Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12#include <linux/vmalloc.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/sched/signal.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/set_memory.h>
23#include <linux/debugobjects.h>
24#include <linux/kallsyms.h>
25#include <linux/list.h>
26#include <linux/notifier.h>
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
30#include <linux/pfn.h>
31#include <linux/kmemleak.h>
32#include <linux/atomic.h>
33#include <linux/compiler.h>
34#include <linux/llist.h>
35#include <linux/bitops.h>
36#include <linux/rbtree_augmented.h>
37
38#include <linux/uaccess.h>
39#include <asm/tlbflush.h>
40#include <asm/shmparam.h>
41
42#include "internal.h"
43
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
59}
60
61/*** Page table manipulation functions ***/
62
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
83 continue;
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91{
92 pud_t *pud;
93 unsigned long next;
94
95 pud = pud_offset(p4d, addr);
96 do {
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
99 continue;
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
122static void vunmap_page_range(unsigned long addr, unsigned long end)
123{
124 pgd_t *pgd;
125 unsigned long next;
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139{
140 pte_t *pte;
141
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
147 pte = pte_alloc_kernel(pmd, addr);
148 if (!pte)
149 return -ENOMEM;
150 do {
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 (*nr)++;
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182{
183 pud_t *pud;
184 unsigned long next;
185
186 pud = pud_alloc(&init_mm, p4d, addr);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
222{
223 pgd_t *pgd;
224 unsigned long next;
225 unsigned long addr = start;
226 int err = 0;
227 int nr = 0;
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
231 do {
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 if (err)
235 return err;
236 } while (pgd++, addr = next, addr != end);
237
238 return nr;
239}
240
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
251int is_vmalloc_or_module_addr(const void *x)
252{
253 /*
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
266/*
267 * Walk a vmap address to the struct page it maps.
268 */
269struct page *vmalloc_to_page(const void *vmalloc_addr)
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
278
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
302 return NULL;
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
313 return page;
314}
315EXPORT_SYMBOL(vmalloc_to_page);
316
317/*
318 * Map a vmalloc()-space virtual address to the physical page frame number.
319 */
320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321{
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323}
324EXPORT_SYMBOL(vmalloc_to_pfn);
325
326
327/*** Global kva allocator ***/
328
329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331
332
333static DEFINE_SPINLOCK(vmap_area_lock);
334static DEFINE_SPINLOCK(free_vmap_area_lock);
335/* Export for kexec only */
336LIST_HEAD(vmap_area_list);
337static LLIST_HEAD(vmap_purge_list);
338static struct rb_root vmap_area_root = RB_ROOT;
339static bool vmap_initialized __read_mostly;
340
341/*
342 * This kmem_cache is used for vmap_area objects. Instead of
343 * allocating from slab we reuse an object from this cache to
344 * make things faster. Especially in "no edge" splitting of
345 * free block.
346 */
347static struct kmem_cache *vmap_area_cachep;
348
349/*
350 * This linked list is used in pair with free_vmap_area_root.
351 * It gives O(1) access to prev/next to perform fast coalescing.
352 */
353static LIST_HEAD(free_vmap_area_list);
354
355/*
356 * This augment red-black tree represents the free vmap space.
357 * All vmap_area objects in this tree are sorted by va->va_start
358 * address. It is used for allocation and merging when a vmap
359 * object is released.
360 *
361 * Each vmap_area node contains a maximum available free block
362 * of its sub-tree, right or left. Therefore it is possible to
363 * find a lowest match of free area.
364 */
365static struct rb_root free_vmap_area_root = RB_ROOT;
366
367/*
368 * Preload a CPU with one object for "no edge" split case. The
369 * aim is to get rid of allocations from the atomic context, thus
370 * to use more permissive allocation masks.
371 */
372static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
373
374static __always_inline unsigned long
375va_size(struct vmap_area *va)
376{
377 return (va->va_end - va->va_start);
378}
379
380static __always_inline unsigned long
381get_subtree_max_size(struct rb_node *node)
382{
383 struct vmap_area *va;
384
385 va = rb_entry_safe(node, struct vmap_area, rb_node);
386 return va ? va->subtree_max_size : 0;
387}
388
389/*
390 * Gets called when remove the node and rotate.
391 */
392static __always_inline unsigned long
393compute_subtree_max_size(struct vmap_area *va)
394{
395 return max3(va_size(va),
396 get_subtree_max_size(va->rb_node.rb_left),
397 get_subtree_max_size(va->rb_node.rb_right));
398}
399
400RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
402
403static void purge_vmap_area_lazy(void);
404static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405static unsigned long lazy_max_pages(void);
406
407static atomic_long_t nr_vmalloc_pages;
408
409unsigned long vmalloc_nr_pages(void)
410{
411 return atomic_long_read(&nr_vmalloc_pages);
412}
413
414static struct vmap_area *__find_vmap_area(unsigned long addr)
415{
416 struct rb_node *n = vmap_area_root.rb_node;
417
418 while (n) {
419 struct vmap_area *va;
420
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
423 n = n->rb_left;
424 else if (addr >= va->va_end)
425 n = n->rb_right;
426 else
427 return va;
428 }
429
430 return NULL;
431}
432
433/*
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
436 */
437static __always_inline struct rb_node **
438find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
441{
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
444
445 if (root) {
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
448 *parent = NULL;
449 return link;
450 }
451 } else {
452 link = &from;
453 }
454
455 /*
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
459 */
460 do {
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
462
463 /*
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
466 * or full overlaps.
467 */
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
474 else
475 BUG();
476 } while (*link);
477
478 *parent = &tmp_va->rb_node;
479 return link;
480}
481
482static __always_inline struct list_head *
483get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484{
485 struct list_head *list;
486
487 if (unlikely(!parent))
488 /*
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
493 */
494 return NULL;
495
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
498}
499
500static __always_inline void
501link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
503{
504 /*
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
507 */
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
511 head = head->prev;
512 }
513
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
517 /*
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
523 *
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
527 */
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
531 } else {
532 rb_insert_color(&va->rb_node, root);
533 }
534
535 /* Address-sort this list */
536 list_add(&va->list, head);
537}
538
539static __always_inline void
540unlink_va(struct vmap_area *va, struct rb_root *root)
541{
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 return;
544
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
548 else
549 rb_erase(&va->rb_node, root);
550
551 list_del(&va->list);
552 RB_CLEAR_NODE(&va->rb_node);
553}
554
555#if DEBUG_AUGMENT_PROPAGATE_CHECK
556static void
557augment_tree_propagate_check(struct rb_node *n)
558{
559 struct vmap_area *va;
560 struct rb_node *node;
561 unsigned long size;
562 bool found = false;
563
564 if (n == NULL)
565 return;
566
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
569 node = n;
570
571 while (node) {
572 va = rb_entry(node, struct vmap_area, rb_node);
573
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
576 } else {
577 if (va_size(va) == size) {
578 found = true;
579 break;
580 }
581
582 node = node->rb_right;
583 }
584 }
585
586 if (!found) {
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
590 }
591
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
594}
595#endif
596
597/*
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
602 *
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
607 *
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
610 * to the root node.
611 *
612 * 4--8
613 * /\
614 * / \
615 * / \
616 * 2--2 8--8
617 *
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622 * node becomes 4--6.
623 */
624static __always_inline void
625augment_tree_propagate_from(struct vmap_area *va)
626{
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
629
630 while (node) {
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
633
634 /*
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
639 */
640 if (va->subtree_max_size == new_va_sub_max_size)
641 break;
642
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
645 }
646
647#if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
649#endif
650}
651
652static void
653insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
655{
656 struct rb_node **link;
657 struct rb_node *parent;
658
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
661}
662
663static void
664insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
667{
668 struct rb_node **link;
669 struct rb_node *parent;
670
671 if (from)
672 link = find_va_links(va, NULL, from, &parent);
673 else
674 link = find_va_links(va, root, NULL, &parent);
675
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
678}
679
680/*
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
684 * freed.
685 */
686static __always_inline struct vmap_area *
687merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
689{
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
694 bool merged = false;
695
696 /*
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
699 */
700 link = find_va_links(va, root, NULL, &parent);
701
702 /*
703 * Get next node of VA to check if merging can be done.
704 */
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
707 goto insert;
708
709 /*
710 * start end
711 * | |
712 * |<------VA------>|<-----Next----->|
713 * | |
714 * start end
715 */
716 if (next != head) {
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
720
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
723
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
726
727 /* Point to the new merged area. */
728 va = sibling;
729 merged = true;
730 }
731 }
732
733 /*
734 * start end
735 * | |
736 * |<-----Prev----->|<------VA------>|
737 * | |
738 * start end
739 */
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
744
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
747
748 if (merged)
749 unlink_va(va, root);
750
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
753
754 /* Point to the new merged area. */
755 va = sibling;
756 merged = true;
757 }
758 }
759
760insert:
761 if (!merged) {
762 link_va(va, root, parent, link, head);
763 augment_tree_propagate_from(va);
764 }
765
766 return va;
767}
768
769static __always_inline bool
770is_within_this_va(struct vmap_area *va, unsigned long size,
771 unsigned long align, unsigned long vstart)
772{
773 unsigned long nva_start_addr;
774
775 if (va->va_start > vstart)
776 nva_start_addr = ALIGN(va->va_start, align);
777 else
778 nva_start_addr = ALIGN(vstart, align);
779
780 /* Can be overflowed due to big size or alignment. */
781 if (nva_start_addr + size < nva_start_addr ||
782 nva_start_addr < vstart)
783 return false;
784
785 return (nva_start_addr + size <= va->va_end);
786}
787
788/*
789 * Find the first free block(lowest start address) in the tree,
790 * that will accomplish the request corresponding to passing
791 * parameters.
792 */
793static __always_inline struct vmap_area *
794find_vmap_lowest_match(unsigned long size,
795 unsigned long align, unsigned long vstart)
796{
797 struct vmap_area *va;
798 struct rb_node *node;
799 unsigned long length;
800
801 /* Start from the root. */
802 node = free_vmap_area_root.rb_node;
803
804 /* Adjust the search size for alignment overhead. */
805 length = size + align - 1;
806
807 while (node) {
808 va = rb_entry(node, struct vmap_area, rb_node);
809
810 if (get_subtree_max_size(node->rb_left) >= length &&
811 vstart < va->va_start) {
812 node = node->rb_left;
813 } else {
814 if (is_within_this_va(va, size, align, vstart))
815 return va;
816
817 /*
818 * Does not make sense to go deeper towards the right
819 * sub-tree if it does not have a free block that is
820 * equal or bigger to the requested search length.
821 */
822 if (get_subtree_max_size(node->rb_right) >= length) {
823 node = node->rb_right;
824 continue;
825 }
826
827 /*
828 * OK. We roll back and find the first right sub-tree,
829 * that will satisfy the search criteria. It can happen
830 * only once due to "vstart" restriction.
831 */
832 while ((node = rb_parent(node))) {
833 va = rb_entry(node, struct vmap_area, rb_node);
834 if (is_within_this_va(va, size, align, vstart))
835 return va;
836
837 if (get_subtree_max_size(node->rb_right) >= length &&
838 vstart <= va->va_start) {
839 node = node->rb_right;
840 break;
841 }
842 }
843 }
844 }
845
846 return NULL;
847}
848
849#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
850#include <linux/random.h>
851
852static struct vmap_area *
853find_vmap_lowest_linear_match(unsigned long size,
854 unsigned long align, unsigned long vstart)
855{
856 struct vmap_area *va;
857
858 list_for_each_entry(va, &free_vmap_area_list, list) {
859 if (!is_within_this_va(va, size, align, vstart))
860 continue;
861
862 return va;
863 }
864
865 return NULL;
866}
867
868static void
869find_vmap_lowest_match_check(unsigned long size)
870{
871 struct vmap_area *va_1, *va_2;
872 unsigned long vstart;
873 unsigned int rnd;
874
875 get_random_bytes(&rnd, sizeof(rnd));
876 vstart = VMALLOC_START + rnd;
877
878 va_1 = find_vmap_lowest_match(size, 1, vstart);
879 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
880
881 if (va_1 != va_2)
882 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
883 va_1, va_2, vstart);
884}
885#endif
886
887enum fit_type {
888 NOTHING_FIT = 0,
889 FL_FIT_TYPE = 1, /* full fit */
890 LE_FIT_TYPE = 2, /* left edge fit */
891 RE_FIT_TYPE = 3, /* right edge fit */
892 NE_FIT_TYPE = 4 /* no edge fit */
893};
894
895static __always_inline enum fit_type
896classify_va_fit_type(struct vmap_area *va,
897 unsigned long nva_start_addr, unsigned long size)
898{
899 enum fit_type type;
900
901 /* Check if it is within VA. */
902 if (nva_start_addr < va->va_start ||
903 nva_start_addr + size > va->va_end)
904 return NOTHING_FIT;
905
906 /* Now classify. */
907 if (va->va_start == nva_start_addr) {
908 if (va->va_end == nva_start_addr + size)
909 type = FL_FIT_TYPE;
910 else
911 type = LE_FIT_TYPE;
912 } else if (va->va_end == nva_start_addr + size) {
913 type = RE_FIT_TYPE;
914 } else {
915 type = NE_FIT_TYPE;
916 }
917
918 return type;
919}
920
921static __always_inline int
922adjust_va_to_fit_type(struct vmap_area *va,
923 unsigned long nva_start_addr, unsigned long size,
924 enum fit_type type)
925{
926 struct vmap_area *lva = NULL;
927
928 if (type == FL_FIT_TYPE) {
929 /*
930 * No need to split VA, it fully fits.
931 *
932 * | |
933 * V NVA V
934 * |---------------|
935 */
936 unlink_va(va, &free_vmap_area_root);
937 kmem_cache_free(vmap_area_cachep, va);
938 } else if (type == LE_FIT_TYPE) {
939 /*
940 * Split left edge of fit VA.
941 *
942 * | |
943 * V NVA V R
944 * |-------|-------|
945 */
946 va->va_start += size;
947 } else if (type == RE_FIT_TYPE) {
948 /*
949 * Split right edge of fit VA.
950 *
951 * | |
952 * L V NVA V
953 * |-------|-------|
954 */
955 va->va_end = nva_start_addr;
956 } else if (type == NE_FIT_TYPE) {
957 /*
958 * Split no edge of fit VA.
959 *
960 * | |
961 * L V NVA V R
962 * |---|-------|---|
963 */
964 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
965 if (unlikely(!lva)) {
966 /*
967 * For percpu allocator we do not do any pre-allocation
968 * and leave it as it is. The reason is it most likely
969 * never ends up with NE_FIT_TYPE splitting. In case of
970 * percpu allocations offsets and sizes are aligned to
971 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
972 * are its main fitting cases.
973 *
974 * There are a few exceptions though, as an example it is
975 * a first allocation (early boot up) when we have "one"
976 * big free space that has to be split.
977 *
978 * Also we can hit this path in case of regular "vmap"
979 * allocations, if "this" current CPU was not preloaded.
980 * See the comment in alloc_vmap_area() why. If so, then
981 * GFP_NOWAIT is used instead to get an extra object for
982 * split purpose. That is rare and most time does not
983 * occur.
984 *
985 * What happens if an allocation gets failed. Basically,
986 * an "overflow" path is triggered to purge lazily freed
987 * areas to free some memory, then, the "retry" path is
988 * triggered to repeat one more time. See more details
989 * in alloc_vmap_area() function.
990 */
991 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
992 if (!lva)
993 return -1;
994 }
995
996 /*
997 * Build the remainder.
998 */
999 lva->va_start = va->va_start;
1000 lva->va_end = nva_start_addr;
1001
1002 /*
1003 * Shrink this VA to remaining size.
1004 */
1005 va->va_start = nva_start_addr + size;
1006 } else {
1007 return -1;
1008 }
1009
1010 if (type != FL_FIT_TYPE) {
1011 augment_tree_propagate_from(va);
1012
1013 if (lva) /* type == NE_FIT_TYPE */
1014 insert_vmap_area_augment(lva, &va->rb_node,
1015 &free_vmap_area_root, &free_vmap_area_list);
1016 }
1017
1018 return 0;
1019}
1020
1021/*
1022 * Returns a start address of the newly allocated area, if success.
1023 * Otherwise a vend is returned that indicates failure.
1024 */
1025static __always_inline unsigned long
1026__alloc_vmap_area(unsigned long size, unsigned long align,
1027 unsigned long vstart, unsigned long vend)
1028{
1029 unsigned long nva_start_addr;
1030 struct vmap_area *va;
1031 enum fit_type type;
1032 int ret;
1033
1034 va = find_vmap_lowest_match(size, align, vstart);
1035 if (unlikely(!va))
1036 return vend;
1037
1038 if (va->va_start > vstart)
1039 nva_start_addr = ALIGN(va->va_start, align);
1040 else
1041 nva_start_addr = ALIGN(vstart, align);
1042
1043 /* Check the "vend" restriction. */
1044 if (nva_start_addr + size > vend)
1045 return vend;
1046
1047 /* Classify what we have found. */
1048 type = classify_va_fit_type(va, nva_start_addr, size);
1049 if (WARN_ON_ONCE(type == NOTHING_FIT))
1050 return vend;
1051
1052 /* Update the free vmap_area. */
1053 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1054 if (ret)
1055 return vend;
1056
1057#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1058 find_vmap_lowest_match_check(size);
1059#endif
1060
1061 return nva_start_addr;
1062}
1063
1064/*
1065 * Free a region of KVA allocated by alloc_vmap_area
1066 */
1067static void free_vmap_area(struct vmap_area *va)
1068{
1069 /*
1070 * Remove from the busy tree/list.
1071 */
1072 spin_lock(&vmap_area_lock);
1073 unlink_va(va, &vmap_area_root);
1074 spin_unlock(&vmap_area_lock);
1075
1076 /*
1077 * Insert/Merge it back to the free tree/list.
1078 */
1079 spin_lock(&free_vmap_area_lock);
1080 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1081 spin_unlock(&free_vmap_area_lock);
1082}
1083
1084/*
1085 * Allocate a region of KVA of the specified size and alignment, within the
1086 * vstart and vend.
1087 */
1088static struct vmap_area *alloc_vmap_area(unsigned long size,
1089 unsigned long align,
1090 unsigned long vstart, unsigned long vend,
1091 int node, gfp_t gfp_mask)
1092{
1093 struct vmap_area *va, *pva;
1094 unsigned long addr;
1095 int purged = 0;
1096 int ret;
1097
1098 BUG_ON(!size);
1099 BUG_ON(offset_in_page(size));
1100 BUG_ON(!is_power_of_2(align));
1101
1102 if (unlikely(!vmap_initialized))
1103 return ERR_PTR(-EBUSY);
1104
1105 might_sleep();
1106 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1107
1108 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1109 if (unlikely(!va))
1110 return ERR_PTR(-ENOMEM);
1111
1112 /*
1113 * Only scan the relevant parts containing pointers to other objects
1114 * to avoid false negatives.
1115 */
1116 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1117
1118retry:
1119 /*
1120 * Preload this CPU with one extra vmap_area object. It is used
1121 * when fit type of free area is NE_FIT_TYPE. Please note, it
1122 * does not guarantee that an allocation occurs on a CPU that
1123 * is preloaded, instead we minimize the case when it is not.
1124 * It can happen because of cpu migration, because there is a
1125 * race until the below spinlock is taken.
1126 *
1127 * The preload is done in non-atomic context, thus it allows us
1128 * to use more permissive allocation masks to be more stable under
1129 * low memory condition and high memory pressure. In rare case,
1130 * if not preloaded, GFP_NOWAIT is used.
1131 *
1132 * Set "pva" to NULL here, because of "retry" path.
1133 */
1134 pva = NULL;
1135
1136 if (!this_cpu_read(ne_fit_preload_node))
1137 /*
1138 * Even if it fails we do not really care about that.
1139 * Just proceed as it is. If needed "overflow" path
1140 * will refill the cache we allocate from.
1141 */
1142 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1143
1144 spin_lock(&free_vmap_area_lock);
1145
1146 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1147 kmem_cache_free(vmap_area_cachep, pva);
1148
1149 /*
1150 * If an allocation fails, the "vend" address is
1151 * returned. Therefore trigger the overflow path.
1152 */
1153 addr = __alloc_vmap_area(size, align, vstart, vend);
1154 spin_unlock(&free_vmap_area_lock);
1155
1156 if (unlikely(addr == vend))
1157 goto overflow;
1158
1159 va->va_start = addr;
1160 va->va_end = addr + size;
1161 va->vm = NULL;
1162
1163
1164 spin_lock(&vmap_area_lock);
1165 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1166 spin_unlock(&vmap_area_lock);
1167
1168 BUG_ON(!IS_ALIGNED(va->va_start, align));
1169 BUG_ON(va->va_start < vstart);
1170 BUG_ON(va->va_end > vend);
1171
1172 ret = kasan_populate_vmalloc(addr, size);
1173 if (ret) {
1174 free_vmap_area(va);
1175 return ERR_PTR(ret);
1176 }
1177
1178 return va;
1179
1180overflow:
1181 if (!purged) {
1182 purge_vmap_area_lazy();
1183 purged = 1;
1184 goto retry;
1185 }
1186
1187 if (gfpflags_allow_blocking(gfp_mask)) {
1188 unsigned long freed = 0;
1189 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1190 if (freed > 0) {
1191 purged = 0;
1192 goto retry;
1193 }
1194 }
1195
1196 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1197 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1198 size);
1199
1200 kmem_cache_free(vmap_area_cachep, va);
1201 return ERR_PTR(-EBUSY);
1202}
1203
1204int register_vmap_purge_notifier(struct notifier_block *nb)
1205{
1206 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1207}
1208EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1209
1210int unregister_vmap_purge_notifier(struct notifier_block *nb)
1211{
1212 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1213}
1214EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1215
1216/*
1217 * Clear the pagetable entries of a given vmap_area
1218 */
1219static void unmap_vmap_area(struct vmap_area *va)
1220{
1221 vunmap_page_range(va->va_start, va->va_end);
1222}
1223
1224/*
1225 * lazy_max_pages is the maximum amount of virtual address space we gather up
1226 * before attempting to purge with a TLB flush.
1227 *
1228 * There is a tradeoff here: a larger number will cover more kernel page tables
1229 * and take slightly longer to purge, but it will linearly reduce the number of
1230 * global TLB flushes that must be performed. It would seem natural to scale
1231 * this number up linearly with the number of CPUs (because vmapping activity
1232 * could also scale linearly with the number of CPUs), however it is likely
1233 * that in practice, workloads might be constrained in other ways that mean
1234 * vmap activity will not scale linearly with CPUs. Also, I want to be
1235 * conservative and not introduce a big latency on huge systems, so go with
1236 * a less aggressive log scale. It will still be an improvement over the old
1237 * code, and it will be simple to change the scale factor if we find that it
1238 * becomes a problem on bigger systems.
1239 */
1240static unsigned long lazy_max_pages(void)
1241{
1242 unsigned int log;
1243
1244 log = fls(num_online_cpus());
1245
1246 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1247}
1248
1249static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1250
1251/*
1252 * Serialize vmap purging. There is no actual criticial section protected
1253 * by this look, but we want to avoid concurrent calls for performance
1254 * reasons and to make the pcpu_get_vm_areas more deterministic.
1255 */
1256static DEFINE_MUTEX(vmap_purge_lock);
1257
1258/* for per-CPU blocks */
1259static void purge_fragmented_blocks_allcpus(void);
1260
1261/*
1262 * called before a call to iounmap() if the caller wants vm_area_struct's
1263 * immediately freed.
1264 */
1265void set_iounmap_nonlazy(void)
1266{
1267 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1268}
1269
1270/*
1271 * Purges all lazily-freed vmap areas.
1272 */
1273static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1274{
1275 unsigned long resched_threshold;
1276 struct llist_node *valist;
1277 struct vmap_area *va;
1278 struct vmap_area *n_va;
1279
1280 lockdep_assert_held(&vmap_purge_lock);
1281
1282 valist = llist_del_all(&vmap_purge_list);
1283 if (unlikely(valist == NULL))
1284 return false;
1285
1286 /*
1287 * First make sure the mappings are removed from all page-tables
1288 * before they are freed.
1289 */
1290 vmalloc_sync_all();
1291
1292 /*
1293 * TODO: to calculate a flush range without looping.
1294 * The list can be up to lazy_max_pages() elements.
1295 */
1296 llist_for_each_entry(va, valist, purge_list) {
1297 if (va->va_start < start)
1298 start = va->va_start;
1299 if (va->va_end > end)
1300 end = va->va_end;
1301 }
1302
1303 flush_tlb_kernel_range(start, end);
1304 resched_threshold = lazy_max_pages() << 1;
1305
1306 spin_lock(&free_vmap_area_lock);
1307 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1308 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1309 unsigned long orig_start = va->va_start;
1310 unsigned long orig_end = va->va_end;
1311
1312 /*
1313 * Finally insert or merge lazily-freed area. It is
1314 * detached and there is no need to "unlink" it from
1315 * anything.
1316 */
1317 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1318 &free_vmap_area_list);
1319
1320 if (is_vmalloc_or_module_addr((void *)orig_start))
1321 kasan_release_vmalloc(orig_start, orig_end,
1322 va->va_start, va->va_end);
1323
1324 atomic_long_sub(nr, &vmap_lazy_nr);
1325
1326 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1327 cond_resched_lock(&free_vmap_area_lock);
1328 }
1329 spin_unlock(&free_vmap_area_lock);
1330 return true;
1331}
1332
1333/*
1334 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1335 * is already purging.
1336 */
1337static void try_purge_vmap_area_lazy(void)
1338{
1339 if (mutex_trylock(&vmap_purge_lock)) {
1340 __purge_vmap_area_lazy(ULONG_MAX, 0);
1341 mutex_unlock(&vmap_purge_lock);
1342 }
1343}
1344
1345/*
1346 * Kick off a purge of the outstanding lazy areas.
1347 */
1348static void purge_vmap_area_lazy(void)
1349{
1350 mutex_lock(&vmap_purge_lock);
1351 purge_fragmented_blocks_allcpus();
1352 __purge_vmap_area_lazy(ULONG_MAX, 0);
1353 mutex_unlock(&vmap_purge_lock);
1354}
1355
1356/*
1357 * Free a vmap area, caller ensuring that the area has been unmapped
1358 * and flush_cache_vunmap had been called for the correct range
1359 * previously.
1360 */
1361static void free_vmap_area_noflush(struct vmap_area *va)
1362{
1363 unsigned long nr_lazy;
1364
1365 spin_lock(&vmap_area_lock);
1366 unlink_va(va, &vmap_area_root);
1367 spin_unlock(&vmap_area_lock);
1368
1369 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1370 PAGE_SHIFT, &vmap_lazy_nr);
1371
1372 /* After this point, we may free va at any time */
1373 llist_add(&va->purge_list, &vmap_purge_list);
1374
1375 if (unlikely(nr_lazy > lazy_max_pages()))
1376 try_purge_vmap_area_lazy();
1377}
1378
1379/*
1380 * Free and unmap a vmap area
1381 */
1382static void free_unmap_vmap_area(struct vmap_area *va)
1383{
1384 flush_cache_vunmap(va->va_start, va->va_end);
1385 unmap_vmap_area(va);
1386 if (debug_pagealloc_enabled_static())
1387 flush_tlb_kernel_range(va->va_start, va->va_end);
1388
1389 free_vmap_area_noflush(va);
1390}
1391
1392static struct vmap_area *find_vmap_area(unsigned long addr)
1393{
1394 struct vmap_area *va;
1395
1396 spin_lock(&vmap_area_lock);
1397 va = __find_vmap_area(addr);
1398 spin_unlock(&vmap_area_lock);
1399
1400 return va;
1401}
1402
1403/*** Per cpu kva allocator ***/
1404
1405/*
1406 * vmap space is limited especially on 32 bit architectures. Ensure there is
1407 * room for at least 16 percpu vmap blocks per CPU.
1408 */
1409/*
1410 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1411 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1412 * instead (we just need a rough idea)
1413 */
1414#if BITS_PER_LONG == 32
1415#define VMALLOC_SPACE (128UL*1024*1024)
1416#else
1417#define VMALLOC_SPACE (128UL*1024*1024*1024)
1418#endif
1419
1420#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1421#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1422#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1423#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1424#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1425#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1426#define VMAP_BBMAP_BITS \
1427 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1428 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1429 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1430
1431#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1432
1433struct vmap_block_queue {
1434 spinlock_t lock;
1435 struct list_head free;
1436};
1437
1438struct vmap_block {
1439 spinlock_t lock;
1440 struct vmap_area *va;
1441 unsigned long free, dirty;
1442 unsigned long dirty_min, dirty_max; /*< dirty range */
1443 struct list_head free_list;
1444 struct rcu_head rcu_head;
1445 struct list_head purge;
1446};
1447
1448/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1449static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1450
1451/*
1452 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1453 * in the free path. Could get rid of this if we change the API to return a
1454 * "cookie" from alloc, to be passed to free. But no big deal yet.
1455 */
1456static DEFINE_SPINLOCK(vmap_block_tree_lock);
1457static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1458
1459/*
1460 * We should probably have a fallback mechanism to allocate virtual memory
1461 * out of partially filled vmap blocks. However vmap block sizing should be
1462 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1463 * big problem.
1464 */
1465
1466static unsigned long addr_to_vb_idx(unsigned long addr)
1467{
1468 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1469 addr /= VMAP_BLOCK_SIZE;
1470 return addr;
1471}
1472
1473static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1474{
1475 unsigned long addr;
1476
1477 addr = va_start + (pages_off << PAGE_SHIFT);
1478 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1479 return (void *)addr;
1480}
1481
1482/**
1483 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1484 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1485 * @order: how many 2^order pages should be occupied in newly allocated block
1486 * @gfp_mask: flags for the page level allocator
1487 *
1488 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1489 */
1490static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1491{
1492 struct vmap_block_queue *vbq;
1493 struct vmap_block *vb;
1494 struct vmap_area *va;
1495 unsigned long vb_idx;
1496 int node, err;
1497 void *vaddr;
1498
1499 node = numa_node_id();
1500
1501 vb = kmalloc_node(sizeof(struct vmap_block),
1502 gfp_mask & GFP_RECLAIM_MASK, node);
1503 if (unlikely(!vb))
1504 return ERR_PTR(-ENOMEM);
1505
1506 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1507 VMALLOC_START, VMALLOC_END,
1508 node, gfp_mask);
1509 if (IS_ERR(va)) {
1510 kfree(vb);
1511 return ERR_CAST(va);
1512 }
1513
1514 err = radix_tree_preload(gfp_mask);
1515 if (unlikely(err)) {
1516 kfree(vb);
1517 free_vmap_area(va);
1518 return ERR_PTR(err);
1519 }
1520
1521 vaddr = vmap_block_vaddr(va->va_start, 0);
1522 spin_lock_init(&vb->lock);
1523 vb->va = va;
1524 /* At least something should be left free */
1525 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1526 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1527 vb->dirty = 0;
1528 vb->dirty_min = VMAP_BBMAP_BITS;
1529 vb->dirty_max = 0;
1530 INIT_LIST_HEAD(&vb->free_list);
1531
1532 vb_idx = addr_to_vb_idx(va->va_start);
1533 spin_lock(&vmap_block_tree_lock);
1534 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1535 spin_unlock(&vmap_block_tree_lock);
1536 BUG_ON(err);
1537 radix_tree_preload_end();
1538
1539 vbq = &get_cpu_var(vmap_block_queue);
1540 spin_lock(&vbq->lock);
1541 list_add_tail_rcu(&vb->free_list, &vbq->free);
1542 spin_unlock(&vbq->lock);
1543 put_cpu_var(vmap_block_queue);
1544
1545 return vaddr;
1546}
1547
1548static void free_vmap_block(struct vmap_block *vb)
1549{
1550 struct vmap_block *tmp;
1551 unsigned long vb_idx;
1552
1553 vb_idx = addr_to_vb_idx(vb->va->va_start);
1554 spin_lock(&vmap_block_tree_lock);
1555 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1556 spin_unlock(&vmap_block_tree_lock);
1557 BUG_ON(tmp != vb);
1558
1559 free_vmap_area_noflush(vb->va);
1560 kfree_rcu(vb, rcu_head);
1561}
1562
1563static void purge_fragmented_blocks(int cpu)
1564{
1565 LIST_HEAD(purge);
1566 struct vmap_block *vb;
1567 struct vmap_block *n_vb;
1568 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1569
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1572
1573 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1574 continue;
1575
1576 spin_lock(&vb->lock);
1577 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1578 vb->free = 0; /* prevent further allocs after releasing lock */
1579 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1580 vb->dirty_min = 0;
1581 vb->dirty_max = VMAP_BBMAP_BITS;
1582 spin_lock(&vbq->lock);
1583 list_del_rcu(&vb->free_list);
1584 spin_unlock(&vbq->lock);
1585 spin_unlock(&vb->lock);
1586 list_add_tail(&vb->purge, &purge);
1587 } else
1588 spin_unlock(&vb->lock);
1589 }
1590 rcu_read_unlock();
1591
1592 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1593 list_del(&vb->purge);
1594 free_vmap_block(vb);
1595 }
1596}
1597
1598static void purge_fragmented_blocks_allcpus(void)
1599{
1600 int cpu;
1601
1602 for_each_possible_cpu(cpu)
1603 purge_fragmented_blocks(cpu);
1604}
1605
1606static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1607{
1608 struct vmap_block_queue *vbq;
1609 struct vmap_block *vb;
1610 void *vaddr = NULL;
1611 unsigned int order;
1612
1613 BUG_ON(offset_in_page(size));
1614 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1615 if (WARN_ON(size == 0)) {
1616 /*
1617 * Allocating 0 bytes isn't what caller wants since
1618 * get_order(0) returns funny result. Just warn and terminate
1619 * early.
1620 */
1621 return NULL;
1622 }
1623 order = get_order(size);
1624
1625 rcu_read_lock();
1626 vbq = &get_cpu_var(vmap_block_queue);
1627 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1628 unsigned long pages_off;
1629
1630 spin_lock(&vb->lock);
1631 if (vb->free < (1UL << order)) {
1632 spin_unlock(&vb->lock);
1633 continue;
1634 }
1635
1636 pages_off = VMAP_BBMAP_BITS - vb->free;
1637 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1638 vb->free -= 1UL << order;
1639 if (vb->free == 0) {
1640 spin_lock(&vbq->lock);
1641 list_del_rcu(&vb->free_list);
1642 spin_unlock(&vbq->lock);
1643 }
1644
1645 spin_unlock(&vb->lock);
1646 break;
1647 }
1648
1649 put_cpu_var(vmap_block_queue);
1650 rcu_read_unlock();
1651
1652 /* Allocate new block if nothing was found */
1653 if (!vaddr)
1654 vaddr = new_vmap_block(order, gfp_mask);
1655
1656 return vaddr;
1657}
1658
1659static void vb_free(const void *addr, unsigned long size)
1660{
1661 unsigned long offset;
1662 unsigned long vb_idx;
1663 unsigned int order;
1664 struct vmap_block *vb;
1665
1666 BUG_ON(offset_in_page(size));
1667 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1668
1669 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1670
1671 order = get_order(size);
1672
1673 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1674 offset >>= PAGE_SHIFT;
1675
1676 vb_idx = addr_to_vb_idx((unsigned long)addr);
1677 rcu_read_lock();
1678 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1679 rcu_read_unlock();
1680 BUG_ON(!vb);
1681
1682 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1683
1684 if (debug_pagealloc_enabled_static())
1685 flush_tlb_kernel_range((unsigned long)addr,
1686 (unsigned long)addr + size);
1687
1688 spin_lock(&vb->lock);
1689
1690 /* Expand dirty range */
1691 vb->dirty_min = min(vb->dirty_min, offset);
1692 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1693
1694 vb->dirty += 1UL << order;
1695 if (vb->dirty == VMAP_BBMAP_BITS) {
1696 BUG_ON(vb->free);
1697 spin_unlock(&vb->lock);
1698 free_vmap_block(vb);
1699 } else
1700 spin_unlock(&vb->lock);
1701}
1702
1703static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1704{
1705 int cpu;
1706
1707 if (unlikely(!vmap_initialized))
1708 return;
1709
1710 might_sleep();
1711
1712 for_each_possible_cpu(cpu) {
1713 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1714 struct vmap_block *vb;
1715
1716 rcu_read_lock();
1717 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1718 spin_lock(&vb->lock);
1719 if (vb->dirty) {
1720 unsigned long va_start = vb->va->va_start;
1721 unsigned long s, e;
1722
1723 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1724 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1725
1726 start = min(s, start);
1727 end = max(e, end);
1728
1729 flush = 1;
1730 }
1731 spin_unlock(&vb->lock);
1732 }
1733 rcu_read_unlock();
1734 }
1735
1736 mutex_lock(&vmap_purge_lock);
1737 purge_fragmented_blocks_allcpus();
1738 if (!__purge_vmap_area_lazy(start, end) && flush)
1739 flush_tlb_kernel_range(start, end);
1740 mutex_unlock(&vmap_purge_lock);
1741}
1742
1743/**
1744 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1745 *
1746 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1747 * to amortize TLB flushing overheads. What this means is that any page you
1748 * have now, may, in a former life, have been mapped into kernel virtual
1749 * address by the vmap layer and so there might be some CPUs with TLB entries
1750 * still referencing that page (additional to the regular 1:1 kernel mapping).
1751 *
1752 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1753 * be sure that none of the pages we have control over will have any aliases
1754 * from the vmap layer.
1755 */
1756void vm_unmap_aliases(void)
1757{
1758 unsigned long start = ULONG_MAX, end = 0;
1759 int flush = 0;
1760
1761 _vm_unmap_aliases(start, end, flush);
1762}
1763EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1764
1765/**
1766 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1767 * @mem: the pointer returned by vm_map_ram
1768 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1769 */
1770void vm_unmap_ram(const void *mem, unsigned int count)
1771{
1772 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1773 unsigned long addr = (unsigned long)mem;
1774 struct vmap_area *va;
1775
1776 might_sleep();
1777 BUG_ON(!addr);
1778 BUG_ON(addr < VMALLOC_START);
1779 BUG_ON(addr > VMALLOC_END);
1780 BUG_ON(!PAGE_ALIGNED(addr));
1781
1782 kasan_poison_vmalloc(mem, size);
1783
1784 if (likely(count <= VMAP_MAX_ALLOC)) {
1785 debug_check_no_locks_freed(mem, size);
1786 vb_free(mem, size);
1787 return;
1788 }
1789
1790 va = find_vmap_area(addr);
1791 BUG_ON(!va);
1792 debug_check_no_locks_freed((void *)va->va_start,
1793 (va->va_end - va->va_start));
1794 free_unmap_vmap_area(va);
1795}
1796EXPORT_SYMBOL(vm_unmap_ram);
1797
1798/**
1799 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1800 * @pages: an array of pointers to the pages to be mapped
1801 * @count: number of pages
1802 * @node: prefer to allocate data structures on this node
1803 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1804 *
1805 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1806 * faster than vmap so it's good. But if you mix long-life and short-life
1807 * objects with vm_map_ram(), it could consume lots of address space through
1808 * fragmentation (especially on a 32bit machine). You could see failures in
1809 * the end. Please use this function for short-lived objects.
1810 *
1811 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1812 */
1813void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1814{
1815 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1816 unsigned long addr;
1817 void *mem;
1818
1819 if (likely(count <= VMAP_MAX_ALLOC)) {
1820 mem = vb_alloc(size, GFP_KERNEL);
1821 if (IS_ERR(mem))
1822 return NULL;
1823 addr = (unsigned long)mem;
1824 } else {
1825 struct vmap_area *va;
1826 va = alloc_vmap_area(size, PAGE_SIZE,
1827 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1828 if (IS_ERR(va))
1829 return NULL;
1830
1831 addr = va->va_start;
1832 mem = (void *)addr;
1833 }
1834
1835 kasan_unpoison_vmalloc(mem, size);
1836
1837 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1838 vm_unmap_ram(mem, count);
1839 return NULL;
1840 }
1841 return mem;
1842}
1843EXPORT_SYMBOL(vm_map_ram);
1844
1845static struct vm_struct *vmlist __initdata;
1846
1847/**
1848 * vm_area_add_early - add vmap area early during boot
1849 * @vm: vm_struct to add
1850 *
1851 * This function is used to add fixed kernel vm area to vmlist before
1852 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1853 * should contain proper values and the other fields should be zero.
1854 *
1855 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1856 */
1857void __init vm_area_add_early(struct vm_struct *vm)
1858{
1859 struct vm_struct *tmp, **p;
1860
1861 BUG_ON(vmap_initialized);
1862 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1863 if (tmp->addr >= vm->addr) {
1864 BUG_ON(tmp->addr < vm->addr + vm->size);
1865 break;
1866 } else
1867 BUG_ON(tmp->addr + tmp->size > vm->addr);
1868 }
1869 vm->next = *p;
1870 *p = vm;
1871}
1872
1873/**
1874 * vm_area_register_early - register vmap area early during boot
1875 * @vm: vm_struct to register
1876 * @align: requested alignment
1877 *
1878 * This function is used to register kernel vm area before
1879 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1880 * proper values on entry and other fields should be zero. On return,
1881 * vm->addr contains the allocated address.
1882 *
1883 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1884 */
1885void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1886{
1887 static size_t vm_init_off __initdata;
1888 unsigned long addr;
1889
1890 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1891 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1892
1893 vm->addr = (void *)addr;
1894
1895 vm_area_add_early(vm);
1896}
1897
1898static void vmap_init_free_space(void)
1899{
1900 unsigned long vmap_start = 1;
1901 const unsigned long vmap_end = ULONG_MAX;
1902 struct vmap_area *busy, *free;
1903
1904 /*
1905 * B F B B B F
1906 * -|-----|.....|-----|-----|-----|.....|-
1907 * | The KVA space |
1908 * |<--------------------------------->|
1909 */
1910 list_for_each_entry(busy, &vmap_area_list, list) {
1911 if (busy->va_start - vmap_start > 0) {
1912 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1913 if (!WARN_ON_ONCE(!free)) {
1914 free->va_start = vmap_start;
1915 free->va_end = busy->va_start;
1916
1917 insert_vmap_area_augment(free, NULL,
1918 &free_vmap_area_root,
1919 &free_vmap_area_list);
1920 }
1921 }
1922
1923 vmap_start = busy->va_end;
1924 }
1925
1926 if (vmap_end - vmap_start > 0) {
1927 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1928 if (!WARN_ON_ONCE(!free)) {
1929 free->va_start = vmap_start;
1930 free->va_end = vmap_end;
1931
1932 insert_vmap_area_augment(free, NULL,
1933 &free_vmap_area_root,
1934 &free_vmap_area_list);
1935 }
1936 }
1937}
1938
1939void __init vmalloc_init(void)
1940{
1941 struct vmap_area *va;
1942 struct vm_struct *tmp;
1943 int i;
1944
1945 /*
1946 * Create the cache for vmap_area objects.
1947 */
1948 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1949
1950 for_each_possible_cpu(i) {
1951 struct vmap_block_queue *vbq;
1952 struct vfree_deferred *p;
1953
1954 vbq = &per_cpu(vmap_block_queue, i);
1955 spin_lock_init(&vbq->lock);
1956 INIT_LIST_HEAD(&vbq->free);
1957 p = &per_cpu(vfree_deferred, i);
1958 init_llist_head(&p->list);
1959 INIT_WORK(&p->wq, free_work);
1960 }
1961
1962 /* Import existing vmlist entries. */
1963 for (tmp = vmlist; tmp; tmp = tmp->next) {
1964 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1965 if (WARN_ON_ONCE(!va))
1966 continue;
1967
1968 va->va_start = (unsigned long)tmp->addr;
1969 va->va_end = va->va_start + tmp->size;
1970 va->vm = tmp;
1971 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1972 }
1973
1974 /*
1975 * Now we can initialize a free vmap space.
1976 */
1977 vmap_init_free_space();
1978 vmap_initialized = true;
1979}
1980
1981/**
1982 * map_kernel_range_noflush - map kernel VM area with the specified pages
1983 * @addr: start of the VM area to map
1984 * @size: size of the VM area to map
1985 * @prot: page protection flags to use
1986 * @pages: pages to map
1987 *
1988 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1989 * specify should have been allocated using get_vm_area() and its
1990 * friends.
1991 *
1992 * NOTE:
1993 * This function does NOT do any cache flushing. The caller is
1994 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1995 * before calling this function.
1996 *
1997 * RETURNS:
1998 * The number of pages mapped on success, -errno on failure.
1999 */
2000int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2001 pgprot_t prot, struct page **pages)
2002{
2003 return vmap_page_range_noflush(addr, addr + size, prot, pages);
2004}
2005
2006/**
2007 * unmap_kernel_range_noflush - unmap kernel VM area
2008 * @addr: start of the VM area to unmap
2009 * @size: size of the VM area to unmap
2010 *
2011 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2012 * specify should have been allocated using get_vm_area() and its
2013 * friends.
2014 *
2015 * NOTE:
2016 * This function does NOT do any cache flushing. The caller is
2017 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2018 * before calling this function and flush_tlb_kernel_range() after.
2019 */
2020void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2021{
2022 vunmap_page_range(addr, addr + size);
2023}
2024EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2025
2026/**
2027 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028 * @addr: start of the VM area to unmap
2029 * @size: size of the VM area to unmap
2030 *
2031 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032 * the unmapping and tlb after.
2033 */
2034void unmap_kernel_range(unsigned long addr, unsigned long size)
2035{
2036 unsigned long end = addr + size;
2037
2038 flush_cache_vunmap(addr, end);
2039 vunmap_page_range(addr, end);
2040 flush_tlb_kernel_range(addr, end);
2041}
2042EXPORT_SYMBOL_GPL(unmap_kernel_range);
2043
2044int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2045{
2046 unsigned long addr = (unsigned long)area->addr;
2047 unsigned long end = addr + get_vm_area_size(area);
2048 int err;
2049
2050 err = vmap_page_range(addr, end, prot, pages);
2051
2052 return err > 0 ? 0 : err;
2053}
2054EXPORT_SYMBOL_GPL(map_vm_area);
2055
2056static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2057 struct vmap_area *va, unsigned long flags, const void *caller)
2058{
2059 vm->flags = flags;
2060 vm->addr = (void *)va->va_start;
2061 vm->size = va->va_end - va->va_start;
2062 vm->caller = caller;
2063 va->vm = vm;
2064}
2065
2066static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2067 unsigned long flags, const void *caller)
2068{
2069 spin_lock(&vmap_area_lock);
2070 setup_vmalloc_vm_locked(vm, va, flags, caller);
2071 spin_unlock(&vmap_area_lock);
2072}
2073
2074static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2075{
2076 /*
2077 * Before removing VM_UNINITIALIZED,
2078 * we should make sure that vm has proper values.
2079 * Pair with smp_rmb() in show_numa_info().
2080 */
2081 smp_wmb();
2082 vm->flags &= ~VM_UNINITIALIZED;
2083}
2084
2085static struct vm_struct *__get_vm_area_node(unsigned long size,
2086 unsigned long align, unsigned long flags, unsigned long start,
2087 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2088{
2089 struct vmap_area *va;
2090 struct vm_struct *area;
2091 unsigned long requested_size = size;
2092
2093 BUG_ON(in_interrupt());
2094 size = PAGE_ALIGN(size);
2095 if (unlikely(!size))
2096 return NULL;
2097
2098 if (flags & VM_IOREMAP)
2099 align = 1ul << clamp_t(int, get_count_order_long(size),
2100 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2101
2102 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2103 if (unlikely(!area))
2104 return NULL;
2105
2106 if (!(flags & VM_NO_GUARD))
2107 size += PAGE_SIZE;
2108
2109 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2110 if (IS_ERR(va)) {
2111 kfree(area);
2112 return NULL;
2113 }
2114
2115 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2116
2117 setup_vmalloc_vm(area, va, flags, caller);
2118
2119 return area;
2120}
2121
2122struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2123 unsigned long start, unsigned long end)
2124{
2125 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2126 GFP_KERNEL, __builtin_return_address(0));
2127}
2128EXPORT_SYMBOL_GPL(__get_vm_area);
2129
2130struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end,
2132 const void *caller)
2133{
2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 GFP_KERNEL, caller);
2136}
2137
2138/**
2139 * get_vm_area - reserve a contiguous kernel virtual area
2140 * @size: size of the area
2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2142 *
2143 * Search an area of @size in the kernel virtual mapping area,
2144 * and reserved it for out purposes. Returns the area descriptor
2145 * on success or %NULL on failure.
2146 *
2147 * Return: the area descriptor on success or %NULL on failure.
2148 */
2149struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2150{
2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2152 NUMA_NO_NODE, GFP_KERNEL,
2153 __builtin_return_address(0));
2154}
2155
2156struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2157 const void *caller)
2158{
2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 NUMA_NO_NODE, GFP_KERNEL, caller);
2161}
2162
2163/**
2164 * find_vm_area - find a continuous kernel virtual area
2165 * @addr: base address
2166 *
2167 * Search for the kernel VM area starting at @addr, and return it.
2168 * It is up to the caller to do all required locking to keep the returned
2169 * pointer valid.
2170 *
2171 * Return: pointer to the found area or %NULL on faulure
2172 */
2173struct vm_struct *find_vm_area(const void *addr)
2174{
2175 struct vmap_area *va;
2176
2177 va = find_vmap_area((unsigned long)addr);
2178 if (!va)
2179 return NULL;
2180
2181 return va->vm;
2182}
2183
2184/**
2185 * remove_vm_area - find and remove a continuous kernel virtual area
2186 * @addr: base address
2187 *
2188 * Search for the kernel VM area starting at @addr, and remove it.
2189 * This function returns the found VM area, but using it is NOT safe
2190 * on SMP machines, except for its size or flags.
2191 *
2192 * Return: pointer to the found area or %NULL on faulure
2193 */
2194struct vm_struct *remove_vm_area(const void *addr)
2195{
2196 struct vmap_area *va;
2197
2198 might_sleep();
2199
2200 spin_lock(&vmap_area_lock);
2201 va = __find_vmap_area((unsigned long)addr);
2202 if (va && va->vm) {
2203 struct vm_struct *vm = va->vm;
2204
2205 va->vm = NULL;
2206 spin_unlock(&vmap_area_lock);
2207
2208 kasan_free_shadow(vm);
2209 free_unmap_vmap_area(va);
2210
2211 return vm;
2212 }
2213
2214 spin_unlock(&vmap_area_lock);
2215 return NULL;
2216}
2217
2218static inline void set_area_direct_map(const struct vm_struct *area,
2219 int (*set_direct_map)(struct page *page))
2220{
2221 int i;
2222
2223 for (i = 0; i < area->nr_pages; i++)
2224 if (page_address(area->pages[i]))
2225 set_direct_map(area->pages[i]);
2226}
2227
2228/* Handle removing and resetting vm mappings related to the vm_struct. */
2229static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2230{
2231 unsigned long start = ULONG_MAX, end = 0;
2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2233 int flush_dmap = 0;
2234 int i;
2235
2236 remove_vm_area(area->addr);
2237
2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2239 if (!flush_reset)
2240 return;
2241
2242 /*
2243 * If not deallocating pages, just do the flush of the VM area and
2244 * return.
2245 */
2246 if (!deallocate_pages) {
2247 vm_unmap_aliases();
2248 return;
2249 }
2250
2251 /*
2252 * If execution gets here, flush the vm mapping and reset the direct
2253 * map. Find the start and end range of the direct mappings to make sure
2254 * the vm_unmap_aliases() flush includes the direct map.
2255 */
2256 for (i = 0; i < area->nr_pages; i++) {
2257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2258 if (addr) {
2259 start = min(addr, start);
2260 end = max(addr + PAGE_SIZE, end);
2261 flush_dmap = 1;
2262 }
2263 }
2264
2265 /*
2266 * Set direct map to something invalid so that it won't be cached if
2267 * there are any accesses after the TLB flush, then flush the TLB and
2268 * reset the direct map permissions to the default.
2269 */
2270 set_area_direct_map(area, set_direct_map_invalid_noflush);
2271 _vm_unmap_aliases(start, end, flush_dmap);
2272 set_area_direct_map(area, set_direct_map_default_noflush);
2273}
2274
2275static void __vunmap(const void *addr, int deallocate_pages)
2276{
2277 struct vm_struct *area;
2278
2279 if (!addr)
2280 return;
2281
2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2283 addr))
2284 return;
2285
2286 area = find_vm_area(addr);
2287 if (unlikely(!area)) {
2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2289 addr);
2290 return;
2291 }
2292
2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2295
2296 kasan_poison_vmalloc(area->addr, area->size);
2297
2298 vm_remove_mappings(area, deallocate_pages);
2299
2300 if (deallocate_pages) {
2301 int i;
2302
2303 for (i = 0; i < area->nr_pages; i++) {
2304 struct page *page = area->pages[i];
2305
2306 BUG_ON(!page);
2307 __free_pages(page, 0);
2308 }
2309 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2310
2311 kvfree(area->pages);
2312 }
2313
2314 kfree(area);
2315 return;
2316}
2317
2318static inline void __vfree_deferred(const void *addr)
2319{
2320 /*
2321 * Use raw_cpu_ptr() because this can be called from preemptible
2322 * context. Preemption is absolutely fine here, because the llist_add()
2323 * implementation is lockless, so it works even if we are adding to
2324 * nother cpu's list. schedule_work() should be fine with this too.
2325 */
2326 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2327
2328 if (llist_add((struct llist_node *)addr, &p->list))
2329 schedule_work(&p->wq);
2330}
2331
2332/**
2333 * vfree_atomic - release memory allocated by vmalloc()
2334 * @addr: memory base address
2335 *
2336 * This one is just like vfree() but can be called in any atomic context
2337 * except NMIs.
2338 */
2339void vfree_atomic(const void *addr)
2340{
2341 BUG_ON(in_nmi());
2342
2343 kmemleak_free(addr);
2344
2345 if (!addr)
2346 return;
2347 __vfree_deferred(addr);
2348}
2349
2350static void __vfree(const void *addr)
2351{
2352 if (unlikely(in_interrupt()))
2353 __vfree_deferred(addr);
2354 else
2355 __vunmap(addr, 1);
2356}
2357
2358/**
2359 * vfree - release memory allocated by vmalloc()
2360 * @addr: memory base address
2361 *
2362 * Free the virtually continuous memory area starting at @addr, as
2363 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2364 * NULL, no operation is performed.
2365 *
2366 * Must not be called in NMI context (strictly speaking, only if we don't
2367 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2368 * conventions for vfree() arch-depenedent would be a really bad idea)
2369 *
2370 * May sleep if called *not* from interrupt context.
2371 *
2372 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2373 */
2374void vfree(const void *addr)
2375{
2376 BUG_ON(in_nmi());
2377
2378 kmemleak_free(addr);
2379
2380 might_sleep_if(!in_interrupt());
2381
2382 if (!addr)
2383 return;
2384
2385 __vfree(addr);
2386}
2387EXPORT_SYMBOL(vfree);
2388
2389/**
2390 * vunmap - release virtual mapping obtained by vmap()
2391 * @addr: memory base address
2392 *
2393 * Free the virtually contiguous memory area starting at @addr,
2394 * which was created from the page array passed to vmap().
2395 *
2396 * Must not be called in interrupt context.
2397 */
2398void vunmap(const void *addr)
2399{
2400 BUG_ON(in_interrupt());
2401 might_sleep();
2402 if (addr)
2403 __vunmap(addr, 0);
2404}
2405EXPORT_SYMBOL(vunmap);
2406
2407/**
2408 * vmap - map an array of pages into virtually contiguous space
2409 * @pages: array of page pointers
2410 * @count: number of pages to map
2411 * @flags: vm_area->flags
2412 * @prot: page protection for the mapping
2413 *
2414 * Maps @count pages from @pages into contiguous kernel virtual
2415 * space.
2416 *
2417 * Return: the address of the area or %NULL on failure
2418 */
2419void *vmap(struct page **pages, unsigned int count,
2420 unsigned long flags, pgprot_t prot)
2421{
2422 struct vm_struct *area;
2423 unsigned long size; /* In bytes */
2424
2425 might_sleep();
2426
2427 if (count > totalram_pages())
2428 return NULL;
2429
2430 size = (unsigned long)count << PAGE_SHIFT;
2431 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2432 if (!area)
2433 return NULL;
2434
2435 if (map_vm_area(area, prot, pages)) {
2436 vunmap(area->addr);
2437 return NULL;
2438 }
2439
2440 return area->addr;
2441}
2442EXPORT_SYMBOL(vmap);
2443
2444static void *__vmalloc_node(unsigned long size, unsigned long align,
2445 gfp_t gfp_mask, pgprot_t prot,
2446 int node, const void *caller);
2447static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2448 pgprot_t prot, int node)
2449{
2450 struct page **pages;
2451 unsigned int nr_pages, array_size, i;
2452 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2453 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2454 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2455 0 :
2456 __GFP_HIGHMEM;
2457
2458 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2459 array_size = (nr_pages * sizeof(struct page *));
2460
2461 /* Please note that the recursion is strictly bounded. */
2462 if (array_size > PAGE_SIZE) {
2463 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2464 PAGE_KERNEL, node, area->caller);
2465 } else {
2466 pages = kmalloc_node(array_size, nested_gfp, node);
2467 }
2468
2469 if (!pages) {
2470 remove_vm_area(area->addr);
2471 kfree(area);
2472 return NULL;
2473 }
2474
2475 area->pages = pages;
2476 area->nr_pages = nr_pages;
2477
2478 for (i = 0; i < area->nr_pages; i++) {
2479 struct page *page;
2480
2481 if (node == NUMA_NO_NODE)
2482 page = alloc_page(alloc_mask|highmem_mask);
2483 else
2484 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2485
2486 if (unlikely(!page)) {
2487 /* Successfully allocated i pages, free them in __vunmap() */
2488 area->nr_pages = i;
2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2490 goto fail;
2491 }
2492 area->pages[i] = page;
2493 if (gfpflags_allow_blocking(gfp_mask))
2494 cond_resched();
2495 }
2496 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2497
2498 if (map_vm_area(area, prot, pages))
2499 goto fail;
2500 return area->addr;
2501
2502fail:
2503 warn_alloc(gfp_mask, NULL,
2504 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2505 (area->nr_pages*PAGE_SIZE), area->size);
2506 __vfree(area->addr);
2507 return NULL;
2508}
2509
2510/**
2511 * __vmalloc_node_range - allocate virtually contiguous memory
2512 * @size: allocation size
2513 * @align: desired alignment
2514 * @start: vm area range start
2515 * @end: vm area range end
2516 * @gfp_mask: flags for the page level allocator
2517 * @prot: protection mask for the allocated pages
2518 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2519 * @node: node to use for allocation or NUMA_NO_NODE
2520 * @caller: caller's return address
2521 *
2522 * Allocate enough pages to cover @size from the page level
2523 * allocator with @gfp_mask flags. Map them into contiguous
2524 * kernel virtual space, using a pagetable protection of @prot.
2525 *
2526 * Return: the address of the area or %NULL on failure
2527 */
2528void *__vmalloc_node_range(unsigned long size, unsigned long align,
2529 unsigned long start, unsigned long end, gfp_t gfp_mask,
2530 pgprot_t prot, unsigned long vm_flags, int node,
2531 const void *caller)
2532{
2533 struct vm_struct *area;
2534 void *addr;
2535 unsigned long real_size = size;
2536
2537 size = PAGE_ALIGN(size);
2538 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2539 goto fail;
2540
2541 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2542 vm_flags, start, end, node, gfp_mask, caller);
2543 if (!area)
2544 goto fail;
2545
2546 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2547 if (!addr)
2548 return NULL;
2549
2550 /*
2551 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2552 * flag. It means that vm_struct is not fully initialized.
2553 * Now, it is fully initialized, so remove this flag here.
2554 */
2555 clear_vm_uninitialized_flag(area);
2556
2557 kmemleak_vmalloc(area, size, gfp_mask);
2558
2559 return addr;
2560
2561fail:
2562 warn_alloc(gfp_mask, NULL,
2563 "vmalloc: allocation failure: %lu bytes", real_size);
2564 return NULL;
2565}
2566
2567/*
2568 * This is only for performance analysis of vmalloc and stress purpose.
2569 * It is required by vmalloc test module, therefore do not use it other
2570 * than that.
2571 */
2572#ifdef CONFIG_TEST_VMALLOC_MODULE
2573EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2574#endif
2575
2576/**
2577 * __vmalloc_node - allocate virtually contiguous memory
2578 * @size: allocation size
2579 * @align: desired alignment
2580 * @gfp_mask: flags for the page level allocator
2581 * @prot: protection mask for the allocated pages
2582 * @node: node to use for allocation or NUMA_NO_NODE
2583 * @caller: caller's return address
2584 *
2585 * Allocate enough pages to cover @size from the page level
2586 * allocator with @gfp_mask flags. Map them into contiguous
2587 * kernel virtual space, using a pagetable protection of @prot.
2588 *
2589 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2590 * and __GFP_NOFAIL are not supported
2591 *
2592 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2593 * with mm people.
2594 *
2595 * Return: pointer to the allocated memory or %NULL on error
2596 */
2597static void *__vmalloc_node(unsigned long size, unsigned long align,
2598 gfp_t gfp_mask, pgprot_t prot,
2599 int node, const void *caller)
2600{
2601 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2602 gfp_mask, prot, 0, node, caller);
2603}
2604
2605void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2606{
2607 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2608 __builtin_return_address(0));
2609}
2610EXPORT_SYMBOL(__vmalloc);
2611
2612static inline void *__vmalloc_node_flags(unsigned long size,
2613 int node, gfp_t flags)
2614{
2615 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2616 node, __builtin_return_address(0));
2617}
2618
2619
2620void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2621 void *caller)
2622{
2623 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2624}
2625
2626/**
2627 * vmalloc - allocate virtually contiguous memory
2628 * @size: allocation size
2629 *
2630 * Allocate enough pages to cover @size from the page level
2631 * allocator and map them into contiguous kernel virtual space.
2632 *
2633 * For tight control over page level allocator and protection flags
2634 * use __vmalloc() instead.
2635 *
2636 * Return: pointer to the allocated memory or %NULL on error
2637 */
2638void *vmalloc(unsigned long size)
2639{
2640 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2641 GFP_KERNEL);
2642}
2643EXPORT_SYMBOL(vmalloc);
2644
2645/**
2646 * vzalloc - allocate virtually contiguous memory with zero fill
2647 * @size: allocation size
2648 *
2649 * Allocate enough pages to cover @size from the page level
2650 * allocator and map them into contiguous kernel virtual space.
2651 * The memory allocated is set to zero.
2652 *
2653 * For tight control over page level allocator and protection flags
2654 * use __vmalloc() instead.
2655 *
2656 * Return: pointer to the allocated memory or %NULL on error
2657 */
2658void *vzalloc(unsigned long size)
2659{
2660 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2661 GFP_KERNEL | __GFP_ZERO);
2662}
2663EXPORT_SYMBOL(vzalloc);
2664
2665/**
2666 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2667 * @size: allocation size
2668 *
2669 * The resulting memory area is zeroed so it can be mapped to userspace
2670 * without leaking data.
2671 *
2672 * Return: pointer to the allocated memory or %NULL on error
2673 */
2674void *vmalloc_user(unsigned long size)
2675{
2676 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2677 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2678 VM_USERMAP, NUMA_NO_NODE,
2679 __builtin_return_address(0));
2680}
2681EXPORT_SYMBOL(vmalloc_user);
2682
2683/**
2684 * vmalloc_node - allocate memory on a specific node
2685 * @size: allocation size
2686 * @node: numa node
2687 *
2688 * Allocate enough pages to cover @size from the page level
2689 * allocator and map them into contiguous kernel virtual space.
2690 *
2691 * For tight control over page level allocator and protection flags
2692 * use __vmalloc() instead.
2693 *
2694 * Return: pointer to the allocated memory or %NULL on error
2695 */
2696void *vmalloc_node(unsigned long size, int node)
2697{
2698 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2699 node, __builtin_return_address(0));
2700}
2701EXPORT_SYMBOL(vmalloc_node);
2702
2703/**
2704 * vzalloc_node - allocate memory on a specific node with zero fill
2705 * @size: allocation size
2706 * @node: numa node
2707 *
2708 * Allocate enough pages to cover @size from the page level
2709 * allocator and map them into contiguous kernel virtual space.
2710 * The memory allocated is set to zero.
2711 *
2712 * For tight control over page level allocator and protection flags
2713 * use __vmalloc_node() instead.
2714 *
2715 * Return: pointer to the allocated memory or %NULL on error
2716 */
2717void *vzalloc_node(unsigned long size, int node)
2718{
2719 return __vmalloc_node_flags(size, node,
2720 GFP_KERNEL | __GFP_ZERO);
2721}
2722EXPORT_SYMBOL(vzalloc_node);
2723
2724/**
2725 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2726 * @size: allocation size
2727 * @node: numa node
2728 * @flags: flags for the page level allocator
2729 *
2730 * The resulting memory area is zeroed so it can be mapped to userspace
2731 * without leaking data.
2732 *
2733 * Return: pointer to the allocated memory or %NULL on error
2734 */
2735void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2736{
2737 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2738 flags | __GFP_ZERO, PAGE_KERNEL,
2739 VM_USERMAP, node,
2740 __builtin_return_address(0));
2741}
2742EXPORT_SYMBOL(vmalloc_user_node_flags);
2743
2744/**
2745 * vmalloc_exec - allocate virtually contiguous, executable memory
2746 * @size: allocation size
2747 *
2748 * Kernel-internal function to allocate enough pages to cover @size
2749 * the page level allocator and map them into contiguous and
2750 * executable kernel virtual space.
2751 *
2752 * For tight control over page level allocator and protection flags
2753 * use __vmalloc() instead.
2754 *
2755 * Return: pointer to the allocated memory or %NULL on error
2756 */
2757void *vmalloc_exec(unsigned long size)
2758{
2759 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2760 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2761 NUMA_NO_NODE, __builtin_return_address(0));
2762}
2763
2764#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2765#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2766#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2767#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2768#else
2769/*
2770 * 64b systems should always have either DMA or DMA32 zones. For others
2771 * GFP_DMA32 should do the right thing and use the normal zone.
2772 */
2773#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2774#endif
2775
2776/**
2777 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2778 * @size: allocation size
2779 *
2780 * Allocate enough 32bit PA addressable pages to cover @size from the
2781 * page level allocator and map them into contiguous kernel virtual space.
2782 *
2783 * Return: pointer to the allocated memory or %NULL on error
2784 */
2785void *vmalloc_32(unsigned long size)
2786{
2787 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2788 NUMA_NO_NODE, __builtin_return_address(0));
2789}
2790EXPORT_SYMBOL(vmalloc_32);
2791
2792/**
2793 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2794 * @size: allocation size
2795 *
2796 * The resulting memory area is 32bit addressable and zeroed so it can be
2797 * mapped to userspace without leaking data.
2798 *
2799 * Return: pointer to the allocated memory or %NULL on error
2800 */
2801void *vmalloc_32_user(unsigned long size)
2802{
2803 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2804 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2805 VM_USERMAP, NUMA_NO_NODE,
2806 __builtin_return_address(0));
2807}
2808EXPORT_SYMBOL(vmalloc_32_user);
2809
2810/*
2811 * small helper routine , copy contents to buf from addr.
2812 * If the page is not present, fill zero.
2813 */
2814
2815static int aligned_vread(char *buf, char *addr, unsigned long count)
2816{
2817 struct page *p;
2818 int copied = 0;
2819
2820 while (count) {
2821 unsigned long offset, length;
2822
2823 offset = offset_in_page(addr);
2824 length = PAGE_SIZE - offset;
2825 if (length > count)
2826 length = count;
2827 p = vmalloc_to_page(addr);
2828 /*
2829 * To do safe access to this _mapped_ area, we need
2830 * lock. But adding lock here means that we need to add
2831 * overhead of vmalloc()/vfree() calles for this _debug_
2832 * interface, rarely used. Instead of that, we'll use
2833 * kmap() and get small overhead in this access function.
2834 */
2835 if (p) {
2836 /*
2837 * we can expect USER0 is not used (see vread/vwrite's
2838 * function description)
2839 */
2840 void *map = kmap_atomic(p);
2841 memcpy(buf, map + offset, length);
2842 kunmap_atomic(map);
2843 } else
2844 memset(buf, 0, length);
2845
2846 addr += length;
2847 buf += length;
2848 copied += length;
2849 count -= length;
2850 }
2851 return copied;
2852}
2853
2854static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2855{
2856 struct page *p;
2857 int copied = 0;
2858
2859 while (count) {
2860 unsigned long offset, length;
2861
2862 offset = offset_in_page(addr);
2863 length = PAGE_SIZE - offset;
2864 if (length > count)
2865 length = count;
2866 p = vmalloc_to_page(addr);
2867 /*
2868 * To do safe access to this _mapped_ area, we need
2869 * lock. But adding lock here means that we need to add
2870 * overhead of vmalloc()/vfree() calles for this _debug_
2871 * interface, rarely used. Instead of that, we'll use
2872 * kmap() and get small overhead in this access function.
2873 */
2874 if (p) {
2875 /*
2876 * we can expect USER0 is not used (see vread/vwrite's
2877 * function description)
2878 */
2879 void *map = kmap_atomic(p);
2880 memcpy(map + offset, buf, length);
2881 kunmap_atomic(map);
2882 }
2883 addr += length;
2884 buf += length;
2885 copied += length;
2886 count -= length;
2887 }
2888 return copied;
2889}
2890
2891/**
2892 * vread() - read vmalloc area in a safe way.
2893 * @buf: buffer for reading data
2894 * @addr: vm address.
2895 * @count: number of bytes to be read.
2896 *
2897 * This function checks that addr is a valid vmalloc'ed area, and
2898 * copy data from that area to a given buffer. If the given memory range
2899 * of [addr...addr+count) includes some valid address, data is copied to
2900 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2901 * IOREMAP area is treated as memory hole and no copy is done.
2902 *
2903 * If [addr...addr+count) doesn't includes any intersects with alive
2904 * vm_struct area, returns 0. @buf should be kernel's buffer.
2905 *
2906 * Note: In usual ops, vread() is never necessary because the caller
2907 * should know vmalloc() area is valid and can use memcpy().
2908 * This is for routines which have to access vmalloc area without
2909 * any information, as /dev/kmem.
2910 *
2911 * Return: number of bytes for which addr and buf should be increased
2912 * (same number as @count) or %0 if [addr...addr+count) doesn't
2913 * include any intersection with valid vmalloc area
2914 */
2915long vread(char *buf, char *addr, unsigned long count)
2916{
2917 struct vmap_area *va;
2918 struct vm_struct *vm;
2919 char *vaddr, *buf_start = buf;
2920 unsigned long buflen = count;
2921 unsigned long n;
2922
2923 /* Don't allow overflow */
2924 if ((unsigned long) addr + count < count)
2925 count = -(unsigned long) addr;
2926
2927 spin_lock(&vmap_area_lock);
2928 list_for_each_entry(va, &vmap_area_list, list) {
2929 if (!count)
2930 break;
2931
2932 if (!va->vm)
2933 continue;
2934
2935 vm = va->vm;
2936 vaddr = (char *) vm->addr;
2937 if (addr >= vaddr + get_vm_area_size(vm))
2938 continue;
2939 while (addr < vaddr) {
2940 if (count == 0)
2941 goto finished;
2942 *buf = '\0';
2943 buf++;
2944 addr++;
2945 count--;
2946 }
2947 n = vaddr + get_vm_area_size(vm) - addr;
2948 if (n > count)
2949 n = count;
2950 if (!(vm->flags & VM_IOREMAP))
2951 aligned_vread(buf, addr, n);
2952 else /* IOREMAP area is treated as memory hole */
2953 memset(buf, 0, n);
2954 buf += n;
2955 addr += n;
2956 count -= n;
2957 }
2958finished:
2959 spin_unlock(&vmap_area_lock);
2960
2961 if (buf == buf_start)
2962 return 0;
2963 /* zero-fill memory holes */
2964 if (buf != buf_start + buflen)
2965 memset(buf, 0, buflen - (buf - buf_start));
2966
2967 return buflen;
2968}
2969
2970/**
2971 * vwrite() - write vmalloc area in a safe way.
2972 * @buf: buffer for source data
2973 * @addr: vm address.
2974 * @count: number of bytes to be read.
2975 *
2976 * This function checks that addr is a valid vmalloc'ed area, and
2977 * copy data from a buffer to the given addr. If specified range of
2978 * [addr...addr+count) includes some valid address, data is copied from
2979 * proper area of @buf. If there are memory holes, no copy to hole.
2980 * IOREMAP area is treated as memory hole and no copy is done.
2981 *
2982 * If [addr...addr+count) doesn't includes any intersects with alive
2983 * vm_struct area, returns 0. @buf should be kernel's buffer.
2984 *
2985 * Note: In usual ops, vwrite() is never necessary because the caller
2986 * should know vmalloc() area is valid and can use memcpy().
2987 * This is for routines which have to access vmalloc area without
2988 * any information, as /dev/kmem.
2989 *
2990 * Return: number of bytes for which addr and buf should be
2991 * increased (same number as @count) or %0 if [addr...addr+count)
2992 * doesn't include any intersection with valid vmalloc area
2993 */
2994long vwrite(char *buf, char *addr, unsigned long count)
2995{
2996 struct vmap_area *va;
2997 struct vm_struct *vm;
2998 char *vaddr;
2999 unsigned long n, buflen;
3000 int copied = 0;
3001
3002 /* Don't allow overflow */
3003 if ((unsigned long) addr + count < count)
3004 count = -(unsigned long) addr;
3005 buflen = count;
3006
3007 spin_lock(&vmap_area_lock);
3008 list_for_each_entry(va, &vmap_area_list, list) {
3009 if (!count)
3010 break;
3011
3012 if (!va->vm)
3013 continue;
3014
3015 vm = va->vm;
3016 vaddr = (char *) vm->addr;
3017 if (addr >= vaddr + get_vm_area_size(vm))
3018 continue;
3019 while (addr < vaddr) {
3020 if (count == 0)
3021 goto finished;
3022 buf++;
3023 addr++;
3024 count--;
3025 }
3026 n = vaddr + get_vm_area_size(vm) - addr;
3027 if (n > count)
3028 n = count;
3029 if (!(vm->flags & VM_IOREMAP)) {
3030 aligned_vwrite(buf, addr, n);
3031 copied++;
3032 }
3033 buf += n;
3034 addr += n;
3035 count -= n;
3036 }
3037finished:
3038 spin_unlock(&vmap_area_lock);
3039 if (!copied)
3040 return 0;
3041 return buflen;
3042}
3043
3044/**
3045 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3046 * @vma: vma to cover
3047 * @uaddr: target user address to start at
3048 * @kaddr: virtual address of vmalloc kernel memory
3049 * @size: size of map area
3050 *
3051 * Returns: 0 for success, -Exxx on failure
3052 *
3053 * This function checks that @kaddr is a valid vmalloc'ed area,
3054 * and that it is big enough to cover the range starting at
3055 * @uaddr in @vma. Will return failure if that criteria isn't
3056 * met.
3057 *
3058 * Similar to remap_pfn_range() (see mm/memory.c)
3059 */
3060int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3061 void *kaddr, unsigned long size)
3062{
3063 struct vm_struct *area;
3064
3065 size = PAGE_ALIGN(size);
3066
3067 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3068 return -EINVAL;
3069
3070 area = find_vm_area(kaddr);
3071 if (!area)
3072 return -EINVAL;
3073
3074 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3075 return -EINVAL;
3076
3077 if (kaddr + size > area->addr + get_vm_area_size(area))
3078 return -EINVAL;
3079
3080 do {
3081 struct page *page = vmalloc_to_page(kaddr);
3082 int ret;
3083
3084 ret = vm_insert_page(vma, uaddr, page);
3085 if (ret)
3086 return ret;
3087
3088 uaddr += PAGE_SIZE;
3089 kaddr += PAGE_SIZE;
3090 size -= PAGE_SIZE;
3091 } while (size > 0);
3092
3093 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3094
3095 return 0;
3096}
3097EXPORT_SYMBOL(remap_vmalloc_range_partial);
3098
3099/**
3100 * remap_vmalloc_range - map vmalloc pages to userspace
3101 * @vma: vma to cover (map full range of vma)
3102 * @addr: vmalloc memory
3103 * @pgoff: number of pages into addr before first page to map
3104 *
3105 * Returns: 0 for success, -Exxx on failure
3106 *
3107 * This function checks that addr is a valid vmalloc'ed area, and
3108 * that it is big enough to cover the vma. Will return failure if
3109 * that criteria isn't met.
3110 *
3111 * Similar to remap_pfn_range() (see mm/memory.c)
3112 */
3113int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3114 unsigned long pgoff)
3115{
3116 return remap_vmalloc_range_partial(vma, vma->vm_start,
3117 addr + (pgoff << PAGE_SHIFT),
3118 vma->vm_end - vma->vm_start);
3119}
3120EXPORT_SYMBOL(remap_vmalloc_range);
3121
3122/*
3123 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3124 * have one.
3125 *
3126 * The purpose of this function is to make sure the vmalloc area
3127 * mappings are identical in all page-tables in the system.
3128 */
3129void __weak vmalloc_sync_all(void)
3130{
3131}
3132
3133
3134static int f(pte_t *pte, unsigned long addr, void *data)
3135{
3136 pte_t ***p = data;
3137
3138 if (p) {
3139 *(*p) = pte;
3140 (*p)++;
3141 }
3142 return 0;
3143}
3144
3145/**
3146 * alloc_vm_area - allocate a range of kernel address space
3147 * @size: size of the area
3148 * @ptes: returns the PTEs for the address space
3149 *
3150 * Returns: NULL on failure, vm_struct on success
3151 *
3152 * This function reserves a range of kernel address space, and
3153 * allocates pagetables to map that range. No actual mappings
3154 * are created.
3155 *
3156 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3157 * allocated for the VM area are returned.
3158 */
3159struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3160{
3161 struct vm_struct *area;
3162
3163 area = get_vm_area_caller(size, VM_IOREMAP,
3164 __builtin_return_address(0));
3165 if (area == NULL)
3166 return NULL;
3167
3168 /*
3169 * This ensures that page tables are constructed for this region
3170 * of kernel virtual address space and mapped into init_mm.
3171 */
3172 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3173 size, f, ptes ? &ptes : NULL)) {
3174 free_vm_area(area);
3175 return NULL;
3176 }
3177
3178 return area;
3179}
3180EXPORT_SYMBOL_GPL(alloc_vm_area);
3181
3182void free_vm_area(struct vm_struct *area)
3183{
3184 struct vm_struct *ret;
3185 ret = remove_vm_area(area->addr);
3186 BUG_ON(ret != area);
3187 kfree(area);
3188}
3189EXPORT_SYMBOL_GPL(free_vm_area);
3190
3191#ifdef CONFIG_SMP
3192static struct vmap_area *node_to_va(struct rb_node *n)
3193{
3194 return rb_entry_safe(n, struct vmap_area, rb_node);
3195}
3196
3197/**
3198 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3199 * @addr: target address
3200 *
3201 * Returns: vmap_area if it is found. If there is no such area
3202 * the first highest(reverse order) vmap_area is returned
3203 * i.e. va->va_start < addr && va->va_end < addr or NULL
3204 * if there are no any areas before @addr.
3205 */
3206static struct vmap_area *
3207pvm_find_va_enclose_addr(unsigned long addr)
3208{
3209 struct vmap_area *va, *tmp;
3210 struct rb_node *n;
3211
3212 n = free_vmap_area_root.rb_node;
3213 va = NULL;
3214
3215 while (n) {
3216 tmp = rb_entry(n, struct vmap_area, rb_node);
3217 if (tmp->va_start <= addr) {
3218 va = tmp;
3219 if (tmp->va_end >= addr)
3220 break;
3221
3222 n = n->rb_right;
3223 } else {
3224 n = n->rb_left;
3225 }
3226 }
3227
3228 return va;
3229}
3230
3231/**
3232 * pvm_determine_end_from_reverse - find the highest aligned address
3233 * of free block below VMALLOC_END
3234 * @va:
3235 * in - the VA we start the search(reverse order);
3236 * out - the VA with the highest aligned end address.
3237 *
3238 * Returns: determined end address within vmap_area
3239 */
3240static unsigned long
3241pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3242{
3243 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3244 unsigned long addr;
3245
3246 if (likely(*va)) {
3247 list_for_each_entry_from_reverse((*va),
3248 &free_vmap_area_list, list) {
3249 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3250 if ((*va)->va_start < addr)
3251 return addr;
3252 }
3253 }
3254
3255 return 0;
3256}
3257
3258/**
3259 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3260 * @offsets: array containing offset of each area
3261 * @sizes: array containing size of each area
3262 * @nr_vms: the number of areas to allocate
3263 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3264 *
3265 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3266 * vm_structs on success, %NULL on failure
3267 *
3268 * Percpu allocator wants to use congruent vm areas so that it can
3269 * maintain the offsets among percpu areas. This function allocates
3270 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3271 * be scattered pretty far, distance between two areas easily going up
3272 * to gigabytes. To avoid interacting with regular vmallocs, these
3273 * areas are allocated from top.
3274 *
3275 * Despite its complicated look, this allocator is rather simple. It
3276 * does everything top-down and scans free blocks from the end looking
3277 * for matching base. While scanning, if any of the areas do not fit the
3278 * base address is pulled down to fit the area. Scanning is repeated till
3279 * all the areas fit and then all necessary data structures are inserted
3280 * and the result is returned.
3281 */
3282struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3283 const size_t *sizes, int nr_vms,
3284 size_t align)
3285{
3286 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3287 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3288 struct vmap_area **vas, *va;
3289 struct vm_struct **vms;
3290 int area, area2, last_area, term_area;
3291 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3292 bool purged = false;
3293 enum fit_type type;
3294
3295 /* verify parameters and allocate data structures */
3296 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3297 for (last_area = 0, area = 0; area < nr_vms; area++) {
3298 start = offsets[area];
3299 end = start + sizes[area];
3300
3301 /* is everything aligned properly? */
3302 BUG_ON(!IS_ALIGNED(offsets[area], align));
3303 BUG_ON(!IS_ALIGNED(sizes[area], align));
3304
3305 /* detect the area with the highest address */
3306 if (start > offsets[last_area])
3307 last_area = area;
3308
3309 for (area2 = area + 1; area2 < nr_vms; area2++) {
3310 unsigned long start2 = offsets[area2];
3311 unsigned long end2 = start2 + sizes[area2];
3312
3313 BUG_ON(start2 < end && start < end2);
3314 }
3315 }
3316 last_end = offsets[last_area] + sizes[last_area];
3317
3318 if (vmalloc_end - vmalloc_start < last_end) {
3319 WARN_ON(true);
3320 return NULL;
3321 }
3322
3323 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3324 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3325 if (!vas || !vms)
3326 goto err_free2;
3327
3328 for (area = 0; area < nr_vms; area++) {
3329 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3330 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3331 if (!vas[area] || !vms[area])
3332 goto err_free;
3333 }
3334retry:
3335 spin_lock(&free_vmap_area_lock);
3336
3337 /* start scanning - we scan from the top, begin with the last area */
3338 area = term_area = last_area;
3339 start = offsets[area];
3340 end = start + sizes[area];
3341
3342 va = pvm_find_va_enclose_addr(vmalloc_end);
3343 base = pvm_determine_end_from_reverse(&va, align) - end;
3344
3345 while (true) {
3346 /*
3347 * base might have underflowed, add last_end before
3348 * comparing.
3349 */
3350 if (base + last_end < vmalloc_start + last_end)
3351 goto overflow;
3352
3353 /*
3354 * Fitting base has not been found.
3355 */
3356 if (va == NULL)
3357 goto overflow;
3358
3359 /*
3360 * If required width exeeds current VA block, move
3361 * base downwards and then recheck.
3362 */
3363 if (base + end > va->va_end) {
3364 base = pvm_determine_end_from_reverse(&va, align) - end;
3365 term_area = area;
3366 continue;
3367 }
3368
3369 /*
3370 * If this VA does not fit, move base downwards and recheck.
3371 */
3372 if (base + start < va->va_start) {
3373 va = node_to_va(rb_prev(&va->rb_node));
3374 base = pvm_determine_end_from_reverse(&va, align) - end;
3375 term_area = area;
3376 continue;
3377 }
3378
3379 /*
3380 * This area fits, move on to the previous one. If
3381 * the previous one is the terminal one, we're done.
3382 */
3383 area = (area + nr_vms - 1) % nr_vms;
3384 if (area == term_area)
3385 break;
3386
3387 start = offsets[area];
3388 end = start + sizes[area];
3389 va = pvm_find_va_enclose_addr(base + end);
3390 }
3391
3392 /* we've found a fitting base, insert all va's */
3393 for (area = 0; area < nr_vms; area++) {
3394 int ret;
3395
3396 start = base + offsets[area];
3397 size = sizes[area];
3398
3399 va = pvm_find_va_enclose_addr(start);
3400 if (WARN_ON_ONCE(va == NULL))
3401 /* It is a BUG(), but trigger recovery instead. */
3402 goto recovery;
3403
3404 type = classify_va_fit_type(va, start, size);
3405 if (WARN_ON_ONCE(type == NOTHING_FIT))
3406 /* It is a BUG(), but trigger recovery instead. */
3407 goto recovery;
3408
3409 ret = adjust_va_to_fit_type(va, start, size, type);
3410 if (unlikely(ret))
3411 goto recovery;
3412
3413 /* Allocated area. */
3414 va = vas[area];
3415 va->va_start = start;
3416 va->va_end = start + size;
3417 }
3418
3419 spin_unlock(&free_vmap_area_lock);
3420
3421 /* populate the kasan shadow space */
3422 for (area = 0; area < nr_vms; area++) {
3423 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3424 goto err_free_shadow;
3425
3426 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3427 sizes[area]);
3428 }
3429
3430 /* insert all vm's */
3431 spin_lock(&vmap_area_lock);
3432 for (area = 0; area < nr_vms; area++) {
3433 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3434
3435 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3436 pcpu_get_vm_areas);
3437 }
3438 spin_unlock(&vmap_area_lock);
3439
3440 kfree(vas);
3441 return vms;
3442
3443recovery:
3444 /*
3445 * Remove previously allocated areas. There is no
3446 * need in removing these areas from the busy tree,
3447 * because they are inserted only on the final step
3448 * and when pcpu_get_vm_areas() is success.
3449 */
3450 while (area--) {
3451 orig_start = vas[area]->va_start;
3452 orig_end = vas[area]->va_end;
3453 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3454 &free_vmap_area_list);
3455 kasan_release_vmalloc(orig_start, orig_end,
3456 va->va_start, va->va_end);
3457 vas[area] = NULL;
3458 }
3459
3460overflow:
3461 spin_unlock(&free_vmap_area_lock);
3462 if (!purged) {
3463 purge_vmap_area_lazy();
3464 purged = true;
3465
3466 /* Before "retry", check if we recover. */
3467 for (area = 0; area < nr_vms; area++) {
3468 if (vas[area])
3469 continue;
3470
3471 vas[area] = kmem_cache_zalloc(
3472 vmap_area_cachep, GFP_KERNEL);
3473 if (!vas[area])
3474 goto err_free;
3475 }
3476
3477 goto retry;
3478 }
3479
3480err_free:
3481 for (area = 0; area < nr_vms; area++) {
3482 if (vas[area])
3483 kmem_cache_free(vmap_area_cachep, vas[area]);
3484
3485 kfree(vms[area]);
3486 }
3487err_free2:
3488 kfree(vas);
3489 kfree(vms);
3490 return NULL;
3491
3492err_free_shadow:
3493 spin_lock(&free_vmap_area_lock);
3494 /*
3495 * We release all the vmalloc shadows, even the ones for regions that
3496 * hadn't been successfully added. This relies on kasan_release_vmalloc
3497 * being able to tolerate this case.
3498 */
3499 for (area = 0; area < nr_vms; area++) {
3500 orig_start = vas[area]->va_start;
3501 orig_end = vas[area]->va_end;
3502 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3503 &free_vmap_area_list);
3504 kasan_release_vmalloc(orig_start, orig_end,
3505 va->va_start, va->va_end);
3506 vas[area] = NULL;
3507 kfree(vms[area]);
3508 }
3509 spin_unlock(&free_vmap_area_lock);
3510 kfree(vas);
3511 kfree(vms);
3512 return NULL;
3513}
3514
3515/**
3516 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3517 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3518 * @nr_vms: the number of allocated areas
3519 *
3520 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3521 */
3522void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3523{
3524 int i;
3525
3526 for (i = 0; i < nr_vms; i++)
3527 free_vm_area(vms[i]);
3528 kfree(vms);
3529}
3530#endif /* CONFIG_SMP */
3531
3532#ifdef CONFIG_PROC_FS
3533static void *s_start(struct seq_file *m, loff_t *pos)
3534 __acquires(&vmap_purge_lock)
3535 __acquires(&vmap_area_lock)
3536{
3537 mutex_lock(&vmap_purge_lock);
3538 spin_lock(&vmap_area_lock);
3539
3540 return seq_list_start(&vmap_area_list, *pos);
3541}
3542
3543static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3544{
3545 return seq_list_next(p, &vmap_area_list, pos);
3546}
3547
3548static void s_stop(struct seq_file *m, void *p)
3549 __releases(&vmap_purge_lock)
3550 __releases(&vmap_area_lock)
3551{
3552 mutex_unlock(&vmap_purge_lock);
3553 spin_unlock(&vmap_area_lock);
3554}
3555
3556static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3557{
3558 if (IS_ENABLED(CONFIG_NUMA)) {
3559 unsigned int nr, *counters = m->private;
3560
3561 if (!counters)
3562 return;
3563
3564 if (v->flags & VM_UNINITIALIZED)
3565 return;
3566 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3567 smp_rmb();
3568
3569 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3570
3571 for (nr = 0; nr < v->nr_pages; nr++)
3572 counters[page_to_nid(v->pages[nr])]++;
3573
3574 for_each_node_state(nr, N_HIGH_MEMORY)
3575 if (counters[nr])
3576 seq_printf(m, " N%u=%u", nr, counters[nr]);
3577 }
3578}
3579
3580static void show_purge_info(struct seq_file *m)
3581{
3582 struct llist_node *head;
3583 struct vmap_area *va;
3584
3585 head = READ_ONCE(vmap_purge_list.first);
3586 if (head == NULL)
3587 return;
3588
3589 llist_for_each_entry(va, head, purge_list) {
3590 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3591 (void *)va->va_start, (void *)va->va_end,
3592 va->va_end - va->va_start);
3593 }
3594}
3595
3596static int s_show(struct seq_file *m, void *p)
3597{
3598 struct vmap_area *va;
3599 struct vm_struct *v;
3600
3601 va = list_entry(p, struct vmap_area, list);
3602
3603 /*
3604 * s_show can encounter race with remove_vm_area, !vm on behalf
3605 * of vmap area is being tear down or vm_map_ram allocation.
3606 */
3607 if (!va->vm) {
3608 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3609 (void *)va->va_start, (void *)va->va_end,
3610 va->va_end - va->va_start);
3611
3612 return 0;
3613 }
3614
3615 v = va->vm;
3616
3617 seq_printf(m, "0x%pK-0x%pK %7ld",
3618 v->addr, v->addr + v->size, v->size);
3619
3620 if (v->caller)
3621 seq_printf(m, " %pS", v->caller);
3622
3623 if (v->nr_pages)
3624 seq_printf(m, " pages=%d", v->nr_pages);
3625
3626 if (v->phys_addr)
3627 seq_printf(m, " phys=%pa", &v->phys_addr);
3628
3629 if (v->flags & VM_IOREMAP)
3630 seq_puts(m, " ioremap");
3631
3632 if (v->flags & VM_ALLOC)
3633 seq_puts(m, " vmalloc");
3634
3635 if (v->flags & VM_MAP)
3636 seq_puts(m, " vmap");
3637
3638 if (v->flags & VM_USERMAP)
3639 seq_puts(m, " user");
3640
3641 if (v->flags & VM_DMA_COHERENT)
3642 seq_puts(m, " dma-coherent");
3643
3644 if (is_vmalloc_addr(v->pages))
3645 seq_puts(m, " vpages");
3646
3647 show_numa_info(m, v);
3648 seq_putc(m, '\n');
3649
3650 /*
3651 * As a final step, dump "unpurged" areas. Note,
3652 * that entire "/proc/vmallocinfo" output will not
3653 * be address sorted, because the purge list is not
3654 * sorted.
3655 */
3656 if (list_is_last(&va->list, &vmap_area_list))
3657 show_purge_info(m);
3658
3659 return 0;
3660}
3661
3662static const struct seq_operations vmalloc_op = {
3663 .start = s_start,
3664 .next = s_next,
3665 .stop = s_stop,
3666 .show = s_show,
3667};
3668
3669static int __init proc_vmalloc_init(void)
3670{
3671 if (IS_ENABLED(CONFIG_NUMA))
3672 proc_create_seq_private("vmallocinfo", 0400, NULL,
3673 &vmalloc_op,
3674 nr_node_ids * sizeof(unsigned int), NULL);
3675 else
3676 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3677 return 0;
3678}
3679module_init(proc_vmalloc_init);
3680
3681#endif