netdev_reset_rx_headroom(struct net_device *dev)
2210{
2211 netdev_set_rx_headroom(dev, -1);
2212}
2213
2214/*
2215 * Net namespace inlines
2216 */
2217static inline
2218struct net *dev_net(const struct net_device *dev)
2219{
2220 return read_pnet(&dev->nd_net);
2221}
2222
2223static inline
2224void dev_net_set(struct net_device *dev, struct net *net)
2225{
2226 write_pnet(&dev->nd_net, net);
2227}
2228
2229/**
2230 * netdev_priv - access network device private data
2231 * @dev: network device
2232 *
2233 * Get network device private data
2234 */
2235static inline void *netdev_priv(const struct net_device *dev)
2236{
2237 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2238}
2239
2240/* Set the sysfs physical device reference for the network logical device
2241 * if set prior to registration will cause a symlink during initialization.
2242 */
2243#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2244
2245/* Set the sysfs device type for the network logical device to allow
2246 * fine-grained identification of different network device types. For
2247 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2248 */
2249#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2250
2251/* Default NAPI poll() weight
2252 * Device drivers are strongly advised to not use bigger value
2253 */
2254#define NAPI_POLL_WEIGHT 64
2255
2256/**
2257 * netif_napi_add - initialize a NAPI context
2258 * @dev: network device
2259 * @napi: NAPI context
2260 * @poll: polling function
2261 * @weight: default weight
2262 *
2263 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2264 * *any* of the other NAPI-related functions.
2265 */
2266void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2267 int (*poll)(struct napi_struct *, int), int weight);
2268
2269/**
2270 * netif_tx_napi_add - initialize a NAPI context
2271 * @dev: network device
2272 * @napi: NAPI context
2273 * @poll: polling function
2274 * @weight: default weight
2275 *
2276 * This variant of netif_napi_add() should be used from drivers using NAPI
2277 * to exclusively poll a TX queue.
2278 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2279 */
2280static inline void netif_tx_napi_add(struct net_device *dev,
2281 struct napi_struct *napi,
2282 int (*poll)(struct napi_struct *, int),
2283 int weight)
2284{
2285 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2286 netif_napi_add(dev, napi, poll, weight);
2287}
2288
2289/**
2290 * netif_napi_del - remove a NAPI context
2291 * @napi: NAPI context
2292 *
2293 * netif_napi_del() removes a NAPI context from the network device NAPI list
2294 */
2295void netif_napi_del(struct napi_struct *napi);
2296
2297struct napi_gro_cb {
2298 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2299 void *frag0;
2300
2301 /* Length of frag0. */
2302 unsigned int frag0_len;
2303
2304 /* This indicates where we are processing relative to skb->data. */
2305 int data_offset;
2306
2307 /* This is non-zero if the packet cannot be merged with the new skb. */
2308 u16 flush;
2309
2310 /* Save the IP ID here and check when we get to the transport layer */
2311 u16 flush_id;
2312
2313 /* Number of segments aggregated. */
2314 u16 count;
2315
2316 /* Start offset for remote checksum offload */
2317 u16 gro_remcsum_start;
2318
2319 /* jiffies when first packet was created/queued */
2320 unsigned long age;
2321
2322 /* Used in ipv6_gro_receive() and foo-over-udp */
2323 u16 proto;
2324
2325 /* This is non-zero if the packet may be of the same flow. */
2326 u8 same_flow:1;
2327
2328 /* Used in tunnel GRO receive */
2329 u8 encap_mark:1;
2330
2331 /* GRO checksum is valid */
2332 u8 csum_valid:1;
2333
2334 /* Number of checksums via CHECKSUM_UNNECESSARY */
2335 u8 csum_cnt:3;
2336
2337 /* Free the skb? */
2338 u8 free:2;
2339#define NAPI_GRO_FREE 1
2340#define NAPI_GRO_FREE_STOLEN_HEAD 2
2341
2342 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2343 u8 is_ipv6:1;
2344
2345 /* Used in GRE, set in fou/gue_gro_receive */
2346 u8 is_fou:1;
2347
2348 /* Used to determine if flush_id can be ignored */
2349 u8 is_atomic:1;
2350
2351 /* Number of gro_receive callbacks this packet already went through */
2352 u8 recursion_counter:4;
2353
2354 /* GRO is done by frag_list pointer chaining. */
2355 u8 is_flist:1;
2356
2357 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2358 __wsum csum;
2359
2360 /* used in skb_gro_receive() slow path */
2361 struct sk_buff *last;
2362};
2363
2364#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2365
2366#define GRO_RECURSION_LIMIT 15
2367static inline int gro_recursion_inc_test(struct sk_buff *skb)
2368{
2369 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2370}
2371
2372typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2373static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2374 struct list_head *head,
2375 struct sk_buff *skb)
2376{
2377 if (unlikely(gro_recursion_inc_test(skb))) {
2378 NAPI_GRO_CB(skb)->flush |= 1;
2379 return NULL;
2380 }
2381
2382 return cb(head, skb);
2383}
2384
2385typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2386 struct sk_buff *);
2387static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2388 struct sock *sk,
2389 struct list_head *head,
2390 struct sk_buff *skb)
2391{
2392 if (unlikely(gro_recursion_inc_test(skb))) {
2393 NAPI_GRO_CB(skb)->flush |= 1;
2394 return NULL;
2395 }
2396
2397 return cb(sk, head, skb);
2398}
2399
2400struct packet_type {
2401 __be16 type; /* This is really htons(ether_type). */
2402 bool ignore_outgoing;
2403 struct net_device *dev; /* NULL is wildcarded here */
2404 int (*func) (struct sk_buff *,
2405 struct net_device *,
2406 struct packet_type *,
2407 struct net_device *);
2408 void (*list_func) (struct list_head *,
2409 struct packet_type *,
2410 struct net_device *);
2411 bool (*id_match)(struct packet_type *ptype,
2412 struct sock *sk);
2413 void *af_packet_priv;
2414 struct list_head list;
2415};
2416
2417struct offload_callbacks {
2418 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2419 netdev_features_t features);
2420 struct sk_buff *(*gro_receive)(struct list_head *head,
2421 struct sk_buff *skb);
2422 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2423};
2424
2425struct packet_offload {
2426 __be16 type; /* This is really htons(ether_type). */
2427 u16 priority;
2428 struct offload_callbacks callbacks;
2429 struct list_head list;
2430};
2431
2432/* often modified stats are per-CPU, other are shared (netdev->stats) */
2433struct pcpu_sw_netstats {
2434 u64 rx_packets;
2435 u64 rx_bytes;
2436 u64 tx_packets;
2437 u64 tx_bytes;
2438 struct u64_stats_sync syncp;
2439} __aligned(4 * sizeof(u64));
2440
2441struct pcpu_lstats {
2442 u64_stats_t packets;
2443 u64_stats_t bytes;
2444 struct u64_stats_sync syncp;
2445} __aligned(2 * sizeof(u64));
2446
2447void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2448
2449static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2450{
2451 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2452
2453 u64_stats_update_begin(&lstats->syncp);
2454 u64_stats_add(&lstats->bytes, len);
2455 u64_stats_inc(&lstats->packets);
2456 u64_stats_update_end(&lstats->syncp);
2457}
2458
2459#define __netdev_alloc_pcpu_stats(type, gfp) \
2460({ \
2461 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2462 if (pcpu_stats) { \
2463 int __cpu; \
2464 for_each_possible_cpu(__cpu) { \
2465 typeof(type) *stat; \
2466 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2467 u64_stats_init(&stat->syncp); \
2468 } \
2469 } \
2470 pcpu_stats; \
2471})
2472
2473#define netdev_alloc_pcpu_stats(type) \
2474 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2475
2476enum netdev_lag_tx_type {
2477 NETDEV_LAG_TX_TYPE_UNKNOWN,
2478 NETDEV_LAG_TX_TYPE_RANDOM,
2479 NETDEV_LAG_TX_TYPE_BROADCAST,
2480 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2481 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2482 NETDEV_LAG_TX_TYPE_HASH,
2483};
2484
2485enum netdev_lag_hash {
2486 NETDEV_LAG_HASH_NONE,
2487 NETDEV_LAG_HASH_L2,
2488 NETDEV_LAG_HASH_L34,
2489 NETDEV_LAG_HASH_L23,
2490 NETDEV_LAG_HASH_E23,
2491 NETDEV_LAG_HASH_E34,
2492 NETDEV_LAG_HASH_UNKNOWN,
2493};
2494
2495struct netdev_lag_upper_info {
2496 enum netdev_lag_tx_type tx_type;
2497 enum netdev_lag_hash hash_type;
2498};
2499
2500struct netdev_lag_lower_state_info {
2501 u8 link_up : 1,
2502 tx_enabled : 1;
2503};
2504
2505#include <linux/notifier.h>
2506
2507/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2508 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2509 * adding new types.
2510 */
2511enum netdev_cmd {
2512 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2513 NETDEV_DOWN,
2514 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2515 detected a hardware crash and restarted
2516 - we can use this eg to kick tcp sessions
2517 once done */
2518 NETDEV_CHANGE, /* Notify device state change */
2519 NETDEV_REGISTER,
2520 NETDEV_UNREGISTER,
2521 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2522 NETDEV_CHANGEADDR, /* notify after the address change */
2523 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2524 NETDEV_GOING_DOWN,
2525 NETDEV_CHANGENAME,
2526 NETDEV_FEAT_CHANGE,
2527 NETDEV_BONDING_FAILOVER,
2528 NETDEV_PRE_UP,
2529 NETDEV_PRE_TYPE_CHANGE,
2530 NETDEV_POST_TYPE_CHANGE,
2531 NETDEV_POST_INIT,
2532 NETDEV_RELEASE,
2533 NETDEV_NOTIFY_PEERS,
2534 NETDEV_JOIN,
2535 NETDEV_CHANGEUPPER,
2536 NETDEV_RESEND_IGMP,
2537 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2538 NETDEV_CHANGEINFODATA,
2539 NETDEV_BONDING_INFO,
2540 NETDEV_PRECHANGEUPPER,
2541 NETDEV_CHANGELOWERSTATE,
2542 NETDEV_UDP_TUNNEL_PUSH_INFO,
2543 NETDEV_UDP_TUNNEL_DROP_INFO,
2544 NETDEV_CHANGE_TX_QUEUE_LEN,
2545 NETDEV_CVLAN_FILTER_PUSH_INFO,
2546 NETDEV_CVLAN_FILTER_DROP_INFO,
2547 NETDEV_SVLAN_FILTER_PUSH_INFO,
2548 NETDEV_SVLAN_FILTER_DROP_INFO,
2549};
2550const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2551
2552int register_netdevice_notifier(struct notifier_block *nb);
2553int unregister_netdevice_notifier(struct notifier_block *nb);
2554int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2555int unregister_netdevice_notifier_net(struct net *net,
2556 struct notifier_block *nb);
2557int register_netdevice_notifier_dev_net(struct net_device *dev,
2558 struct notifier_block *nb,
2559 struct netdev_net_notifier *nn);
2560int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2561 struct notifier_block *nb,
2562 struct netdev_net_notifier *nn);
2563
2564struct netdev_notifier_info {
2565 struct net_device *dev;
2566 struct netlink_ext_ack *extack;
2567};
2568
2569struct netdev_notifier_info_ext {
2570 struct netdev_notifier_info info; /* must be first */
2571 union {
2572 u32 mtu;
2573 } ext;
2574};
2575
2576struct netdev_notifier_change_info {
2577 struct netdev_notifier_info info; /* must be first */
2578 unsigned int flags_changed;
2579};
2580
2581struct netdev_notifier_changeupper_info {
2582 struct netdev_notifier_info info; /* must be first */
2583 struct net_device *upper_dev; /* new upper dev */
2584 bool master; /* is upper dev master */
2585 bool linking; /* is the notification for link or unlink */
2586 void *upper_info; /* upper dev info */
2587};
2588
2589struct netdev_notifier_changelowerstate_info {
2590 struct netdev_notifier_info info; /* must be first */
2591 void *lower_state_info; /* is lower dev state */
2592};
2593
2594struct netdev_notifier_pre_changeaddr_info {
2595 struct netdev_notifier_info info; /* must be first */
2596 const unsigned char *dev_addr;
2597};
2598
2599static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2600 struct net_device *dev)
2601{
2602 info->dev = dev;
2603 info->extack = NULL;
2604}
2605
2606static inline struct net_device *
2607netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2608{
2609 return info->dev;
2610}
2611
2612static inline struct netlink_ext_ack *
2613netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2614{
2615 return info->extack;
2616}
2617
2618int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2619
2620
2621extern rwlock_t dev_base_lock; /* Device list lock */
2622
2623#define for_each_netdev(net, d) \
2624 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2625#define for_each_netdev_reverse(net, d) \
2626 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2627#define for_each_netdev_rcu(net, d) \
2628 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2629#define for_each_netdev_safe(net, d, n) \
2630 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2631#define for_each_netdev_continue(net, d) \
2632 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2633#define for_each_netdev_continue_reverse(net, d) \
2634 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2635 dev_list)
2636#define for_each_netdev_continue_rcu(net, d) \
2637 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2638#define for_each_netdev_in_bond_rcu(bond, slave) \
2639 for_each_netdev_rcu(&init_net, slave) \
2640 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2641#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2642
2643static inline struct net_device *next_net_device(struct net_device *dev)
2644{
2645 struct list_head *lh;
2646 struct net *net;
2647
2648 net = dev_net(dev);
2649 lh = dev->dev_list.next;
2650 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2651}
2652
2653static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2654{
2655 struct list_head *lh;
2656 struct net *net;
2657
2658 net = dev_net(dev);
2659 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2660 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2661}
2662
2663static inline struct net_device *first_net_device(struct net *net)
2664{
2665 return list_empty(&net->dev_base_head) ? NULL :
2666 net_device_entry(net->dev_base_head.next);
2667}
2668
2669static inline struct net_device *first_net_device_rcu(struct net *net)
2670{
2671 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2672
2673 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2674}
2675
2676int netdev_boot_setup_check(struct net_device *dev);
2677unsigned long netdev_boot_base(const char *prefix, int unit);
2678struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2679 const char *hwaddr);
2680struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2681struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2682void dev_add_pack(struct packet_type *pt);
2683void dev_remove_pack(struct packet_type *pt);
2684void __dev_remove_pack(struct packet_type *pt);
2685void dev_add_offload(struct packet_offload *po);
2686void dev_remove_offload(struct packet_offload *po);
2687
2688int dev_get_iflink(const struct net_device *dev);
2689int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2690struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2691 unsigned short mask);
2692struct net_device *dev_get_by_name(struct net *net, const char *name);
2693struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2694struct net_device *__dev_get_by_name(struct net *net, const char *name);
2695int dev_alloc_name(struct net_device *dev, const char *name);
2696int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2697void dev_close(struct net_device *dev);
2698void dev_close_many(struct list_head *head, bool unlink);
2699void dev_disable_lro(struct net_device *dev);
2700int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2701u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2702 struct net_device *sb_dev);
2703u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2704 struct net_device *sb_dev);
2705int dev_queue_xmit(struct sk_buff *skb);
2706int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2707int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2708int register_netdevice(struct net_device *dev);
2709void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2710void unregister_netdevice_many(struct list_head *head);
2711static inline void unregister_netdevice(struct net_device *dev)
2712{
2713 unregister_netdevice_queue(dev, NULL);
2714}
2715
2716int netdev_refcnt_read(const struct net_device *dev);
2717void free_netdev(struct net_device *dev);
2718void netdev_freemem(struct net_device *dev);
2719void synchronize_net(void);
2720int init_dummy_netdev(struct net_device *dev);
2721
2722struct net_device *dev_get_by_index(struct net *net, int ifindex);
2723struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2724struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2725struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2726int netdev_get_name(struct net *net, char *name, int ifindex);
2727int dev_restart(struct net_device *dev);
2728int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2729int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2730
2731static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2732{
2733 return NAPI_GRO_CB(skb)->data_offset;
2734}
2735
2736static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2737{
2738 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2739}
2740
2741static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2742{
2743 NAPI_GRO_CB(skb)->data_offset += len;
2744}
2745
2746static inline void *skb_gro_header_fast(struct sk_buff *skb,
2747 unsigned int offset)
2748{
2749 return NAPI_GRO_CB(skb)->frag0 + offset;
2750}
2751
2752static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2753{
2754 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2755}
2756
2757static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2758{
2759 NAPI_GRO_CB(skb)->frag0 = NULL;
2760 NAPI_GRO_CB(skb)->frag0_len = 0;
2761}
2762
2763static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2764 unsigned int offset)
2765{
2766 if (!pskb_may_pull(skb, hlen))
2767 return NULL;
2768
2769 skb_gro_frag0_invalidate(skb);
2770 return skb->data + offset;
2771}
2772
2773static inline void *skb_gro_network_header(struct sk_buff *skb)
2774{
2775 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2776 skb_network_offset(skb);
2777}
2778
2779static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2780 const void *start, unsigned int len)
2781{
2782 if (NAPI_GRO_CB(skb)->csum_valid)
2783 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2784 csum_partial(start, len, 0));
2785}
2786
2787/* GRO checksum functions. These are logical equivalents of the normal
2788 * checksum functions (in skbuff.h) except that they operate on the GRO
2789 * offsets and fields in sk_buff.
2790 */
2791
2792__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2793
2794static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2795{
2796 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2797}
2798
2799static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2800 bool zero_okay,
2801 __sum16 check)
2802{
2803 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2804 skb_checksum_start_offset(skb) <
2805 skb_gro_offset(skb)) &&
2806 !skb_at_gro_remcsum_start(skb) &&
2807 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2808 (!zero_okay || check));
2809}
2810
2811static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2812 __wsum psum)
2813{
2814 if (NAPI_GRO_CB(skb)->csum_valid &&
2815 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2816 return 0;
2817
2818 NAPI_GRO_CB(skb)->csum = psum;
2819
2820 return __skb_gro_checksum_complete(skb);
2821}
2822
2823static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2824{
2825 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2826 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2827 NAPI_GRO_CB(skb)->csum_cnt--;
2828 } else {
2829 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2830 * verified a new top level checksum or an encapsulated one
2831 * during GRO. This saves work if we fallback to normal path.
2832 */
2833 __skb_incr_checksum_unnecessary(skb);
2834 }
2835}
2836
2837#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2838 compute_pseudo) \
2839({ \
2840 __sum16 __ret = 0; \
2841 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2842 __ret = __skb_gro_checksum_validate_complete(skb, \
2843 compute_pseudo(skb, proto)); \
2844 if (!__ret) \
2845 skb_gro_incr_csum_unnecessary(skb); \
2846 __ret; \
2847})
2848
2849#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2850 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2851
2852#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2853 compute_pseudo) \
2854 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2855
2856#define skb_gro_checksum_simple_validate(skb) \
2857 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2858
2859static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2860{
2861 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2862 !NAPI_GRO_CB(skb)->csum_valid);
2863}
2864
2865static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2866 __wsum pseudo)
2867{
2868 NAPI_GRO_CB(skb)->csum = ~pseudo;
2869 NAPI_GRO_CB(skb)->csum_valid = 1;
2870}
2871
2872#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2873do { \
2874 if (__skb_gro_checksum_convert_check(skb)) \
2875 __skb_gro_checksum_convert(skb, \
2876 compute_pseudo(skb, proto)); \
2877} while (0)
2878
2879struct gro_remcsum {
2880 int offset;
2881 __wsum delta;
2882};
2883
2884static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2885{
2886 grc->offset = 0;
2887 grc->delta = 0;
2888}
2889
2890static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2891 unsigned int off, size_t hdrlen,
2892 int start, int offset,
2893 struct gro_remcsum *grc,
2894 bool nopartial)
2895{
2896 __wsum delta;
2897 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2898
2899 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2900
2901 if (!nopartial) {
2902 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2903 return ptr;
2904 }
2905
2906 ptr = skb_gro_header_fast(skb, off);
2907 if (skb_gro_header_hard(skb, off + plen)) {
2908 ptr = skb_gro_header_slow(skb, off + plen, off);
2909 if (!ptr)
2910 return NULL;
2911 }
2912
2913 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2914 start, offset);
2915
2916 /* Adjust skb->csum since we changed the packet */
2917 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2918
2919 grc->offset = off + hdrlen + offset;
2920 grc->delta = delta;
2921
2922 return ptr;
2923}
2924
2925static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2926 struct gro_remcsum *grc)
2927{
2928 void *ptr;
2929 size_t plen = grc->offset + sizeof(u16);
2930
2931 if (!grc->delta)
2932 return;
2933
2934 ptr = skb_gro_header_fast(skb, grc->offset);
2935 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2936 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2937 if (!ptr)
2938 return;
2939 }
2940
2941 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2942}
2943
2944#ifdef CONFIG_XFRM_OFFLOAD
2945static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2946{
2947 if (PTR_ERR(pp) != -EINPROGRESS)
2948 NAPI_GRO_CB(skb)->flush |= flush;
2949}
2950static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2951 struct sk_buff *pp,
2952 int flush,
2953 struct gro_remcsum *grc)
2954{
2955 if (PTR_ERR(pp) != -EINPROGRESS) {
2956 NAPI_GRO_CB(skb)->flush |= flush;
2957 skb_gro_remcsum_cleanup(skb, grc);
2958 skb->remcsum_offload = 0;
2959 }
2960}
2961#else
2962static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2963{
2964 NAPI_GRO_CB(skb)->flush |= flush;
2965}
2966static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2967 struct sk_buff *pp,
2968 int flush,
2969 struct gro_remcsum *grc)
2970{
2971 NAPI_GRO_CB(skb)->flush |= flush;
2972 skb_gro_remcsum_cleanup(skb, grc);
2973 skb->remcsum_offload = 0;
2974}
2975#endif
2976
2977static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2978 unsigned short type,
2979 const void *daddr, const void *saddr,
2980 unsigned int len)
2981{
2982 if (!dev->header_ops || !dev->header_ops->create)
2983 return 0;
2984
2985 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2986}
2987
2988static inline int dev_parse_header(const struct sk_buff *skb,
2989 unsigned char *haddr)
2990{
2991 const struct net_device *dev = skb->dev;
2992
2993 if (!dev->header_ops || !dev->header_ops->parse)
2994 return 0;
2995 return dev->header_ops->parse(skb, haddr);
2996}
2997
2998static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2999{
3000 const struct net_device *dev = skb->dev;
3001
3002 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3003 return 0;
3004 return dev->header_ops->parse_protocol(skb);
3005}
3006
3007/* ll_header must have at least hard_header_len allocated */
3008static inline bool dev_validate_header(const struct net_device *dev,
3009 char *ll_header, int len)
3010{
3011 if (likely(len >= dev->hard_header_len))
3012 return true;
3013 if (len < dev->min_header_len)
3014 return false;
3015
3016 if (capable(CAP_SYS_RAWIO)) {
3017 memset(ll_header + len, 0, dev->hard_header_len - len);
3018 return true;
3019 }
3020
3021 if (dev->header_ops && dev->header_ops->validate)
3022 return dev->header_ops->validate(ll_header, len);
3023
3024 return false;
3025}
3026
3027typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3028 int len, int size);
3029int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3030static inline int unregister_gifconf(unsigned int family)
3031{
3032 return register_gifconf(family, NULL);
3033}
3034
3035#ifdef CONFIG_NET_FLOW_LIMIT
3036#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3037struct sd_flow_limit {
3038 u64 count;
3039 unsigned int num_buckets;
3040 unsigned int history_head;
3041 u16 history[FLOW_LIMIT_HISTORY];
3042 u8 buckets[];
3043};
3044
3045extern int netdev_flow_limit_table_len;
3046#endif /* CONFIG_NET_FLOW_LIMIT */
3047
3048/*
3049 * Incoming packets are placed on per-CPU queues
3050 */
3051struct softnet_data {
3052 struct list_head poll_list;
3053 struct sk_buff_head process_queue;
3054
3055 /* stats */
3056 unsigned int processed;
3057 unsigned int time_squeeze;
3058 unsigned int received_rps;
3059#ifdef CONFIG_RPS
3060 struct softnet_data *rps_ipi_list;
3061#endif
3062#ifdef CONFIG_NET_FLOW_LIMIT
3063 struct sd_flow_limit __rcu *flow_limit;
3064#endif
3065 struct Qdisc *output_queue;
3066 struct Qdisc **output_queue_tailp;
3067 struct sk_buff *completion_queue;
3068#ifdef CONFIG_XFRM_OFFLOAD
3069 struct sk_buff_head xfrm_backlog;
3070#endif
3071 /* written and read only by owning cpu: */
3072 struct {
3073 u16 recursion;
3074 u8 more;
3075 } xmit;
3076#ifdef CONFIG_RPS
3077 /* input_queue_head should be written by cpu owning this struct,
3078 * and only read by other cpus. Worth using a cache line.
3079 */
3080 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3081
3082 /* Elements below can be accessed between CPUs for RPS/RFS */
3083 call_single_data_t csd ____cacheline_aligned_in_smp;
3084 struct softnet_data *rps_ipi_next;
3085 unsigned int cpu;
3086 unsigned int input_queue_tail;
3087#endif
3088 unsigned int dropped;
3089 struct sk_buff_head input_pkt_queue;
3090 struct napi_struct backlog;
3091
3092};
3093
3094static inline void input_queue_head_incr(struct softnet_data *sd)
3095{
3096#ifdef CONFIG_RPS
3097 sd->input_queue_head++;
3098#endif
3099}
3100
3101static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3102 unsigned int *qtail)
3103{
3104#ifdef CONFIG_RPS
3105 *qtail = ++sd->input_queue_tail;
3106#endif
3107}
3108
3109DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3110
3111static inline int dev_recursion_level(void)
3112{
3113 return this_cpu_read(softnet_data.xmit.recursion);
3114}
3115
3116#define XMIT_RECURSION_LIMIT 10
3117static inline bool dev_xmit_recursion(void)
3118{
3119 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3120 XMIT_RECURSION_LIMIT);
3121}
3122
3123static inline void dev_xmit_recursion_inc(void)
3124{
3125 __this_cpu_inc(softnet_data.xmit.recursion);
3126}
3127
3128static inline void dev_xmit_recursion_dec(void)
3129{
3130 __this_cpu_dec(softnet_data.xmit.recursion);
3131}
3132
3133void __netif_schedule(struct Qdisc *q);
3134void netif_schedule_queue(struct netdev_queue *txq);
3135
3136static inline void netif_tx_schedule_all(struct net_device *dev)
3137{
3138 unsigned int i;
3139
3140 for (i = 0; i < dev->num_tx_queues; i++)
3141 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3142}
3143
3144static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3145{
3146 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3147}
3148
3149/**
3150 * netif_start_queue - allow transmit
3151 * @dev: network device
3152 *
3153 * Allow upper layers to call the device hard_start_xmit routine.
3154 */
3155static inline void netif_start_queue(struct net_device *dev)
3156{
3157 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3158}
3159
3160static inline void netif_tx_start_all_queues(struct net_device *dev)
3161{
3162 unsigned int i;
3163
3164 for (i = 0; i < dev->num_tx_queues; i++) {
3165 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3166 netif_tx_start_queue(txq);
3167 }
3168}
3169
3170void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3171
3172/**
3173 * netif_wake_queue - restart transmit
3174 * @dev: network device
3175 *
3176 * Allow upper layers to call the device hard_start_xmit routine.
3177 * Used for flow control when transmit resources are available.
3178 */
3179static inline void netif_wake_queue(struct net_device *dev)
3180{
3181 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3182}
3183
3184static inline void netif_tx_wake_all_queues(struct net_device *dev)
3185{
3186 unsigned int i;
3187
3188 for (i = 0; i < dev->num_tx_queues; i++) {
3189 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3190 netif_tx_wake_queue(txq);
3191 }
3192}
3193
3194static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3195{
3196 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3197}
3198
3199/**
3200 * netif_stop_queue - stop transmitted packets
3201 * @dev: network device
3202 *
3203 * Stop upper layers calling the device hard_start_xmit routine.
3204 * Used for flow control when transmit resources are unavailable.
3205 */
3206static inline void netif_stop_queue(struct net_device *dev)
3207{
3208 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3209}
3210
3211void netif_tx_stop_all_queues(struct net_device *dev);
3212void netdev_update_lockdep_key(struct net_device *dev);
3213
3214static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3215{
3216 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3217}
3218
3219/**
3220 * netif_queue_stopped - test if transmit queue is flowblocked
3221 * @dev: network device
3222 *
3223 * Test if transmit queue on device is currently unable to send.
3224 */
3225static inline bool netif_queue_stopped(const struct net_device *dev)
3226{
3227 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3228}
3229
3230static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3231{
3232 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3233}
3234
3235static inline bool
3236netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3237{
3238 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3239}
3240
3241static inline bool
3242netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3243{
3244 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3245}
3246
3247/**
3248 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3249 * @dev_queue: pointer to transmit queue
3250 *
3251 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3252 * to give appropriate hint to the CPU.
3253 */
3254static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3255{
3256#ifdef CONFIG_BQL
3257 prefetchw(&dev_queue->dql.num_queued);
3258#endif
3259}
3260
3261/**
3262 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3263 * @dev_queue: pointer to transmit queue
3264 *
3265 * BQL enabled drivers might use this helper in their TX completion path,
3266 * to give appropriate hint to the CPU.
3267 */
3268static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3269{
3270#ifdef CONFIG_BQL
3271 prefetchw(&dev_queue->dql.limit);
3272#endif
3273}
3274
3275static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3276 unsigned int bytes)
3277{
3278#ifdef CONFIG_BQL
3279 dql_queued(&dev_queue->dql, bytes);
3280
3281 if (likely(dql_avail(&dev_queue->dql) >= 0))
3282 return;
3283
3284 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3285
3286 /*
3287 * The XOFF flag must be set before checking the dql_avail below,
3288 * because in netdev_tx_completed_queue we update the dql_completed
3289 * before checking the XOFF flag.
3290 */
3291 smp_mb();
3292
3293 /* check again in case another CPU has just made room avail */
3294 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3295 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3296#endif
3297}
3298
3299/* Variant of netdev_tx_sent_queue() for drivers that are aware
3300 * that they should not test BQL status themselves.
3301 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3302 * skb of a batch.
3303 * Returns true if the doorbell must be used to kick the NIC.
3304 */
3305static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3306 unsigned int bytes,
3307 bool xmit_more)
3308{
3309 if (xmit_more) {
3310#ifdef CONFIG_BQL
3311 dql_queued(&dev_queue->dql, bytes);
3312#endif
3313 return netif_tx_queue_stopped(dev_queue);
3314 }
3315 netdev_tx_sent_queue(dev_queue, bytes);
3316 return true;
3317}
3318
3319/**
3320 * netdev_sent_queue - report the number of bytes queued to hardware
3321 * @dev: network device
3322 * @bytes: number of bytes queued to the hardware device queue
3323 *
3324 * Report the number of bytes queued for sending/completion to the network
3325 * device hardware queue. @bytes should be a good approximation and should
3326 * exactly match netdev_completed_queue() @bytes
3327 */
3328static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3329{
3330 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3331}
3332
3333static inline bool __netdev_sent_queue(struct net_device *dev,
3334 unsigned int bytes,
3335 bool xmit_more)
3336{
3337 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3338 xmit_more);
3339}
3340
3341static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3342 unsigned int pkts, unsigned int bytes)
3343{
3344#ifdef CONFIG_BQL
3345 if (unlikely(!bytes))
3346 return;
3347
3348 dql_completed(&dev_queue->dql, bytes);
3349
3350 /*
3351 * Without the memory barrier there is a small possiblity that
3352 * netdev_tx_sent_queue will miss the update and cause the queue to
3353 * be stopped forever
3354 */
3355 smp_mb();
3356
3357 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3358 return;
3359
3360 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3361 netif_schedule_queue(dev_queue);
3362#endif
3363}
3364
3365/**
3366 * netdev_completed_queue - report bytes and packets completed by device
3367 * @dev: network device
3368 * @pkts: actual number of packets sent over the medium
3369 * @bytes: actual number of bytes sent over the medium
3370 *
3371 * Report the number of bytes and packets transmitted by the network device
3372 * hardware queue over the physical medium, @bytes must exactly match the
3373 * @bytes amount passed to netdev_sent_queue()
3374 */
3375static inline void netdev_completed_queue(struct net_device *dev,
3376 unsigned int pkts, unsigned int bytes)
3377{
3378 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3379}
3380
3381static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3382{
3383#ifdef CONFIG_BQL
3384 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3385 dql_reset(&q->dql);
3386#endif
3387}
3388
3389/**
3390 * netdev_reset_queue - reset the packets and bytes count of a network device
3391 * @dev_queue: network device
3392 *
3393 * Reset the bytes and packet count of a network device and clear the
3394 * software flow control OFF bit for this network device
3395 */
3396static inline void netdev_reset_queue(struct net_device *dev_queue)
3397{
3398 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3399}
3400
3401/**
3402 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3403 * @dev: network device
3404 * @queue_index: given tx queue index
3405 *
3406 * Returns 0 if given tx queue index >= number of device tx queues,
3407 * otherwise returns the originally passed tx queue index.
3408 */
3409static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3410{
3411 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3412 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3413 dev->name, queue_index,
3414 dev->real_num_tx_queues);
3415 return 0;
3416 }
3417
3418 return queue_index;
3419}
3420
3421/**
3422 * netif_running - test if up
3423 * @dev: network device
3424 *
3425 * Test if the device has been brought up.
3426 */
3427static inline bool netif_running(const struct net_device *dev)
3428{
3429 return test_bit(__LINK_STATE_START, &dev->state);
3430}
3431
3432/*
3433 * Routines to manage the subqueues on a device. We only need start,
3434 * stop, and a check if it's stopped. All other device management is
3435 * done at the overall netdevice level.
3436 * Also test the device if we're multiqueue.
3437 */
3438
3439/**
3440 * netif_start_subqueue - allow sending packets on subqueue
3441 * @dev: network device
3442 * @queue_index: sub queue index
3443 *
3444 * Start individual transmit queue of a device with multiple transmit queues.
3445 */
3446static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3447{
3448 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3449
3450 netif_tx_start_queue(txq);
3451}
3452
3453/**
3454 * netif_stop_subqueue - stop sending packets on subqueue
3455 * @dev: network device
3456 * @queue_index: sub queue index
3457 *
3458 * Stop individual transmit queue of a device with multiple transmit queues.
3459 */
3460static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3461{
3462 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3463 netif_tx_stop_queue(txq);
3464}
3465
3466/**
3467 * netif_subqueue_stopped - test status of subqueue
3468 * @dev: network device
3469 * @queue_index: sub queue index
3470 *
3471 * Check individual transmit queue of a device with multiple transmit queues.
3472 */
3473static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3474 u16 queue_index)
3475{
3476 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3477
3478 return netif_tx_queue_stopped(txq);
3479}
3480
3481static inline bool netif_subqueue_stopped(const struct net_device *dev,
3482 struct sk_buff *skb)
3483{
3484 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3485}
3486
3487/**
3488 * netif_wake_subqueue - allow sending packets on subqueue
3489 * @dev: network device
3490 * @queue_index: sub queue index
3491 *
3492 * Resume individual transmit queue of a device with multiple transmit queues.
3493 */
3494static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3495{
3496 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3497
3498 netif_tx_wake_queue(txq);
3499}
3500
3501#ifdef CONFIG_XPS
3502int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3503 u16 index);
3504int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3505 u16 index, bool is_rxqs_map);
3506
3507/**
3508 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3509 * @j: CPU/Rx queue index
3510 * @mask: bitmask of all cpus/rx queues
3511 * @nr_bits: number of bits in the bitmask
3512 *
3513 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3514 */
3515static inline bool netif_attr_test_mask(unsigned long j,
3516 const unsigned long *mask,
3517 unsigned int nr_bits)
3518{
3519 cpu_max_bits_warn(j, nr_bits);
3520 return test_bit(j, mask);
3521}
3522
3523/**
3524 * netif_attr_test_online - Test for online CPU/Rx queue
3525 * @j: CPU/Rx queue index
3526 * @online_mask: bitmask for CPUs/Rx queues that are online
3527 * @nr_bits: number of bits in the bitmask
3528 *
3529 * Returns true if a CPU/Rx queue is online.
3530 */
3531static inline bool netif_attr_test_online(unsigned long j,
3532 const unsigned long *online_mask,
3533 unsigned int nr_bits)
3534{
3535 cpu_max_bits_warn(j, nr_bits);
3536
3537 if (online_mask)
3538 return test_bit(j, online_mask);
3539
3540 return (j < nr_bits);
3541}
3542
3543/**
3544 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3545 * @n: CPU/Rx queue index
3546 * @srcp: the cpumask/Rx queue mask pointer
3547 * @nr_bits: number of bits in the bitmask
3548 *
3549 * Returns >= nr_bits if no further CPUs/Rx queues set.
3550 */
3551static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3552 unsigned int nr_bits)
3553{
3554 /* -1 is a legal arg here. */
3555 if (n != -1)
3556 cpu_max_bits_warn(n, nr_bits);
3557
3558 if (srcp)
3559 return find_next_bit(srcp, nr_bits, n + 1);
3560
3561 return n + 1;
3562}
3563
3564/**
3565 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3566 * @n: CPU/Rx queue index
3567 * @src1p: the first CPUs/Rx queues mask pointer
3568 * @src2p: the second CPUs/Rx queues mask pointer
3569 * @nr_bits: number of bits in the bitmask
3570 *
3571 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3572 */
3573static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3574 const unsigned long *src2p,
3575 unsigned int nr_bits)
3576{
3577 /* -1 is a legal arg here. */
3578 if (n != -1)
3579 cpu_max_bits_warn(n, nr_bits);
3580
3581 if (src1p && src2p)
3582 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3583 else if (src1p)
3584 return find_next_bit(src1p, nr_bits, n + 1);
3585 else if (src2p)
3586 return find_next_bit(src2p, nr_bits, n + 1);
3587
3588 return n + 1;
3589}
3590#else
3591static inline int netif_set_xps_queue(struct net_device *dev,
3592 const struct cpumask *mask,
3593 u16 index)
3594{
3595 return 0;
3596}
3597
3598static inline int __netif_set_xps_queue(struct net_device *dev,
3599 const unsigned long *mask,
3600 u16 index, bool is_rxqs_map)
3601{
3602 return 0;
3603}
3604#endif
3605
3606/**
3607 * netif_is_multiqueue - test if device has multiple transmit queues
3608 * @dev: network device
3609 *
3610 * Check if device has multiple transmit queues
3611 */
3612static inline bool netif_is_multiqueue(const struct net_device *dev)
3613{
3614 return dev->num_tx_queues > 1;
3615}
3616
3617int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3618
3619#ifdef CONFIG_SYSFS
3620int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3621#else
3622static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3623 unsigned int rxqs)
3624{
3625 dev->real_num_rx_queues = rxqs;
3626 return 0;
3627}
3628#endif
3629
3630static inline struct netdev_rx_queue *
3631__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3632{
3633 return dev->_rx + rxq;
3634}
3635
3636#ifdef CONFIG_SYSFS
3637static inline unsigned int get_netdev_rx_queue_index(
3638 struct netdev_rx_queue *queue)
3639{
3640 struct net_device *dev = queue->dev;
3641 int index = queue - dev->_rx;
3642
3643 BUG_ON(index >= dev->num_rx_queues);
3644 return index;
3645}
3646#endif
3647
3648#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3649int netif_get_num_default_rss_queues(void);
3650
3651enum skb_free_reason {
3652 SKB_REASON_CONSUMED,
3653 SKB_REASON_DROPPED,
3654};
3655
3656void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3657void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3658
3659/*
3660 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3661 * interrupt context or with hardware interrupts being disabled.
3662 * (in_irq() || irqs_disabled())
3663 *
3664 * We provide four helpers that can be used in following contexts :
3665 *
3666 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3667 * replacing kfree_skb(skb)
3668 *
3669 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3670 * Typically used in place of consume_skb(skb) in TX completion path
3671 *
3672 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3673 * replacing kfree_skb(skb)
3674 *
3675 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3676 * and consumed a packet. Used in place of consume_skb(skb)
3677 */
3678static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3679{
3680 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3681}
3682
3683static inline void dev_consume_skb_irq(struct sk_buff *skb)
3684{
3685 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3686}
3687
3688static inline void dev_kfree_skb_any(struct sk_buff *skb)
3689{
3690 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3691}
3692
3693static inline void dev_consume_skb_any(struct sk_buff *skb)
3694{
3695 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3696}
3697
3698void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3699int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3700int netif_rx(struct sk_buff *skb);
3701int netif_rx_ni(struct sk_buff *skb);
3702int netif_receive_skb(struct sk_buff *skb);
3703int netif_receive_skb_core(struct sk_buff *skb);
3704void netif_receive_skb_list(struct list_head *head);
3705gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3706void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3707struct sk_buff *napi_get_frags(struct napi_struct *napi);
3708gro_result_t napi_gro_frags(struct napi_struct *napi);
3709struct packet_offload *gro_find_receive_by_type(__be16 type);
3710struct packet_offload *gro_find_complete_by_type(__be16 type);
3711
3712static inline void napi_free_frags(struct napi_struct *napi)
3713{
3714 kfree_skb(napi->skb);
3715 napi->skb = NULL;
3716}
3717
3718bool netdev_is_rx_handler_busy(struct net_device *dev);
3719int netdev_rx_handler_register(struct net_device *dev,
3720 rx_handler_func_t *rx_handler,
3721 void *rx_handler_data);
3722void netdev_rx_handler_unregister(struct net_device *dev);
3723
3724bool dev_valid_name(const char *name);
3725int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3726 bool *need_copyout);
3727int dev_ifconf(struct net *net, struct ifconf *, int);
3728int dev_ethtool(struct net *net, struct ifreq *);
3729unsigned int dev_get_flags(const struct net_device *);
3730int __dev_change_flags(struct net_device *dev, unsigned int flags,
3731 struct netlink_ext_ack *extack);
3732int dev_change_flags(struct net_device *dev, unsigned int flags,
3733 struct netlink_ext_ack *extack);
3734void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3735 unsigned int gchanges);
3736int dev_change_name(struct net_device *, const char *);
3737int dev_set_alias(struct net_device *, const char *, size_t);
3738int dev_get_alias(const struct net_device *, char *, size_t);
3739int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3740int __dev_set_mtu(struct net_device *, int);
3741int dev_validate_mtu(struct net_device *dev, int mtu,
3742 struct netlink_ext_ack *extack);
3743int dev_set_mtu_ext(struct net_device *dev, int mtu,
3744 struct netlink_ext_ack *extack);
3745int dev_set_mtu(struct net_device *, int);
3746int dev_change_tx_queue_len(struct net_device *, unsigned long);
3747void dev_set_group(struct net_device *, int);
3748int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3749 struct netlink_ext_ack *extack);
3750int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3751 struct netlink_ext_ack *extack);
3752int dev_change_carrier(struct net_device *, bool new_carrier);
3753int dev_get_phys_port_id(struct net_device *dev,
3754 struct netdev_phys_item_id *ppid);
3755int dev_get_phys_port_name(struct net_device *dev,
3756 char *name, size_t len);
3757int dev_get_port_parent_id(struct net_device *dev,
3758 struct netdev_phys_item_id *ppid, bool recurse);
3759bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3760int dev_change_proto_down(struct net_device *dev, bool proto_down);
3761int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3762struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3763struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3764 struct netdev_queue *txq, int *ret);
3765
3766typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3767int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3768 int fd, u32 flags);
3769u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3770 enum bpf_netdev_command cmd);
3771int xdp_umem_query(struct net_device *dev, u16 queue_id);
3772
3773int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3774int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3775bool is_skb_forwardable(const struct net_device *dev,
3776 const struct sk_buff *skb);
3777
3778static __always_inline int ____dev_forward_skb(struct net_device *dev,
3779 struct sk_buff *skb)
3780{
3781 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3782 unlikely(!is_skb_forwardable(dev, skb))) {
3783 atomic_long_inc(&dev->rx_dropped);
3784 kfree_skb(skb);
3785 return NET_RX_DROP;
3786 }
3787
3788 skb_scrub_packet(skb, true);
3789 skb->priority = 0;
3790 return 0;
3791}
3792
3793bool dev_nit_active(struct net_device *dev);
3794void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3795
3796extern int netdev_budget;
3797extern unsigned int netdev_budget_usecs;
3798
3799/* Called by rtnetlink.c:rtnl_unlock() */
3800void netdev_run_todo(void);
3801
3802/**
3803 * dev_put - release reference to device
3804 * @dev: network device
3805 *
3806 * Release reference to device to allow it to be freed.
3807 */
3808static inline void dev_put(struct net_device *dev)
3809{
3810 this_cpu_dec(*dev->pcpu_refcnt);
3811}
3812
3813/**
3814 * dev_hold - get reference to device
3815 * @dev: network device
3816 *
3817 * Hold reference to device to keep it from being freed.
3818 */
3819static inline void dev_hold(struct net_device *dev)
3820{
3821 this_cpu_inc(*dev->pcpu_refcnt);
3822}
3823
3824/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3825 * and _off may be called from IRQ context, but it is caller
3826 * who is responsible for serialization of these calls.
3827 *
3828 * The name carrier is inappropriate, these functions should really be
3829 * called netif_lowerlayer_*() because they represent the state of any
3830 * kind of lower layer not just hardware media.
3831 */
3832
3833void linkwatch_init_dev(struct net_device *dev);
3834void linkwatch_fire_event(struct net_device *dev);
3835void linkwatch_forget_dev(struct net_device *dev);
3836
3837/**
3838 * netif_carrier_ok - test if carrier present
3839 * @dev: network device
3840 *
3841 * Check if carrier is present on device
3842 */
3843static inline bool netif_carrier_ok(const struct net_device *dev)
3844{
3845 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3846}
3847
3848unsigned long dev_trans_start(struct net_device *dev);
3849
3850void __netdev_watchdog_up(struct net_device *dev);
3851
3852void netif_carrier_on(struct net_device *dev);
3853
3854void netif_carrier_off(struct net_device *dev);
3855
3856/**
3857 * netif_dormant_on - mark device as dormant.
3858 * @dev: network device
3859 *
3860 * Mark device as dormant (as per RFC2863).
3861 *
3862 * The dormant state indicates that the relevant interface is not
3863 * actually in a condition to pass packets (i.e., it is not 'up') but is
3864 * in a "pending" state, waiting for some external event. For "on-
3865 * demand" interfaces, this new state identifies the situation where the
3866 * interface is waiting for events to place it in the up state.
3867 */
3868static inline void netif_dormant_on(struct net_device *dev)
3869{
3870 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3871 linkwatch_fire_event(dev);
3872}
3873
3874/**
3875 * netif_dormant_off - set device as not dormant.
3876 * @dev: network device
3877 *
3878 * Device is not in dormant state.
3879 */
3880static inline void netif_dormant_off(struct net_device *dev)
3881{
3882 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3883 linkwatch_fire_event(dev);
3884}
3885
3886/**
3887 * netif_dormant - test if device is dormant
3888 * @dev: network device
3889 *
3890 * Check if device is dormant.
3891 */
3892static inline bool netif_dormant(const struct net_device *dev)
3893{
3894 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3895}
3896
3897
3898/**
3899 * netif_oper_up - test if device is operational
3900 * @dev: network device
3901 *
3902 * Check if carrier is operational
3903 */
3904static inline bool netif_oper_up(const struct net_device *dev)
3905{
3906 return (dev->operstate == IF_OPER_UP ||
3907 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3908}
3909
3910/**
3911 * netif_device_present - is device available or removed
3912 * @dev: network device
3913 *
3914 * Check if device has not been removed from system.
3915 */
3916static inline bool netif_device_present(struct net_device *dev)
3917{
3918 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3919}
3920
3921void netif_device_detach(struct net_device *dev);
3922
3923void netif_device_attach(struct net_device *dev);
3924
3925/*
3926 * Network interface message level settings
3927 */
3928
3929enum {
3930 NETIF_MSG_DRV_BIT,
3931 NETIF_MSG_PROBE_BIT,
3932 NETIF_MSG_LINK_BIT,
3933 NETIF_MSG_TIMER_BIT,
3934 NETIF_MSG_IFDOWN_BIT,
3935 NETIF_MSG_IFUP_BIT,
3936 NETIF_MSG_RX_ERR_BIT,
3937 NETIF_MSG_TX_ERR_BIT,
3938 NETIF_MSG_TX_QUEUED_BIT,
3939 NETIF_MSG_INTR_BIT,
3940 NETIF_MSG_TX_DONE_BIT,
3941 NETIF_MSG_RX_STATUS_BIT,
3942 NETIF_MSG_PKTDATA_BIT,
3943 NETIF_MSG_HW_BIT,
3944 NETIF_MSG_WOL_BIT,
3945
3946 /* When you add a new bit above, update netif_msg_class_names array
3947 * in net/ethtool/common.c
3948 */
3949 NETIF_MSG_CLASS_COUNT,
3950};
3951/* Both ethtool_ops interface and internal driver implementation use u32 */
3952static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3953
3954#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
3955#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3956
3957#define NETIF_MSG_DRV __NETIF_MSG(DRV)
3958#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
3959#define NETIF_MSG_LINK __NETIF_MSG(LINK)
3960#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
3961#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
3962#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
3963#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
3964#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
3965#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
3966#define NETIF_MSG_INTR __NETIF_MSG(INTR)
3967#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
3968#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
3969#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
3970#define NETIF_MSG_HW __NETIF_MSG(HW)
3971#define NETIF_MSG_WOL __NETIF_MSG(WOL)
3972
3973#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3974#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3975#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3976#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3977#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3978#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3979#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3980#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3981#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3982#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3983#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3984#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3985#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3986#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3987#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3988
3989static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3990{
3991 /* use default */
3992 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3993 return default_msg_enable_bits;
3994 if (debug_value == 0) /* no output */
3995 return 0;
3996 /* set low N bits */
3997 return (1U << debug_value) - 1;
3998}
3999
4000static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4001{
4002 spin_lock(&txq->_xmit_lock);
4003 txq->xmit_lock_owner = cpu;
4004}
4005
4006static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4007{
4008 __acquire(&txq->_xmit_lock);
4009 return true;
4010}
4011
4012static inline void __netif_tx_release(struct netdev_queue *txq)
4013{
4014 __release(&txq->_xmit_lock);
4015}
4016
4017static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4018{
4019 spin_lock_bh(&txq->_xmit_lock);
4020 txq->xmit_lock_owner = smp_processor_id();
4021}
4022
4023static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4024{
4025 bool ok = spin_trylock(&txq->_xmit_lock);
4026 if (likely(ok))
4027 txq->xmit_lock_owner = smp_processor_id();
4028 return ok;
4029}
4030
4031static inline void __netif_tx_unlock(struct netdev_queue *txq)
4032{
4033 txq->xmit_lock_owner = -1;
4034 spin_unlock(&txq->_xmit_lock);
4035}
4036
4037static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4038{
4039 txq->xmit_lock_owner = -1;
4040 spin_unlock_bh(&txq->_xmit_lock);
4041}
4042
4043static inline void txq_trans_update(struct netdev_queue *txq)
4044{
4045 if (txq->xmit_lock_owner != -1)
4046 txq->trans_start = jiffies;
4047}
4048
4049/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4050static inline void netif_trans_update(struct net_device *dev)
4051{
4052 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4053
4054 if (txq->trans_start != jiffies)
4055 txq->trans_start = jiffies;
4056}
4057
4058/**
4059 * netif_tx_lock - grab network device transmit lock
4060 * @dev: network device
4061 *
4062 * Get network device transmit lock
4063 */
4064static inline void netif_tx_lock(struct net_device *dev)
4065{
4066 unsigned int i;
4067 int cpu;
4068
4069 spin_lock(&dev->tx_global_lock);
4070 cpu = smp_processor_id();
4071 for (i = 0; i < dev->num_tx_queues; i++) {
4072 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4073
4074 /* We are the only thread of execution doing a
4075 * freeze, but we have to grab the _xmit_lock in
4076 * order to synchronize with threads which are in
4077 * the ->hard_start_xmit() handler and already
4078 * checked the frozen bit.
4079 */
4080 __netif_tx_lock(txq, cpu);
4081 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4082 __netif_tx_unlock(txq);
4083 }
4084}
4085
4086static inline void netif_tx_lock_bh(struct net_device *dev)
4087{
4088 local_bh_disable();
4089 netif_tx_lock(dev);
4090}
4091
4092static inline void netif_tx_unlock(struct net_device *dev)
4093{
4094 unsigned int i;
4095
4096 for (i = 0; i < dev->num_tx_queues; i++) {
4097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4098
4099 /* No need to grab the _xmit_lock here. If the
4100 * queue is not stopped for another reason, we
4101 * force a schedule.
4102 */
4103 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4104 netif_schedule_queue(txq);
4105 }
4106 spin_unlock(&dev->tx_global_lock);
4107}
4108
4109static inline void netif_tx_unlock_bh(struct net_device *dev)
4110{
4111 netif_tx_unlock(dev);
4112 local_bh_enable();
4113}
4114
4115#define HARD_TX_LOCK(dev, txq, cpu) { \
4116 if ((dev->features & NETIF_F_LLTX) == 0) { \
4117 __netif_tx_lock(txq, cpu); \
4118 } else { \
4119 __netif_tx_acquire(txq); \
4120 } \
4121}
4122
4123#define HARD_TX_TRYLOCK(dev, txq) \
4124 (((dev->features & NETIF_F_LLTX) == 0) ? \
4125 __netif_tx_trylock(txq) : \
4126 __netif_tx_acquire(txq))
4127
4128#define HARD_TX_UNLOCK(dev, txq) { \
4129 if ((dev->features & NETIF_F_LLTX) == 0) { \
4130 __netif_tx_unlock(txq); \
4131 } else { \
4132 __netif_tx_release(txq); \
4133 } \
4134}
4135
4136static inline void netif_tx_disable(struct net_device *dev)
4137{
4138 unsigned int i;
4139 int cpu;
4140
4141 local_bh_disable();
4142 cpu = smp_processor_id();
4143 for (i = 0; i < dev->num_tx_queues; i++) {
4144 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4145
4146 __netif_tx_lock(txq, cpu);
4147 netif_tx_stop_queue(txq);
4148 __netif_tx_unlock(txq);
4149 }
4150 local_bh_enable();
4151}
4152
4153static inline void netif_addr_lock(struct net_device *dev)
4154{
4155 spin_lock(&dev->addr_list_lock);
4156}
4157
4158static inline void netif_addr_lock_bh(struct net_device *dev)
4159{
4160 spin_lock_bh(&dev->addr_list_lock);
4161}
4162
4163static inline void netif_addr_unlock(struct net_device *dev)
4164{
4165 spin_unlock(&dev->addr_list_lock);
4166}
4167
4168static inline void netif_addr_unlock_bh(struct net_device *dev)
4169{
4170 spin_unlock_bh(&dev->addr_list_lock);
4171}
4172
4173/*
4174 * dev_addrs walker. Should be used only for read access. Call with
4175 * rcu_read_lock held.
4176 */
4177#define for_each_dev_addr(dev, ha) \
4178 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4179
4180/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4181
4182void ether_setup(struct net_device *dev);
4183
4184/* Support for loadable net-drivers */
4185struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4186 unsigned char name_assign_type,
4187 void (*setup)(struct net_device *),
4188 unsigned int txqs, unsigned int rxqs);
4189#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4190 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4191
4192#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4193 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4194 count)
4195
4196int register_netdev(struct net_device *dev);
4197void unregister_netdev(struct net_device *dev);
4198
4199/* General hardware address lists handling functions */
4200int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4201 struct netdev_hw_addr_list *from_list, int addr_len);
4202void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4203 struct netdev_hw_addr_list *from_list, int addr_len);
4204int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4205 struct net_device *dev,
4206 int (*sync)(struct net_device *, const unsigned char *),
4207 int (*unsync)(struct net_device *,
4208 const unsigned char *));
4209int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4210 struct net_device *dev,
4211 int (*sync)(struct net_device *,
4212 const unsigned char *, int),
4213 int (*unsync)(struct net_device *,
4214 const unsigned char *, int));
4215void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4216 struct net_device *dev,
4217 int (*unsync)(struct net_device *,
4218 const unsigned char *, int));
4219void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4220 struct net_device *dev,
4221 int (*unsync)(struct net_device *,
4222 const unsigned char *));
4223void __hw_addr_init(struct netdev_hw_addr_list *list);
4224
4225/* Functions used for device addresses handling */
4226int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4227 unsigned char addr_type);
4228int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4229 unsigned char addr_type);
4230void dev_addr_flush(struct net_device *dev);
4231int dev_addr_init(struct net_device *dev);
4232
4233/* Functions used for unicast addresses handling */
4234int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4235int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4236int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4237int dev_uc_sync(struct net_device *to, struct net_device *from);
4238int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4239void dev_uc_unsync(struct net_device *to, struct net_device *from);
4240void dev_uc_flush(struct net_device *dev);
4241void dev_uc_init(struct net_device *dev);
4242
4243/**
4244 * __dev_uc_sync - Synchonize device's unicast list
4245 * @dev: device to sync
4246 * @sync: function to call if address should be added
4247 * @unsync: function to call if address should be removed
4248 *
4249 * Add newly added addresses to the interface, and release
4250 * addresses that have been deleted.
4251 */
4252static inline int __dev_uc_sync(struct net_device *dev,
4253 int (*sync)(struct net_device *,
4254 const unsigned char *),
4255 int (*unsync)(struct net_device *,
4256 const unsigned char *))
4257{
4258 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4259}
4260
4261/**
4262 * __dev_uc_unsync - Remove synchronized addresses from device
4263 * @dev: device to sync
4264 * @unsync: function to call if address should be removed
4265 *
4266 * Remove all addresses that were added to the device by dev_uc_sync().
4267 */
4268static inline void __dev_uc_unsync(struct net_device *dev,
4269 int (*unsync)(struct net_device *,
4270 const unsigned char *))
4271{
4272 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4273}
4274
4275/* Functions used for multicast addresses handling */
4276int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4277int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4278int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4279int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4280int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4281int dev_mc_sync(struct net_device *to, struct net_device *from);
4282int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4283void dev_mc_unsync(struct net_device *to, struct net_device *from);
4284void dev_mc_flush(struct net_device *dev);
4285void dev_mc_init(struct net_device *dev);
4286
4287/**
4288 * __dev_mc_sync - Synchonize device's multicast list
4289 * @dev: device to sync
4290 * @sync: function to call if address should be added
4291 * @unsync: function to call if address should be removed
4292 *
4293 * Add newly added addresses to the interface, and release
4294 * addresses that have been deleted.
4295 */
4296static inline int __dev_mc_sync(struct net_device *dev,
4297 int (*sync)(struct net_device *,
4298 const unsigned char *),
4299 int (*unsync)(struct net_device *,
4300 const unsigned char *))
4301{
4302 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4303}
4304
4305/**
4306 * __dev_mc_unsync - Remove synchronized addresses from device
4307 * @dev: device to sync
4308 * @unsync: function to call if address should be removed
4309 *
4310 * Remove all addresses that were added to the device by dev_mc_sync().
4311 */
4312static inline void __dev_mc_unsync(struct net_device *dev,
4313 int (*unsync)(struct net_device *,
4314 const unsigned char *))
4315{
4316 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4317}
4318
4319/* Functions used for secondary unicast and multicast support */
4320void dev_set_rx_mode(struct net_device *dev);
4321void __dev_set_rx_mode(struct net_device *dev);
4322int dev_set_promiscuity(struct net_device *dev, int inc);
4323int dev_set_allmulti(struct net_device *dev, int inc);
4324void netdev_state_change(struct net_device *dev);
4325void netdev_notify_peers(struct net_device *dev);
4326void netdev_features_change(struct net_device *dev);
4327/* Load a device via the kmod */
4328void dev_load(struct net *net, const char *name);
4329struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4330 struct rtnl_link_stats64 *storage);
4331void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4332 const struct net_device_stats *netdev_stats);
4333
4334extern int netdev_max_backlog;
4335extern int netdev_tstamp_prequeue;
4336extern int weight_p;
4337extern int dev_weight_rx_bias;
4338extern int dev_weight_tx_bias;
4339extern int dev_rx_weight;
4340extern int dev_tx_weight;
4341extern int gro_normal_batch;
4342
4343bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4344struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4345 struct list_head **iter);
4346struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4347 struct list_head **iter);
4348
4349/* iterate through upper list, must be called under RCU read lock */
4350#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4351 for (iter = &(dev)->adj_list.upper, \
4352 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4353 updev; \
4354 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4355
4356int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4357 int (*fn)(struct net_device *upper_dev,
4358 void *data),
4359 void *data);
4360
4361bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4362 struct net_device *upper_dev);
4363
4364bool netdev_has_any_upper_dev(struct net_device *dev);
4365
4366void *netdev_lower_get_next_private(struct net_device *dev,
4367 struct list_head **iter);
4368void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4369 struct list_head **iter);
4370
4371#define netdev_for_each_lower_private(dev, priv, iter) \
4372 for (iter = (dev)->adj_list.lower.next, \
4373 priv = netdev_lower_get_next_private(dev, &(iter)); \
4374 priv; \
4375 priv = netdev_lower_get_next_private(dev, &(iter)))
4376
4377#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4378 for (iter = &(dev)->adj_list.lower, \
4379 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4380 priv; \
4381 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4382
4383void *netdev_lower_get_next(struct net_device *dev,
4384 struct list_head **iter);
4385
4386#define netdev_for_each_lower_dev(dev, ldev, iter) \
4387 for (iter = (dev)->adj_list.lower.next, \
4388 ldev = netdev_lower_get_next(dev, &(iter)); \
4389 ldev; \
4390 ldev = netdev_lower_get_next(dev, &(iter)))
4391
4392struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4393 struct list_head **iter);
4394struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4395 struct list_head **iter);
4396
4397int netdev_walk_all_lower_dev(struct net_device *dev,
4398 int (*fn)(struct net_device *lower_dev,
4399 void *data),
4400 void *data);
4401int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4402 int (*fn)(struct net_device *lower_dev,
4403 void *data),
4404 void *data);
4405
4406void *netdev_adjacent_get_private(struct list_head *adj_list);
4407void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4408struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4409struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4410int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4411 struct netlink_ext_ack *extack);
4412int netdev_master_upper_dev_link(struct net_device *dev,
4413 struct net_device *upper_dev,
4414 void *upper_priv, void *upper_info,
4415 struct netlink_ext_ack *extack);
4416void netdev_upper_dev_unlink(struct net_device *dev,
4417 struct net_device *upper_dev);
4418int netdev_adjacent_change_prepare(struct net_device *old_dev,
4419 struct net_device *new_dev,
4420 struct net_device *dev,
4421 struct netlink_ext_ack *extack);
4422void netdev_adjacent_change_commit(struct net_device *old_dev,
4423 struct net_device *new_dev,
4424 struct net_device *dev);
4425void netdev_adjacent_change_abort(struct net_device *old_dev,
4426 struct net_device *new_dev,
4427 struct net_device *dev);
4428void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4429void *netdev_lower_dev_get_private(struct net_device *dev,
4430 struct net_device *lower_dev);
4431void netdev_lower_state_changed(struct net_device *lower_dev,
4432 void *lower_state_info);
4433
4434/* RSS keys are 40 or 52 bytes long */
4435#define NETDEV_RSS_KEY_LEN 52
4436extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4437void netdev_rss_key_fill(void *buffer, size_t len);
4438
4439int skb_checksum_help(struct sk_buff *skb);
4440int skb_crc32c_csum_help(struct sk_buff *skb);
4441int skb_csum_hwoffload_help(struct sk_buff *skb,
4442 const netdev_features_t features);
4443
4444struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4445 netdev_features_t features, bool tx_path);
4446struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4447 netdev_features_t features);
4448
4449struct netdev_bonding_info {
4450 ifslave slave;
4451 ifbond master;
4452};
4453
4454struct netdev_notifier_bonding_info {
4455 struct netdev_notifier_info info; /* must be first */
4456 struct netdev_bonding_info bonding_info;
4457};
4458
4459void netdev_bonding_info_change(struct net_device *dev,
4460 struct netdev_bonding_info *bonding_info);
4461
4462#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4463void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4464#else
4465static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4466 const void *data)
4467{
4468}
4469#endif
4470
4471static inline
4472struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4473{
4474 return __skb_gso_segment(skb, features, true);
4475}
4476__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4477
4478static inline bool can_checksum_protocol(netdev_features_t features,
4479 __be16 protocol)
4480{
4481 if (protocol == htons(ETH_P_FCOE))
4482 return !!(features & NETIF_F_FCOE_CRC);
4483
4484 /* Assume this is an IP checksum (not SCTP CRC) */
4485
4486 if (features & NETIF_F_HW_CSUM) {
4487 /* Can checksum everything */
4488 return true;
4489 }
4490
4491 switch (protocol) {
4492 case htons(ETH_P_IP):
4493 return !!(features & NETIF_F_IP_CSUM);
4494 case htons(ETH_P_IPV6):
4495 return !!(features & NETIF_F_IPV6_CSUM);
4496 default:
4497 return false;
4498 }
4499}
4500
4501#ifdef CONFIG_BUG
4502void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4503#else
4504static inline void netdev_rx_csum_fault(struct net_device *dev,
4505 struct sk_buff *skb)
4506{
4507}
4508#endif
4509/* rx skb timestamps */
4510void net_enable_timestamp(void);
4511void net_disable_timestamp(void);
4512
4513#ifdef CONFIG_PROC_FS
4514int __init dev_proc_init(void);
4515#else
4516#define dev_proc_init() 0
4517#endif
4518
4519static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4520 struct sk_buff *skb, struct net_device *dev,
4521 bool more)
4522{
4523 __this_cpu_write(softnet_data.xmit.more, more);
4524 return ops->ndo_start_xmit(skb, dev);
4525}
4526
4527static inline bool netdev_xmit_more(void)
4528{
4529 return __this_cpu_read(softnet_data.xmit.more);
4530}
4531
4532static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4533 struct netdev_queue *txq, bool more)
4534{
4535 const struct net_device_ops *ops = dev->netdev_ops;
4536 netdev_tx_t rc;
4537
4538 rc = __netdev_start_xmit(ops, skb, dev, more);
4539 if (rc == NETDEV_TX_OK)
4540 txq_trans_update(txq);
4541
4542 return rc;
4543}
4544
4545int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4546 const void *ns);
4547void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4548 const void *ns);
4549
4550static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4551{
4552 return netdev_class_create_file_ns(class_attr, NULL);
4553}
4554
4555static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4556{
4557 netdev_class_remove_file_ns(class_attr, NULL);
4558}
4559
4560extern const struct kobj_ns_type_operations net_ns_type_operations;
4561
4562const char *netdev_drivername(const struct net_device *dev);
4563
4564void linkwatch_run_queue(void);
4565
4566static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4567 netdev_features_t f2)
4568{
4569 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4570 if (f1 & NETIF_F_HW_CSUM)
4571 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4572 else
4573 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4574 }
4575
4576 return f1 & f2;
4577}
4578
4579static inline netdev_features_t netdev_get_wanted_features(
4580 struct net_device *dev)
4581{
4582 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4583}
4584netdev_features_t netdev_increment_features(netdev_features_t all,
4585 netdev_features_t one, netdev_features_t mask);
4586
4587/* Allow TSO being used on stacked device :
4588 * Performing the GSO segmentation before last device
4589 * is a performance improvement.
4590 */
4591static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4592 netdev_features_t mask)
4593{
4594 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4595}
4596
4597int __netdev_update_features(struct net_device *dev);
4598void netdev_update_features(struct net_device *dev);
4599void netdev_change_features(struct net_device *dev);
4600
4601void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4602 struct net_device *dev);
4603
4604netdev_features_t passthru_features_check(struct sk_buff *skb,
4605 struct net_device *dev,
4606 netdev_features_t features);
4607netdev_features_t netif_skb_features(struct sk_buff *skb);
4608
4609static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4610{
4611 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4612
4613 /* check flags correspondence */
4614 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4615 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4616 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4617 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4618 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4619 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4620 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4621 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4622 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4623 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4624 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4625 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4626 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4627 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4628 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4629 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4630 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4631 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4632 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4633
4634 return (features & feature) == feature;
4635}
4636
4637static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4638{
4639 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4640 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4641}
4642
4643static inline bool netif_needs_gso(struct sk_buff *skb,
4644 netdev_features_t features)
4645{
4646 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4647 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4648 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4649}
4650
4651static inline void netif_set_gso_max_size(struct net_device *dev,
4652 unsigned int size)
4653{
4654 dev->gso_max_size = size;
4655}
4656
4657static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4658 int pulled_hlen, u16 mac_offset,
4659 int mac_len)
4660{
4661 skb->protocol = protocol;
4662 skb->encapsulation = 1;
4663 skb_push(skb, pulled_hlen);
4664 skb_reset_transport_header(skb);
4665 skb->mac_header = mac_offset;
4666 skb->network_header = skb->mac_header + mac_len;
4667 skb->mac_len = mac_len;
4668}
4669
4670static inline bool netif_is_macsec(const struct net_device *dev)
4671{
4672 return dev->priv_flags & IFF_MACSEC;
4673}
4674
4675static inline bool netif_is_macvlan(const struct net_device *dev)
4676{
4677 return dev->priv_flags & IFF_MACVLAN;
4678}
4679
4680static inline bool netif_is_macvlan_port(const struct net_device *dev)
4681{
4682 return dev->priv_flags & IFF_MACVLAN_PORT;
4683}
4684
4685static inline bool netif_is_bond_master(const struct net_device *dev)
4686{
4687 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4688}
4689
4690static inline bool netif_is_bond_slave(const struct net_device *dev)
4691{
4692 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4693}
4694
4695static inline bool netif_supports_nofcs(struct net_device *dev)
4696{
4697 return dev->priv_flags & IFF_SUPP_NOFCS;
4698}
4699
4700static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4701{
4702 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4703}
4704
4705static inline bool netif_is_l3_master(const struct net_device *dev)
4706{
4707 return dev->priv_flags & IFF_L3MDEV_MASTER;
4708}
4709
4710static inline bool netif_is_l3_slave(const struct net_device *dev)
4711{
4712 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4713}
4714
4715static inline bool netif_is_bridge_master(const struct net_device *dev)
4716{
4717 return dev->priv_flags & IFF_EBRIDGE;
4718}
4719
4720static inline bool netif_is_bridge_port(const struct net_device *dev)
4721{
4722 return dev->priv_flags & IFF_BRIDGE_PORT;
4723}
4724
4725static inline bool netif_is_ovs_master(const struct net_device *dev)
4726{
4727 return dev->priv_flags & IFF_OPENVSWITCH;
4728}
4729
4730static inline bool netif_is_ovs_port(const struct net_device *dev)
4731{
4732 return dev->priv_flags & IFF_OVS_DATAPATH;
4733}
4734
4735static inline bool netif_is_team_master(const struct net_device *dev)
4736{
4737 return dev->priv_flags & IFF_TEAM;
4738}
4739
4740static inline bool netif_is_team_port(const struct net_device *dev)
4741{
4742 return dev->priv_flags & IFF_TEAM_PORT;
4743}
4744
4745static inline bool netif_is_lag_master(const struct net_device *dev)
4746{
4747 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4748}
4749
4750static inline bool netif_is_lag_port(const struct net_device *dev)
4751{
4752 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4753}
4754
4755static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4756{
4757 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4758}
4759
4760static inline bool netif_is_failover(const struct net_device *dev)
4761{
4762 return dev->priv_flags & IFF_FAILOVER;
4763}
4764
4765static inline bool netif_is_failover_slave(const struct net_device *dev)
4766{
4767 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4768}
4769
4770/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4771static inline void netif_keep_dst(struct net_device *dev)
4772{
4773 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4774}
4775
4776/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4777static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4778{
4779 /* TODO: reserve and use an additional IFF bit, if we get more users */
4780 return dev->priv_flags & IFF_MACSEC;
4781}
4782
4783extern struct pernet_operations __net_initdata loopback_net_ops;
4784
4785/* Logging, debugging and troubleshooting/diagnostic helpers. */
4786
4787/* netdev_printk helpers, similar to dev_printk */
4788
4789static inline const char *netdev_name(const struct net_device *dev)
4790{
4791 if (!dev->name[0] || strchr(dev->name, '%'))
4792 return "(unnamed net_device)";
4793 return dev->name;
4794}
4795
4796static inline bool netdev_unregistering(const struct net_device *dev)
4797{
4798 return dev->reg_state == NETREG_UNREGISTERING;
4799}
4800
4801static inline const char *netdev_reg_state(const struct net_device *dev)
4802{
4803 switch (dev->reg_state) {
4804 case NETREG_UNINITIALIZED: return " (uninitialized)";
4805 case NETREG_REGISTERED: return "";
4806 case NETREG_UNREGISTERING: return " (unregistering)";
4807 case NETREG_UNREGISTERED: return " (unregistered)";
4808 case NETREG_RELEASED: return " (released)";
4809 case NETREG_DUMMY: return " (dummy)";
4810 }
4811
4812 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4813 return " (unknown)";
4814}
4815
4816__printf(3, 4) __cold
4817void netdev_printk(const char *level, const struct net_device *dev,
4818 const char *format, ...);
4819__printf(2, 3) __cold
4820void netdev_emerg(const struct net_device *dev, const char *format, ...);
4821__printf(2, 3) __cold
4822void netdev_alert(const struct net_device *dev, const char *format, ...);
4823__printf(2, 3) __cold
4824void netdev_crit(const struct net_device *dev, const char *format, ...);
4825__printf(2, 3) __cold
4826void netdev_err(const struct net_device *dev, const char *format, ...);
4827__printf(2, 3) __cold
4828void netdev_warn(const struct net_device *dev, const char *format, ...);
4829__printf(2, 3) __cold
4830void netdev_notice(const struct net_device *dev, const char *format, ...);
4831__printf(2, 3) __cold
4832void netdev_info(const struct net_device *dev, const char *format, ...);
4833
4834#define netdev_level_once(level, dev, fmt, ...) \
4835do { \
4836 static bool __print_once __read_mostly; \
4837 \
4838 if (!__print_once) { \
4839 __print_once = true; \
4840 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4841 } \
4842} while (0)
4843
4844#define netdev_emerg_once(dev, fmt, ...) \
4845 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4846#define netdev_alert_once(dev, fmt, ...) \
4847 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4848#define netdev_crit_once(dev, fmt, ...) \
4849 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4850#define netdev_err_once(dev, fmt, ...) \
4851 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4852#define netdev_warn_once(dev, fmt, ...) \
4853 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4854#define netdev_notice_once(dev, fmt, ...) \
4855 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4856#define netdev_info_once(dev, fmt, ...) \
4857 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4858
4859#define MODULE_ALIAS_NETDEV(device) \
4860 MODULE_ALIAS("netdev-" device)
4861
4862#if defined(CONFIG_DYNAMIC_DEBUG)
4863#define netdev_dbg(__dev, format, args...) \
4864do { \
4865 dynamic_netdev_dbg(__dev, format, ##args); \
4866} while (0)
4867#elif defined(DEBUG)
4868#define netdev_dbg(__dev, format, args...) \
4869 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4870#else
4871#define netdev_dbg(__dev, format, args...) \
4872({ \
4873 if (0) \
4874 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4875})
4876#endif
4877
4878#if defined(VERBOSE_DEBUG)
4879#define netdev_vdbg netdev_dbg
4880#else
4881
4882#define netdev_vdbg(dev, format, args...) \
4883({ \
4884 if (0) \
4885 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4886 0; \
4887})
4888#endif
4889
4890/*
4891 * netdev_WARN() acts like dev_printk(), but with the key difference
4892 * of using a WARN/WARN_ON to get the message out, including the
4893 * file/line information and a backtrace.
4894 */
4895#define netdev_WARN(dev, format, args...) \
4896 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4897 netdev_reg_state(dev), ##args)
4898
4899#define netdev_WARN_ONCE(dev, format, args...) \
4900 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4901 netdev_reg_state(dev), ##args)
4902
4903/* netif printk helpers, similar to netdev_printk */
4904
4905#define netif_printk(priv, type, level, dev, fmt, args...) \
4906do { \
4907 if (netif_msg_##type(priv)) \
4908 netdev_printk(level, (dev), fmt, ##args); \
4909} while (0)
4910
4911#define netif_level(level, priv, type, dev, fmt, args...) \
4912do { \
4913 if (netif_msg_##type(priv)) \
4914 netdev_##level(dev, fmt, ##args); \
4915} while (0)
4916
4917#define netif_emerg(priv, type, dev, fmt, args...) \
4918 netif_level(emerg, priv, type, dev, fmt, ##args)
4919#define netif_alert(priv, type, dev, fmt, args...) \
4920 netif_level(alert, priv, type, dev, fmt, ##args)
4921#define netif_crit(priv, type, dev, fmt, args...) \
4922 netif_level(crit, priv, type, dev, fmt, ##args)
4923#define netif_err(priv, type, dev, fmt, args...) \
4924 netif_level(err, priv, type, dev, fmt, ##args)
4925#define netif_warn(priv, type, dev, fmt, args...) \
4926 netif_level(warn, priv, type, dev, fmt, ##args)
4927#define netif_notice(priv, type, dev, fmt, args...) \
4928 netif_level(notice, priv, type, dev, fmt, ##args)
4929#define netif_info(priv, type, dev, fmt, args...) \
4930 netif_level(info, priv, type, dev, fmt, ##args)
4931
4932#if defined(CONFIG_DYNAMIC_DEBUG)
4933#define netif_dbg(priv, type, netdev, format, args...) \
4934do { \
4935 if (netif_msg_##type(priv)) \
4936 dynamic_netdev_dbg(netdev, format, ##args); \
4937} while (0)
4938#elif defined(DEBUG)
4939#define netif_dbg(priv, type, dev, format, args...) \
4940 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4941#else
4942#define netif_dbg(priv, type, dev, format, args...) \
4943({ \
4944 if (0) \
4945 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4946 0; \
4947})
4948#endif
4949
4950/* if @cond then downgrade to debug, else print at @level */
4951#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4952 do { \
4953 if (cond) \
4954 netif_dbg(priv, type, netdev, fmt, ##args); \
4955 else \
4956 netif_ ## level(priv, type, netdev, fmt, ##args); \
4957 } while (0)
4958
4959#if defined(VERBOSE_DEBUG)
4960#define netif_vdbg netif_dbg
4961#else
4962#define netif_vdbg(priv, type, dev, format, args...) \
4963({ \
4964 if (0) \
4965 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4966 0; \
4967})
4968#endif
4969
4970/*
4971 * The list of packet types we will receive (as opposed to discard)
4972 * and the routines to invoke.
4973 *
4974 * Why 16. Because with 16 the only overlap we get on a hash of the
4975 * low nibble of the protocol value is RARP/SNAP/X.25.
4976 *
4977 * 0800 IP
4978 * 0001 802.3
4979 * 0002 AX.25
4980 * 0004 802.2
4981 * 8035 RARP
4982 * 0005 SNAP
4983 * 0805 X.25
4984 * 0806 ARP
4985 * 8137 IPX
4986 * 0009 Localtalk
4987 * 86DD IPv6
4988 */
4989#define PTYPE_HASH_SIZE (16)
4990#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4991
4992extern struct net_device *blackhole_netdev;
4993
4994#endif /* _LINUX_NETDEVICE_H */