Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_KERNEL_H
3#define _LINUX_KERNEL_H
4
5
6#include <stdarg.h>
7#include <linux/limits.h>
8#include <linux/linkage.h>
9#include <linux/stddef.h>
10#include <linux/types.h>
11#include <linux/compiler.h>
12#include <linux/bitops.h>
13#include <linux/log2.h>
14#include <linux/typecheck.h>
15#include <linux/printk.h>
16#include <linux/build_bug.h>
17#include <asm/byteorder.h>
18#include <asm/div64.h>
19#include <uapi/linux/kernel.h>
20#include <asm/div64.h>
21
22#define STACK_MAGIC 0xdeadbeef
23
24/**
25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26 * @x: value to repeat
27 *
28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29 */
30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
31
32/* @a is a power of 2 value */
33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
38
39/* generic data direction definitions */
40#define READ 0
41#define WRITE 1
42
43/**
44 * ARRAY_SIZE - get the number of elements in array @arr
45 * @arr: array to be sized
46 */
47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48
49#define u64_to_user_ptr(x) ( \
50{ \
51 typecheck(u64, (x)); \
52 (void __user *)(uintptr_t)(x); \
53} \
54)
55
56/*
57 * This looks more complex than it should be. But we need to
58 * get the type for the ~ right in round_down (it needs to be
59 * as wide as the result!), and we want to evaluate the macro
60 * arguments just once each.
61 */
62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
63/**
64 * round_up - round up to next specified power of 2
65 * @x: the value to round
66 * @y: multiple to round up to (must be a power of 2)
67 *
68 * Rounds @x up to next multiple of @y (which must be a power of 2).
69 * To perform arbitrary rounding up, use roundup() below.
70 */
71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72/**
73 * round_down - round down to next specified power of 2
74 * @x: the value to round
75 * @y: multiple to round down to (must be a power of 2)
76 *
77 * Rounds @x down to next multiple of @y (which must be a power of 2).
78 * To perform arbitrary rounding down, use rounddown() below.
79 */
80#define round_down(x, y) ((x) & ~__round_mask(x, y))
81
82#define typeof_member(T, m) typeof(((T*)0)->m)
83
84#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
85
86#define DIV_ROUND_DOWN_ULL(ll, d) \
87 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
88
89#define DIV_ROUND_UP_ULL(ll, d) \
90 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
91
92#if BITS_PER_LONG == 32
93# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
94#else
95# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
96#endif
97
98/**
99 * roundup - round up to the next specified multiple
100 * @x: the value to up
101 * @y: multiple to round up to
102 *
103 * Rounds @x up to next multiple of @y. If @y will always be a power
104 * of 2, consider using the faster round_up().
105 */
106#define roundup(x, y) ( \
107{ \
108 typeof(y) __y = y; \
109 (((x) + (__y - 1)) / __y) * __y; \
110} \
111)
112/**
113 * rounddown - round down to next specified multiple
114 * @x: the value to round
115 * @y: multiple to round down to
116 *
117 * Rounds @x down to next multiple of @y. If @y will always be a power
118 * of 2, consider using the faster round_down().
119 */
120#define rounddown(x, y) ( \
121{ \
122 typeof(x) __x = (x); \
123 __x - (__x % (y)); \
124} \
125)
126
127/*
128 * Divide positive or negative dividend by positive or negative divisor
129 * and round to closest integer. Result is undefined for negative
130 * divisors if the dividend variable type is unsigned and for negative
131 * dividends if the divisor variable type is unsigned.
132 */
133#define DIV_ROUND_CLOSEST(x, divisor)( \
134{ \
135 typeof(x) __x = x; \
136 typeof(divisor) __d = divisor; \
137 (((typeof(x))-1) > 0 || \
138 ((typeof(divisor))-1) > 0 || \
139 (((__x) > 0) == ((__d) > 0))) ? \
140 (((__x) + ((__d) / 2)) / (__d)) : \
141 (((__x) - ((__d) / 2)) / (__d)); \
142} \
143)
144/*
145 * Same as above but for u64 dividends. divisor must be a 32-bit
146 * number.
147 */
148#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
149{ \
150 typeof(divisor) __d = divisor; \
151 unsigned long long _tmp = (x) + (__d) / 2; \
152 do_div(_tmp, __d); \
153 _tmp; \
154} \
155)
156
157/*
158 * Multiplies an integer by a fraction, while avoiding unnecessary
159 * overflow or loss of precision.
160 */
161#define mult_frac(x, numer, denom)( \
162{ \
163 typeof(x) quot = (x) / (denom); \
164 typeof(x) rem = (x) % (denom); \
165 (quot * (numer)) + ((rem * (numer)) / (denom)); \
166} \
167)
168
169
170#define _RET_IP_ (unsigned long)__builtin_return_address(0)
171#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
172
173#define sector_div(a, b) do_div(a, b)
174
175/**
176 * upper_32_bits - return bits 32-63 of a number
177 * @n: the number we're accessing
178 *
179 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
180 * the "right shift count >= width of type" warning when that quantity is
181 * 32-bits.
182 */
183#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
184
185/**
186 * lower_32_bits - return bits 0-31 of a number
187 * @n: the number we're accessing
188 */
189#define lower_32_bits(n) ((u32)(n))
190
191struct completion;
192struct pt_regs;
193struct user;
194
195#ifdef CONFIG_PREEMPT_VOLUNTARY
196extern int _cond_resched(void);
197# define might_resched() _cond_resched()
198#else
199# define might_resched() do { } while (0)
200#endif
201
202#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
203extern void ___might_sleep(const char *file, int line, int preempt_offset);
204extern void __might_sleep(const char *file, int line, int preempt_offset);
205extern void __cant_sleep(const char *file, int line, int preempt_offset);
206
207/**
208 * might_sleep - annotation for functions that can sleep
209 *
210 * this macro will print a stack trace if it is executed in an atomic
211 * context (spinlock, irq-handler, ...). Additional sections where blocking is
212 * not allowed can be annotated with non_block_start() and non_block_end()
213 * pairs.
214 *
215 * This is a useful debugging help to be able to catch problems early and not
216 * be bitten later when the calling function happens to sleep when it is not
217 * supposed to.
218 */
219# define might_sleep() \
220 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
221/**
222 * cant_sleep - annotation for functions that cannot sleep
223 *
224 * this macro will print a stack trace if it is executed with preemption enabled
225 */
226# define cant_sleep() \
227 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
228# define sched_annotate_sleep() (current->task_state_change = 0)
229/**
230 * non_block_start - annotate the start of section where sleeping is prohibited
231 *
232 * This is on behalf of the oom reaper, specifically when it is calling the mmu
233 * notifiers. The problem is that if the notifier were to block on, for example,
234 * mutex_lock() and if the process which holds that mutex were to perform a
235 * sleeping memory allocation, the oom reaper is now blocked on completion of
236 * that memory allocation. Other blocking calls like wait_event() pose similar
237 * issues.
238 */
239# define non_block_start() (current->non_block_count++)
240/**
241 * non_block_end - annotate the end of section where sleeping is prohibited
242 *
243 * Closes a section opened by non_block_start().
244 */
245# define non_block_end() WARN_ON(current->non_block_count-- == 0)
246#else
247 static inline void ___might_sleep(const char *file, int line,
248 int preempt_offset) { }
249 static inline void __might_sleep(const char *file, int line,
250 int preempt_offset) { }
251# define might_sleep() do { might_resched(); } while (0)
252# define cant_sleep() do { } while (0)
253# define sched_annotate_sleep() do { } while (0)
254# define non_block_start() do { } while (0)
255# define non_block_end() do { } while (0)
256#endif
257
258#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
259
260/**
261 * abs - return absolute value of an argument
262 * @x: the value. If it is unsigned type, it is converted to signed type first.
263 * char is treated as if it was signed (regardless of whether it really is)
264 * but the macro's return type is preserved as char.
265 *
266 * Return: an absolute value of x.
267 */
268#define abs(x) __abs_choose_expr(x, long long, \
269 __abs_choose_expr(x, long, \
270 __abs_choose_expr(x, int, \
271 __abs_choose_expr(x, short, \
272 __abs_choose_expr(x, char, \
273 __builtin_choose_expr( \
274 __builtin_types_compatible_p(typeof(x), char), \
275 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
276 ((void)0)))))))
277
278#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
279 __builtin_types_compatible_p(typeof(x), signed type) || \
280 __builtin_types_compatible_p(typeof(x), unsigned type), \
281 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
282
283/**
284 * reciprocal_scale - "scale" a value into range [0, ep_ro)
285 * @val: value
286 * @ep_ro: right open interval endpoint
287 *
288 * Perform a "reciprocal multiplication" in order to "scale" a value into
289 * range [0, @ep_ro), where the upper interval endpoint is right-open.
290 * This is useful, e.g. for accessing a index of an array containing
291 * @ep_ro elements, for example. Think of it as sort of modulus, only that
292 * the result isn't that of modulo. ;) Note that if initial input is a
293 * small value, then result will return 0.
294 *
295 * Return: a result based on @val in interval [0, @ep_ro).
296 */
297static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
298{
299 return (u32)(((u64) val * ep_ro) >> 32);
300}
301
302#if defined(CONFIG_MMU) && \
303 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
304#define might_fault() __might_fault(__FILE__, __LINE__)
305void __might_fault(const char *file, int line);
306#else
307static inline void might_fault(void) { }
308#endif
309
310extern struct atomic_notifier_head panic_notifier_list;
311extern long (*panic_blink)(int state);
312__printf(1, 2)
313void panic(const char *fmt, ...) __noreturn __cold;
314void nmi_panic(struct pt_regs *regs, const char *msg);
315extern void oops_enter(void);
316extern void oops_exit(void);
317void print_oops_end_marker(void);
318extern int oops_may_print(void);
319void do_exit(long error_code) __noreturn;
320void complete_and_exit(struct completion *, long) __noreturn;
321
322/* Internal, do not use. */
323int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
324int __must_check _kstrtol(const char *s, unsigned int base, long *res);
325
326int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
327int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
328
329/**
330 * kstrtoul - convert a string to an unsigned long
331 * @s: The start of the string. The string must be null-terminated, and may also
332 * include a single newline before its terminating null. The first character
333 * may also be a plus sign, but not a minus sign.
334 * @base: The number base to use. The maximum supported base is 16. If base is
335 * given as 0, then the base of the string is automatically detected with the
336 * conventional semantics - If it begins with 0x the number will be parsed as a
337 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
338 * parsed as an octal number. Otherwise it will be parsed as a decimal.
339 * @res: Where to write the result of the conversion on success.
340 *
341 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
342 * Used as a replacement for the simple_strtoull. Return code must be checked.
343*/
344static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
345{
346 /*
347 * We want to shortcut function call, but
348 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
349 */
350 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
351 __alignof__(unsigned long) == __alignof__(unsigned long long))
352 return kstrtoull(s, base, (unsigned long long *)res);
353 else
354 return _kstrtoul(s, base, res);
355}
356
357/**
358 * kstrtol - convert a string to a long
359 * @s: The start of the string. The string must be null-terminated, and may also
360 * include a single newline before its terminating null. The first character
361 * may also be a plus sign or a minus sign.
362 * @base: The number base to use. The maximum supported base is 16. If base is
363 * given as 0, then the base of the string is automatically detected with the
364 * conventional semantics - If it begins with 0x the number will be parsed as a
365 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
366 * parsed as an octal number. Otherwise it will be parsed as a decimal.
367 * @res: Where to write the result of the conversion on success.
368 *
369 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
370 * Used as a replacement for the simple_strtoull. Return code must be checked.
371 */
372static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
373{
374 /*
375 * We want to shortcut function call, but
376 * __builtin_types_compatible_p(long, long long) = 0.
377 */
378 if (sizeof(long) == sizeof(long long) &&
379 __alignof__(long) == __alignof__(long long))
380 return kstrtoll(s, base, (long long *)res);
381 else
382 return _kstrtol(s, base, res);
383}
384
385int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
386int __must_check kstrtoint(const char *s, unsigned int base, int *res);
387
388static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
389{
390 return kstrtoull(s, base, res);
391}
392
393static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
394{
395 return kstrtoll(s, base, res);
396}
397
398static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
399{
400 return kstrtouint(s, base, res);
401}
402
403static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
404{
405 return kstrtoint(s, base, res);
406}
407
408int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
409int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
410int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
411int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
412int __must_check kstrtobool(const char *s, bool *res);
413
414int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
415int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
416int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
417int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
418int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
419int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
420int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
421int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
422int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
423int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
424int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
425
426static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
427{
428 return kstrtoull_from_user(s, count, base, res);
429}
430
431static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
432{
433 return kstrtoll_from_user(s, count, base, res);
434}
435
436static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
437{
438 return kstrtouint_from_user(s, count, base, res);
439}
440
441static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
442{
443 return kstrtoint_from_user(s, count, base, res);
444}
445
446/*
447 * Use kstrto<foo> instead.
448 *
449 * NOTE: simple_strto<foo> does not check for the range overflow and,
450 * depending on the input, may give interesting results.
451 *
452 * Use these functions if and only if you cannot use kstrto<foo>, because
453 * the conversion ends on the first non-digit character, which may be far
454 * beyond the supported range. It might be useful to parse the strings like
455 * 10x50 or 12:21 without altering original string or temporary buffer in use.
456 * Keep in mind above caveat.
457 */
458
459extern unsigned long simple_strtoul(const char *,char **,unsigned int);
460extern long simple_strtol(const char *,char **,unsigned int);
461extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
462extern long long simple_strtoll(const char *,char **,unsigned int);
463
464extern int num_to_str(char *buf, int size,
465 unsigned long long num, unsigned int width);
466
467/* lib/printf utilities */
468
469extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
470extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
471extern __printf(3, 4)
472int snprintf(char *buf, size_t size, const char *fmt, ...);
473extern __printf(3, 0)
474int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
475extern __printf(3, 4)
476int scnprintf(char *buf, size_t size, const char *fmt, ...);
477extern __printf(3, 0)
478int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
479extern __printf(2, 3) __malloc
480char *kasprintf(gfp_t gfp, const char *fmt, ...);
481extern __printf(2, 0) __malloc
482char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
483extern __printf(2, 0)
484const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
485
486extern __scanf(2, 3)
487int sscanf(const char *, const char *, ...);
488extern __scanf(2, 0)
489int vsscanf(const char *, const char *, va_list);
490
491extern int get_option(char **str, int *pint);
492extern char *get_options(const char *str, int nints, int *ints);
493extern unsigned long long memparse(const char *ptr, char **retptr);
494extern bool parse_option_str(const char *str, const char *option);
495extern char *next_arg(char *args, char **param, char **val);
496
497extern int core_kernel_text(unsigned long addr);
498extern int init_kernel_text(unsigned long addr);
499extern int core_kernel_data(unsigned long addr);
500extern int __kernel_text_address(unsigned long addr);
501extern int kernel_text_address(unsigned long addr);
502extern int func_ptr_is_kernel_text(void *ptr);
503
504u64 int_pow(u64 base, unsigned int exp);
505unsigned long int_sqrt(unsigned long);
506
507#if BITS_PER_LONG < 64
508u32 int_sqrt64(u64 x);
509#else
510static inline u32 int_sqrt64(u64 x)
511{
512 return (u32)int_sqrt(x);
513}
514#endif
515
516extern void bust_spinlocks(int yes);
517extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
518extern int panic_timeout;
519extern unsigned long panic_print;
520extern int panic_on_oops;
521extern int panic_on_unrecovered_nmi;
522extern int panic_on_io_nmi;
523extern int panic_on_warn;
524extern int sysctl_panic_on_rcu_stall;
525extern int sysctl_panic_on_stackoverflow;
526
527extern bool crash_kexec_post_notifiers;
528
529/*
530 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
531 * holds a CPU number which is executing panic() currently. A value of
532 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
533 */
534extern atomic_t panic_cpu;
535#define PANIC_CPU_INVALID -1
536
537/*
538 * Only to be used by arch init code. If the user over-wrote the default
539 * CONFIG_PANIC_TIMEOUT, honor it.
540 */
541static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
542{
543 if (panic_timeout == arch_default_timeout)
544 panic_timeout = timeout;
545}
546extern const char *print_tainted(void);
547enum lockdep_ok {
548 LOCKDEP_STILL_OK,
549 LOCKDEP_NOW_UNRELIABLE
550};
551extern void add_taint(unsigned flag, enum lockdep_ok);
552extern int test_taint(unsigned flag);
553extern unsigned long get_taint(void);
554extern int root_mountflags;
555
556extern bool early_boot_irqs_disabled;
557
558/*
559 * Values used for system_state. Ordering of the states must not be changed
560 * as code checks for <, <=, >, >= STATE.
561 */
562extern enum system_states {
563 SYSTEM_BOOTING,
564 SYSTEM_SCHEDULING,
565 SYSTEM_RUNNING,
566 SYSTEM_HALT,
567 SYSTEM_POWER_OFF,
568 SYSTEM_RESTART,
569 SYSTEM_SUSPEND,
570} system_state;
571
572/* This cannot be an enum because some may be used in assembly source. */
573#define TAINT_PROPRIETARY_MODULE 0
574#define TAINT_FORCED_MODULE 1
575#define TAINT_CPU_OUT_OF_SPEC 2
576#define TAINT_FORCED_RMMOD 3
577#define TAINT_MACHINE_CHECK 4
578#define TAINT_BAD_PAGE 5
579#define TAINT_USER 6
580#define TAINT_DIE 7
581#define TAINT_OVERRIDDEN_ACPI_TABLE 8
582#define TAINT_WARN 9
583#define TAINT_CRAP 10
584#define TAINT_FIRMWARE_WORKAROUND 11
585#define TAINT_OOT_MODULE 12
586#define TAINT_UNSIGNED_MODULE 13
587#define TAINT_SOFTLOCKUP 14
588#define TAINT_LIVEPATCH 15
589#define TAINT_AUX 16
590#define TAINT_RANDSTRUCT 17
591#define TAINT_FLAGS_COUNT 18
592
593struct taint_flag {
594 char c_true; /* character printed when tainted */
595 char c_false; /* character printed when not tainted */
596 bool module; /* also show as a per-module taint flag */
597};
598
599extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
600
601extern const char hex_asc[];
602#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
603#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
604
605static inline char *hex_byte_pack(char *buf, u8 byte)
606{
607 *buf++ = hex_asc_hi(byte);
608 *buf++ = hex_asc_lo(byte);
609 return buf;
610}
611
612extern const char hex_asc_upper[];
613#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
614#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
615
616static inline char *hex_byte_pack_upper(char *buf, u8 byte)
617{
618 *buf++ = hex_asc_upper_hi(byte);
619 *buf++ = hex_asc_upper_lo(byte);
620 return buf;
621}
622
623extern int hex_to_bin(char ch);
624extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
625extern char *bin2hex(char *dst, const void *src, size_t count);
626
627bool mac_pton(const char *s, u8 *mac);
628
629/*
630 * General tracing related utility functions - trace_printk(),
631 * tracing_on/tracing_off and tracing_start()/tracing_stop
632 *
633 * Use tracing_on/tracing_off when you want to quickly turn on or off
634 * tracing. It simply enables or disables the recording of the trace events.
635 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
636 * file, which gives a means for the kernel and userspace to interact.
637 * Place a tracing_off() in the kernel where you want tracing to end.
638 * From user space, examine the trace, and then echo 1 > tracing_on
639 * to continue tracing.
640 *
641 * tracing_stop/tracing_start has slightly more overhead. It is used
642 * by things like suspend to ram where disabling the recording of the
643 * trace is not enough, but tracing must actually stop because things
644 * like calling smp_processor_id() may crash the system.
645 *
646 * Most likely, you want to use tracing_on/tracing_off.
647 */
648
649enum ftrace_dump_mode {
650 DUMP_NONE,
651 DUMP_ALL,
652 DUMP_ORIG,
653};
654
655#ifdef CONFIG_TRACING
656void tracing_on(void);
657void tracing_off(void);
658int tracing_is_on(void);
659void tracing_snapshot(void);
660void tracing_snapshot_alloc(void);
661
662extern void tracing_start(void);
663extern void tracing_stop(void);
664
665static inline __printf(1, 2)
666void ____trace_printk_check_format(const char *fmt, ...)
667{
668}
669#define __trace_printk_check_format(fmt, args...) \
670do { \
671 if (0) \
672 ____trace_printk_check_format(fmt, ##args); \
673} while (0)
674
675/**
676 * trace_printk - printf formatting in the ftrace buffer
677 * @fmt: the printf format for printing
678 *
679 * Note: __trace_printk is an internal function for trace_printk() and
680 * the @ip is passed in via the trace_printk() macro.
681 *
682 * This function allows a kernel developer to debug fast path sections
683 * that printk is not appropriate for. By scattering in various
684 * printk like tracing in the code, a developer can quickly see
685 * where problems are occurring.
686 *
687 * This is intended as a debugging tool for the developer only.
688 * Please refrain from leaving trace_printks scattered around in
689 * your code. (Extra memory is used for special buffers that are
690 * allocated when trace_printk() is used.)
691 *
692 * A little optimization trick is done here. If there's only one
693 * argument, there's no need to scan the string for printf formats.
694 * The trace_puts() will suffice. But how can we take advantage of
695 * using trace_puts() when trace_printk() has only one argument?
696 * By stringifying the args and checking the size we can tell
697 * whether or not there are args. __stringify((__VA_ARGS__)) will
698 * turn into "()\0" with a size of 3 when there are no args, anything
699 * else will be bigger. All we need to do is define a string to this,
700 * and then take its size and compare to 3. If it's bigger, use
701 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
702 * let gcc optimize the rest.
703 */
704
705#define trace_printk(fmt, ...) \
706do { \
707 char _______STR[] = __stringify((__VA_ARGS__)); \
708 if (sizeof(_______STR) > 3) \
709 do_trace_printk(fmt, ##__VA_ARGS__); \
710 else \
711 trace_puts(fmt); \
712} while (0)
713
714#define do_trace_printk(fmt, args...) \
715do { \
716 static const char *trace_printk_fmt __used \
717 __attribute__((section("__trace_printk_fmt"))) = \
718 __builtin_constant_p(fmt) ? fmt : NULL; \
719 \
720 __trace_printk_check_format(fmt, ##args); \
721 \
722 if (__builtin_constant_p(fmt)) \
723 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
724 else \
725 __trace_printk(_THIS_IP_, fmt, ##args); \
726} while (0)
727
728extern __printf(2, 3)
729int __trace_bprintk(unsigned long ip, const char *fmt, ...);
730
731extern __printf(2, 3)
732int __trace_printk(unsigned long ip, const char *fmt, ...);
733
734/**
735 * trace_puts - write a string into the ftrace buffer
736 * @str: the string to record
737 *
738 * Note: __trace_bputs is an internal function for trace_puts and
739 * the @ip is passed in via the trace_puts macro.
740 *
741 * This is similar to trace_printk() but is made for those really fast
742 * paths that a developer wants the least amount of "Heisenbug" effects,
743 * where the processing of the print format is still too much.
744 *
745 * This function allows a kernel developer to debug fast path sections
746 * that printk is not appropriate for. By scattering in various
747 * printk like tracing in the code, a developer can quickly see
748 * where problems are occurring.
749 *
750 * This is intended as a debugging tool for the developer only.
751 * Please refrain from leaving trace_puts scattered around in
752 * your code. (Extra memory is used for special buffers that are
753 * allocated when trace_puts() is used.)
754 *
755 * Returns: 0 if nothing was written, positive # if string was.
756 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
757 */
758
759#define trace_puts(str) ({ \
760 static const char *trace_printk_fmt __used \
761 __attribute__((section("__trace_printk_fmt"))) = \
762 __builtin_constant_p(str) ? str : NULL; \
763 \
764 if (__builtin_constant_p(str)) \
765 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
766 else \
767 __trace_puts(_THIS_IP_, str, strlen(str)); \
768})
769extern int __trace_bputs(unsigned long ip, const char *str);
770extern int __trace_puts(unsigned long ip, const char *str, int size);
771
772extern void trace_dump_stack(int skip);
773
774/*
775 * The double __builtin_constant_p is because gcc will give us an error
776 * if we try to allocate the static variable to fmt if it is not a
777 * constant. Even with the outer if statement.
778 */
779#define ftrace_vprintk(fmt, vargs) \
780do { \
781 if (__builtin_constant_p(fmt)) { \
782 static const char *trace_printk_fmt __used \
783 __attribute__((section("__trace_printk_fmt"))) = \
784 __builtin_constant_p(fmt) ? fmt : NULL; \
785 \
786 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
787 } else \
788 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
789} while (0)
790
791extern __printf(2, 0) int
792__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
793
794extern __printf(2, 0) int
795__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
796
797extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
798#else
799static inline void tracing_start(void) { }
800static inline void tracing_stop(void) { }
801static inline void trace_dump_stack(int skip) { }
802
803static inline void tracing_on(void) { }
804static inline void tracing_off(void) { }
805static inline int tracing_is_on(void) { return 0; }
806static inline void tracing_snapshot(void) { }
807static inline void tracing_snapshot_alloc(void) { }
808
809static inline __printf(1, 2)
810int trace_printk(const char *fmt, ...)
811{
812 return 0;
813}
814static __printf(1, 0) inline int
815ftrace_vprintk(const char *fmt, va_list ap)
816{
817 return 0;
818}
819static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
820#endif /* CONFIG_TRACING */
821
822/*
823 * min()/max()/clamp() macros must accomplish three things:
824 *
825 * - avoid multiple evaluations of the arguments (so side-effects like
826 * "x++" happen only once) when non-constant.
827 * - perform strict type-checking (to generate warnings instead of
828 * nasty runtime surprises). See the "unnecessary" pointer comparison
829 * in __typecheck().
830 * - retain result as a constant expressions when called with only
831 * constant expressions (to avoid tripping VLA warnings in stack
832 * allocation usage).
833 */
834#define __typecheck(x, y) \
835 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
836
837/*
838 * This returns a constant expression while determining if an argument is
839 * a constant expression, most importantly without evaluating the argument.
840 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
841 */
842#define __is_constexpr(x) \
843 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
844
845#define __no_side_effects(x, y) \
846 (__is_constexpr(x) && __is_constexpr(y))
847
848#define __safe_cmp(x, y) \
849 (__typecheck(x, y) && __no_side_effects(x, y))
850
851#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
852
853#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
854 typeof(x) unique_x = (x); \
855 typeof(y) unique_y = (y); \
856 __cmp(unique_x, unique_y, op); })
857
858#define __careful_cmp(x, y, op) \
859 __builtin_choose_expr(__safe_cmp(x, y), \
860 __cmp(x, y, op), \
861 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
862
863/**
864 * min - return minimum of two values of the same or compatible types
865 * @x: first value
866 * @y: second value
867 */
868#define min(x, y) __careful_cmp(x, y, <)
869
870/**
871 * max - return maximum of two values of the same or compatible types
872 * @x: first value
873 * @y: second value
874 */
875#define max(x, y) __careful_cmp(x, y, >)
876
877/**
878 * min3 - return minimum of three values
879 * @x: first value
880 * @y: second value
881 * @z: third value
882 */
883#define min3(x, y, z) min((typeof(x))min(x, y), z)
884
885/**
886 * max3 - return maximum of three values
887 * @x: first value
888 * @y: second value
889 * @z: third value
890 */
891#define max3(x, y, z) max((typeof(x))max(x, y), z)
892
893/**
894 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
895 * @x: value1
896 * @y: value2
897 */
898#define min_not_zero(x, y) ({ \
899 typeof(x) __x = (x); \
900 typeof(y) __y = (y); \
901 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
902
903/**
904 * clamp - return a value clamped to a given range with strict typechecking
905 * @val: current value
906 * @lo: lowest allowable value
907 * @hi: highest allowable value
908 *
909 * This macro does strict typechecking of @lo/@hi to make sure they are of the
910 * same type as @val. See the unnecessary pointer comparisons.
911 */
912#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
913
914/*
915 * ..and if you can't take the strict
916 * types, you can specify one yourself.
917 *
918 * Or not use min/max/clamp at all, of course.
919 */
920
921/**
922 * min_t - return minimum of two values, using the specified type
923 * @type: data type to use
924 * @x: first value
925 * @y: second value
926 */
927#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
928
929/**
930 * max_t - return maximum of two values, using the specified type
931 * @type: data type to use
932 * @x: first value
933 * @y: second value
934 */
935#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
936
937/**
938 * clamp_t - return a value clamped to a given range using a given type
939 * @type: the type of variable to use
940 * @val: current value
941 * @lo: minimum allowable value
942 * @hi: maximum allowable value
943 *
944 * This macro does no typechecking and uses temporary variables of type
945 * @type to make all the comparisons.
946 */
947#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
948
949/**
950 * clamp_val - return a value clamped to a given range using val's type
951 * @val: current value
952 * @lo: minimum allowable value
953 * @hi: maximum allowable value
954 *
955 * This macro does no typechecking and uses temporary variables of whatever
956 * type the input argument @val is. This is useful when @val is an unsigned
957 * type and @lo and @hi are literals that will otherwise be assigned a signed
958 * integer type.
959 */
960#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
961
962
963/**
964 * swap - swap values of @a and @b
965 * @a: first value
966 * @b: second value
967 */
968#define swap(a, b) \
969 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
970
971/* This counts to 12. Any more, it will return 13th argument. */
972#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
973#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
974
975#define __CONCAT(a, b) a ## b
976#define CONCATENATE(a, b) __CONCAT(a, b)
977
978/**
979 * container_of - cast a member of a structure out to the containing structure
980 * @ptr: the pointer to the member.
981 * @type: the type of the container struct this is embedded in.
982 * @member: the name of the member within the struct.
983 *
984 */
985#define container_of(ptr, type, member) ({ \
986 void *__mptr = (void *)(ptr); \
987 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
988 !__same_type(*(ptr), void), \
989 "pointer type mismatch in container_of()"); \
990 ((type *)(__mptr - offsetof(type, member))); })
991
992/**
993 * container_of_safe - cast a member of a structure out to the containing structure
994 * @ptr: the pointer to the member.
995 * @type: the type of the container struct this is embedded in.
996 * @member: the name of the member within the struct.
997 *
998 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
999 */
1000#define container_of_safe(ptr, type, member) ({ \
1001 void *__mptr = (void *)(ptr); \
1002 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
1003 !__same_type(*(ptr), void), \
1004 "pointer type mismatch in container_of()"); \
1005 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
1006 ((type *)(__mptr - offsetof(type, member))); })
1007
1008/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1009#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1010# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1011#endif
1012
1013/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1014#define VERIFY_OCTAL_PERMISSIONS(perms) \
1015 (BUILD_BUG_ON_ZERO((perms) < 0) + \
1016 BUILD_BUG_ON_ZERO((perms) > 0777) + \
1017 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
1018 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
1019 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
1020 /* USER_WRITABLE >= GROUP_WRITABLE */ \
1021 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
1022 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
1023 BUILD_BUG_ON_ZERO((perms) & 2) + \
1024 (perms))
1025#endif