Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
32#include <linux/posix-timers.h>
33#include <linux/rseq.h>
34
35/* task_struct member predeclarations (sorted alphabetically): */
36struct audit_context;
37struct backing_dev_info;
38struct bio_list;
39struct blk_plug;
40struct capture_control;
41struct cfs_rq;
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
46struct nameidata;
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
54struct root_domain;
55struct rq;
56struct sched_attr;
57struct sched_param;
58struct seq_file;
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
62struct task_group;
63
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
74
75/* Used in tsk->state: */
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
81/* Used in tsk->exit_state: */
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
93
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
119
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128
129#define __set_current_state(state_value) \
130 do { \
131 WARN_ON_ONCE(is_special_task_state(state_value));\
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
135
136#define set_current_state(state_value) \
137 do { \
138 WARN_ON_ONCE(is_special_task_state(state_value));\
139 current->task_state_change = _THIS_IP_; \
140 smp_store_mb(current->state, (state_value)); \
141 } while (0)
142
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
151 } while (0)
152#else
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
158 * for (;;) {
159 * set_current_state(TASK_UNINTERRUPTIBLE);
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
175 *
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182 *
183 * However, with slightly different timing the wakeup TASK_RUNNING store can
184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
187 *
188 * Also see the comments of try_to_wake_up().
189 */
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
208 } while (0)
209
210#endif
211
212/* Task command name length: */
213#define TASK_COMM_LEN 16
214
215extern void scheduler_tick(void);
216
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
224asmlinkage void schedule(void);
225extern void schedule_preempt_disabled(void);
226asmlinkage void preempt_schedule_irq(void);
227
228extern int __must_check io_schedule_prepare(void);
229extern void io_schedule_finish(int token);
230extern long io_schedule_timeout(long timeout);
231extern void io_schedule(void);
232
233/**
234 * struct prev_cputime - snapshot of system and user cputime
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
237 * @lock: protects the above two fields
238 *
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
241 */
242struct prev_cputime {
243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
247#endif
248};
249
250enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
253 /* Task is idle */
254 VTIME_IDLE,
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
261};
262
263struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
267 unsigned int cpu;
268 u64 utime;
269 u64 stime;
270 u64 gtime;
271};
272
273/*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283};
284
285#ifdef CONFIG_SMP
286extern struct root_domain def_root_domain;
287extern struct mutex sched_domains_mutex;
288#endif
289
290struct sched_info {
291#ifdef CONFIG_SCHED_INFO
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
307
308#endif /* CONFIG_SCHED_INFO */
309};
310
311/*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
318# define SCHED_FIXEDPOINT_SHIFT 10
319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
320
321/* Increase resolution of cpu_capacity calculations */
322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
325struct load_weight {
326 unsigned long weight;
327 u32 inv_weight;
328};
329
330/**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355#define UTIL_EST_WEIGHT_SHIFT 2
356} __attribute__((__aligned__(sizeof(u64))));
357
358/*
359 * The load_avg/util_avg accumulates an infinite geometric series
360 * (see __update_load_avg() in kernel/sched/fair.c).
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
366 * where runnable% is the time ratio that a sched_entity is runnable.
367 * For cfs_rq, it is the aggregated load_avg of all runnable and
368 * blocked sched_entities.
369 *
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
374 * where running% is the time ratio that a sched_entity is running on
375 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
376 * and blocked sched_entities.
377 *
378 * load_avg and util_avg don't direcly factor frequency scaling and CPU
379 * capacity scaling. The scaling is done through the rq_clock_pelt that
380 * is used for computing those signals (see update_rq_clock_pelt())
381 *
382 * N.B., the above ratios (runnable% and running%) themselves are in the
383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
384 * to as large a range as necessary. This is for example reflected by
385 * util_avg's SCHED_CAPACITY_SCALE.
386 *
387 * [Overflow issue]
388 *
389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
390 * with the highest load (=88761), always runnable on a single cfs_rq,
391 * and should not overflow as the number already hits PID_MAX_LIMIT.
392 *
393 * For all other cases (including 32-bit kernels), struct load_weight's
394 * weight will overflow first before we do, because:
395 *
396 * Max(load_avg) <= Max(load.weight)
397 *
398 * Then it is the load_weight's responsibility to consider overflow
399 * issues.
400 */
401struct sched_avg {
402 u64 last_update_time;
403 u64 load_sum;
404 u64 runnable_load_sum;
405 u32 util_sum;
406 u32 period_contrib;
407 unsigned long load_avg;
408 unsigned long runnable_load_avg;
409 unsigned long util_avg;
410 struct util_est util_est;
411} ____cacheline_aligned;
412
413struct sched_statistics {
414#ifdef CONFIG_SCHEDSTATS
415 u64 wait_start;
416 u64 wait_max;
417 u64 wait_count;
418 u64 wait_sum;
419 u64 iowait_count;
420 u64 iowait_sum;
421
422 u64 sleep_start;
423 u64 sleep_max;
424 s64 sum_sleep_runtime;
425
426 u64 block_start;
427 u64 block_max;
428 u64 exec_max;
429 u64 slice_max;
430
431 u64 nr_migrations_cold;
432 u64 nr_failed_migrations_affine;
433 u64 nr_failed_migrations_running;
434 u64 nr_failed_migrations_hot;
435 u64 nr_forced_migrations;
436
437 u64 nr_wakeups;
438 u64 nr_wakeups_sync;
439 u64 nr_wakeups_migrate;
440 u64 nr_wakeups_local;
441 u64 nr_wakeups_remote;
442 u64 nr_wakeups_affine;
443 u64 nr_wakeups_affine_attempts;
444 u64 nr_wakeups_passive;
445 u64 nr_wakeups_idle;
446#endif
447};
448
449struct sched_entity {
450 /* For load-balancing: */
451 struct load_weight load;
452 unsigned long runnable_weight;
453 struct rb_node run_node;
454 struct list_head group_node;
455 unsigned int on_rq;
456
457 u64 exec_start;
458 u64 sum_exec_runtime;
459 u64 vruntime;
460 u64 prev_sum_exec_runtime;
461
462 u64 nr_migrations;
463
464 struct sched_statistics statistics;
465
466#ifdef CONFIG_FAIR_GROUP_SCHED
467 int depth;
468 struct sched_entity *parent;
469 /* rq on which this entity is (to be) queued: */
470 struct cfs_rq *cfs_rq;
471 /* rq "owned" by this entity/group: */
472 struct cfs_rq *my_q;
473#endif
474
475#ifdef CONFIG_SMP
476 /*
477 * Per entity load average tracking.
478 *
479 * Put into separate cache line so it does not
480 * collide with read-mostly values above.
481 */
482 struct sched_avg avg;
483#endif
484};
485
486struct sched_rt_entity {
487 struct list_head run_list;
488 unsigned long timeout;
489 unsigned long watchdog_stamp;
490 unsigned int time_slice;
491 unsigned short on_rq;
492 unsigned short on_list;
493
494 struct sched_rt_entity *back;
495#ifdef CONFIG_RT_GROUP_SCHED
496 struct sched_rt_entity *parent;
497 /* rq on which this entity is (to be) queued: */
498 struct rt_rq *rt_rq;
499 /* rq "owned" by this entity/group: */
500 struct rt_rq *my_q;
501#endif
502} __randomize_layout;
503
504struct sched_dl_entity {
505 struct rb_node rb_node;
506
507 /*
508 * Original scheduling parameters. Copied here from sched_attr
509 * during sched_setattr(), they will remain the same until
510 * the next sched_setattr().
511 */
512 u64 dl_runtime; /* Maximum runtime for each instance */
513 u64 dl_deadline; /* Relative deadline of each instance */
514 u64 dl_period; /* Separation of two instances (period) */
515 u64 dl_bw; /* dl_runtime / dl_period */
516 u64 dl_density; /* dl_runtime / dl_deadline */
517
518 /*
519 * Actual scheduling parameters. Initialized with the values above,
520 * they are continuously updated during task execution. Note that
521 * the remaining runtime could be < 0 in case we are in overrun.
522 */
523 s64 runtime; /* Remaining runtime for this instance */
524 u64 deadline; /* Absolute deadline for this instance */
525 unsigned int flags; /* Specifying the scheduler behaviour */
526
527 /*
528 * Some bool flags:
529 *
530 * @dl_throttled tells if we exhausted the runtime. If so, the
531 * task has to wait for a replenishment to be performed at the
532 * next firing of dl_timer.
533 *
534 * @dl_boosted tells if we are boosted due to DI. If so we are
535 * outside bandwidth enforcement mechanism (but only until we
536 * exit the critical section);
537 *
538 * @dl_yielded tells if task gave up the CPU before consuming
539 * all its available runtime during the last job.
540 *
541 * @dl_non_contending tells if the task is inactive while still
542 * contributing to the active utilization. In other words, it
543 * indicates if the inactive timer has been armed and its handler
544 * has not been executed yet. This flag is useful to avoid race
545 * conditions between the inactive timer handler and the wakeup
546 * code.
547 *
548 * @dl_overrun tells if the task asked to be informed about runtime
549 * overruns.
550 */
551 unsigned int dl_throttled : 1;
552 unsigned int dl_boosted : 1;
553 unsigned int dl_yielded : 1;
554 unsigned int dl_non_contending : 1;
555 unsigned int dl_overrun : 1;
556
557 /*
558 * Bandwidth enforcement timer. Each -deadline task has its
559 * own bandwidth to be enforced, thus we need one timer per task.
560 */
561 struct hrtimer dl_timer;
562
563 /*
564 * Inactive timer, responsible for decreasing the active utilization
565 * at the "0-lag time". When a -deadline task blocks, it contributes
566 * to GRUB's active utilization until the "0-lag time", hence a
567 * timer is needed to decrease the active utilization at the correct
568 * time.
569 */
570 struct hrtimer inactive_timer;
571};
572
573#ifdef CONFIG_UCLAMP_TASK
574/* Number of utilization clamp buckets (shorter alias) */
575#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
576
577/*
578 * Utilization clamp for a scheduling entity
579 * @value: clamp value "assigned" to a se
580 * @bucket_id: bucket index corresponding to the "assigned" value
581 * @active: the se is currently refcounted in a rq's bucket
582 * @user_defined: the requested clamp value comes from user-space
583 *
584 * The bucket_id is the index of the clamp bucket matching the clamp value
585 * which is pre-computed and stored to avoid expensive integer divisions from
586 * the fast path.
587 *
588 * The active bit is set whenever a task has got an "effective" value assigned,
589 * which can be different from the clamp value "requested" from user-space.
590 * This allows to know a task is refcounted in the rq's bucket corresponding
591 * to the "effective" bucket_id.
592 *
593 * The user_defined bit is set whenever a task has got a task-specific clamp
594 * value requested from userspace, i.e. the system defaults apply to this task
595 * just as a restriction. This allows to relax default clamps when a less
596 * restrictive task-specific value has been requested, thus allowing to
597 * implement a "nice" semantic. For example, a task running with a 20%
598 * default boost can still drop its own boosting to 0%.
599 */
600struct uclamp_se {
601 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
602 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
603 unsigned int active : 1;
604 unsigned int user_defined : 1;
605};
606#endif /* CONFIG_UCLAMP_TASK */
607
608union rcu_special {
609 struct {
610 u8 blocked;
611 u8 need_qs;
612 u8 exp_hint; /* Hint for performance. */
613 u8 deferred_qs;
614 } b; /* Bits. */
615 u32 s; /* Set of bits. */
616};
617
618enum perf_event_task_context {
619 perf_invalid_context = -1,
620 perf_hw_context = 0,
621 perf_sw_context,
622 perf_nr_task_contexts,
623};
624
625struct wake_q_node {
626 struct wake_q_node *next;
627};
628
629struct task_struct {
630#ifdef CONFIG_THREAD_INFO_IN_TASK
631 /*
632 * For reasons of header soup (see current_thread_info()), this
633 * must be the first element of task_struct.
634 */
635 struct thread_info thread_info;
636#endif
637 /* -1 unrunnable, 0 runnable, >0 stopped: */
638 volatile long state;
639
640 /*
641 * This begins the randomizable portion of task_struct. Only
642 * scheduling-critical items should be added above here.
643 */
644 randomized_struct_fields_start
645
646 void *stack;
647 refcount_t usage;
648 /* Per task flags (PF_*), defined further below: */
649 unsigned int flags;
650 unsigned int ptrace;
651
652#ifdef CONFIG_SMP
653 struct llist_node wake_entry;
654 int on_cpu;
655#ifdef CONFIG_THREAD_INFO_IN_TASK
656 /* Current CPU: */
657 unsigned int cpu;
658#endif
659 unsigned int wakee_flips;
660 unsigned long wakee_flip_decay_ts;
661 struct task_struct *last_wakee;
662
663 /*
664 * recent_used_cpu is initially set as the last CPU used by a task
665 * that wakes affine another task. Waker/wakee relationships can
666 * push tasks around a CPU where each wakeup moves to the next one.
667 * Tracking a recently used CPU allows a quick search for a recently
668 * used CPU that may be idle.
669 */
670 int recent_used_cpu;
671 int wake_cpu;
672#endif
673 int on_rq;
674
675 int prio;
676 int static_prio;
677 int normal_prio;
678 unsigned int rt_priority;
679
680 const struct sched_class *sched_class;
681 struct sched_entity se;
682 struct sched_rt_entity rt;
683#ifdef CONFIG_CGROUP_SCHED
684 struct task_group *sched_task_group;
685#endif
686 struct sched_dl_entity dl;
687
688#ifdef CONFIG_UCLAMP_TASK
689 /* Clamp values requested for a scheduling entity */
690 struct uclamp_se uclamp_req[UCLAMP_CNT];
691 /* Effective clamp values used for a scheduling entity */
692 struct uclamp_se uclamp[UCLAMP_CNT];
693#endif
694
695#ifdef CONFIG_PREEMPT_NOTIFIERS
696 /* List of struct preempt_notifier: */
697 struct hlist_head preempt_notifiers;
698#endif
699
700#ifdef CONFIG_BLK_DEV_IO_TRACE
701 unsigned int btrace_seq;
702#endif
703
704 unsigned int policy;
705 int nr_cpus_allowed;
706 const cpumask_t *cpus_ptr;
707 cpumask_t cpus_mask;
708
709#ifdef CONFIG_PREEMPT_RCU
710 int rcu_read_lock_nesting;
711 union rcu_special rcu_read_unlock_special;
712 struct list_head rcu_node_entry;
713 struct rcu_node *rcu_blocked_node;
714#endif /* #ifdef CONFIG_PREEMPT_RCU */
715
716#ifdef CONFIG_TASKS_RCU
717 unsigned long rcu_tasks_nvcsw;
718 u8 rcu_tasks_holdout;
719 u8 rcu_tasks_idx;
720 int rcu_tasks_idle_cpu;
721 struct list_head rcu_tasks_holdout_list;
722#endif /* #ifdef CONFIG_TASKS_RCU */
723
724 struct sched_info sched_info;
725
726 struct list_head tasks;
727#ifdef CONFIG_SMP
728 struct plist_node pushable_tasks;
729 struct rb_node pushable_dl_tasks;
730#endif
731
732 struct mm_struct *mm;
733 struct mm_struct *active_mm;
734
735 /* Per-thread vma caching: */
736 struct vmacache vmacache;
737
738#ifdef SPLIT_RSS_COUNTING
739 struct task_rss_stat rss_stat;
740#endif
741 int exit_state;
742 int exit_code;
743 int exit_signal;
744 /* The signal sent when the parent dies: */
745 int pdeath_signal;
746 /* JOBCTL_*, siglock protected: */
747 unsigned long jobctl;
748
749 /* Used for emulating ABI behavior of previous Linux versions: */
750 unsigned int personality;
751
752 /* Scheduler bits, serialized by scheduler locks: */
753 unsigned sched_reset_on_fork:1;
754 unsigned sched_contributes_to_load:1;
755 unsigned sched_migrated:1;
756 unsigned sched_remote_wakeup:1;
757#ifdef CONFIG_PSI
758 unsigned sched_psi_wake_requeue:1;
759#endif
760
761 /* Force alignment to the next boundary: */
762 unsigned :0;
763
764 /* Unserialized, strictly 'current' */
765
766 /* Bit to tell LSMs we're in execve(): */
767 unsigned in_execve:1;
768 unsigned in_iowait:1;
769#ifndef TIF_RESTORE_SIGMASK
770 unsigned restore_sigmask:1;
771#endif
772#ifdef CONFIG_MEMCG
773 unsigned in_user_fault:1;
774#endif
775#ifdef CONFIG_COMPAT_BRK
776 unsigned brk_randomized:1;
777#endif
778#ifdef CONFIG_CGROUPS
779 /* disallow userland-initiated cgroup migration */
780 unsigned no_cgroup_migration:1;
781 /* task is frozen/stopped (used by the cgroup freezer) */
782 unsigned frozen:1;
783#endif
784#ifdef CONFIG_BLK_CGROUP
785 /* to be used once the psi infrastructure lands upstream. */
786 unsigned use_memdelay:1;
787#endif
788
789 unsigned long atomic_flags; /* Flags requiring atomic access. */
790
791 struct restart_block restart_block;
792
793 pid_t pid;
794 pid_t tgid;
795
796#ifdef CONFIG_STACKPROTECTOR
797 /* Canary value for the -fstack-protector GCC feature: */
798 unsigned long stack_canary;
799#endif
800 /*
801 * Pointers to the (original) parent process, youngest child, younger sibling,
802 * older sibling, respectively. (p->father can be replaced with
803 * p->real_parent->pid)
804 */
805
806 /* Real parent process: */
807 struct task_struct __rcu *real_parent;
808
809 /* Recipient of SIGCHLD, wait4() reports: */
810 struct task_struct __rcu *parent;
811
812 /*
813 * Children/sibling form the list of natural children:
814 */
815 struct list_head children;
816 struct list_head sibling;
817 struct task_struct *group_leader;
818
819 /*
820 * 'ptraced' is the list of tasks this task is using ptrace() on.
821 *
822 * This includes both natural children and PTRACE_ATTACH targets.
823 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
824 */
825 struct list_head ptraced;
826 struct list_head ptrace_entry;
827
828 /* PID/PID hash table linkage. */
829 struct pid *thread_pid;
830 struct hlist_node pid_links[PIDTYPE_MAX];
831 struct list_head thread_group;
832 struct list_head thread_node;
833
834 struct completion *vfork_done;
835
836 /* CLONE_CHILD_SETTID: */
837 int __user *set_child_tid;
838
839 /* CLONE_CHILD_CLEARTID: */
840 int __user *clear_child_tid;
841
842 u64 utime;
843 u64 stime;
844#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
845 u64 utimescaled;
846 u64 stimescaled;
847#endif
848 u64 gtime;
849 struct prev_cputime prev_cputime;
850#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
851 struct vtime vtime;
852#endif
853
854#ifdef CONFIG_NO_HZ_FULL
855 atomic_t tick_dep_mask;
856#endif
857 /* Context switch counts: */
858 unsigned long nvcsw;
859 unsigned long nivcsw;
860
861 /* Monotonic time in nsecs: */
862 u64 start_time;
863
864 /* Boot based time in nsecs: */
865 u64 start_boottime;
866
867 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
868 unsigned long min_flt;
869 unsigned long maj_flt;
870
871 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
872 struct posix_cputimers posix_cputimers;
873
874 /* Process credentials: */
875
876 /* Tracer's credentials at attach: */
877 const struct cred __rcu *ptracer_cred;
878
879 /* Objective and real subjective task credentials (COW): */
880 const struct cred __rcu *real_cred;
881
882 /* Effective (overridable) subjective task credentials (COW): */
883 const struct cred __rcu *cred;
884
885#ifdef CONFIG_KEYS
886 /* Cached requested key. */
887 struct key *cached_requested_key;
888#endif
889
890 /*
891 * executable name, excluding path.
892 *
893 * - normally initialized setup_new_exec()
894 * - access it with [gs]et_task_comm()
895 * - lock it with task_lock()
896 */
897 char comm[TASK_COMM_LEN];
898
899 struct nameidata *nameidata;
900
901#ifdef CONFIG_SYSVIPC
902 struct sysv_sem sysvsem;
903 struct sysv_shm sysvshm;
904#endif
905#ifdef CONFIG_DETECT_HUNG_TASK
906 unsigned long last_switch_count;
907 unsigned long last_switch_time;
908#endif
909 /* Filesystem information: */
910 struct fs_struct *fs;
911
912 /* Open file information: */
913 struct files_struct *files;
914
915 /* Namespaces: */
916 struct nsproxy *nsproxy;
917
918 /* Signal handlers: */
919 struct signal_struct *signal;
920 struct sighand_struct *sighand;
921 sigset_t blocked;
922 sigset_t real_blocked;
923 /* Restored if set_restore_sigmask() was used: */
924 sigset_t saved_sigmask;
925 struct sigpending pending;
926 unsigned long sas_ss_sp;
927 size_t sas_ss_size;
928 unsigned int sas_ss_flags;
929
930 struct callback_head *task_works;
931
932#ifdef CONFIG_AUDIT
933#ifdef CONFIG_AUDITSYSCALL
934 struct audit_context *audit_context;
935#endif
936 kuid_t loginuid;
937 unsigned int sessionid;
938#endif
939 struct seccomp seccomp;
940
941 /* Thread group tracking: */
942 u32 parent_exec_id;
943 u32 self_exec_id;
944
945 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
946 spinlock_t alloc_lock;
947
948 /* Protection of the PI data structures: */
949 raw_spinlock_t pi_lock;
950
951 struct wake_q_node wake_q;
952
953#ifdef CONFIG_RT_MUTEXES
954 /* PI waiters blocked on a rt_mutex held by this task: */
955 struct rb_root_cached pi_waiters;
956 /* Updated under owner's pi_lock and rq lock */
957 struct task_struct *pi_top_task;
958 /* Deadlock detection and priority inheritance handling: */
959 struct rt_mutex_waiter *pi_blocked_on;
960#endif
961
962#ifdef CONFIG_DEBUG_MUTEXES
963 /* Mutex deadlock detection: */
964 struct mutex_waiter *blocked_on;
965#endif
966
967#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
968 int non_block_count;
969#endif
970
971#ifdef CONFIG_TRACE_IRQFLAGS
972 unsigned int irq_events;
973 unsigned long hardirq_enable_ip;
974 unsigned long hardirq_disable_ip;
975 unsigned int hardirq_enable_event;
976 unsigned int hardirq_disable_event;
977 int hardirqs_enabled;
978 int hardirq_context;
979 unsigned long softirq_disable_ip;
980 unsigned long softirq_enable_ip;
981 unsigned int softirq_disable_event;
982 unsigned int softirq_enable_event;
983 int softirqs_enabled;
984 int softirq_context;
985#endif
986
987#ifdef CONFIG_LOCKDEP
988# define MAX_LOCK_DEPTH 48UL
989 u64 curr_chain_key;
990 int lockdep_depth;
991 unsigned int lockdep_recursion;
992 struct held_lock held_locks[MAX_LOCK_DEPTH];
993#endif
994
995#ifdef CONFIG_UBSAN
996 unsigned int in_ubsan;
997#endif
998
999 /* Journalling filesystem info: */
1000 void *journal_info;
1001
1002 /* Stacked block device info: */
1003 struct bio_list *bio_list;
1004
1005#ifdef CONFIG_BLOCK
1006 /* Stack plugging: */
1007 struct blk_plug *plug;
1008#endif
1009
1010 /* VM state: */
1011 struct reclaim_state *reclaim_state;
1012
1013 struct backing_dev_info *backing_dev_info;
1014
1015 struct io_context *io_context;
1016
1017#ifdef CONFIG_COMPACTION
1018 struct capture_control *capture_control;
1019#endif
1020 /* Ptrace state: */
1021 unsigned long ptrace_message;
1022 kernel_siginfo_t *last_siginfo;
1023
1024 struct task_io_accounting ioac;
1025#ifdef CONFIG_PSI
1026 /* Pressure stall state */
1027 unsigned int psi_flags;
1028#endif
1029#ifdef CONFIG_TASK_XACCT
1030 /* Accumulated RSS usage: */
1031 u64 acct_rss_mem1;
1032 /* Accumulated virtual memory usage: */
1033 u64 acct_vm_mem1;
1034 /* stime + utime since last update: */
1035 u64 acct_timexpd;
1036#endif
1037#ifdef CONFIG_CPUSETS
1038 /* Protected by ->alloc_lock: */
1039 nodemask_t mems_allowed;
1040 /* Seqence number to catch updates: */
1041 seqcount_t mems_allowed_seq;
1042 int cpuset_mem_spread_rotor;
1043 int cpuset_slab_spread_rotor;
1044#endif
1045#ifdef CONFIG_CGROUPS
1046 /* Control Group info protected by css_set_lock: */
1047 struct css_set __rcu *cgroups;
1048 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1049 struct list_head cg_list;
1050#endif
1051#ifdef CONFIG_X86_CPU_RESCTRL
1052 u32 closid;
1053 u32 rmid;
1054#endif
1055#ifdef CONFIG_FUTEX
1056 struct robust_list_head __user *robust_list;
1057#ifdef CONFIG_COMPAT
1058 struct compat_robust_list_head __user *compat_robust_list;
1059#endif
1060 struct list_head pi_state_list;
1061 struct futex_pi_state *pi_state_cache;
1062 struct mutex futex_exit_mutex;
1063 unsigned int futex_state;
1064#endif
1065#ifdef CONFIG_PERF_EVENTS
1066 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1067 struct mutex perf_event_mutex;
1068 struct list_head perf_event_list;
1069#endif
1070#ifdef CONFIG_DEBUG_PREEMPT
1071 unsigned long preempt_disable_ip;
1072#endif
1073#ifdef CONFIG_NUMA
1074 /* Protected by alloc_lock: */
1075 struct mempolicy *mempolicy;
1076 short il_prev;
1077 short pref_node_fork;
1078#endif
1079#ifdef CONFIG_NUMA_BALANCING
1080 int numa_scan_seq;
1081 unsigned int numa_scan_period;
1082 unsigned int numa_scan_period_max;
1083 int numa_preferred_nid;
1084 unsigned long numa_migrate_retry;
1085 /* Migration stamp: */
1086 u64 node_stamp;
1087 u64 last_task_numa_placement;
1088 u64 last_sum_exec_runtime;
1089 struct callback_head numa_work;
1090
1091 /*
1092 * This pointer is only modified for current in syscall and
1093 * pagefault context (and for tasks being destroyed), so it can be read
1094 * from any of the following contexts:
1095 * - RCU read-side critical section
1096 * - current->numa_group from everywhere
1097 * - task's runqueue locked, task not running
1098 */
1099 struct numa_group __rcu *numa_group;
1100
1101 /*
1102 * numa_faults is an array split into four regions:
1103 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1104 * in this precise order.
1105 *
1106 * faults_memory: Exponential decaying average of faults on a per-node
1107 * basis. Scheduling placement decisions are made based on these
1108 * counts. The values remain static for the duration of a PTE scan.
1109 * faults_cpu: Track the nodes the process was running on when a NUMA
1110 * hinting fault was incurred.
1111 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1112 * during the current scan window. When the scan completes, the counts
1113 * in faults_memory and faults_cpu decay and these values are copied.
1114 */
1115 unsigned long *numa_faults;
1116 unsigned long total_numa_faults;
1117
1118 /*
1119 * numa_faults_locality tracks if faults recorded during the last
1120 * scan window were remote/local or failed to migrate. The task scan
1121 * period is adapted based on the locality of the faults with different
1122 * weights depending on whether they were shared or private faults
1123 */
1124 unsigned long numa_faults_locality[3];
1125
1126 unsigned long numa_pages_migrated;
1127#endif /* CONFIG_NUMA_BALANCING */
1128
1129#ifdef CONFIG_RSEQ
1130 struct rseq __user *rseq;
1131 u32 rseq_sig;
1132 /*
1133 * RmW on rseq_event_mask must be performed atomically
1134 * with respect to preemption.
1135 */
1136 unsigned long rseq_event_mask;
1137#endif
1138
1139 struct tlbflush_unmap_batch tlb_ubc;
1140
1141 union {
1142 refcount_t rcu_users;
1143 struct rcu_head rcu;
1144 };
1145
1146 /* Cache last used pipe for splice(): */
1147 struct pipe_inode_info *splice_pipe;
1148
1149 struct page_frag task_frag;
1150
1151#ifdef CONFIG_TASK_DELAY_ACCT
1152 struct task_delay_info *delays;
1153#endif
1154
1155#ifdef CONFIG_FAULT_INJECTION
1156 int make_it_fail;
1157 unsigned int fail_nth;
1158#endif
1159 /*
1160 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1161 * balance_dirty_pages() for a dirty throttling pause:
1162 */
1163 int nr_dirtied;
1164 int nr_dirtied_pause;
1165 /* Start of a write-and-pause period: */
1166 unsigned long dirty_paused_when;
1167
1168#ifdef CONFIG_LATENCYTOP
1169 int latency_record_count;
1170 struct latency_record latency_record[LT_SAVECOUNT];
1171#endif
1172 /*
1173 * Time slack values; these are used to round up poll() and
1174 * select() etc timeout values. These are in nanoseconds.
1175 */
1176 u64 timer_slack_ns;
1177 u64 default_timer_slack_ns;
1178
1179#ifdef CONFIG_KASAN
1180 unsigned int kasan_depth;
1181#endif
1182
1183#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1184 /* Index of current stored address in ret_stack: */
1185 int curr_ret_stack;
1186 int curr_ret_depth;
1187
1188 /* Stack of return addresses for return function tracing: */
1189 struct ftrace_ret_stack *ret_stack;
1190
1191 /* Timestamp for last schedule: */
1192 unsigned long long ftrace_timestamp;
1193
1194 /*
1195 * Number of functions that haven't been traced
1196 * because of depth overrun:
1197 */
1198 atomic_t trace_overrun;
1199
1200 /* Pause tracing: */
1201 atomic_t tracing_graph_pause;
1202#endif
1203
1204#ifdef CONFIG_TRACING
1205 /* State flags for use by tracers: */
1206 unsigned long trace;
1207
1208 /* Bitmask and counter of trace recursion: */
1209 unsigned long trace_recursion;
1210#endif /* CONFIG_TRACING */
1211
1212#ifdef CONFIG_KCOV
1213 /* See kernel/kcov.c for more details. */
1214
1215 /* Coverage collection mode enabled for this task (0 if disabled): */
1216 unsigned int kcov_mode;
1217
1218 /* Size of the kcov_area: */
1219 unsigned int kcov_size;
1220
1221 /* Buffer for coverage collection: */
1222 void *kcov_area;
1223
1224 /* KCOV descriptor wired with this task or NULL: */
1225 struct kcov *kcov;
1226
1227 /* KCOV common handle for remote coverage collection: */
1228 u64 kcov_handle;
1229
1230 /* KCOV sequence number: */
1231 int kcov_sequence;
1232#endif
1233
1234#ifdef CONFIG_MEMCG
1235 struct mem_cgroup *memcg_in_oom;
1236 gfp_t memcg_oom_gfp_mask;
1237 int memcg_oom_order;
1238
1239 /* Number of pages to reclaim on returning to userland: */
1240 unsigned int memcg_nr_pages_over_high;
1241
1242 /* Used by memcontrol for targeted memcg charge: */
1243 struct mem_cgroup *active_memcg;
1244#endif
1245
1246#ifdef CONFIG_BLK_CGROUP
1247 struct request_queue *throttle_queue;
1248#endif
1249
1250#ifdef CONFIG_UPROBES
1251 struct uprobe_task *utask;
1252#endif
1253#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1254 unsigned int sequential_io;
1255 unsigned int sequential_io_avg;
1256#endif
1257#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1258 unsigned long task_state_change;
1259#endif
1260 int pagefault_disabled;
1261#ifdef CONFIG_MMU
1262 struct task_struct *oom_reaper_list;
1263#endif
1264#ifdef CONFIG_VMAP_STACK
1265 struct vm_struct *stack_vm_area;
1266#endif
1267#ifdef CONFIG_THREAD_INFO_IN_TASK
1268 /* A live task holds one reference: */
1269 refcount_t stack_refcount;
1270#endif
1271#ifdef CONFIG_LIVEPATCH
1272 int patch_state;
1273#endif
1274#ifdef CONFIG_SECURITY
1275 /* Used by LSM modules for access restriction: */
1276 void *security;
1277#endif
1278
1279#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1280 unsigned long lowest_stack;
1281 unsigned long prev_lowest_stack;
1282#endif
1283
1284 /*
1285 * New fields for task_struct should be added above here, so that
1286 * they are included in the randomized portion of task_struct.
1287 */
1288 randomized_struct_fields_end
1289
1290 /* CPU-specific state of this task: */
1291 struct thread_struct thread;
1292
1293 /*
1294 * WARNING: on x86, 'thread_struct' contains a variable-sized
1295 * structure. It *MUST* be at the end of 'task_struct'.
1296 *
1297 * Do not put anything below here!
1298 */
1299};
1300
1301static inline struct pid *task_pid(struct task_struct *task)
1302{
1303 return task->thread_pid;
1304}
1305
1306/*
1307 * the helpers to get the task's different pids as they are seen
1308 * from various namespaces
1309 *
1310 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1311 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1312 * current.
1313 * task_xid_nr_ns() : id seen from the ns specified;
1314 *
1315 * see also pid_nr() etc in include/linux/pid.h
1316 */
1317pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1318
1319static inline pid_t task_pid_nr(struct task_struct *tsk)
1320{
1321 return tsk->pid;
1322}
1323
1324static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1325{
1326 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1327}
1328
1329static inline pid_t task_pid_vnr(struct task_struct *tsk)
1330{
1331 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1332}
1333
1334
1335static inline pid_t task_tgid_nr(struct task_struct *tsk)
1336{
1337 return tsk->tgid;
1338}
1339
1340/**
1341 * pid_alive - check that a task structure is not stale
1342 * @p: Task structure to be checked.
1343 *
1344 * Test if a process is not yet dead (at most zombie state)
1345 * If pid_alive fails, then pointers within the task structure
1346 * can be stale and must not be dereferenced.
1347 *
1348 * Return: 1 if the process is alive. 0 otherwise.
1349 */
1350static inline int pid_alive(const struct task_struct *p)
1351{
1352 return p->thread_pid != NULL;
1353}
1354
1355static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1356{
1357 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1358}
1359
1360static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1361{
1362 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1363}
1364
1365
1366static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1367{
1368 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1369}
1370
1371static inline pid_t task_session_vnr(struct task_struct *tsk)
1372{
1373 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1374}
1375
1376static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1377{
1378 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1379}
1380
1381static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1382{
1383 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1384}
1385
1386static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1387{
1388 pid_t pid = 0;
1389
1390 rcu_read_lock();
1391 if (pid_alive(tsk))
1392 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1393 rcu_read_unlock();
1394
1395 return pid;
1396}
1397
1398static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1399{
1400 return task_ppid_nr_ns(tsk, &init_pid_ns);
1401}
1402
1403/* Obsolete, do not use: */
1404static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1405{
1406 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1407}
1408
1409#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1410#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1411
1412static inline unsigned int task_state_index(struct task_struct *tsk)
1413{
1414 unsigned int tsk_state = READ_ONCE(tsk->state);
1415 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1416
1417 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1418
1419 if (tsk_state == TASK_IDLE)
1420 state = TASK_REPORT_IDLE;
1421
1422 return fls(state);
1423}
1424
1425static inline char task_index_to_char(unsigned int state)
1426{
1427 static const char state_char[] = "RSDTtXZPI";
1428
1429 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1430
1431 return state_char[state];
1432}
1433
1434static inline char task_state_to_char(struct task_struct *tsk)
1435{
1436 return task_index_to_char(task_state_index(tsk));
1437}
1438
1439/**
1440 * is_global_init - check if a task structure is init. Since init
1441 * is free to have sub-threads we need to check tgid.
1442 * @tsk: Task structure to be checked.
1443 *
1444 * Check if a task structure is the first user space task the kernel created.
1445 *
1446 * Return: 1 if the task structure is init. 0 otherwise.
1447 */
1448static inline int is_global_init(struct task_struct *tsk)
1449{
1450 return task_tgid_nr(tsk) == 1;
1451}
1452
1453extern struct pid *cad_pid;
1454
1455/*
1456 * Per process flags
1457 */
1458#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1459#define PF_EXITING 0x00000004 /* Getting shut down */
1460#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1461#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1462#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1463#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1464#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1465#define PF_DUMPCORE 0x00000200 /* Dumped core */
1466#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1467#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1468#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1469#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1470#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1471#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1472#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1473#define PF_KSWAPD 0x00020000 /* I am kswapd */
1474#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1475#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1476#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1477#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1478#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1479#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1480#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1481#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1482#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1483#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1484#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1485#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1486#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1487#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1488
1489/*
1490 * Only the _current_ task can read/write to tsk->flags, but other
1491 * tasks can access tsk->flags in readonly mode for example
1492 * with tsk_used_math (like during threaded core dumping).
1493 * There is however an exception to this rule during ptrace
1494 * or during fork: the ptracer task is allowed to write to the
1495 * child->flags of its traced child (same goes for fork, the parent
1496 * can write to the child->flags), because we're guaranteed the
1497 * child is not running and in turn not changing child->flags
1498 * at the same time the parent does it.
1499 */
1500#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1501#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1502#define clear_used_math() clear_stopped_child_used_math(current)
1503#define set_used_math() set_stopped_child_used_math(current)
1504
1505#define conditional_stopped_child_used_math(condition, child) \
1506 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1507
1508#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1509
1510#define copy_to_stopped_child_used_math(child) \
1511 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1512
1513/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1514#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1515#define used_math() tsk_used_math(current)
1516
1517static inline bool is_percpu_thread(void)
1518{
1519#ifdef CONFIG_SMP
1520 return (current->flags & PF_NO_SETAFFINITY) &&
1521 (current->nr_cpus_allowed == 1);
1522#else
1523 return true;
1524#endif
1525}
1526
1527/* Per-process atomic flags. */
1528#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1529#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1530#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1531#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1532#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1533#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1534#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1535#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1536
1537#define TASK_PFA_TEST(name, func) \
1538 static inline bool task_##func(struct task_struct *p) \
1539 { return test_bit(PFA_##name, &p->atomic_flags); }
1540
1541#define TASK_PFA_SET(name, func) \
1542 static inline void task_set_##func(struct task_struct *p) \
1543 { set_bit(PFA_##name, &p->atomic_flags); }
1544
1545#define TASK_PFA_CLEAR(name, func) \
1546 static inline void task_clear_##func(struct task_struct *p) \
1547 { clear_bit(PFA_##name, &p->atomic_flags); }
1548
1549TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1550TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1551
1552TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1553TASK_PFA_SET(SPREAD_PAGE, spread_page)
1554TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1555
1556TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1557TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1558TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1559
1560TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1561TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1562TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1563
1564TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1565TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1566TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1567
1568TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1569TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1570
1571TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1572TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1573TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1574
1575TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1576TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1577
1578static inline void
1579current_restore_flags(unsigned long orig_flags, unsigned long flags)
1580{
1581 current->flags &= ~flags;
1582 current->flags |= orig_flags & flags;
1583}
1584
1585extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1586extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1587#ifdef CONFIG_SMP
1588extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1589extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1590#else
1591static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1592{
1593}
1594static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1595{
1596 if (!cpumask_test_cpu(0, new_mask))
1597 return -EINVAL;
1598 return 0;
1599}
1600#endif
1601
1602extern int yield_to(struct task_struct *p, bool preempt);
1603extern void set_user_nice(struct task_struct *p, long nice);
1604extern int task_prio(const struct task_struct *p);
1605
1606/**
1607 * task_nice - return the nice value of a given task.
1608 * @p: the task in question.
1609 *
1610 * Return: The nice value [ -20 ... 0 ... 19 ].
1611 */
1612static inline int task_nice(const struct task_struct *p)
1613{
1614 return PRIO_TO_NICE((p)->static_prio);
1615}
1616
1617extern int can_nice(const struct task_struct *p, const int nice);
1618extern int task_curr(const struct task_struct *p);
1619extern int idle_cpu(int cpu);
1620extern int available_idle_cpu(int cpu);
1621extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1622extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1623extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1624extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1625extern struct task_struct *idle_task(int cpu);
1626
1627/**
1628 * is_idle_task - is the specified task an idle task?
1629 * @p: the task in question.
1630 *
1631 * Return: 1 if @p is an idle task. 0 otherwise.
1632 */
1633static inline bool is_idle_task(const struct task_struct *p)
1634{
1635 return !!(p->flags & PF_IDLE);
1636}
1637
1638extern struct task_struct *curr_task(int cpu);
1639extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1640
1641void yield(void);
1642
1643union thread_union {
1644#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1645 struct task_struct task;
1646#endif
1647#ifndef CONFIG_THREAD_INFO_IN_TASK
1648 struct thread_info thread_info;
1649#endif
1650 unsigned long stack[THREAD_SIZE/sizeof(long)];
1651};
1652
1653#ifndef CONFIG_THREAD_INFO_IN_TASK
1654extern struct thread_info init_thread_info;
1655#endif
1656
1657extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1658
1659#ifdef CONFIG_THREAD_INFO_IN_TASK
1660static inline struct thread_info *task_thread_info(struct task_struct *task)
1661{
1662 return &task->thread_info;
1663}
1664#elif !defined(__HAVE_THREAD_FUNCTIONS)
1665# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1666#endif
1667
1668/*
1669 * find a task by one of its numerical ids
1670 *
1671 * find_task_by_pid_ns():
1672 * finds a task by its pid in the specified namespace
1673 * find_task_by_vpid():
1674 * finds a task by its virtual pid
1675 *
1676 * see also find_vpid() etc in include/linux/pid.h
1677 */
1678
1679extern struct task_struct *find_task_by_vpid(pid_t nr);
1680extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1681
1682/*
1683 * find a task by its virtual pid and get the task struct
1684 */
1685extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1686
1687extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1688extern int wake_up_process(struct task_struct *tsk);
1689extern void wake_up_new_task(struct task_struct *tsk);
1690
1691#ifdef CONFIG_SMP
1692extern void kick_process(struct task_struct *tsk);
1693#else
1694static inline void kick_process(struct task_struct *tsk) { }
1695#endif
1696
1697extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1698
1699static inline void set_task_comm(struct task_struct *tsk, const char *from)
1700{
1701 __set_task_comm(tsk, from, false);
1702}
1703
1704extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1705#define get_task_comm(buf, tsk) ({ \
1706 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1707 __get_task_comm(buf, sizeof(buf), tsk); \
1708})
1709
1710#ifdef CONFIG_SMP
1711void scheduler_ipi(void);
1712extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1713#else
1714static inline void scheduler_ipi(void) { }
1715static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1716{
1717 return 1;
1718}
1719#endif
1720
1721/*
1722 * Set thread flags in other task's structures.
1723 * See asm/thread_info.h for TIF_xxxx flags available:
1724 */
1725static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1726{
1727 set_ti_thread_flag(task_thread_info(tsk), flag);
1728}
1729
1730static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1731{
1732 clear_ti_thread_flag(task_thread_info(tsk), flag);
1733}
1734
1735static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1736 bool value)
1737{
1738 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1739}
1740
1741static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1742{
1743 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1744}
1745
1746static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1747{
1748 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1749}
1750
1751static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1752{
1753 return test_ti_thread_flag(task_thread_info(tsk), flag);
1754}
1755
1756static inline void set_tsk_need_resched(struct task_struct *tsk)
1757{
1758 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1759}
1760
1761static inline void clear_tsk_need_resched(struct task_struct *tsk)
1762{
1763 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1764}
1765
1766static inline int test_tsk_need_resched(struct task_struct *tsk)
1767{
1768 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1769}
1770
1771/*
1772 * cond_resched() and cond_resched_lock(): latency reduction via
1773 * explicit rescheduling in places that are safe. The return
1774 * value indicates whether a reschedule was done in fact.
1775 * cond_resched_lock() will drop the spinlock before scheduling,
1776 */
1777#ifndef CONFIG_PREEMPTION
1778extern int _cond_resched(void);
1779#else
1780static inline int _cond_resched(void) { return 0; }
1781#endif
1782
1783#define cond_resched() ({ \
1784 ___might_sleep(__FILE__, __LINE__, 0); \
1785 _cond_resched(); \
1786})
1787
1788extern int __cond_resched_lock(spinlock_t *lock);
1789
1790#define cond_resched_lock(lock) ({ \
1791 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1792 __cond_resched_lock(lock); \
1793})
1794
1795static inline void cond_resched_rcu(void)
1796{
1797#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1798 rcu_read_unlock();
1799 cond_resched();
1800 rcu_read_lock();
1801#endif
1802}
1803
1804/*
1805 * Does a critical section need to be broken due to another
1806 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1807 * but a general need for low latency)
1808 */
1809static inline int spin_needbreak(spinlock_t *lock)
1810{
1811#ifdef CONFIG_PREEMPTION
1812 return spin_is_contended(lock);
1813#else
1814 return 0;
1815#endif
1816}
1817
1818static __always_inline bool need_resched(void)
1819{
1820 return unlikely(tif_need_resched());
1821}
1822
1823/*
1824 * Wrappers for p->thread_info->cpu access. No-op on UP.
1825 */
1826#ifdef CONFIG_SMP
1827
1828static inline unsigned int task_cpu(const struct task_struct *p)
1829{
1830#ifdef CONFIG_THREAD_INFO_IN_TASK
1831 return READ_ONCE(p->cpu);
1832#else
1833 return READ_ONCE(task_thread_info(p)->cpu);
1834#endif
1835}
1836
1837extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1838
1839#else
1840
1841static inline unsigned int task_cpu(const struct task_struct *p)
1842{
1843 return 0;
1844}
1845
1846static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1847{
1848}
1849
1850#endif /* CONFIG_SMP */
1851
1852/*
1853 * In order to reduce various lock holder preemption latencies provide an
1854 * interface to see if a vCPU is currently running or not.
1855 *
1856 * This allows us to terminate optimistic spin loops and block, analogous to
1857 * the native optimistic spin heuristic of testing if the lock owner task is
1858 * running or not.
1859 */
1860#ifndef vcpu_is_preempted
1861static inline bool vcpu_is_preempted(int cpu)
1862{
1863 return false;
1864}
1865#endif
1866
1867extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1868extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1869
1870#ifndef TASK_SIZE_OF
1871#define TASK_SIZE_OF(tsk) TASK_SIZE
1872#endif
1873
1874#ifdef CONFIG_RSEQ
1875
1876/*
1877 * Map the event mask on the user-space ABI enum rseq_cs_flags
1878 * for direct mask checks.
1879 */
1880enum rseq_event_mask_bits {
1881 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1882 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1883 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1884};
1885
1886enum rseq_event_mask {
1887 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1888 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1889 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1890};
1891
1892static inline void rseq_set_notify_resume(struct task_struct *t)
1893{
1894 if (t->rseq)
1895 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1896}
1897
1898void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1899
1900static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1901 struct pt_regs *regs)
1902{
1903 if (current->rseq)
1904 __rseq_handle_notify_resume(ksig, regs);
1905}
1906
1907static inline void rseq_signal_deliver(struct ksignal *ksig,
1908 struct pt_regs *regs)
1909{
1910 preempt_disable();
1911 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1912 preempt_enable();
1913 rseq_handle_notify_resume(ksig, regs);
1914}
1915
1916/* rseq_preempt() requires preemption to be disabled. */
1917static inline void rseq_preempt(struct task_struct *t)
1918{
1919 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1920 rseq_set_notify_resume(t);
1921}
1922
1923/* rseq_migrate() requires preemption to be disabled. */
1924static inline void rseq_migrate(struct task_struct *t)
1925{
1926 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1927 rseq_set_notify_resume(t);
1928}
1929
1930/*
1931 * If parent process has a registered restartable sequences area, the
1932 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1933 */
1934static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1935{
1936 if (clone_flags & CLONE_VM) {
1937 t->rseq = NULL;
1938 t->rseq_sig = 0;
1939 t->rseq_event_mask = 0;
1940 } else {
1941 t->rseq = current->rseq;
1942 t->rseq_sig = current->rseq_sig;
1943 t->rseq_event_mask = current->rseq_event_mask;
1944 }
1945}
1946
1947static inline void rseq_execve(struct task_struct *t)
1948{
1949 t->rseq = NULL;
1950 t->rseq_sig = 0;
1951 t->rseq_event_mask = 0;
1952}
1953
1954#else
1955
1956static inline void rseq_set_notify_resume(struct task_struct *t)
1957{
1958}
1959static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1960 struct pt_regs *regs)
1961{
1962}
1963static inline void rseq_signal_deliver(struct ksignal *ksig,
1964 struct pt_regs *regs)
1965{
1966}
1967static inline void rseq_preempt(struct task_struct *t)
1968{
1969}
1970static inline void rseq_migrate(struct task_struct *t)
1971{
1972}
1973static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1974{
1975}
1976static inline void rseq_execve(struct task_struct *t)
1977{
1978}
1979
1980#endif
1981
1982void __exit_umh(struct task_struct *tsk);
1983
1984static inline void exit_umh(struct task_struct *tsk)
1985{
1986 if (unlikely(tsk->flags & PF_UMH))
1987 __exit_umh(tsk);
1988}
1989
1990#ifdef CONFIG_DEBUG_RSEQ
1991
1992void rseq_syscall(struct pt_regs *regs);
1993
1994#else
1995
1996static inline void rseq_syscall(struct pt_regs *regs)
1997{
1998}
1999
2000#endif
2001
2002const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2003char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2004int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2005
2006const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2007const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2008const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2009
2010int sched_trace_rq_cpu(struct rq *rq);
2011
2012const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2013
2014#endif