Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 return 0;
703
704restore_freq:
705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 __func__, old_freq);
708restore_voltage:
709 /* This shouldn't harm even if the voltages weren't updated earlier */
710 if (old_supply)
711 _set_opp_voltage(dev, reg, old_supply);
712
713 return ret;
714}
715
716static int _set_opp_custom(const struct opp_table *opp_table,
717 struct device *dev, unsigned long old_freq,
718 unsigned long freq,
719 struct dev_pm_opp_supply *old_supply,
720 struct dev_pm_opp_supply *new_supply)
721{
722 struct dev_pm_set_opp_data *data;
723 int size;
724
725 data = opp_table->set_opp_data;
726 data->regulators = opp_table->regulators;
727 data->regulator_count = opp_table->regulator_count;
728 data->clk = opp_table->clk;
729 data->dev = dev;
730
731 data->old_opp.rate = old_freq;
732 size = sizeof(*old_supply) * opp_table->regulator_count;
733 if (!old_supply)
734 memset(data->old_opp.supplies, 0, size);
735 else
736 memcpy(data->old_opp.supplies, old_supply, size);
737
738 data->new_opp.rate = freq;
739 memcpy(data->new_opp.supplies, new_supply, size);
740
741 return opp_table->set_opp(data);
742}
743
744/* This is only called for PM domain for now */
745static int _set_required_opps(struct device *dev,
746 struct opp_table *opp_table,
747 struct dev_pm_opp *opp)
748{
749 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 unsigned int pstate;
752 int i, ret = 0;
753
754 if (!required_opp_tables)
755 return 0;
756
757 /* Single genpd case */
758 if (!genpd_virt_devs) {
759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 if (ret) {
762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 dev_name(dev), pstate, ret);
764 }
765 return ret;
766 }
767
768 /* Multiple genpd case */
769
770 /*
771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 * after it is freed from another thread.
773 */
774 mutex_lock(&opp_table->genpd_virt_dev_lock);
775
776 for (i = 0; i < opp_table->required_opp_count; i++) {
777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778
779 if (!genpd_virt_devs[i])
780 continue;
781
782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 if (ret) {
784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 dev_name(genpd_virt_devs[i]), pstate, ret);
786 break;
787 }
788 }
789 mutex_unlock(&opp_table->genpd_virt_dev_lock);
790
791 return ret;
792}
793
794/**
795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796 * @dev: device for which we do this operation
797 * @target_freq: frequency to achieve
798 *
799 * This configures the power-supplies to the levels specified by the OPP
800 * corresponding to the target_freq, and programs the clock to a value <=
801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802 * provided by the opp, should have already rounded to the target OPP's
803 * frequency.
804 */
805int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806{
807 struct opp_table *opp_table;
808 unsigned long freq, old_freq, temp_freq;
809 struct dev_pm_opp *old_opp, *opp;
810 struct clk *clk;
811 int ret;
812
813 opp_table = _find_opp_table(dev);
814 if (IS_ERR(opp_table)) {
815 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 return PTR_ERR(opp_table);
817 }
818
819 if (unlikely(!target_freq)) {
820 if (opp_table->required_opp_tables) {
821 ret = _set_required_opps(dev, opp_table, NULL);
822 } else {
823 dev_err(dev, "target frequency can't be 0\n");
824 ret = -EINVAL;
825 }
826
827 goto put_opp_table;
828 }
829
830 clk = opp_table->clk;
831 if (IS_ERR(clk)) {
832 dev_err(dev, "%s: No clock available for the device\n",
833 __func__);
834 ret = PTR_ERR(clk);
835 goto put_opp_table;
836 }
837
838 freq = clk_round_rate(clk, target_freq);
839 if ((long)freq <= 0)
840 freq = target_freq;
841
842 old_freq = clk_get_rate(clk);
843
844 /* Return early if nothing to do */
845 if (old_freq == freq) {
846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 __func__, freq);
848 ret = 0;
849 goto put_opp_table;
850 }
851
852 temp_freq = old_freq;
853 old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 if (IS_ERR(old_opp)) {
855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 __func__, old_freq, PTR_ERR(old_opp));
857 }
858
859 temp_freq = freq;
860 opp = _find_freq_ceil(opp_table, &temp_freq);
861 if (IS_ERR(opp)) {
862 ret = PTR_ERR(opp);
863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 __func__, freq, ret);
865 goto put_old_opp;
866 }
867
868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 old_freq, freq);
870
871 /* Scaling up? Configure required OPPs before frequency */
872 if (freq >= old_freq) {
873 ret = _set_required_opps(dev, opp_table, opp);
874 if (ret)
875 goto put_opp;
876 }
877
878 if (opp_table->set_opp) {
879 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 opp->supplies);
882 } else if (opp_table->regulators) {
883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 opp->supplies);
886 } else {
887 /* Only frequency scaling */
888 ret = _generic_set_opp_clk_only(dev, clk, freq);
889 }
890
891 /* Scaling down? Configure required OPPs after frequency */
892 if (!ret && freq < old_freq) {
893 ret = _set_required_opps(dev, opp_table, opp);
894 if (ret)
895 dev_err(dev, "Failed to set required opps: %d\n", ret);
896 }
897
898put_opp:
899 dev_pm_opp_put(opp);
900put_old_opp:
901 if (!IS_ERR(old_opp))
902 dev_pm_opp_put(old_opp);
903put_opp_table:
904 dev_pm_opp_put_opp_table(opp_table);
905 return ret;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908
909/* OPP-dev Helpers */
910static void _remove_opp_dev(struct opp_device *opp_dev,
911 struct opp_table *opp_table)
912{
913 opp_debug_unregister(opp_dev, opp_table);
914 list_del(&opp_dev->node);
915 kfree(opp_dev);
916}
917
918static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 struct opp_table *opp_table)
920{
921 struct opp_device *opp_dev;
922
923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 if (!opp_dev)
925 return NULL;
926
927 /* Initialize opp-dev */
928 opp_dev->dev = dev;
929
930 list_add(&opp_dev->node, &opp_table->dev_list);
931
932 /* Create debugfs entries for the opp_table */
933 opp_debug_register(opp_dev, opp_table);
934
935 return opp_dev;
936}
937
938struct opp_device *_add_opp_dev(const struct device *dev,
939 struct opp_table *opp_table)
940{
941 struct opp_device *opp_dev;
942
943 mutex_lock(&opp_table->lock);
944 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 mutex_unlock(&opp_table->lock);
946
947 return opp_dev;
948}
949
950static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951{
952 struct opp_table *opp_table;
953 struct opp_device *opp_dev;
954 int ret;
955
956 /*
957 * Allocate a new OPP table. In the infrequent case where a new
958 * device is needed to be added, we pay this penalty.
959 */
960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 if (!opp_table)
962 return NULL;
963
964 mutex_init(&opp_table->lock);
965 mutex_init(&opp_table->genpd_virt_dev_lock);
966 INIT_LIST_HEAD(&opp_table->dev_list);
967
968 /* Mark regulator count uninitialized */
969 opp_table->regulator_count = -1;
970
971 opp_dev = _add_opp_dev(dev, opp_table);
972 if (!opp_dev) {
973 kfree(opp_table);
974 return NULL;
975 }
976
977 _of_init_opp_table(opp_table, dev, index);
978
979 /* Find clk for the device */
980 opp_table->clk = clk_get(dev, NULL);
981 if (IS_ERR(opp_table->clk)) {
982 ret = PTR_ERR(opp_table->clk);
983 if (ret != -EPROBE_DEFER)
984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 ret);
986 }
987
988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 INIT_LIST_HEAD(&opp_table->opp_list);
990 kref_init(&opp_table->kref);
991
992 /* Secure the device table modification */
993 list_add(&opp_table->node, &opp_tables);
994 return opp_table;
995}
996
997void _get_opp_table_kref(struct opp_table *opp_table)
998{
999 kref_get(&opp_table->kref);
1000}
1001
1002static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1003{
1004 struct opp_table *opp_table;
1005
1006 /* Hold our table modification lock here */
1007 mutex_lock(&opp_table_lock);
1008
1009 opp_table = _find_opp_table_unlocked(dev);
1010 if (!IS_ERR(opp_table))
1011 goto unlock;
1012
1013 opp_table = _managed_opp(dev, index);
1014 if (opp_table) {
1015 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1016 dev_pm_opp_put_opp_table(opp_table);
1017 opp_table = NULL;
1018 }
1019 goto unlock;
1020 }
1021
1022 opp_table = _allocate_opp_table(dev, index);
1023
1024unlock:
1025 mutex_unlock(&opp_table_lock);
1026
1027 return opp_table;
1028}
1029
1030struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1031{
1032 return _opp_get_opp_table(dev, 0);
1033}
1034EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1035
1036struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1037 int index)
1038{
1039 return _opp_get_opp_table(dev, index);
1040}
1041
1042static void _opp_table_kref_release(struct kref *kref)
1043{
1044 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1045 struct opp_device *opp_dev, *temp;
1046
1047 _of_clear_opp_table(opp_table);
1048
1049 /* Release clk */
1050 if (!IS_ERR(opp_table->clk))
1051 clk_put(opp_table->clk);
1052
1053 WARN_ON(!list_empty(&opp_table->opp_list));
1054
1055 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1056 /*
1057 * The OPP table is getting removed, drop the performance state
1058 * constraints.
1059 */
1060 if (opp_table->genpd_performance_state)
1061 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1062
1063 _remove_opp_dev(opp_dev, opp_table);
1064 }
1065
1066 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1067 mutex_destroy(&opp_table->lock);
1068 list_del(&opp_table->node);
1069 kfree(opp_table);
1070
1071 mutex_unlock(&opp_table_lock);
1072}
1073
1074void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1075{
1076 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1077 &opp_table_lock);
1078}
1079EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1080
1081void _opp_free(struct dev_pm_opp *opp)
1082{
1083 kfree(opp);
1084}
1085
1086static void _opp_kref_release(struct dev_pm_opp *opp,
1087 struct opp_table *opp_table)
1088{
1089 /*
1090 * Notify the changes in the availability of the operable
1091 * frequency/voltage list.
1092 */
1093 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1094 _of_opp_free_required_opps(opp_table, opp);
1095 opp_debug_remove_one(opp);
1096 list_del(&opp->node);
1097 kfree(opp);
1098}
1099
1100static void _opp_kref_release_unlocked(struct kref *kref)
1101{
1102 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1103 struct opp_table *opp_table = opp->opp_table;
1104
1105 _opp_kref_release(opp, opp_table);
1106}
1107
1108static void _opp_kref_release_locked(struct kref *kref)
1109{
1110 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1111 struct opp_table *opp_table = opp->opp_table;
1112
1113 _opp_kref_release(opp, opp_table);
1114 mutex_unlock(&opp_table->lock);
1115}
1116
1117void dev_pm_opp_get(struct dev_pm_opp *opp)
1118{
1119 kref_get(&opp->kref);
1120}
1121
1122void dev_pm_opp_put(struct dev_pm_opp *opp)
1123{
1124 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1125 &opp->opp_table->lock);
1126}
1127EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1128
1129static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1130{
1131 kref_put(&opp->kref, _opp_kref_release_unlocked);
1132}
1133
1134/**
1135 * dev_pm_opp_remove() - Remove an OPP from OPP table
1136 * @dev: device for which we do this operation
1137 * @freq: OPP to remove with matching 'freq'
1138 *
1139 * This function removes an opp from the opp table.
1140 */
1141void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1142{
1143 struct dev_pm_opp *opp;
1144 struct opp_table *opp_table;
1145 bool found = false;
1146
1147 opp_table = _find_opp_table(dev);
1148 if (IS_ERR(opp_table))
1149 return;
1150
1151 mutex_lock(&opp_table->lock);
1152
1153 list_for_each_entry(opp, &opp_table->opp_list, node) {
1154 if (opp->rate == freq) {
1155 found = true;
1156 break;
1157 }
1158 }
1159
1160 mutex_unlock(&opp_table->lock);
1161
1162 if (found) {
1163 dev_pm_opp_put(opp);
1164
1165 /* Drop the reference taken by dev_pm_opp_add() */
1166 dev_pm_opp_put_opp_table(opp_table);
1167 } else {
1168 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1169 __func__, freq);
1170 }
1171
1172 /* Drop the reference taken by _find_opp_table() */
1173 dev_pm_opp_put_opp_table(opp_table);
1174}
1175EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1176
1177void _opp_remove_all_static(struct opp_table *opp_table)
1178{
1179 struct dev_pm_opp *opp, *tmp;
1180
1181 mutex_lock(&opp_table->lock);
1182
1183 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1184 goto unlock;
1185
1186 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1187 if (!opp->dynamic)
1188 dev_pm_opp_put_unlocked(opp);
1189 }
1190
1191unlock:
1192 mutex_unlock(&opp_table->lock);
1193}
1194
1195/**
1196 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1197 * @dev: device for which we do this operation
1198 *
1199 * This function removes all dynamically created OPPs from the opp table.
1200 */
1201void dev_pm_opp_remove_all_dynamic(struct device *dev)
1202{
1203 struct opp_table *opp_table;
1204 struct dev_pm_opp *opp, *temp;
1205 int count = 0;
1206
1207 opp_table = _find_opp_table(dev);
1208 if (IS_ERR(opp_table))
1209 return;
1210
1211 mutex_lock(&opp_table->lock);
1212 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1213 if (opp->dynamic) {
1214 dev_pm_opp_put_unlocked(opp);
1215 count++;
1216 }
1217 }
1218 mutex_unlock(&opp_table->lock);
1219
1220 /* Drop the references taken by dev_pm_opp_add() */
1221 while (count--)
1222 dev_pm_opp_put_opp_table(opp_table);
1223
1224 /* Drop the reference taken by _find_opp_table() */
1225 dev_pm_opp_put_opp_table(opp_table);
1226}
1227EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1228
1229struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1230{
1231 struct dev_pm_opp *opp;
1232 int count, supply_size;
1233
1234 /* Allocate space for at least one supply */
1235 count = table->regulator_count > 0 ? table->regulator_count : 1;
1236 supply_size = sizeof(*opp->supplies) * count;
1237
1238 /* allocate new OPP node and supplies structures */
1239 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1240 if (!opp)
1241 return NULL;
1242
1243 /* Put the supplies at the end of the OPP structure as an empty array */
1244 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1245 INIT_LIST_HEAD(&opp->node);
1246
1247 return opp;
1248}
1249
1250static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1251 struct opp_table *opp_table)
1252{
1253 struct regulator *reg;
1254 int i;
1255
1256 if (!opp_table->regulators)
1257 return true;
1258
1259 for (i = 0; i < opp_table->regulator_count; i++) {
1260 reg = opp_table->regulators[i];
1261
1262 if (!regulator_is_supported_voltage(reg,
1263 opp->supplies[i].u_volt_min,
1264 opp->supplies[i].u_volt_max)) {
1265 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1266 __func__, opp->supplies[i].u_volt_min,
1267 opp->supplies[i].u_volt_max);
1268 return false;
1269 }
1270 }
1271
1272 return true;
1273}
1274
1275static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1276 struct opp_table *opp_table,
1277 struct list_head **head)
1278{
1279 struct dev_pm_opp *opp;
1280
1281 /*
1282 * Insert new OPP in order of increasing frequency and discard if
1283 * already present.
1284 *
1285 * Need to use &opp_table->opp_list in the condition part of the 'for'
1286 * loop, don't replace it with head otherwise it will become an infinite
1287 * loop.
1288 */
1289 list_for_each_entry(opp, &opp_table->opp_list, node) {
1290 if (new_opp->rate > opp->rate) {
1291 *head = &opp->node;
1292 continue;
1293 }
1294
1295 if (new_opp->rate < opp->rate)
1296 return 0;
1297
1298 /* Duplicate OPPs */
1299 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1300 __func__, opp->rate, opp->supplies[0].u_volt,
1301 opp->available, new_opp->rate,
1302 new_opp->supplies[0].u_volt, new_opp->available);
1303
1304 /* Should we compare voltages for all regulators here ? */
1305 return opp->available &&
1306 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1307 }
1308
1309 return 0;
1310}
1311
1312/*
1313 * Returns:
1314 * 0: On success. And appropriate error message for duplicate OPPs.
1315 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1316 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1317 * sure we don't print error messages unnecessarily if different parts of
1318 * kernel try to initialize the OPP table.
1319 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1320 * should be considered an error by the callers of _opp_add().
1321 */
1322int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1323 struct opp_table *opp_table, bool rate_not_available)
1324{
1325 struct list_head *head;
1326 int ret;
1327
1328 mutex_lock(&opp_table->lock);
1329 head = &opp_table->opp_list;
1330
1331 if (likely(!rate_not_available)) {
1332 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1333 if (ret) {
1334 mutex_unlock(&opp_table->lock);
1335 return ret;
1336 }
1337 }
1338
1339 list_add(&new_opp->node, head);
1340 mutex_unlock(&opp_table->lock);
1341
1342 new_opp->opp_table = opp_table;
1343 kref_init(&new_opp->kref);
1344
1345 opp_debug_create_one(new_opp, opp_table);
1346
1347 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1348 new_opp->available = false;
1349 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1350 __func__, new_opp->rate);
1351 }
1352
1353 return 0;
1354}
1355
1356/**
1357 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1358 * @opp_table: OPP table
1359 * @dev: device for which we do this operation
1360 * @freq: Frequency in Hz for this OPP
1361 * @u_volt: Voltage in uVolts for this OPP
1362 * @dynamic: Dynamically added OPPs.
1363 *
1364 * This function adds an opp definition to the opp table and returns status.
1365 * The opp is made available by default and it can be controlled using
1366 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1367 *
1368 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1369 * and freed by dev_pm_opp_of_remove_table.
1370 *
1371 * Return:
1372 * 0 On success OR
1373 * Duplicate OPPs (both freq and volt are same) and opp->available
1374 * -EEXIST Freq are same and volt are different OR
1375 * Duplicate OPPs (both freq and volt are same) and !opp->available
1376 * -ENOMEM Memory allocation failure
1377 */
1378int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1379 unsigned long freq, long u_volt, bool dynamic)
1380{
1381 struct dev_pm_opp *new_opp;
1382 unsigned long tol;
1383 int ret;
1384
1385 new_opp = _opp_allocate(opp_table);
1386 if (!new_opp)
1387 return -ENOMEM;
1388
1389 /* populate the opp table */
1390 new_opp->rate = freq;
1391 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1392 new_opp->supplies[0].u_volt = u_volt;
1393 new_opp->supplies[0].u_volt_min = u_volt - tol;
1394 new_opp->supplies[0].u_volt_max = u_volt + tol;
1395 new_opp->available = true;
1396 new_opp->dynamic = dynamic;
1397
1398 ret = _opp_add(dev, new_opp, opp_table, false);
1399 if (ret) {
1400 /* Don't return error for duplicate OPPs */
1401 if (ret == -EBUSY)
1402 ret = 0;
1403 goto free_opp;
1404 }
1405
1406 /*
1407 * Notify the changes in the availability of the operable
1408 * frequency/voltage list.
1409 */
1410 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1411 return 0;
1412
1413free_opp:
1414 _opp_free(new_opp);
1415
1416 return ret;
1417}
1418
1419/**
1420 * dev_pm_opp_set_supported_hw() - Set supported platforms
1421 * @dev: Device for which supported-hw has to be set.
1422 * @versions: Array of hierarchy of versions to match.
1423 * @count: Number of elements in the array.
1424 *
1425 * This is required only for the V2 bindings, and it enables a platform to
1426 * specify the hierarchy of versions it supports. OPP layer will then enable
1427 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1428 * property.
1429 */
1430struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1431 const u32 *versions, unsigned int count)
1432{
1433 struct opp_table *opp_table;
1434
1435 opp_table = dev_pm_opp_get_opp_table(dev);
1436 if (!opp_table)
1437 return ERR_PTR(-ENOMEM);
1438
1439 /* Make sure there are no concurrent readers while updating opp_table */
1440 WARN_ON(!list_empty(&opp_table->opp_list));
1441
1442 /* Another CPU that shares the OPP table has set the property ? */
1443 if (opp_table->supported_hw)
1444 return opp_table;
1445
1446 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1447 GFP_KERNEL);
1448 if (!opp_table->supported_hw) {
1449 dev_pm_opp_put_opp_table(opp_table);
1450 return ERR_PTR(-ENOMEM);
1451 }
1452
1453 opp_table->supported_hw_count = count;
1454
1455 return opp_table;
1456}
1457EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1458
1459/**
1460 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1461 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1462 *
1463 * This is required only for the V2 bindings, and is called for a matching
1464 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1465 * will not be freed.
1466 */
1467void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1468{
1469 /* Make sure there are no concurrent readers while updating opp_table */
1470 WARN_ON(!list_empty(&opp_table->opp_list));
1471
1472 kfree(opp_table->supported_hw);
1473 opp_table->supported_hw = NULL;
1474 opp_table->supported_hw_count = 0;
1475
1476 dev_pm_opp_put_opp_table(opp_table);
1477}
1478EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1479
1480/**
1481 * dev_pm_opp_set_prop_name() - Set prop-extn name
1482 * @dev: Device for which the prop-name has to be set.
1483 * @name: name to postfix to properties.
1484 *
1485 * This is required only for the V2 bindings, and it enables a platform to
1486 * specify the extn to be used for certain property names. The properties to
1487 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1488 * should postfix the property name with -<name> while looking for them.
1489 */
1490struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1491{
1492 struct opp_table *opp_table;
1493
1494 opp_table = dev_pm_opp_get_opp_table(dev);
1495 if (!opp_table)
1496 return ERR_PTR(-ENOMEM);
1497
1498 /* Make sure there are no concurrent readers while updating opp_table */
1499 WARN_ON(!list_empty(&opp_table->opp_list));
1500
1501 /* Another CPU that shares the OPP table has set the property ? */
1502 if (opp_table->prop_name)
1503 return opp_table;
1504
1505 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1506 if (!opp_table->prop_name) {
1507 dev_pm_opp_put_opp_table(opp_table);
1508 return ERR_PTR(-ENOMEM);
1509 }
1510
1511 return opp_table;
1512}
1513EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1514
1515/**
1516 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1517 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1518 *
1519 * This is required only for the V2 bindings, and is called for a matching
1520 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1521 * will not be freed.
1522 */
1523void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1524{
1525 /* Make sure there are no concurrent readers while updating opp_table */
1526 WARN_ON(!list_empty(&opp_table->opp_list));
1527
1528 kfree(opp_table->prop_name);
1529 opp_table->prop_name = NULL;
1530
1531 dev_pm_opp_put_opp_table(opp_table);
1532}
1533EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1534
1535static int _allocate_set_opp_data(struct opp_table *opp_table)
1536{
1537 struct dev_pm_set_opp_data *data;
1538 int len, count = opp_table->regulator_count;
1539
1540 if (WARN_ON(!opp_table->regulators))
1541 return -EINVAL;
1542
1543 /* space for set_opp_data */
1544 len = sizeof(*data);
1545
1546 /* space for old_opp.supplies and new_opp.supplies */
1547 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1548
1549 data = kzalloc(len, GFP_KERNEL);
1550 if (!data)
1551 return -ENOMEM;
1552
1553 data->old_opp.supplies = (void *)(data + 1);
1554 data->new_opp.supplies = data->old_opp.supplies + count;
1555
1556 opp_table->set_opp_data = data;
1557
1558 return 0;
1559}
1560
1561static void _free_set_opp_data(struct opp_table *opp_table)
1562{
1563 kfree(opp_table->set_opp_data);
1564 opp_table->set_opp_data = NULL;
1565}
1566
1567/**
1568 * dev_pm_opp_set_regulators() - Set regulator names for the device
1569 * @dev: Device for which regulator name is being set.
1570 * @names: Array of pointers to the names of the regulator.
1571 * @count: Number of regulators.
1572 *
1573 * In order to support OPP switching, OPP layer needs to know the name of the
1574 * device's regulators, as the core would be required to switch voltages as
1575 * well.
1576 *
1577 * This must be called before any OPPs are initialized for the device.
1578 */
1579struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1580 const char * const names[],
1581 unsigned int count)
1582{
1583 struct opp_table *opp_table;
1584 struct regulator *reg;
1585 int ret, i;
1586
1587 opp_table = dev_pm_opp_get_opp_table(dev);
1588 if (!opp_table)
1589 return ERR_PTR(-ENOMEM);
1590
1591 /* This should be called before OPPs are initialized */
1592 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1593 ret = -EBUSY;
1594 goto err;
1595 }
1596
1597 /* Another CPU that shares the OPP table has set the regulators ? */
1598 if (opp_table->regulators)
1599 return opp_table;
1600
1601 opp_table->regulators = kmalloc_array(count,
1602 sizeof(*opp_table->regulators),
1603 GFP_KERNEL);
1604 if (!opp_table->regulators) {
1605 ret = -ENOMEM;
1606 goto err;
1607 }
1608
1609 for (i = 0; i < count; i++) {
1610 reg = regulator_get_optional(dev, names[i]);
1611 if (IS_ERR(reg)) {
1612 ret = PTR_ERR(reg);
1613 if (ret != -EPROBE_DEFER)
1614 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1615 __func__, names[i], ret);
1616 goto free_regulators;
1617 }
1618
1619 opp_table->regulators[i] = reg;
1620 }
1621
1622 opp_table->regulator_count = count;
1623
1624 /* Allocate block only once to pass to set_opp() routines */
1625 ret = _allocate_set_opp_data(opp_table);
1626 if (ret)
1627 goto free_regulators;
1628
1629 return opp_table;
1630
1631free_regulators:
1632 while (i != 0)
1633 regulator_put(opp_table->regulators[--i]);
1634
1635 kfree(opp_table->regulators);
1636 opp_table->regulators = NULL;
1637 opp_table->regulator_count = -1;
1638err:
1639 dev_pm_opp_put_opp_table(opp_table);
1640
1641 return ERR_PTR(ret);
1642}
1643EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1644
1645/**
1646 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1647 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1648 */
1649void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1650{
1651 int i;
1652
1653 if (!opp_table->regulators)
1654 goto put_opp_table;
1655
1656 /* Make sure there are no concurrent readers while updating opp_table */
1657 WARN_ON(!list_empty(&opp_table->opp_list));
1658
1659 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1660 regulator_put(opp_table->regulators[i]);
1661
1662 _free_set_opp_data(opp_table);
1663
1664 kfree(opp_table->regulators);
1665 opp_table->regulators = NULL;
1666 opp_table->regulator_count = -1;
1667
1668put_opp_table:
1669 dev_pm_opp_put_opp_table(opp_table);
1670}
1671EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1672
1673/**
1674 * dev_pm_opp_set_clkname() - Set clk name for the device
1675 * @dev: Device for which clk name is being set.
1676 * @name: Clk name.
1677 *
1678 * In order to support OPP switching, OPP layer needs to get pointer to the
1679 * clock for the device. Simple cases work fine without using this routine (i.e.
1680 * by passing connection-id as NULL), but for a device with multiple clocks
1681 * available, the OPP core needs to know the exact name of the clk to use.
1682 *
1683 * This must be called before any OPPs are initialized for the device.
1684 */
1685struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1686{
1687 struct opp_table *opp_table;
1688 int ret;
1689
1690 opp_table = dev_pm_opp_get_opp_table(dev);
1691 if (!opp_table)
1692 return ERR_PTR(-ENOMEM);
1693
1694 /* This should be called before OPPs are initialized */
1695 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1696 ret = -EBUSY;
1697 goto err;
1698 }
1699
1700 /* Already have default clk set, free it */
1701 if (!IS_ERR(opp_table->clk))
1702 clk_put(opp_table->clk);
1703
1704 /* Find clk for the device */
1705 opp_table->clk = clk_get(dev, name);
1706 if (IS_ERR(opp_table->clk)) {
1707 ret = PTR_ERR(opp_table->clk);
1708 if (ret != -EPROBE_DEFER) {
1709 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1710 ret);
1711 }
1712 goto err;
1713 }
1714
1715 return opp_table;
1716
1717err:
1718 dev_pm_opp_put_opp_table(opp_table);
1719
1720 return ERR_PTR(ret);
1721}
1722EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1723
1724/**
1725 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1726 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1727 */
1728void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1729{
1730 /* Make sure there are no concurrent readers while updating opp_table */
1731 WARN_ON(!list_empty(&opp_table->opp_list));
1732
1733 clk_put(opp_table->clk);
1734 opp_table->clk = ERR_PTR(-EINVAL);
1735
1736 dev_pm_opp_put_opp_table(opp_table);
1737}
1738EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1739
1740/**
1741 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1742 * @dev: Device for which the helper is getting registered.
1743 * @set_opp: Custom set OPP helper.
1744 *
1745 * This is useful to support complex platforms (like platforms with multiple
1746 * regulators per device), instead of the generic OPP set rate helper.
1747 *
1748 * This must be called before any OPPs are initialized for the device.
1749 */
1750struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1751 int (*set_opp)(struct dev_pm_set_opp_data *data))
1752{
1753 struct opp_table *opp_table;
1754
1755 if (!set_opp)
1756 return ERR_PTR(-EINVAL);
1757
1758 opp_table = dev_pm_opp_get_opp_table(dev);
1759 if (!opp_table)
1760 return ERR_PTR(-ENOMEM);
1761
1762 /* This should be called before OPPs are initialized */
1763 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1764 dev_pm_opp_put_opp_table(opp_table);
1765 return ERR_PTR(-EBUSY);
1766 }
1767
1768 /* Another CPU that shares the OPP table has set the helper ? */
1769 if (!opp_table->set_opp)
1770 opp_table->set_opp = set_opp;
1771
1772 return opp_table;
1773}
1774EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1775
1776/**
1777 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1778 * set_opp helper
1779 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1780 *
1781 * Release resources blocked for platform specific set_opp helper.
1782 */
1783void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1784{
1785 /* Make sure there are no concurrent readers while updating opp_table */
1786 WARN_ON(!list_empty(&opp_table->opp_list));
1787
1788 opp_table->set_opp = NULL;
1789 dev_pm_opp_put_opp_table(opp_table);
1790}
1791EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1792
1793static void _opp_detach_genpd(struct opp_table *opp_table)
1794{
1795 int index;
1796
1797 for (index = 0; index < opp_table->required_opp_count; index++) {
1798 if (!opp_table->genpd_virt_devs[index])
1799 continue;
1800
1801 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1802 opp_table->genpd_virt_devs[index] = NULL;
1803 }
1804
1805 kfree(opp_table->genpd_virt_devs);
1806 opp_table->genpd_virt_devs = NULL;
1807}
1808
1809/**
1810 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1811 * @dev: Consumer device for which the genpd is getting attached.
1812 * @names: Null terminated array of pointers containing names of genpd to attach.
1813 * @virt_devs: Pointer to return the array of virtual devices.
1814 *
1815 * Multiple generic power domains for a device are supported with the help of
1816 * virtual genpd devices, which are created for each consumer device - genpd
1817 * pair. These are the device structures which are attached to the power domain
1818 * and are required by the OPP core to set the performance state of the genpd.
1819 * The same API also works for the case where single genpd is available and so
1820 * we don't need to support that separately.
1821 *
1822 * This helper will normally be called by the consumer driver of the device
1823 * "dev", as only that has details of the genpd names.
1824 *
1825 * This helper needs to be called once with a list of all genpd to attach.
1826 * Otherwise the original device structure will be used instead by the OPP core.
1827 *
1828 * The order of entries in the names array must match the order in which
1829 * "required-opps" are added in DT.
1830 */
1831struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1832 const char **names, struct device ***virt_devs)
1833{
1834 struct opp_table *opp_table;
1835 struct device *virt_dev;
1836 int index = 0, ret = -EINVAL;
1837 const char **name = names;
1838
1839 opp_table = dev_pm_opp_get_opp_table(dev);
1840 if (!opp_table)
1841 return ERR_PTR(-ENOMEM);
1842
1843 /*
1844 * If the genpd's OPP table isn't already initialized, parsing of the
1845 * required-opps fail for dev. We should retry this after genpd's OPP
1846 * table is added.
1847 */
1848 if (!opp_table->required_opp_count) {
1849 ret = -EPROBE_DEFER;
1850 goto put_table;
1851 }
1852
1853 mutex_lock(&opp_table->genpd_virt_dev_lock);
1854
1855 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1856 sizeof(*opp_table->genpd_virt_devs),
1857 GFP_KERNEL);
1858 if (!opp_table->genpd_virt_devs)
1859 goto unlock;
1860
1861 while (*name) {
1862 if (index >= opp_table->required_opp_count) {
1863 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1864 *name, opp_table->required_opp_count, index);
1865 goto err;
1866 }
1867
1868 if (opp_table->genpd_virt_devs[index]) {
1869 dev_err(dev, "Genpd virtual device already set %s\n",
1870 *name);
1871 goto err;
1872 }
1873
1874 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1875 if (IS_ERR(virt_dev)) {
1876 ret = PTR_ERR(virt_dev);
1877 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1878 goto err;
1879 }
1880
1881 opp_table->genpd_virt_devs[index] = virt_dev;
1882 index++;
1883 name++;
1884 }
1885
1886 if (virt_devs)
1887 *virt_devs = opp_table->genpd_virt_devs;
1888 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1889
1890 return opp_table;
1891
1892err:
1893 _opp_detach_genpd(opp_table);
1894unlock:
1895 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1896
1897put_table:
1898 dev_pm_opp_put_opp_table(opp_table);
1899
1900 return ERR_PTR(ret);
1901}
1902EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1903
1904/**
1905 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1906 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1907 *
1908 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1909 * OPP table.
1910 */
1911void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1912{
1913 /*
1914 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1915 * used in parallel.
1916 */
1917 mutex_lock(&opp_table->genpd_virt_dev_lock);
1918 _opp_detach_genpd(opp_table);
1919 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1920
1921 dev_pm_opp_put_opp_table(opp_table);
1922}
1923EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1924
1925/**
1926 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1927 * @src_table: OPP table which has dst_table as one of its required OPP table.
1928 * @dst_table: Required OPP table of the src_table.
1929 * @pstate: Current performance state of the src_table.
1930 *
1931 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1932 * "required-opps" property of the OPP (present in @src_table) which has
1933 * performance state set to @pstate.
1934 *
1935 * Return: Zero or positive performance state on success, otherwise negative
1936 * value on errors.
1937 */
1938int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1939 struct opp_table *dst_table,
1940 unsigned int pstate)
1941{
1942 struct dev_pm_opp *opp;
1943 int dest_pstate = -EINVAL;
1944 int i;
1945
1946 if (!pstate)
1947 return 0;
1948
1949 /*
1950 * Normally the src_table will have the "required_opps" property set to
1951 * point to one of the OPPs in the dst_table, but in some cases the
1952 * genpd and its master have one to one mapping of performance states
1953 * and so none of them have the "required-opps" property set. Return the
1954 * pstate of the src_table as it is in such cases.
1955 */
1956 if (!src_table->required_opp_count)
1957 return pstate;
1958
1959 for (i = 0; i < src_table->required_opp_count; i++) {
1960 if (src_table->required_opp_tables[i]->np == dst_table->np)
1961 break;
1962 }
1963
1964 if (unlikely(i == src_table->required_opp_count)) {
1965 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1966 __func__, src_table, dst_table);
1967 return -EINVAL;
1968 }
1969
1970 mutex_lock(&src_table->lock);
1971
1972 list_for_each_entry(opp, &src_table->opp_list, node) {
1973 if (opp->pstate == pstate) {
1974 dest_pstate = opp->required_opps[i]->pstate;
1975 goto unlock;
1976 }
1977 }
1978
1979 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1980 dst_table);
1981
1982unlock:
1983 mutex_unlock(&src_table->lock);
1984
1985 return dest_pstate;
1986}
1987
1988/**
1989 * dev_pm_opp_add() - Add an OPP table from a table definitions
1990 * @dev: device for which we do this operation
1991 * @freq: Frequency in Hz for this OPP
1992 * @u_volt: Voltage in uVolts for this OPP
1993 *
1994 * This function adds an opp definition to the opp table and returns status.
1995 * The opp is made available by default and it can be controlled using
1996 * dev_pm_opp_enable/disable functions.
1997 *
1998 * Return:
1999 * 0 On success OR
2000 * Duplicate OPPs (both freq and volt are same) and opp->available
2001 * -EEXIST Freq are same and volt are different OR
2002 * Duplicate OPPs (both freq and volt are same) and !opp->available
2003 * -ENOMEM Memory allocation failure
2004 */
2005int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2006{
2007 struct opp_table *opp_table;
2008 int ret;
2009
2010 opp_table = dev_pm_opp_get_opp_table(dev);
2011 if (!opp_table)
2012 return -ENOMEM;
2013
2014 /* Fix regulator count for dynamic OPPs */
2015 opp_table->regulator_count = 1;
2016
2017 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2018 if (ret)
2019 dev_pm_opp_put_opp_table(opp_table);
2020
2021 return ret;
2022}
2023EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2024
2025/**
2026 * _opp_set_availability() - helper to set the availability of an opp
2027 * @dev: device for which we do this operation
2028 * @freq: OPP frequency to modify availability
2029 * @availability_req: availability status requested for this opp
2030 *
2031 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2032 * which is isolated here.
2033 *
2034 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2035 * copy operation, returns 0 if no modification was done OR modification was
2036 * successful.
2037 */
2038static int _opp_set_availability(struct device *dev, unsigned long freq,
2039 bool availability_req)
2040{
2041 struct opp_table *opp_table;
2042 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2043 int r = 0;
2044
2045 /* Find the opp_table */
2046 opp_table = _find_opp_table(dev);
2047 if (IS_ERR(opp_table)) {
2048 r = PTR_ERR(opp_table);
2049 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2050 return r;
2051 }
2052
2053 mutex_lock(&opp_table->lock);
2054
2055 /* Do we have the frequency? */
2056 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2057 if (tmp_opp->rate == freq) {
2058 opp = tmp_opp;
2059 break;
2060 }
2061 }
2062
2063 if (IS_ERR(opp)) {
2064 r = PTR_ERR(opp);
2065 goto unlock;
2066 }
2067
2068 /* Is update really needed? */
2069 if (opp->available == availability_req)
2070 goto unlock;
2071
2072 opp->available = availability_req;
2073
2074 dev_pm_opp_get(opp);
2075 mutex_unlock(&opp_table->lock);
2076
2077 /* Notify the change of the OPP availability */
2078 if (availability_req)
2079 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2080 opp);
2081 else
2082 blocking_notifier_call_chain(&opp_table->head,
2083 OPP_EVENT_DISABLE, opp);
2084
2085 dev_pm_opp_put(opp);
2086 goto put_table;
2087
2088unlock:
2089 mutex_unlock(&opp_table->lock);
2090put_table:
2091 dev_pm_opp_put_opp_table(opp_table);
2092 return r;
2093}
2094
2095/**
2096 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2097 * @dev: device for which we do this operation
2098 * @freq: OPP frequency to adjust voltage of
2099 * @u_volt: new OPP target voltage
2100 * @u_volt_min: new OPP min voltage
2101 * @u_volt_max: new OPP max voltage
2102 *
2103 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2104 * copy operation, returns 0 if no modifcation was done OR modification was
2105 * successful.
2106 */
2107int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2108 unsigned long u_volt, unsigned long u_volt_min,
2109 unsigned long u_volt_max)
2110
2111{
2112 struct opp_table *opp_table;
2113 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2114 int r = 0;
2115
2116 /* Find the opp_table */
2117 opp_table = _find_opp_table(dev);
2118 if (IS_ERR(opp_table)) {
2119 r = PTR_ERR(opp_table);
2120 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2121 return r;
2122 }
2123
2124 mutex_lock(&opp_table->lock);
2125
2126 /* Do we have the frequency? */
2127 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2128 if (tmp_opp->rate == freq) {
2129 opp = tmp_opp;
2130 break;
2131 }
2132 }
2133
2134 if (IS_ERR(opp)) {
2135 r = PTR_ERR(opp);
2136 goto adjust_unlock;
2137 }
2138
2139 /* Is update really needed? */
2140 if (opp->supplies->u_volt == u_volt)
2141 goto adjust_unlock;
2142
2143 opp->supplies->u_volt = u_volt;
2144 opp->supplies->u_volt_min = u_volt_min;
2145 opp->supplies->u_volt_max = u_volt_max;
2146
2147 dev_pm_opp_get(opp);
2148 mutex_unlock(&opp_table->lock);
2149
2150 /* Notify the voltage change of the OPP */
2151 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2152 opp);
2153
2154 dev_pm_opp_put(opp);
2155 goto adjust_put_table;
2156
2157adjust_unlock:
2158 mutex_unlock(&opp_table->lock);
2159adjust_put_table:
2160 dev_pm_opp_put_opp_table(opp_table);
2161 return r;
2162}
2163
2164/**
2165 * dev_pm_opp_enable() - Enable a specific OPP
2166 * @dev: device for which we do this operation
2167 * @freq: OPP frequency to enable
2168 *
2169 * Enables a provided opp. If the operation is valid, this returns 0, else the
2170 * corresponding error value. It is meant to be used for users an OPP available
2171 * after being temporarily made unavailable with dev_pm_opp_disable.
2172 *
2173 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2174 * copy operation, returns 0 if no modification was done OR modification was
2175 * successful.
2176 */
2177int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2178{
2179 return _opp_set_availability(dev, freq, true);
2180}
2181EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2182
2183/**
2184 * dev_pm_opp_disable() - Disable a specific OPP
2185 * @dev: device for which we do this operation
2186 * @freq: OPP frequency to disable
2187 *
2188 * Disables a provided opp. If the operation is valid, this returns
2189 * 0, else the corresponding error value. It is meant to be a temporary
2190 * control by users to make this OPP not available until the circumstances are
2191 * right to make it available again (with a call to dev_pm_opp_enable).
2192 *
2193 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2194 * copy operation, returns 0 if no modification was done OR modification was
2195 * successful.
2196 */
2197int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2198{
2199 return _opp_set_availability(dev, freq, false);
2200}
2201EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2202
2203/**
2204 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2205 * @dev: Device for which notifier needs to be registered
2206 * @nb: Notifier block to be registered
2207 *
2208 * Return: 0 on success or a negative error value.
2209 */
2210int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2211{
2212 struct opp_table *opp_table;
2213 int ret;
2214
2215 opp_table = _find_opp_table(dev);
2216 if (IS_ERR(opp_table))
2217 return PTR_ERR(opp_table);
2218
2219 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2220
2221 dev_pm_opp_put_opp_table(opp_table);
2222
2223 return ret;
2224}
2225EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2226
2227/**
2228 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2229 * @dev: Device for which notifier needs to be unregistered
2230 * @nb: Notifier block to be unregistered
2231 *
2232 * Return: 0 on success or a negative error value.
2233 */
2234int dev_pm_opp_unregister_notifier(struct device *dev,
2235 struct notifier_block *nb)
2236{
2237 struct opp_table *opp_table;
2238 int ret;
2239
2240 opp_table = _find_opp_table(dev);
2241 if (IS_ERR(opp_table))
2242 return PTR_ERR(opp_table);
2243
2244 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2245
2246 dev_pm_opp_put_opp_table(opp_table);
2247
2248 return ret;
2249}
2250EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2251
2252void _dev_pm_opp_find_and_remove_table(struct device *dev)
2253{
2254 struct opp_table *opp_table;
2255
2256 /* Check for existing table for 'dev' */
2257 opp_table = _find_opp_table(dev);
2258 if (IS_ERR(opp_table)) {
2259 int error = PTR_ERR(opp_table);
2260
2261 if (error != -ENODEV)
2262 WARN(1, "%s: opp_table: %d\n",
2263 IS_ERR_OR_NULL(dev) ?
2264 "Invalid device" : dev_name(dev),
2265 error);
2266 return;
2267 }
2268
2269 _opp_remove_all_static(opp_table);
2270
2271 /* Drop reference taken by _find_opp_table() */
2272 dev_pm_opp_put_opp_table(opp_table);
2273
2274 /* Drop reference taken while the OPP table was added */
2275 dev_pm_opp_put_opp_table(opp_table);
2276}
2277
2278/**
2279 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2280 * @dev: device pointer used to lookup OPP table.
2281 *
2282 * Free both OPPs created using static entries present in DT and the
2283 * dynamically added entries.
2284 */
2285void dev_pm_opp_remove_table(struct device *dev)
2286{
2287 _dev_pm_opp_find_and_remove_table(dev);
2288}
2289EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);