at v5.6-rc2 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42}; 43 44/** 45 * enum dma_transaction_type - DMA transaction types/indexes 46 * 47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 48 * automatically set as dma devices are registered. 49 */ 50enum dma_transaction_type { 51 DMA_MEMCPY, 52 DMA_XOR, 53 DMA_PQ, 54 DMA_XOR_VAL, 55 DMA_PQ_VAL, 56 DMA_MEMSET, 57 DMA_MEMSET_SG, 58 DMA_INTERRUPT, 59 DMA_PRIVATE, 60 DMA_ASYNC_TX, 61 DMA_SLAVE, 62 DMA_CYCLIC, 63 DMA_INTERLEAVE, 64/* last transaction type for creation of the capabilities mask */ 65 DMA_TX_TYPE_END, 66}; 67 68/** 69 * enum dma_transfer_direction - dma transfer mode and direction indicator 70 * @DMA_MEM_TO_MEM: Async/Memcpy mode 71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 74 */ 75enum dma_transfer_direction { 76 DMA_MEM_TO_MEM, 77 DMA_MEM_TO_DEV, 78 DMA_DEV_TO_MEM, 79 DMA_DEV_TO_DEV, 80 DMA_TRANS_NONE, 81}; 82 83/** 84 * Interleaved Transfer Request 85 * ---------------------------- 86 * A chunk is collection of contiguous bytes to be transfered. 87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 88 * ICGs may or maynot change between chunks. 89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 90 * that when repeated an integral number of times, specifies the transfer. 91 * A transfer template is specification of a Frame, the number of times 92 * it is to be repeated and other per-transfer attributes. 93 * 94 * Practically, a client driver would have ready a template for each 95 * type of transfer it is going to need during its lifetime and 96 * set only 'src_start' and 'dst_start' before submitting the requests. 97 * 98 * 99 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 100 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 101 * 102 * == Chunk size 103 * ... ICG 104 */ 105 106/** 107 * struct data_chunk - Element of scatter-gather list that makes a frame. 108 * @size: Number of bytes to read from source. 109 * size_dst := fn(op, size_src), so doesn't mean much for destination. 110 * @icg: Number of bytes to jump after last src/dst address of this 111 * chunk and before first src/dst address for next chunk. 112 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 113 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 114 * @dst_icg: Number of bytes to jump after last dst address of this 115 * chunk and before the first dst address for next chunk. 116 * Ignored if dst_inc is true and dst_sgl is false. 117 * @src_icg: Number of bytes to jump after last src address of this 118 * chunk and before the first src address for next chunk. 119 * Ignored if src_inc is true and src_sgl is false. 120 */ 121struct data_chunk { 122 size_t size; 123 size_t icg; 124 size_t dst_icg; 125 size_t src_icg; 126}; 127 128/** 129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 130 * and attributes. 131 * @src_start: Bus address of source for the first chunk. 132 * @dst_start: Bus address of destination for the first chunk. 133 * @dir: Specifies the type of Source and Destination. 134 * @src_inc: If the source address increments after reading from it. 135 * @dst_inc: If the destination address increments after writing to it. 136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 137 * Otherwise, source is read contiguously (icg ignored). 138 * Ignored if src_inc is false. 139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 140 * Otherwise, destination is filled contiguously (icg ignored). 141 * Ignored if dst_inc is false. 142 * @numf: Number of frames in this template. 143 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 144 * @sgl: Array of {chunk,icg} pairs that make up a frame. 145 */ 146struct dma_interleaved_template { 147 dma_addr_t src_start; 148 dma_addr_t dst_start; 149 enum dma_transfer_direction dir; 150 bool src_inc; 151 bool dst_inc; 152 bool src_sgl; 153 bool dst_sgl; 154 size_t numf; 155 size_t frame_size; 156 struct data_chunk sgl[0]; 157}; 158 159/** 160 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 161 * control completion, and communicate status. 162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 163 * this transaction 164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 165 * acknowledges receipt, i.e. has has a chance to establish any dependency 166 * chains 167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 170 * sources that were the result of a previous operation, in the case of a PQ 171 * operation it continues the calculation with new sources 172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 173 * on the result of this operation 174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 175 * cleared or freed 176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 177 * data and the descriptor should be in different format from normal 178 * data descriptors. 179 */ 180enum dma_ctrl_flags { 181 DMA_PREP_INTERRUPT = (1 << 0), 182 DMA_CTRL_ACK = (1 << 1), 183 DMA_PREP_PQ_DISABLE_P = (1 << 2), 184 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 185 DMA_PREP_CONTINUE = (1 << 4), 186 DMA_PREP_FENCE = (1 << 5), 187 DMA_CTRL_REUSE = (1 << 6), 188 DMA_PREP_CMD = (1 << 7), 189}; 190 191/** 192 * enum sum_check_bits - bit position of pq_check_flags 193 */ 194enum sum_check_bits { 195 SUM_CHECK_P = 0, 196 SUM_CHECK_Q = 1, 197}; 198 199/** 200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 203 */ 204enum sum_check_flags { 205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 207}; 208 209 210/** 211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 212 * See linux/cpumask.h 213 */ 214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 215 216/** 217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 218 * @memcpy_count: transaction counter 219 * @bytes_transferred: byte counter 220 */ 221 222/** 223 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 224 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 225 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 226 * helper) to the descriptor. 227 * 228 * Client drivers interested to use this mode can follow: 229 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 230 * 1. prepare the descriptor (dmaengine_prep_*) 231 * construct the metadata in the client's buffer 232 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 233 * descriptor 234 * 3. submit the transfer 235 * - DMA_DEV_TO_MEM: 236 * 1. prepare the descriptor (dmaengine_prep_*) 237 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 238 * descriptor 239 * 3. submit the transfer 240 * 4. when the transfer is completed, the metadata should be available in the 241 * attached buffer 242 * 243 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 244 * driver. The client driver can ask for the pointer, maximum size and the 245 * currently used size of the metadata and can directly update or read it. 246 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 247 * provided as helper functions. 248 * 249 * Note: the metadata area for the descriptor is no longer valid after the 250 * transfer has been completed (valid up to the point when the completion 251 * callback returns if used). 252 * 253 * Client drivers interested to use this mode can follow: 254 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 255 * 1. prepare the descriptor (dmaengine_prep_*) 256 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 257 * metadata area 258 * 3. update the metadata at the pointer 259 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 260 * of data the client has placed into the metadata buffer 261 * 5. submit the transfer 262 * - DMA_DEV_TO_MEM: 263 * 1. prepare the descriptor (dmaengine_prep_*) 264 * 2. submit the transfer 265 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 266 * pointer to the engine's metadata area 267 * 4. Read out the metadata from the pointer 268 * 269 * Note: the two mode is not compatible and clients must use one mode for a 270 * descriptor. 271 */ 272enum dma_desc_metadata_mode { 273 DESC_METADATA_NONE = 0, 274 DESC_METADATA_CLIENT = BIT(0), 275 DESC_METADATA_ENGINE = BIT(1), 276}; 277 278struct dma_chan_percpu { 279 /* stats */ 280 unsigned long memcpy_count; 281 unsigned long bytes_transferred; 282}; 283 284/** 285 * struct dma_router - DMA router structure 286 * @dev: pointer to the DMA router device 287 * @route_free: function to be called when the route can be disconnected 288 */ 289struct dma_router { 290 struct device *dev; 291 void (*route_free)(struct device *dev, void *route_data); 292}; 293 294/** 295 * struct dma_chan - devices supply DMA channels, clients use them 296 * @device: ptr to the dma device who supplies this channel, always !%NULL 297 * @slave: ptr to the device using this channel 298 * @cookie: last cookie value returned to client 299 * @completed_cookie: last completed cookie for this channel 300 * @chan_id: channel ID for sysfs 301 * @dev: class device for sysfs 302 * @name: backlink name for sysfs 303 * @device_node: used to add this to the device chan list 304 * @local: per-cpu pointer to a struct dma_chan_percpu 305 * @client_count: how many clients are using this channel 306 * @table_count: number of appearances in the mem-to-mem allocation table 307 * @router: pointer to the DMA router structure 308 * @route_data: channel specific data for the router 309 * @private: private data for certain client-channel associations 310 */ 311struct dma_chan { 312 struct dma_device *device; 313 struct device *slave; 314 dma_cookie_t cookie; 315 dma_cookie_t completed_cookie; 316 317 /* sysfs */ 318 int chan_id; 319 struct dma_chan_dev *dev; 320 const char *name; 321 322 struct list_head device_node; 323 struct dma_chan_percpu __percpu *local; 324 int client_count; 325 int table_count; 326 327 /* DMA router */ 328 struct dma_router *router; 329 void *route_data; 330 331 void *private; 332}; 333 334/** 335 * struct dma_chan_dev - relate sysfs device node to backing channel device 336 * @chan: driver channel device 337 * @device: sysfs device 338 * @dev_id: parent dma_device dev_id 339 * @idr_ref: reference count to gate release of dma_device dev_id 340 */ 341struct dma_chan_dev { 342 struct dma_chan *chan; 343 struct device device; 344 int dev_id; 345 atomic_t *idr_ref; 346}; 347 348/** 349 * enum dma_slave_buswidth - defines bus width of the DMA slave 350 * device, source or target buses 351 */ 352enum dma_slave_buswidth { 353 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 354 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 355 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 356 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 357 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 358 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 359 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 360 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 361 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 362}; 363 364/** 365 * struct dma_slave_config - dma slave channel runtime config 366 * @direction: whether the data shall go in or out on this slave 367 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 368 * legal values. DEPRECATED, drivers should use the direction argument 369 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 370 * the dir field in the dma_interleaved_template structure. 371 * @src_addr: this is the physical address where DMA slave data 372 * should be read (RX), if the source is memory this argument is 373 * ignored. 374 * @dst_addr: this is the physical address where DMA slave data 375 * should be written (TX), if the source is memory this argument 376 * is ignored. 377 * @src_addr_width: this is the width in bytes of the source (RX) 378 * register where DMA data shall be read. If the source 379 * is memory this may be ignored depending on architecture. 380 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 381 * @dst_addr_width: same as src_addr_width but for destination 382 * target (TX) mutatis mutandis. 383 * @src_maxburst: the maximum number of words (note: words, as in 384 * units of the src_addr_width member, not bytes) that can be sent 385 * in one burst to the device. Typically something like half the 386 * FIFO depth on I/O peripherals so you don't overflow it. This 387 * may or may not be applicable on memory sources. 388 * @dst_maxburst: same as src_maxburst but for destination target 389 * mutatis mutandis. 390 * @src_port_window_size: The length of the register area in words the data need 391 * to be accessed on the device side. It is only used for devices which is using 392 * an area instead of a single register to receive the data. Typically the DMA 393 * loops in this area in order to transfer the data. 394 * @dst_port_window_size: same as src_port_window_size but for the destination 395 * port. 396 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 397 * with 'true' if peripheral should be flow controller. Direction will be 398 * selected at Runtime. 399 * @slave_id: Slave requester id. Only valid for slave channels. The dma 400 * slave peripheral will have unique id as dma requester which need to be 401 * pass as slave config. 402 * 403 * This struct is passed in as configuration data to a DMA engine 404 * in order to set up a certain channel for DMA transport at runtime. 405 * The DMA device/engine has to provide support for an additional 406 * callback in the dma_device structure, device_config and this struct 407 * will then be passed in as an argument to the function. 408 * 409 * The rationale for adding configuration information to this struct is as 410 * follows: if it is likely that more than one DMA slave controllers in 411 * the world will support the configuration option, then make it generic. 412 * If not: if it is fixed so that it be sent in static from the platform 413 * data, then prefer to do that. 414 */ 415struct dma_slave_config { 416 enum dma_transfer_direction direction; 417 phys_addr_t src_addr; 418 phys_addr_t dst_addr; 419 enum dma_slave_buswidth src_addr_width; 420 enum dma_slave_buswidth dst_addr_width; 421 u32 src_maxburst; 422 u32 dst_maxburst; 423 u32 src_port_window_size; 424 u32 dst_port_window_size; 425 bool device_fc; 426 unsigned int slave_id; 427}; 428 429/** 430 * enum dma_residue_granularity - Granularity of the reported transfer residue 431 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 432 * DMA channel is only able to tell whether a descriptor has been completed or 433 * not, which means residue reporting is not supported by this channel. The 434 * residue field of the dma_tx_state field will always be 0. 435 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 436 * completed segment of the transfer (For cyclic transfers this is after each 437 * period). This is typically implemented by having the hardware generate an 438 * interrupt after each transferred segment and then the drivers updates the 439 * outstanding residue by the size of the segment. Another possibility is if 440 * the hardware supports scatter-gather and the segment descriptor has a field 441 * which gets set after the segment has been completed. The driver then counts 442 * the number of segments without the flag set to compute the residue. 443 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 444 * burst. This is typically only supported if the hardware has a progress 445 * register of some sort (E.g. a register with the current read/write address 446 * or a register with the amount of bursts/beats/bytes that have been 447 * transferred or still need to be transferred). 448 */ 449enum dma_residue_granularity { 450 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 451 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 452 DMA_RESIDUE_GRANULARITY_BURST = 2, 453}; 454 455/** 456 * struct dma_slave_caps - expose capabilities of a slave channel only 457 * @src_addr_widths: bit mask of src addr widths the channel supports. 458 * Width is specified in bytes, e.g. for a channel supporting 459 * a width of 4 the mask should have BIT(4) set. 460 * @dst_addr_widths: bit mask of dst addr widths the channel supports 461 * @directions: bit mask of slave directions the channel supports. 462 * Since the enum dma_transfer_direction is not defined as bit flag for 463 * each type, the dma controller should set BIT(<TYPE>) and same 464 * should be checked by controller as well 465 * @max_burst: max burst capability per-transfer 466 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 467 * for resume later) 468 * @cmd_resume: true, if resume is supported 469 * @cmd_terminate: true, if terminate cmd is supported 470 * @residue_granularity: granularity of the reported transfer residue 471 * @descriptor_reuse: if a descriptor can be reused by client and 472 * resubmitted multiple times 473 */ 474struct dma_slave_caps { 475 u32 src_addr_widths; 476 u32 dst_addr_widths; 477 u32 directions; 478 u32 max_burst; 479 bool cmd_pause; 480 bool cmd_resume; 481 bool cmd_terminate; 482 enum dma_residue_granularity residue_granularity; 483 bool descriptor_reuse; 484}; 485 486static inline const char *dma_chan_name(struct dma_chan *chan) 487{ 488 return dev_name(&chan->dev->device); 489} 490 491void dma_chan_cleanup(struct kref *kref); 492 493/** 494 * typedef dma_filter_fn - callback filter for dma_request_channel 495 * @chan: channel to be reviewed 496 * @filter_param: opaque parameter passed through dma_request_channel 497 * 498 * When this optional parameter is specified in a call to dma_request_channel a 499 * suitable channel is passed to this routine for further dispositioning before 500 * being returned. Where 'suitable' indicates a non-busy channel that 501 * satisfies the given capability mask. It returns 'true' to indicate that the 502 * channel is suitable. 503 */ 504typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 505 506typedef void (*dma_async_tx_callback)(void *dma_async_param); 507 508enum dmaengine_tx_result { 509 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 510 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 511 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 512 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 513}; 514 515struct dmaengine_result { 516 enum dmaengine_tx_result result; 517 u32 residue; 518}; 519 520typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 521 const struct dmaengine_result *result); 522 523struct dmaengine_unmap_data { 524#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 525 u16 map_cnt; 526#else 527 u8 map_cnt; 528#endif 529 u8 to_cnt; 530 u8 from_cnt; 531 u8 bidi_cnt; 532 struct device *dev; 533 struct kref kref; 534 size_t len; 535 dma_addr_t addr[0]; 536}; 537 538struct dma_async_tx_descriptor; 539 540struct dma_descriptor_metadata_ops { 541 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 542 size_t len); 543 544 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 545 size_t *payload_len, size_t *max_len); 546 int (*set_len)(struct dma_async_tx_descriptor *desc, 547 size_t payload_len); 548}; 549 550/** 551 * struct dma_async_tx_descriptor - async transaction descriptor 552 * ---dma generic offload fields--- 553 * @cookie: tracking cookie for this transaction, set to -EBUSY if 554 * this tx is sitting on a dependency list 555 * @flags: flags to augment operation preparation, control completion, and 556 * communicate status 557 * @phys: physical address of the descriptor 558 * @chan: target channel for this operation 559 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 560 * descriptor pending. To be pushed on .issue_pending() call 561 * @callback: routine to call after this operation is complete 562 * @callback_param: general parameter to pass to the callback routine 563 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 564 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 565 * DESC_METADATA_NONE 566 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 567 * DMA driver if metadata mode is supported with the descriptor 568 * ---async_tx api specific fields--- 569 * @next: at completion submit this descriptor 570 * @parent: pointer to the next level up in the dependency chain 571 * @lock: protect the parent and next pointers 572 */ 573struct dma_async_tx_descriptor { 574 dma_cookie_t cookie; 575 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 576 dma_addr_t phys; 577 struct dma_chan *chan; 578 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 579 int (*desc_free)(struct dma_async_tx_descriptor *tx); 580 dma_async_tx_callback callback; 581 dma_async_tx_callback_result callback_result; 582 void *callback_param; 583 struct dmaengine_unmap_data *unmap; 584 enum dma_desc_metadata_mode desc_metadata_mode; 585 struct dma_descriptor_metadata_ops *metadata_ops; 586#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 587 struct dma_async_tx_descriptor *next; 588 struct dma_async_tx_descriptor *parent; 589 spinlock_t lock; 590#endif 591}; 592 593#ifdef CONFIG_DMA_ENGINE 594static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 595 struct dmaengine_unmap_data *unmap) 596{ 597 kref_get(&unmap->kref); 598 tx->unmap = unmap; 599} 600 601struct dmaengine_unmap_data * 602dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 603void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 604#else 605static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 606 struct dmaengine_unmap_data *unmap) 607{ 608} 609static inline struct dmaengine_unmap_data * 610dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 611{ 612 return NULL; 613} 614static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 615{ 616} 617#endif 618 619static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 620{ 621 if (tx->unmap) { 622 dmaengine_unmap_put(tx->unmap); 623 tx->unmap = NULL; 624 } 625} 626 627#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 628static inline void txd_lock(struct dma_async_tx_descriptor *txd) 629{ 630} 631static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 632{ 633} 634static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 635{ 636 BUG(); 637} 638static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 639{ 640} 641static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 642{ 643} 644static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 645{ 646 return NULL; 647} 648static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 649{ 650 return NULL; 651} 652 653#else 654static inline void txd_lock(struct dma_async_tx_descriptor *txd) 655{ 656 spin_lock_bh(&txd->lock); 657} 658static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 659{ 660 spin_unlock_bh(&txd->lock); 661} 662static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 663{ 664 txd->next = next; 665 next->parent = txd; 666} 667static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 668{ 669 txd->parent = NULL; 670} 671static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 672{ 673 txd->next = NULL; 674} 675static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 676{ 677 return txd->parent; 678} 679static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 680{ 681 return txd->next; 682} 683#endif 684 685/** 686 * struct dma_tx_state - filled in to report the status of 687 * a transfer. 688 * @last: last completed DMA cookie 689 * @used: last issued DMA cookie (i.e. the one in progress) 690 * @residue: the remaining number of bytes left to transmit 691 * on the selected transfer for states DMA_IN_PROGRESS and 692 * DMA_PAUSED if this is implemented in the driver, else 0 693 * @in_flight_bytes: amount of data in bytes cached by the DMA. 694 */ 695struct dma_tx_state { 696 dma_cookie_t last; 697 dma_cookie_t used; 698 u32 residue; 699 u32 in_flight_bytes; 700}; 701 702/** 703 * enum dmaengine_alignment - defines alignment of the DMA async tx 704 * buffers 705 */ 706enum dmaengine_alignment { 707 DMAENGINE_ALIGN_1_BYTE = 0, 708 DMAENGINE_ALIGN_2_BYTES = 1, 709 DMAENGINE_ALIGN_4_BYTES = 2, 710 DMAENGINE_ALIGN_8_BYTES = 3, 711 DMAENGINE_ALIGN_16_BYTES = 4, 712 DMAENGINE_ALIGN_32_BYTES = 5, 713 DMAENGINE_ALIGN_64_BYTES = 6, 714}; 715 716/** 717 * struct dma_slave_map - associates slave device and it's slave channel with 718 * parameter to be used by a filter function 719 * @devname: name of the device 720 * @slave: slave channel name 721 * @param: opaque parameter to pass to struct dma_filter.fn 722 */ 723struct dma_slave_map { 724 const char *devname; 725 const char *slave; 726 void *param; 727}; 728 729/** 730 * struct dma_filter - information for slave device/channel to filter_fn/param 731 * mapping 732 * @fn: filter function callback 733 * @mapcnt: number of slave device/channel in the map 734 * @map: array of channel to filter mapping data 735 */ 736struct dma_filter { 737 dma_filter_fn fn; 738 int mapcnt; 739 const struct dma_slave_map *map; 740}; 741 742/** 743 * struct dma_device - info on the entity supplying DMA services 744 * @chancnt: how many DMA channels are supported 745 * @privatecnt: how many DMA channels are requested by dma_request_channel 746 * @channels: the list of struct dma_chan 747 * @global_node: list_head for global dma_device_list 748 * @filter: information for device/slave to filter function/param mapping 749 * @cap_mask: one or more dma_capability flags 750 * @desc_metadata_modes: supported metadata modes by the DMA device 751 * @max_xor: maximum number of xor sources, 0 if no capability 752 * @max_pq: maximum number of PQ sources and PQ-continue capability 753 * @copy_align: alignment shift for memcpy operations 754 * @xor_align: alignment shift for xor operations 755 * @pq_align: alignment shift for pq operations 756 * @fill_align: alignment shift for memset operations 757 * @dev_id: unique device ID 758 * @dev: struct device reference for dma mapping api 759 * @owner: owner module (automatically set based on the provided dev) 760 * @src_addr_widths: bit mask of src addr widths the device supports 761 * Width is specified in bytes, e.g. for a device supporting 762 * a width of 4 the mask should have BIT(4) set. 763 * @dst_addr_widths: bit mask of dst addr widths the device supports 764 * @directions: bit mask of slave directions the device supports. 765 * Since the enum dma_transfer_direction is not defined as bit flag for 766 * each type, the dma controller should set BIT(<TYPE>) and same 767 * should be checked by controller as well 768 * @max_burst: max burst capability per-transfer 769 * @residue_granularity: granularity of the transfer residue reported 770 * by tx_status 771 * @device_alloc_chan_resources: allocate resources and return the 772 * number of allocated descriptors 773 * @device_free_chan_resources: release DMA channel's resources 774 * @device_prep_dma_memcpy: prepares a memcpy operation 775 * @device_prep_dma_xor: prepares a xor operation 776 * @device_prep_dma_xor_val: prepares a xor validation operation 777 * @device_prep_dma_pq: prepares a pq operation 778 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 779 * @device_prep_dma_memset: prepares a memset operation 780 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 781 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 782 * @device_prep_slave_sg: prepares a slave dma operation 783 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 784 * The function takes a buffer of size buf_len. The callback function will 785 * be called after period_len bytes have been transferred. 786 * @device_prep_interleaved_dma: Transfer expression in a generic way. 787 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 788 * @device_config: Pushes a new configuration to a channel, return 0 or an error 789 * code 790 * @device_pause: Pauses any transfer happening on a channel. Returns 791 * 0 or an error code 792 * @device_resume: Resumes any transfer on a channel previously 793 * paused. Returns 0 or an error code 794 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 795 * or an error code 796 * @device_synchronize: Synchronizes the termination of a transfers to the 797 * current context. 798 * @device_tx_status: poll for transaction completion, the optional 799 * txstate parameter can be supplied with a pointer to get a 800 * struct with auxiliary transfer status information, otherwise the call 801 * will just return a simple status code 802 * @device_issue_pending: push pending transactions to hardware 803 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 804 * @device_release: called sometime atfer dma_async_device_unregister() is 805 * called and there are no further references to this structure. This 806 * must be implemented to free resources however many existing drivers 807 * do not and are therefore not safe to unbind while in use. 808 * 809 */ 810struct dma_device { 811 struct kref ref; 812 unsigned int chancnt; 813 unsigned int privatecnt; 814 struct list_head channels; 815 struct list_head global_node; 816 struct dma_filter filter; 817 dma_cap_mask_t cap_mask; 818 enum dma_desc_metadata_mode desc_metadata_modes; 819 unsigned short max_xor; 820 unsigned short max_pq; 821 enum dmaengine_alignment copy_align; 822 enum dmaengine_alignment xor_align; 823 enum dmaengine_alignment pq_align; 824 enum dmaengine_alignment fill_align; 825 #define DMA_HAS_PQ_CONTINUE (1 << 15) 826 827 int dev_id; 828 struct device *dev; 829 struct module *owner; 830 831 u32 src_addr_widths; 832 u32 dst_addr_widths; 833 u32 directions; 834 u32 max_burst; 835 bool descriptor_reuse; 836 enum dma_residue_granularity residue_granularity; 837 838 int (*device_alloc_chan_resources)(struct dma_chan *chan); 839 void (*device_free_chan_resources)(struct dma_chan *chan); 840 841 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 842 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 843 size_t len, unsigned long flags); 844 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 845 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 846 unsigned int src_cnt, size_t len, unsigned long flags); 847 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 848 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 849 size_t len, enum sum_check_flags *result, unsigned long flags); 850 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 851 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 852 unsigned int src_cnt, const unsigned char *scf, 853 size_t len, unsigned long flags); 854 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 855 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 856 unsigned int src_cnt, const unsigned char *scf, size_t len, 857 enum sum_check_flags *pqres, unsigned long flags); 858 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 859 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 860 unsigned long flags); 861 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 862 struct dma_chan *chan, struct scatterlist *sg, 863 unsigned int nents, int value, unsigned long flags); 864 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 865 struct dma_chan *chan, unsigned long flags); 866 867 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 868 struct dma_chan *chan, struct scatterlist *sgl, 869 unsigned int sg_len, enum dma_transfer_direction direction, 870 unsigned long flags, void *context); 871 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 872 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 873 size_t period_len, enum dma_transfer_direction direction, 874 unsigned long flags); 875 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 876 struct dma_chan *chan, struct dma_interleaved_template *xt, 877 unsigned long flags); 878 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 879 struct dma_chan *chan, dma_addr_t dst, u64 data, 880 unsigned long flags); 881 882 int (*device_config)(struct dma_chan *chan, 883 struct dma_slave_config *config); 884 int (*device_pause)(struct dma_chan *chan); 885 int (*device_resume)(struct dma_chan *chan); 886 int (*device_terminate_all)(struct dma_chan *chan); 887 void (*device_synchronize)(struct dma_chan *chan); 888 889 enum dma_status (*device_tx_status)(struct dma_chan *chan, 890 dma_cookie_t cookie, 891 struct dma_tx_state *txstate); 892 void (*device_issue_pending)(struct dma_chan *chan); 893 void (*device_release)(struct dma_device *dev); 894}; 895 896static inline int dmaengine_slave_config(struct dma_chan *chan, 897 struct dma_slave_config *config) 898{ 899 if (chan->device->device_config) 900 return chan->device->device_config(chan, config); 901 902 return -ENOSYS; 903} 904 905static inline bool is_slave_direction(enum dma_transfer_direction direction) 906{ 907 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 908} 909 910static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 911 struct dma_chan *chan, dma_addr_t buf, size_t len, 912 enum dma_transfer_direction dir, unsigned long flags) 913{ 914 struct scatterlist sg; 915 sg_init_table(&sg, 1); 916 sg_dma_address(&sg) = buf; 917 sg_dma_len(&sg) = len; 918 919 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 920 return NULL; 921 922 return chan->device->device_prep_slave_sg(chan, &sg, 1, 923 dir, flags, NULL); 924} 925 926static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 927 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 928 enum dma_transfer_direction dir, unsigned long flags) 929{ 930 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 931 return NULL; 932 933 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 934 dir, flags, NULL); 935} 936 937#ifdef CONFIG_RAPIDIO_DMA_ENGINE 938struct rio_dma_ext; 939static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 940 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 941 enum dma_transfer_direction dir, unsigned long flags, 942 struct rio_dma_ext *rio_ext) 943{ 944 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 945 return NULL; 946 947 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 948 dir, flags, rio_ext); 949} 950#endif 951 952static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 953 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 954 size_t period_len, enum dma_transfer_direction dir, 955 unsigned long flags) 956{ 957 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 958 return NULL; 959 960 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 961 period_len, dir, flags); 962} 963 964static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 965 struct dma_chan *chan, struct dma_interleaved_template *xt, 966 unsigned long flags) 967{ 968 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 969 return NULL; 970 971 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 972} 973 974static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 975 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 976 unsigned long flags) 977{ 978 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 979 return NULL; 980 981 return chan->device->device_prep_dma_memset(chan, dest, value, 982 len, flags); 983} 984 985static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 986 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 987 size_t len, unsigned long flags) 988{ 989 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 990 return NULL; 991 992 return chan->device->device_prep_dma_memcpy(chan, dest, src, 993 len, flags); 994} 995 996static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 997 enum dma_desc_metadata_mode mode) 998{ 999 if (!chan) 1000 return false; 1001 1002 return !!(chan->device->desc_metadata_modes & mode); 1003} 1004 1005#ifdef CONFIG_DMA_ENGINE 1006int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1007 void *data, size_t len); 1008void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1009 size_t *payload_len, size_t *max_len); 1010int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1011 size_t payload_len); 1012#else /* CONFIG_DMA_ENGINE */ 1013static inline int dmaengine_desc_attach_metadata( 1014 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1015{ 1016 return -EINVAL; 1017} 1018static inline void *dmaengine_desc_get_metadata_ptr( 1019 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1020 size_t *max_len) 1021{ 1022 return NULL; 1023} 1024static inline int dmaengine_desc_set_metadata_len( 1025 struct dma_async_tx_descriptor *desc, size_t payload_len) 1026{ 1027 return -EINVAL; 1028} 1029#endif /* CONFIG_DMA_ENGINE */ 1030 1031/** 1032 * dmaengine_terminate_all() - Terminate all active DMA transfers 1033 * @chan: The channel for which to terminate the transfers 1034 * 1035 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1036 * dmaengine_terminate_async() instead. 1037 */ 1038static inline int dmaengine_terminate_all(struct dma_chan *chan) 1039{ 1040 if (chan->device->device_terminate_all) 1041 return chan->device->device_terminate_all(chan); 1042 1043 return -ENOSYS; 1044} 1045 1046/** 1047 * dmaengine_terminate_async() - Terminate all active DMA transfers 1048 * @chan: The channel for which to terminate the transfers 1049 * 1050 * Calling this function will terminate all active and pending descriptors 1051 * that have previously been submitted to the channel. It is not guaranteed 1052 * though that the transfer for the active descriptor has stopped when the 1053 * function returns. Furthermore it is possible the complete callback of a 1054 * submitted transfer is still running when this function returns. 1055 * 1056 * dmaengine_synchronize() needs to be called before it is safe to free 1057 * any memory that is accessed by previously submitted descriptors or before 1058 * freeing any resources accessed from within the completion callback of any 1059 * perviously submitted descriptors. 1060 * 1061 * This function can be called from atomic context as well as from within a 1062 * complete callback of a descriptor submitted on the same channel. 1063 * 1064 * If none of the two conditions above apply consider using 1065 * dmaengine_terminate_sync() instead. 1066 */ 1067static inline int dmaengine_terminate_async(struct dma_chan *chan) 1068{ 1069 if (chan->device->device_terminate_all) 1070 return chan->device->device_terminate_all(chan); 1071 1072 return -EINVAL; 1073} 1074 1075/** 1076 * dmaengine_synchronize() - Synchronize DMA channel termination 1077 * @chan: The channel to synchronize 1078 * 1079 * Synchronizes to the DMA channel termination to the current context. When this 1080 * function returns it is guaranteed that all transfers for previously issued 1081 * descriptors have stopped and and it is safe to free the memory assoicated 1082 * with them. Furthermore it is guaranteed that all complete callback functions 1083 * for a previously submitted descriptor have finished running and it is safe to 1084 * free resources accessed from within the complete callbacks. 1085 * 1086 * The behavior of this function is undefined if dma_async_issue_pending() has 1087 * been called between dmaengine_terminate_async() and this function. 1088 * 1089 * This function must only be called from non-atomic context and must not be 1090 * called from within a complete callback of a descriptor submitted on the same 1091 * channel. 1092 */ 1093static inline void dmaengine_synchronize(struct dma_chan *chan) 1094{ 1095 might_sleep(); 1096 1097 if (chan->device->device_synchronize) 1098 chan->device->device_synchronize(chan); 1099} 1100 1101/** 1102 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1103 * @chan: The channel for which to terminate the transfers 1104 * 1105 * Calling this function will terminate all active and pending transfers 1106 * that have previously been submitted to the channel. It is similar to 1107 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1108 * stopped and that all complete callbacks have finished running when the 1109 * function returns. 1110 * 1111 * This function must only be called from non-atomic context and must not be 1112 * called from within a complete callback of a descriptor submitted on the same 1113 * channel. 1114 */ 1115static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1116{ 1117 int ret; 1118 1119 ret = dmaengine_terminate_async(chan); 1120 if (ret) 1121 return ret; 1122 1123 dmaengine_synchronize(chan); 1124 1125 return 0; 1126} 1127 1128static inline int dmaengine_pause(struct dma_chan *chan) 1129{ 1130 if (chan->device->device_pause) 1131 return chan->device->device_pause(chan); 1132 1133 return -ENOSYS; 1134} 1135 1136static inline int dmaengine_resume(struct dma_chan *chan) 1137{ 1138 if (chan->device->device_resume) 1139 return chan->device->device_resume(chan); 1140 1141 return -ENOSYS; 1142} 1143 1144static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1145 dma_cookie_t cookie, struct dma_tx_state *state) 1146{ 1147 return chan->device->device_tx_status(chan, cookie, state); 1148} 1149 1150static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1151{ 1152 return desc->tx_submit(desc); 1153} 1154 1155static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1156 size_t off1, size_t off2, size_t len) 1157{ 1158 size_t mask; 1159 1160 if (!align) 1161 return true; 1162 mask = (1 << align) - 1; 1163 if (mask & (off1 | off2 | len)) 1164 return false; 1165 return true; 1166} 1167 1168static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1169 size_t off2, size_t len) 1170{ 1171 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1172} 1173 1174static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1175 size_t off2, size_t len) 1176{ 1177 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1178} 1179 1180static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1181 size_t off2, size_t len) 1182{ 1183 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1184} 1185 1186static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1187 size_t off2, size_t len) 1188{ 1189 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1190} 1191 1192static inline void 1193dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1194{ 1195 dma->max_pq = maxpq; 1196 if (has_pq_continue) 1197 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1198} 1199 1200static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1201{ 1202 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1203} 1204 1205static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1206{ 1207 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1208 1209 return (flags & mask) == mask; 1210} 1211 1212static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1213{ 1214 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1215} 1216 1217static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1218{ 1219 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1220} 1221 1222/* dma_maxpq - reduce maxpq in the face of continued operations 1223 * @dma - dma device with PQ capability 1224 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1225 * 1226 * When an engine does not support native continuation we need 3 extra 1227 * source slots to reuse P and Q with the following coefficients: 1228 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1229 * 2/ {01} * Q : use Q to continue Q' calculation 1230 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1231 * 1232 * In the case where P is disabled we only need 1 extra source: 1233 * 1/ {01} * Q : use Q to continue Q' calculation 1234 */ 1235static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1236{ 1237 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1238 return dma_dev_to_maxpq(dma); 1239 else if (dmaf_p_disabled_continue(flags)) 1240 return dma_dev_to_maxpq(dma) - 1; 1241 else if (dmaf_continue(flags)) 1242 return dma_dev_to_maxpq(dma) - 3; 1243 BUG(); 1244} 1245 1246static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1247 size_t dir_icg) 1248{ 1249 if (inc) { 1250 if (dir_icg) 1251 return dir_icg; 1252 else if (sgl) 1253 return icg; 1254 } 1255 1256 return 0; 1257} 1258 1259static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1260 struct data_chunk *chunk) 1261{ 1262 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1263 chunk->icg, chunk->dst_icg); 1264} 1265 1266static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1267 struct data_chunk *chunk) 1268{ 1269 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1270 chunk->icg, chunk->src_icg); 1271} 1272 1273/* --- public DMA engine API --- */ 1274 1275#ifdef CONFIG_DMA_ENGINE 1276void dmaengine_get(void); 1277void dmaengine_put(void); 1278#else 1279static inline void dmaengine_get(void) 1280{ 1281} 1282static inline void dmaengine_put(void) 1283{ 1284} 1285#endif 1286 1287#ifdef CONFIG_ASYNC_TX_DMA 1288#define async_dmaengine_get() dmaengine_get() 1289#define async_dmaengine_put() dmaengine_put() 1290#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1291#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1292#else 1293#define async_dma_find_channel(type) dma_find_channel(type) 1294#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1295#else 1296static inline void async_dmaengine_get(void) 1297{ 1298} 1299static inline void async_dmaengine_put(void) 1300{ 1301} 1302static inline struct dma_chan * 1303async_dma_find_channel(enum dma_transaction_type type) 1304{ 1305 return NULL; 1306} 1307#endif /* CONFIG_ASYNC_TX_DMA */ 1308void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1309 struct dma_chan *chan); 1310 1311static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1312{ 1313 tx->flags |= DMA_CTRL_ACK; 1314} 1315 1316static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1317{ 1318 tx->flags &= ~DMA_CTRL_ACK; 1319} 1320 1321static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1322{ 1323 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1324} 1325 1326#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1327static inline void 1328__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1329{ 1330 set_bit(tx_type, dstp->bits); 1331} 1332 1333#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1334static inline void 1335__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1336{ 1337 clear_bit(tx_type, dstp->bits); 1338} 1339 1340#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1341static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1342{ 1343 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1344} 1345 1346#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1347static inline int 1348__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1349{ 1350 return test_bit(tx_type, srcp->bits); 1351} 1352 1353#define for_each_dma_cap_mask(cap, mask) \ 1354 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1355 1356/** 1357 * dma_async_issue_pending - flush pending transactions to HW 1358 * @chan: target DMA channel 1359 * 1360 * This allows drivers to push copies to HW in batches, 1361 * reducing MMIO writes where possible. 1362 */ 1363static inline void dma_async_issue_pending(struct dma_chan *chan) 1364{ 1365 chan->device->device_issue_pending(chan); 1366} 1367 1368/** 1369 * dma_async_is_tx_complete - poll for transaction completion 1370 * @chan: DMA channel 1371 * @cookie: transaction identifier to check status of 1372 * @last: returns last completed cookie, can be NULL 1373 * @used: returns last issued cookie, can be NULL 1374 * 1375 * If @last and @used are passed in, upon return they reflect the driver 1376 * internal state and can be used with dma_async_is_complete() to check 1377 * the status of multiple cookies without re-checking hardware state. 1378 */ 1379static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1380 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1381{ 1382 struct dma_tx_state state; 1383 enum dma_status status; 1384 1385 status = chan->device->device_tx_status(chan, cookie, &state); 1386 if (last) 1387 *last = state.last; 1388 if (used) 1389 *used = state.used; 1390 return status; 1391} 1392 1393/** 1394 * dma_async_is_complete - test a cookie against chan state 1395 * @cookie: transaction identifier to test status of 1396 * @last_complete: last know completed transaction 1397 * @last_used: last cookie value handed out 1398 * 1399 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1400 * the test logic is separated for lightweight testing of multiple cookies 1401 */ 1402static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1403 dma_cookie_t last_complete, dma_cookie_t last_used) 1404{ 1405 if (last_complete <= last_used) { 1406 if ((cookie <= last_complete) || (cookie > last_used)) 1407 return DMA_COMPLETE; 1408 } else { 1409 if ((cookie <= last_complete) && (cookie > last_used)) 1410 return DMA_COMPLETE; 1411 } 1412 return DMA_IN_PROGRESS; 1413} 1414 1415static inline void 1416dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1417{ 1418 if (st) { 1419 st->last = last; 1420 st->used = used; 1421 st->residue = residue; 1422 } 1423} 1424 1425#ifdef CONFIG_DMA_ENGINE 1426struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1427enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1428enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1429void dma_issue_pending_all(void); 1430struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1431 dma_filter_fn fn, void *fn_param, 1432 struct device_node *np); 1433struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1434 1435struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1436struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1437 1438void dma_release_channel(struct dma_chan *chan); 1439int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1440#else 1441static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1442{ 1443 return NULL; 1444} 1445static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1446{ 1447 return DMA_COMPLETE; 1448} 1449static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1450{ 1451 return DMA_COMPLETE; 1452} 1453static inline void dma_issue_pending_all(void) 1454{ 1455} 1456static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1457 dma_filter_fn fn, 1458 void *fn_param, 1459 struct device_node *np) 1460{ 1461 return NULL; 1462} 1463static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1464 const char *name) 1465{ 1466 return NULL; 1467} 1468static inline struct dma_chan *dma_request_chan(struct device *dev, 1469 const char *name) 1470{ 1471 return ERR_PTR(-ENODEV); 1472} 1473static inline struct dma_chan *dma_request_chan_by_mask( 1474 const dma_cap_mask_t *mask) 1475{ 1476 return ERR_PTR(-ENODEV); 1477} 1478static inline void dma_release_channel(struct dma_chan *chan) 1479{ 1480} 1481static inline int dma_get_slave_caps(struct dma_chan *chan, 1482 struct dma_slave_caps *caps) 1483{ 1484 return -ENXIO; 1485} 1486#endif 1487 1488#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) 1489 1490static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1491{ 1492 struct dma_slave_caps caps; 1493 int ret; 1494 1495 ret = dma_get_slave_caps(tx->chan, &caps); 1496 if (ret) 1497 return ret; 1498 1499 if (caps.descriptor_reuse) { 1500 tx->flags |= DMA_CTRL_REUSE; 1501 return 0; 1502 } else { 1503 return -EPERM; 1504 } 1505} 1506 1507static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1508{ 1509 tx->flags &= ~DMA_CTRL_REUSE; 1510} 1511 1512static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1513{ 1514 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1515} 1516 1517static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1518{ 1519 /* this is supported for reusable desc, so check that */ 1520 if (dmaengine_desc_test_reuse(desc)) 1521 return desc->desc_free(desc); 1522 else 1523 return -EPERM; 1524} 1525 1526/* --- DMA device --- */ 1527 1528int dma_async_device_register(struct dma_device *device); 1529int dmaenginem_async_device_register(struct dma_device *device); 1530void dma_async_device_unregister(struct dma_device *device); 1531int dma_async_device_channel_register(struct dma_device *device, 1532 struct dma_chan *chan); 1533void dma_async_device_channel_unregister(struct dma_device *device, 1534 struct dma_chan *chan); 1535void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1536#define dma_request_channel(mask, x, y) \ 1537 __dma_request_channel(&(mask), x, y, NULL) 1538 1539static inline struct dma_chan 1540*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1541 dma_filter_fn fn, void *fn_param, 1542 struct device *dev, const char *name) 1543{ 1544 struct dma_chan *chan; 1545 1546 chan = dma_request_slave_channel(dev, name); 1547 if (chan) 1548 return chan; 1549 1550 if (!fn || !fn_param) 1551 return NULL; 1552 1553 return __dma_request_channel(&mask, fn, fn_param, NULL); 1554} 1555 1556static inline char * 1557dmaengine_get_direction_text(enum dma_transfer_direction dir) 1558{ 1559 switch (dir) { 1560 case DMA_DEV_TO_MEM: 1561 return "DEV_TO_MEM"; 1562 case DMA_MEM_TO_DEV: 1563 return "MEM_TO_DEV"; 1564 case DMA_MEM_TO_MEM: 1565 return "MEM_TO_MEM"; 1566 case DMA_DEV_TO_DEV: 1567 return "DEV_TO_DEV"; 1568 default: 1569 break; 1570 } 1571 1572 return "invalid"; 1573} 1574#endif /* DMAENGINE_H */