Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56
57struct sfp_bus;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63/* UDP Tunnel offloads */
64struct udp_tunnel_info;
65struct bpf_prog;
66struct xdp_buff;
67
68void netdev_set_default_ethtool_ops(struct net_device *dev,
69 const struct ethtool_ops *ops);
70
71/* Backlog congestion levels */
72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73#define NET_RX_DROP 1 /* packet dropped */
74
75/*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously; in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89 * others are propagated to higher layers.
90 */
91
92/* qdisc ->enqueue() return codes. */
93#define NET_XMIT_SUCCESS 0x00
94#define NET_XMIT_DROP 0x01 /* skb dropped */
95#define NET_XMIT_CN 0x02 /* congestion notification */
96#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104/* Driver transmit return codes */
105#define NETDEV_TX_MASK 0xf0
106
107enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111};
112typedef enum netdev_tx netdev_tx_t;
113
114/*
115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117 */
118static inline bool dev_xmit_complete(int rc)
119{
120 /*
121 * Positive cases with an skb consumed by a driver:
122 * - successful transmission (rc == NETDEV_TX_OK)
123 * - error while transmitting (rc < 0)
124 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 */
126 if (likely(rc < NET_XMIT_MASK))
127 return true;
128
129 return false;
130}
131
132/*
133 * Compute the worst-case header length according to the protocols
134 * used.
135 */
136
137#if defined(CONFIG_HYPERV_NET)
138# define LL_MAX_HEADER 128
139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140# if defined(CONFIG_MAC80211_MESH)
141# define LL_MAX_HEADER 128
142# else
143# define LL_MAX_HEADER 96
144# endif
145#else
146# define LL_MAX_HEADER 32
147#endif
148
149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151#define MAX_HEADER LL_MAX_HEADER
152#else
153#define MAX_HEADER (LL_MAX_HEADER + 48)
154#endif
155
156/*
157 * Old network device statistics. Fields are native words
158 * (unsigned long) so they can be read and written atomically.
159 */
160
161struct net_device_stats {
162 unsigned long rx_packets;
163 unsigned long tx_packets;
164 unsigned long rx_bytes;
165 unsigned long tx_bytes;
166 unsigned long rx_errors;
167 unsigned long tx_errors;
168 unsigned long rx_dropped;
169 unsigned long tx_dropped;
170 unsigned long multicast;
171 unsigned long collisions;
172 unsigned long rx_length_errors;
173 unsigned long rx_over_errors;
174 unsigned long rx_crc_errors;
175 unsigned long rx_frame_errors;
176 unsigned long rx_fifo_errors;
177 unsigned long rx_missed_errors;
178 unsigned long tx_aborted_errors;
179 unsigned long tx_carrier_errors;
180 unsigned long tx_fifo_errors;
181 unsigned long tx_heartbeat_errors;
182 unsigned long tx_window_errors;
183 unsigned long rx_compressed;
184 unsigned long tx_compressed;
185};
186
187
188#include <linux/cache.h>
189#include <linux/skbuff.h>
190
191#ifdef CONFIG_RPS
192#include <linux/static_key.h>
193extern struct static_key_false rps_needed;
194extern struct static_key_false rfs_needed;
195#endif
196
197struct neighbour;
198struct neigh_parms;
199struct sk_buff;
200
201struct netdev_hw_addr {
202 struct list_head list;
203 unsigned char addr[MAX_ADDR_LEN];
204 unsigned char type;
205#define NETDEV_HW_ADDR_T_LAN 1
206#define NETDEV_HW_ADDR_T_SAN 2
207#define NETDEV_HW_ADDR_T_SLAVE 3
208#define NETDEV_HW_ADDR_T_UNICAST 4
209#define NETDEV_HW_ADDR_T_MULTICAST 5
210 bool global_use;
211 int sync_cnt;
212 int refcount;
213 int synced;
214 struct rcu_head rcu_head;
215};
216
217struct netdev_hw_addr_list {
218 struct list_head list;
219 int count;
220};
221
222#define netdev_hw_addr_list_count(l) ((l)->count)
223#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224#define netdev_hw_addr_list_for_each(ha, l) \
225 list_for_each_entry(ha, &(l)->list, list)
226
227#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229#define netdev_for_each_uc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231
232#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234#define netdev_for_each_mc_addr(ha, dev) \
235 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236
237struct hh_cache {
238 unsigned int hh_len;
239 seqlock_t hh_lock;
240
241 /* cached hardware header; allow for machine alignment needs. */
242#define HH_DATA_MOD 16
243#define HH_DATA_OFF(__len) \
244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245#define HH_DATA_ALIGN(__len) \
246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248};
249
250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251 * Alternative is:
252 * dev->hard_header_len ? (dev->hard_header_len +
253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254 *
255 * We could use other alignment values, but we must maintain the
256 * relationship HH alignment <= LL alignment.
257 */
258#define LL_RESERVED_SPACE(dev) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262
263struct header_ops {
264 int (*create) (struct sk_buff *skb, struct net_device *dev,
265 unsigned short type, const void *daddr,
266 const void *saddr, unsigned int len);
267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 void (*cache_update)(struct hh_cache *hh,
270 const struct net_device *dev,
271 const unsigned char *haddr);
272 bool (*validate)(const char *ll_header, unsigned int len);
273 __be16 (*parse_protocol)(const struct sk_buff *skb);
274};
275
276/* These flag bits are private to the generic network queueing
277 * layer; they may not be explicitly referenced by any other
278 * code.
279 */
280
281enum netdev_state_t {
282 __LINK_STATE_START,
283 __LINK_STATE_PRESENT,
284 __LINK_STATE_NOCARRIER,
285 __LINK_STATE_LINKWATCH_PENDING,
286 __LINK_STATE_DORMANT,
287};
288
289
290/*
291 * This structure holds boot-time configured netdevice settings. They
292 * are then used in the device probing.
293 */
294struct netdev_boot_setup {
295 char name[IFNAMSIZ];
296 struct ifmap map;
297};
298#define NETDEV_BOOT_SETUP_MAX 8
299
300int __init netdev_boot_setup(char *str);
301
302struct gro_list {
303 struct list_head list;
304 int count;
305};
306
307/*
308 * size of gro hash buckets, must less than bit number of
309 * napi_struct::gro_bitmask
310 */
311#define GRO_HASH_BUCKETS 8
312
313/*
314 * Structure for NAPI scheduling similar to tasklet but with weighting
315 */
316struct napi_struct {
317 /* The poll_list must only be managed by the entity which
318 * changes the state of the NAPI_STATE_SCHED bit. This means
319 * whoever atomically sets that bit can add this napi_struct
320 * to the per-CPU poll_list, and whoever clears that bit
321 * can remove from the list right before clearing the bit.
322 */
323 struct list_head poll_list;
324
325 unsigned long state;
326 int weight;
327 unsigned long gro_bitmask;
328 int (*poll)(struct napi_struct *, int);
329#ifdef CONFIG_NETPOLL
330 int poll_owner;
331#endif
332 struct net_device *dev;
333 struct gro_list gro_hash[GRO_HASH_BUCKETS];
334 struct sk_buff *skb;
335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
336 int rx_count; /* length of rx_list */
337 struct hrtimer timer;
338 struct list_head dev_list;
339 struct hlist_node napi_hash_node;
340 unsigned int napi_id;
341};
342
343enum {
344 NAPI_STATE_SCHED, /* Poll is scheduled */
345 NAPI_STATE_MISSED, /* reschedule a napi */
346 NAPI_STATE_DISABLE, /* Disable pending */
347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351};
352
353enum {
354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361};
362
363enum gro_result {
364 GRO_MERGED,
365 GRO_MERGED_FREE,
366 GRO_HELD,
367 GRO_NORMAL,
368 GRO_DROP,
369 GRO_CONSUMED,
370};
371typedef enum gro_result gro_result_t;
372
373/*
374 * enum rx_handler_result - Possible return values for rx_handlers.
375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376 * further.
377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378 * case skb->dev was changed by rx_handler.
379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381 *
382 * rx_handlers are functions called from inside __netif_receive_skb(), to do
383 * special processing of the skb, prior to delivery to protocol handlers.
384 *
385 * Currently, a net_device can only have a single rx_handler registered. Trying
386 * to register a second rx_handler will return -EBUSY.
387 *
388 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389 * To unregister a rx_handler on a net_device, use
390 * netdev_rx_handler_unregister().
391 *
392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393 * do with the skb.
394 *
395 * If the rx_handler consumed the skb in some way, it should return
396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397 * the skb to be delivered in some other way.
398 *
399 * If the rx_handler changed skb->dev, to divert the skb to another
400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401 * new device will be called if it exists.
402 *
403 * If the rx_handler decides the skb should be ignored, it should return
404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405 * are registered on exact device (ptype->dev == skb->dev).
406 *
407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408 * delivered, it should return RX_HANDLER_PASS.
409 *
410 * A device without a registered rx_handler will behave as if rx_handler
411 * returned RX_HANDLER_PASS.
412 */
413
414enum rx_handler_result {
415 RX_HANDLER_CONSUMED,
416 RX_HANDLER_ANOTHER,
417 RX_HANDLER_EXACT,
418 RX_HANDLER_PASS,
419};
420typedef enum rx_handler_result rx_handler_result_t;
421typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422
423void __napi_schedule(struct napi_struct *n);
424void __napi_schedule_irqoff(struct napi_struct *n);
425
426static inline bool napi_disable_pending(struct napi_struct *n)
427{
428 return test_bit(NAPI_STATE_DISABLE, &n->state);
429}
430
431bool napi_schedule_prep(struct napi_struct *n);
432
433/**
434 * napi_schedule - schedule NAPI poll
435 * @n: NAPI context
436 *
437 * Schedule NAPI poll routine to be called if it is not already
438 * running.
439 */
440static inline void napi_schedule(struct napi_struct *n)
441{
442 if (napi_schedule_prep(n))
443 __napi_schedule(n);
444}
445
446/**
447 * napi_schedule_irqoff - schedule NAPI poll
448 * @n: NAPI context
449 *
450 * Variant of napi_schedule(), assuming hard irqs are masked.
451 */
452static inline void napi_schedule_irqoff(struct napi_struct *n)
453{
454 if (napi_schedule_prep(n))
455 __napi_schedule_irqoff(n);
456}
457
458/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
459static inline bool napi_reschedule(struct napi_struct *napi)
460{
461 if (napi_schedule_prep(napi)) {
462 __napi_schedule(napi);
463 return true;
464 }
465 return false;
466}
467
468bool napi_complete_done(struct napi_struct *n, int work_done);
469/**
470 * napi_complete - NAPI processing complete
471 * @n: NAPI context
472 *
473 * Mark NAPI processing as complete.
474 * Consider using napi_complete_done() instead.
475 * Return false if device should avoid rearming interrupts.
476 */
477static inline bool napi_complete(struct napi_struct *n)
478{
479 return napi_complete_done(n, 0);
480}
481
482/**
483 * napi_hash_del - remove a NAPI from global table
484 * @napi: NAPI context
485 *
486 * Warning: caller must observe RCU grace period
487 * before freeing memory containing @napi, if
488 * this function returns true.
489 * Note: core networking stack automatically calls it
490 * from netif_napi_del().
491 * Drivers might want to call this helper to combine all
492 * the needed RCU grace periods into a single one.
493 */
494bool napi_hash_del(struct napi_struct *napi);
495
496/**
497 * napi_disable - prevent NAPI from scheduling
498 * @n: NAPI context
499 *
500 * Stop NAPI from being scheduled on this context.
501 * Waits till any outstanding processing completes.
502 */
503void napi_disable(struct napi_struct *n);
504
505/**
506 * napi_enable - enable NAPI scheduling
507 * @n: NAPI context
508 *
509 * Resume NAPI from being scheduled on this context.
510 * Must be paired with napi_disable.
511 */
512static inline void napi_enable(struct napi_struct *n)
513{
514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 smp_mb__before_atomic();
516 clear_bit(NAPI_STATE_SCHED, &n->state);
517 clear_bit(NAPI_STATE_NPSVC, &n->state);
518}
519
520/**
521 * napi_synchronize - wait until NAPI is not running
522 * @n: NAPI context
523 *
524 * Wait until NAPI is done being scheduled on this context.
525 * Waits till any outstanding processing completes but
526 * does not disable future activations.
527 */
528static inline void napi_synchronize(const struct napi_struct *n)
529{
530 if (IS_ENABLED(CONFIG_SMP))
531 while (test_bit(NAPI_STATE_SCHED, &n->state))
532 msleep(1);
533 else
534 barrier();
535}
536
537/**
538 * napi_if_scheduled_mark_missed - if napi is running, set the
539 * NAPIF_STATE_MISSED
540 * @n: NAPI context
541 *
542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543 * NAPI is scheduled.
544 **/
545static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546{
547 unsigned long val, new;
548
549 do {
550 val = READ_ONCE(n->state);
551 if (val & NAPIF_STATE_DISABLE)
552 return true;
553
554 if (!(val & NAPIF_STATE_SCHED))
555 return false;
556
557 new = val | NAPIF_STATE_MISSED;
558 } while (cmpxchg(&n->state, val, new) != val);
559
560 return true;
561}
562
563enum netdev_queue_state_t {
564 __QUEUE_STATE_DRV_XOFF,
565 __QUEUE_STATE_STACK_XOFF,
566 __QUEUE_STATE_FROZEN,
567};
568
569#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
570#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
571#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
572
573#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 QUEUE_STATE_FROZEN)
576#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 QUEUE_STATE_FROZEN)
578
579/*
580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
581 * netif_tx_* functions below are used to manipulate this flag. The
582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583 * queue independently. The netif_xmit_*stopped functions below are called
584 * to check if the queue has been stopped by the driver or stack (either
585 * of the XOFF bits are set in the state). Drivers should not need to call
586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
587 */
588
589struct netdev_queue {
590/*
591 * read-mostly part
592 */
593 struct net_device *dev;
594 struct Qdisc __rcu *qdisc;
595 struct Qdisc *qdisc_sleeping;
596#ifdef CONFIG_SYSFS
597 struct kobject kobj;
598#endif
599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 int numa_node;
601#endif
602 unsigned long tx_maxrate;
603 /*
604 * Number of TX timeouts for this queue
605 * (/sys/class/net/DEV/Q/trans_timeout)
606 */
607 unsigned long trans_timeout;
608
609 /* Subordinate device that the queue has been assigned to */
610 struct net_device *sb_dev;
611#ifdef CONFIG_XDP_SOCKETS
612 struct xdp_umem *umem;
613#endif
614/*
615 * write-mostly part
616 */
617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
618 int xmit_lock_owner;
619 /*
620 * Time (in jiffies) of last Tx
621 */
622 unsigned long trans_start;
623
624 unsigned long state;
625
626#ifdef CONFIG_BQL
627 struct dql dql;
628#endif
629} ____cacheline_aligned_in_smp;
630
631extern int sysctl_fb_tunnels_only_for_init_net;
632extern int sysctl_devconf_inherit_init_net;
633
634static inline bool net_has_fallback_tunnels(const struct net *net)
635{
636 return net == &init_net ||
637 !IS_ENABLED(CONFIG_SYSCTL) ||
638 !sysctl_fb_tunnels_only_for_init_net;
639}
640
641static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642{
643#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645#else
646 return NUMA_NO_NODE;
647#endif
648}
649
650static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651{
652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654#endif
655}
656
657#ifdef CONFIG_RPS
658/*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[0];
666};
667#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669/*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678};
679#define RPS_NO_FILTER 0xffff
680
681/*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[0];
688};
689#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692/*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[0] ____cacheline_aligned_in_smp;
706};
707#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709#define RPS_NO_CPU 0xffff
710
711extern u32 rps_cpu_mask;
712extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716{
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727}
728
729#ifdef CONFIG_RFS_ACCEL
730bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732#endif
733#endif /* CONFIG_RPS */
734
735/* This structure contains an instance of an RX queue. */
736struct netdev_rx_queue {
737#ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740#endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744#ifdef CONFIG_XDP_SOCKETS
745 struct xdp_umem *umem;
746#endif
747} ____cacheline_aligned_in_smp;
748
749/*
750 * RX queue sysfs structures and functions.
751 */
752struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757};
758
759#ifdef CONFIG_XPS
760/*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[0];
769};
770#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774/*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780};
781
782#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788#endif /* CONFIG_XPS */
789
790#define TC_MAX_QUEUE 16
791#define TC_BITMASK 15
792/* HW offloaded queuing disciplines txq count and offset maps */
793struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796};
797
798#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799/*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812};
813#endif
814
815#define MAX_PHYS_ITEM_ID_LEN 32
816
817/* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823};
824
825static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827{
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830}
831
832typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 TC_SETUP_QDISC_TAPRIO,
851 TC_SETUP_FT,
852};
853
854/* These structures hold the attributes of bpf state that are being passed
855 * to the netdevice through the bpf op.
856 */
857enum bpf_netdev_command {
858 /* Set or clear a bpf program used in the earliest stages of packet
859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
860 * is responsible for calling bpf_prog_put on any old progs that are
861 * stored. In case of error, the callee need not release the new prog
862 * reference, but on success it takes ownership and must bpf_prog_put
863 * when it is no longer used.
864 */
865 XDP_SETUP_PROG,
866 XDP_SETUP_PROG_HW,
867 XDP_QUERY_PROG,
868 XDP_QUERY_PROG_HW,
869 /* BPF program for offload callbacks, invoked at program load time. */
870 BPF_OFFLOAD_MAP_ALLOC,
871 BPF_OFFLOAD_MAP_FREE,
872 XDP_SETUP_XSK_UMEM,
873};
874
875struct bpf_prog_offload_ops;
876struct netlink_ext_ack;
877struct xdp_umem;
878
879struct netdev_bpf {
880 enum bpf_netdev_command command;
881 union {
882 /* XDP_SETUP_PROG */
883 struct {
884 u32 flags;
885 struct bpf_prog *prog;
886 struct netlink_ext_ack *extack;
887 };
888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 struct {
890 u32 prog_id;
891 /* flags with which program was installed */
892 u32 prog_flags;
893 };
894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 struct {
896 struct bpf_offloaded_map *offmap;
897 };
898 /* XDP_SETUP_XSK_UMEM */
899 struct {
900 struct xdp_umem *umem;
901 u16 queue_id;
902 } xsk;
903 };
904};
905
906/* Flags for ndo_xsk_wakeup. */
907#define XDP_WAKEUP_RX (1 << 0)
908#define XDP_WAKEUP_TX (1 << 1)
909
910#ifdef CONFIG_XFRM_OFFLOAD
911struct xfrmdev_ops {
912 int (*xdo_dev_state_add) (struct xfrm_state *x);
913 void (*xdo_dev_state_delete) (struct xfrm_state *x);
914 void (*xdo_dev_state_free) (struct xfrm_state *x);
915 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
916 struct xfrm_state *x);
917 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
918};
919#endif
920
921struct dev_ifalias {
922 struct rcu_head rcuhead;
923 char ifalias[];
924};
925
926struct devlink;
927struct tlsdev_ops;
928
929struct netdev_name_node {
930 struct hlist_node hlist;
931 struct list_head list;
932 struct net_device *dev;
933 const char *name;
934};
935
936int netdev_name_node_alt_create(struct net_device *dev, const char *name);
937int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
938
939/*
940 * This structure defines the management hooks for network devices.
941 * The following hooks can be defined; unless noted otherwise, they are
942 * optional and can be filled with a null pointer.
943 *
944 * int (*ndo_init)(struct net_device *dev);
945 * This function is called once when a network device is registered.
946 * The network device can use this for any late stage initialization
947 * or semantic validation. It can fail with an error code which will
948 * be propagated back to register_netdev.
949 *
950 * void (*ndo_uninit)(struct net_device *dev);
951 * This function is called when device is unregistered or when registration
952 * fails. It is not called if init fails.
953 *
954 * int (*ndo_open)(struct net_device *dev);
955 * This function is called when a network device transitions to the up
956 * state.
957 *
958 * int (*ndo_stop)(struct net_device *dev);
959 * This function is called when a network device transitions to the down
960 * state.
961 *
962 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
963 * struct net_device *dev);
964 * Called when a packet needs to be transmitted.
965 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
966 * the queue before that can happen; it's for obsolete devices and weird
967 * corner cases, but the stack really does a non-trivial amount
968 * of useless work if you return NETDEV_TX_BUSY.
969 * Required; cannot be NULL.
970 *
971 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
972 * struct net_device *dev
973 * netdev_features_t features);
974 * Called by core transmit path to determine if device is capable of
975 * performing offload operations on a given packet. This is to give
976 * the device an opportunity to implement any restrictions that cannot
977 * be otherwise expressed by feature flags. The check is called with
978 * the set of features that the stack has calculated and it returns
979 * those the driver believes to be appropriate.
980 *
981 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
982 * struct net_device *sb_dev);
983 * Called to decide which queue to use when device supports multiple
984 * transmit queues.
985 *
986 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
987 * This function is called to allow device receiver to make
988 * changes to configuration when multicast or promiscuous is enabled.
989 *
990 * void (*ndo_set_rx_mode)(struct net_device *dev);
991 * This function is called device changes address list filtering.
992 * If driver handles unicast address filtering, it should set
993 * IFF_UNICAST_FLT in its priv_flags.
994 *
995 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
996 * This function is called when the Media Access Control address
997 * needs to be changed. If this interface is not defined, the
998 * MAC address can not be changed.
999 *
1000 * int (*ndo_validate_addr)(struct net_device *dev);
1001 * Test if Media Access Control address is valid for the device.
1002 *
1003 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1004 * Called when a user requests an ioctl which can't be handled by
1005 * the generic interface code. If not defined ioctls return
1006 * not supported error code.
1007 *
1008 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1009 * Used to set network devices bus interface parameters. This interface
1010 * is retained for legacy reasons; new devices should use the bus
1011 * interface (PCI) for low level management.
1012 *
1013 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1014 * Called when a user wants to change the Maximum Transfer Unit
1015 * of a device.
1016 *
1017 * void (*ndo_tx_timeout)(struct net_device *dev);
1018 * Callback used when the transmitter has not made any progress
1019 * for dev->watchdog ticks.
1020 *
1021 * void (*ndo_get_stats64)(struct net_device *dev,
1022 * struct rtnl_link_stats64 *storage);
1023 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1024 * Called when a user wants to get the network device usage
1025 * statistics. Drivers must do one of the following:
1026 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1027 * rtnl_link_stats64 structure passed by the caller.
1028 * 2. Define @ndo_get_stats to update a net_device_stats structure
1029 * (which should normally be dev->stats) and return a pointer to
1030 * it. The structure may be changed asynchronously only if each
1031 * field is written atomically.
1032 * 3. Update dev->stats asynchronously and atomically, and define
1033 * neither operation.
1034 *
1035 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1036 * Return true if this device supports offload stats of this attr_id.
1037 *
1038 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1039 * void *attr_data)
1040 * Get statistics for offload operations by attr_id. Write it into the
1041 * attr_data pointer.
1042 *
1043 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1044 * If device supports VLAN filtering this function is called when a
1045 * VLAN id is registered.
1046 *
1047 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1048 * If device supports VLAN filtering this function is called when a
1049 * VLAN id is unregistered.
1050 *
1051 * void (*ndo_poll_controller)(struct net_device *dev);
1052 *
1053 * SR-IOV management functions.
1054 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1055 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1056 * u8 qos, __be16 proto);
1057 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1058 * int max_tx_rate);
1059 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1060 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1061 * int (*ndo_get_vf_config)(struct net_device *dev,
1062 * int vf, struct ifla_vf_info *ivf);
1063 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1064 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1065 * struct nlattr *port[]);
1066 *
1067 * Enable or disable the VF ability to query its RSS Redirection Table and
1068 * Hash Key. This is needed since on some devices VF share this information
1069 * with PF and querying it may introduce a theoretical security risk.
1070 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1071 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1072 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1073 * void *type_data);
1074 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1075 * This is always called from the stack with the rtnl lock held and netif
1076 * tx queues stopped. This allows the netdevice to perform queue
1077 * management safely.
1078 *
1079 * Fiber Channel over Ethernet (FCoE) offload functions.
1080 * int (*ndo_fcoe_enable)(struct net_device *dev);
1081 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1082 * so the underlying device can perform whatever needed configuration or
1083 * initialization to support acceleration of FCoE traffic.
1084 *
1085 * int (*ndo_fcoe_disable)(struct net_device *dev);
1086 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1087 * so the underlying device can perform whatever needed clean-ups to
1088 * stop supporting acceleration of FCoE traffic.
1089 *
1090 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1091 * struct scatterlist *sgl, unsigned int sgc);
1092 * Called when the FCoE Initiator wants to initialize an I/O that
1093 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1094 * perform necessary setup and returns 1 to indicate the device is set up
1095 * successfully to perform DDP on this I/O, otherwise this returns 0.
1096 *
1097 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1098 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1099 * indicated by the FC exchange id 'xid', so the underlying device can
1100 * clean up and reuse resources for later DDP requests.
1101 *
1102 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1103 * struct scatterlist *sgl, unsigned int sgc);
1104 * Called when the FCoE Target wants to initialize an I/O that
1105 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1106 * perform necessary setup and returns 1 to indicate the device is set up
1107 * successfully to perform DDP on this I/O, otherwise this returns 0.
1108 *
1109 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1110 * struct netdev_fcoe_hbainfo *hbainfo);
1111 * Called when the FCoE Protocol stack wants information on the underlying
1112 * device. This information is utilized by the FCoE protocol stack to
1113 * register attributes with Fiber Channel management service as per the
1114 * FC-GS Fabric Device Management Information(FDMI) specification.
1115 *
1116 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1117 * Called when the underlying device wants to override default World Wide
1118 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1119 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1120 * protocol stack to use.
1121 *
1122 * RFS acceleration.
1123 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1124 * u16 rxq_index, u32 flow_id);
1125 * Set hardware filter for RFS. rxq_index is the target queue index;
1126 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1127 * Return the filter ID on success, or a negative error code.
1128 *
1129 * Slave management functions (for bridge, bonding, etc).
1130 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1131 * Called to make another netdev an underling.
1132 *
1133 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1134 * Called to release previously enslaved netdev.
1135 *
1136 * Feature/offload setting functions.
1137 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1138 * netdev_features_t features);
1139 * Adjusts the requested feature flags according to device-specific
1140 * constraints, and returns the resulting flags. Must not modify
1141 * the device state.
1142 *
1143 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1144 * Called to update device configuration to new features. Passed
1145 * feature set might be less than what was returned by ndo_fix_features()).
1146 * Must return >0 or -errno if it changed dev->features itself.
1147 *
1148 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1149 * struct net_device *dev,
1150 * const unsigned char *addr, u16 vid, u16 flags,
1151 * struct netlink_ext_ack *extack);
1152 * Adds an FDB entry to dev for addr.
1153 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1154 * struct net_device *dev,
1155 * const unsigned char *addr, u16 vid)
1156 * Deletes the FDB entry from dev coresponding to addr.
1157 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1158 * struct net_device *dev, struct net_device *filter_dev,
1159 * int *idx)
1160 * Used to add FDB entries to dump requests. Implementers should add
1161 * entries to skb and update idx with the number of entries.
1162 *
1163 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1164 * u16 flags, struct netlink_ext_ack *extack)
1165 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1166 * struct net_device *dev, u32 filter_mask,
1167 * int nlflags)
1168 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1169 * u16 flags);
1170 *
1171 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1172 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1173 * which do not represent real hardware may define this to allow their
1174 * userspace components to manage their virtual carrier state. Devices
1175 * that determine carrier state from physical hardware properties (eg
1176 * network cables) or protocol-dependent mechanisms (eg
1177 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1178 *
1179 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1180 * struct netdev_phys_item_id *ppid);
1181 * Called to get ID of physical port of this device. If driver does
1182 * not implement this, it is assumed that the hw is not able to have
1183 * multiple net devices on single physical port.
1184 *
1185 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1186 * struct netdev_phys_item_id *ppid)
1187 * Called to get the parent ID of the physical port of this device.
1188 *
1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190 * struct udp_tunnel_info *ti);
1191 * Called by UDP tunnel to notify a driver about the UDP port and socket
1192 * address family that a UDP tunnel is listnening to. It is called only
1193 * when a new port starts listening. The operation is protected by the
1194 * RTNL.
1195 *
1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197 * struct udp_tunnel_info *ti);
1198 * Called by UDP tunnel to notify the driver about a UDP port and socket
1199 * address family that the UDP tunnel is not listening to anymore. The
1200 * operation is protected by the RTNL.
1201 *
1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203 * struct net_device *dev)
1204 * Called by upper layer devices to accelerate switching or other
1205 * station functionality into hardware. 'pdev is the lowerdev
1206 * to use for the offload and 'dev' is the net device that will
1207 * back the offload. Returns a pointer to the private structure
1208 * the upper layer will maintain.
1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210 * Called by upper layer device to delete the station created
1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212 * the station and priv is the structure returned by the add
1213 * operation.
1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215 * int queue_index, u32 maxrate);
1216 * Called when a user wants to set a max-rate limitation of specific
1217 * TX queue.
1218 * int (*ndo_get_iflink)(const struct net_device *dev);
1219 * Called to get the iflink value of this device.
1220 * void (*ndo_change_proto_down)(struct net_device *dev,
1221 * bool proto_down);
1222 * This function is used to pass protocol port error state information
1223 * to the switch driver. The switch driver can react to the proto_down
1224 * by doing a phys down on the associated switch port.
1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226 * This function is used to get egress tunnel information for given skb.
1227 * This is useful for retrieving outer tunnel header parameters while
1228 * sampling packet.
1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230 * This function is used to specify the headroom that the skb must
1231 * consider when allocation skb during packet reception. Setting
1232 * appropriate rx headroom value allows avoiding skb head copy on
1233 * forward. Setting a negative value resets the rx headroom to the
1234 * default value.
1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236 * This function is used to set or query state related to XDP on the
1237 * netdevice and manage BPF offload. See definition of
1238 * enum bpf_netdev_command for details.
1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240 * u32 flags);
1241 * This function is used to submit @n XDP packets for transmit on a
1242 * netdevice. Returns number of frames successfully transmitted, frames
1243 * that got dropped are freed/returned via xdp_return_frame().
1244 * Returns negative number, means general error invoking ndo, meaning
1245 * no frames were xmit'ed and core-caller will free all frames.
1246 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1247 * This function is used to wake up the softirq, ksoftirqd or kthread
1248 * responsible for sending and/or receiving packets on a specific
1249 * queue id bound to an AF_XDP socket. The flags field specifies if
1250 * only RX, only Tx, or both should be woken up using the flags
1251 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1252 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1253 * Get devlink port instance associated with a given netdev.
1254 * Called with a reference on the netdevice and devlink locks only,
1255 * rtnl_lock is not held.
1256 */
1257struct net_device_ops {
1258 int (*ndo_init)(struct net_device *dev);
1259 void (*ndo_uninit)(struct net_device *dev);
1260 int (*ndo_open)(struct net_device *dev);
1261 int (*ndo_stop)(struct net_device *dev);
1262 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1263 struct net_device *dev);
1264 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1265 struct net_device *dev,
1266 netdev_features_t features);
1267 u16 (*ndo_select_queue)(struct net_device *dev,
1268 struct sk_buff *skb,
1269 struct net_device *sb_dev);
1270 void (*ndo_change_rx_flags)(struct net_device *dev,
1271 int flags);
1272 void (*ndo_set_rx_mode)(struct net_device *dev);
1273 int (*ndo_set_mac_address)(struct net_device *dev,
1274 void *addr);
1275 int (*ndo_validate_addr)(struct net_device *dev);
1276 int (*ndo_do_ioctl)(struct net_device *dev,
1277 struct ifreq *ifr, int cmd);
1278 int (*ndo_set_config)(struct net_device *dev,
1279 struct ifmap *map);
1280 int (*ndo_change_mtu)(struct net_device *dev,
1281 int new_mtu);
1282 int (*ndo_neigh_setup)(struct net_device *dev,
1283 struct neigh_parms *);
1284 void (*ndo_tx_timeout) (struct net_device *dev);
1285
1286 void (*ndo_get_stats64)(struct net_device *dev,
1287 struct rtnl_link_stats64 *storage);
1288 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1289 int (*ndo_get_offload_stats)(int attr_id,
1290 const struct net_device *dev,
1291 void *attr_data);
1292 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1293
1294 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1295 __be16 proto, u16 vid);
1296 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1297 __be16 proto, u16 vid);
1298#ifdef CONFIG_NET_POLL_CONTROLLER
1299 void (*ndo_poll_controller)(struct net_device *dev);
1300 int (*ndo_netpoll_setup)(struct net_device *dev,
1301 struct netpoll_info *info);
1302 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1303#endif
1304 int (*ndo_set_vf_mac)(struct net_device *dev,
1305 int queue, u8 *mac);
1306 int (*ndo_set_vf_vlan)(struct net_device *dev,
1307 int queue, u16 vlan,
1308 u8 qos, __be16 proto);
1309 int (*ndo_set_vf_rate)(struct net_device *dev,
1310 int vf, int min_tx_rate,
1311 int max_tx_rate);
1312 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1313 int vf, bool setting);
1314 int (*ndo_set_vf_trust)(struct net_device *dev,
1315 int vf, bool setting);
1316 int (*ndo_get_vf_config)(struct net_device *dev,
1317 int vf,
1318 struct ifla_vf_info *ivf);
1319 int (*ndo_set_vf_link_state)(struct net_device *dev,
1320 int vf, int link_state);
1321 int (*ndo_get_vf_stats)(struct net_device *dev,
1322 int vf,
1323 struct ifla_vf_stats
1324 *vf_stats);
1325 int (*ndo_set_vf_port)(struct net_device *dev,
1326 int vf,
1327 struct nlattr *port[]);
1328 int (*ndo_get_vf_port)(struct net_device *dev,
1329 int vf, struct sk_buff *skb);
1330 int (*ndo_get_vf_guid)(struct net_device *dev,
1331 int vf,
1332 struct ifla_vf_guid *node_guid,
1333 struct ifla_vf_guid *port_guid);
1334 int (*ndo_set_vf_guid)(struct net_device *dev,
1335 int vf, u64 guid,
1336 int guid_type);
1337 int (*ndo_set_vf_rss_query_en)(
1338 struct net_device *dev,
1339 int vf, bool setting);
1340 int (*ndo_setup_tc)(struct net_device *dev,
1341 enum tc_setup_type type,
1342 void *type_data);
1343#if IS_ENABLED(CONFIG_FCOE)
1344 int (*ndo_fcoe_enable)(struct net_device *dev);
1345 int (*ndo_fcoe_disable)(struct net_device *dev);
1346 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1347 u16 xid,
1348 struct scatterlist *sgl,
1349 unsigned int sgc);
1350 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1351 u16 xid);
1352 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1353 u16 xid,
1354 struct scatterlist *sgl,
1355 unsigned int sgc);
1356 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1357 struct netdev_fcoe_hbainfo *hbainfo);
1358#endif
1359
1360#if IS_ENABLED(CONFIG_LIBFCOE)
1361#define NETDEV_FCOE_WWNN 0
1362#define NETDEV_FCOE_WWPN 1
1363 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1364 u64 *wwn, int type);
1365#endif
1366
1367#ifdef CONFIG_RFS_ACCEL
1368 int (*ndo_rx_flow_steer)(struct net_device *dev,
1369 const struct sk_buff *skb,
1370 u16 rxq_index,
1371 u32 flow_id);
1372#endif
1373 int (*ndo_add_slave)(struct net_device *dev,
1374 struct net_device *slave_dev,
1375 struct netlink_ext_ack *extack);
1376 int (*ndo_del_slave)(struct net_device *dev,
1377 struct net_device *slave_dev);
1378 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1379 netdev_features_t features);
1380 int (*ndo_set_features)(struct net_device *dev,
1381 netdev_features_t features);
1382 int (*ndo_neigh_construct)(struct net_device *dev,
1383 struct neighbour *n);
1384 void (*ndo_neigh_destroy)(struct net_device *dev,
1385 struct neighbour *n);
1386
1387 int (*ndo_fdb_add)(struct ndmsg *ndm,
1388 struct nlattr *tb[],
1389 struct net_device *dev,
1390 const unsigned char *addr,
1391 u16 vid,
1392 u16 flags,
1393 struct netlink_ext_ack *extack);
1394 int (*ndo_fdb_del)(struct ndmsg *ndm,
1395 struct nlattr *tb[],
1396 struct net_device *dev,
1397 const unsigned char *addr,
1398 u16 vid);
1399 int (*ndo_fdb_dump)(struct sk_buff *skb,
1400 struct netlink_callback *cb,
1401 struct net_device *dev,
1402 struct net_device *filter_dev,
1403 int *idx);
1404 int (*ndo_fdb_get)(struct sk_buff *skb,
1405 struct nlattr *tb[],
1406 struct net_device *dev,
1407 const unsigned char *addr,
1408 u16 vid, u32 portid, u32 seq,
1409 struct netlink_ext_ack *extack);
1410 int (*ndo_bridge_setlink)(struct net_device *dev,
1411 struct nlmsghdr *nlh,
1412 u16 flags,
1413 struct netlink_ext_ack *extack);
1414 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1415 u32 pid, u32 seq,
1416 struct net_device *dev,
1417 u32 filter_mask,
1418 int nlflags);
1419 int (*ndo_bridge_dellink)(struct net_device *dev,
1420 struct nlmsghdr *nlh,
1421 u16 flags);
1422 int (*ndo_change_carrier)(struct net_device *dev,
1423 bool new_carrier);
1424 int (*ndo_get_phys_port_id)(struct net_device *dev,
1425 struct netdev_phys_item_id *ppid);
1426 int (*ndo_get_port_parent_id)(struct net_device *dev,
1427 struct netdev_phys_item_id *ppid);
1428 int (*ndo_get_phys_port_name)(struct net_device *dev,
1429 char *name, size_t len);
1430 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1431 struct udp_tunnel_info *ti);
1432 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1433 struct udp_tunnel_info *ti);
1434 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1435 struct net_device *dev);
1436 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1437 void *priv);
1438
1439 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1440 int queue_index,
1441 u32 maxrate);
1442 int (*ndo_get_iflink)(const struct net_device *dev);
1443 int (*ndo_change_proto_down)(struct net_device *dev,
1444 bool proto_down);
1445 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1446 struct sk_buff *skb);
1447 void (*ndo_set_rx_headroom)(struct net_device *dev,
1448 int needed_headroom);
1449 int (*ndo_bpf)(struct net_device *dev,
1450 struct netdev_bpf *bpf);
1451 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1452 struct xdp_frame **xdp,
1453 u32 flags);
1454 int (*ndo_xsk_wakeup)(struct net_device *dev,
1455 u32 queue_id, u32 flags);
1456 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1457};
1458
1459/**
1460 * enum net_device_priv_flags - &struct net_device priv_flags
1461 *
1462 * These are the &struct net_device, they are only set internally
1463 * by drivers and used in the kernel. These flags are invisible to
1464 * userspace; this means that the order of these flags can change
1465 * during any kernel release.
1466 *
1467 * You should have a pretty good reason to be extending these flags.
1468 *
1469 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1470 * @IFF_EBRIDGE: Ethernet bridging device
1471 * @IFF_BONDING: bonding master or slave
1472 * @IFF_ISATAP: ISATAP interface (RFC4214)
1473 * @IFF_WAN_HDLC: WAN HDLC device
1474 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1475 * release skb->dst
1476 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1477 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1478 * @IFF_MACVLAN_PORT: device used as macvlan port
1479 * @IFF_BRIDGE_PORT: device used as bridge port
1480 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1481 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1482 * @IFF_UNICAST_FLT: Supports unicast filtering
1483 * @IFF_TEAM_PORT: device used as team port
1484 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1485 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1486 * change when it's running
1487 * @IFF_MACVLAN: Macvlan device
1488 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1489 * underlying stacked devices
1490 * @IFF_L3MDEV_MASTER: device is an L3 master device
1491 * @IFF_NO_QUEUE: device can run without qdisc attached
1492 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1493 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1494 * @IFF_TEAM: device is a team device
1495 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1496 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1497 * entity (i.e. the master device for bridged veth)
1498 * @IFF_MACSEC: device is a MACsec device
1499 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1500 * @IFF_FAILOVER: device is a failover master device
1501 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1502 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1503 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1504 */
1505enum netdev_priv_flags {
1506 IFF_802_1Q_VLAN = 1<<0,
1507 IFF_EBRIDGE = 1<<1,
1508 IFF_BONDING = 1<<2,
1509 IFF_ISATAP = 1<<3,
1510 IFF_WAN_HDLC = 1<<4,
1511 IFF_XMIT_DST_RELEASE = 1<<5,
1512 IFF_DONT_BRIDGE = 1<<6,
1513 IFF_DISABLE_NETPOLL = 1<<7,
1514 IFF_MACVLAN_PORT = 1<<8,
1515 IFF_BRIDGE_PORT = 1<<9,
1516 IFF_OVS_DATAPATH = 1<<10,
1517 IFF_TX_SKB_SHARING = 1<<11,
1518 IFF_UNICAST_FLT = 1<<12,
1519 IFF_TEAM_PORT = 1<<13,
1520 IFF_SUPP_NOFCS = 1<<14,
1521 IFF_LIVE_ADDR_CHANGE = 1<<15,
1522 IFF_MACVLAN = 1<<16,
1523 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1524 IFF_L3MDEV_MASTER = 1<<18,
1525 IFF_NO_QUEUE = 1<<19,
1526 IFF_OPENVSWITCH = 1<<20,
1527 IFF_L3MDEV_SLAVE = 1<<21,
1528 IFF_TEAM = 1<<22,
1529 IFF_RXFH_CONFIGURED = 1<<23,
1530 IFF_PHONY_HEADROOM = 1<<24,
1531 IFF_MACSEC = 1<<25,
1532 IFF_NO_RX_HANDLER = 1<<26,
1533 IFF_FAILOVER = 1<<27,
1534 IFF_FAILOVER_SLAVE = 1<<28,
1535 IFF_L3MDEV_RX_HANDLER = 1<<29,
1536 IFF_LIVE_RENAME_OK = 1<<30,
1537};
1538
1539#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1540#define IFF_EBRIDGE IFF_EBRIDGE
1541#define IFF_BONDING IFF_BONDING
1542#define IFF_ISATAP IFF_ISATAP
1543#define IFF_WAN_HDLC IFF_WAN_HDLC
1544#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1545#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1546#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1547#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1548#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1549#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1550#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1551#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1552#define IFF_TEAM_PORT IFF_TEAM_PORT
1553#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1554#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1555#define IFF_MACVLAN IFF_MACVLAN
1556#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1557#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1558#define IFF_NO_QUEUE IFF_NO_QUEUE
1559#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1560#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1561#define IFF_TEAM IFF_TEAM
1562#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1563#define IFF_MACSEC IFF_MACSEC
1564#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1565#define IFF_FAILOVER IFF_FAILOVER
1566#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1567#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1568#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1569
1570/**
1571 * struct net_device - The DEVICE structure.
1572 *
1573 * Actually, this whole structure is a big mistake. It mixes I/O
1574 * data with strictly "high-level" data, and it has to know about
1575 * almost every data structure used in the INET module.
1576 *
1577 * @name: This is the first field of the "visible" part of this structure
1578 * (i.e. as seen by users in the "Space.c" file). It is the name
1579 * of the interface.
1580 *
1581 * @name_node: Name hashlist node
1582 * @ifalias: SNMP alias
1583 * @mem_end: Shared memory end
1584 * @mem_start: Shared memory start
1585 * @base_addr: Device I/O address
1586 * @irq: Device IRQ number
1587 *
1588 * @state: Generic network queuing layer state, see netdev_state_t
1589 * @dev_list: The global list of network devices
1590 * @napi_list: List entry used for polling NAPI devices
1591 * @unreg_list: List entry when we are unregistering the
1592 * device; see the function unregister_netdev
1593 * @close_list: List entry used when we are closing the device
1594 * @ptype_all: Device-specific packet handlers for all protocols
1595 * @ptype_specific: Device-specific, protocol-specific packet handlers
1596 *
1597 * @adj_list: Directly linked devices, like slaves for bonding
1598 * @features: Currently active device features
1599 * @hw_features: User-changeable features
1600 *
1601 * @wanted_features: User-requested features
1602 * @vlan_features: Mask of features inheritable by VLAN devices
1603 *
1604 * @hw_enc_features: Mask of features inherited by encapsulating devices
1605 * This field indicates what encapsulation
1606 * offloads the hardware is capable of doing,
1607 * and drivers will need to set them appropriately.
1608 *
1609 * @mpls_features: Mask of features inheritable by MPLS
1610 *
1611 * @ifindex: interface index
1612 * @group: The group the device belongs to
1613 *
1614 * @stats: Statistics struct, which was left as a legacy, use
1615 * rtnl_link_stats64 instead
1616 *
1617 * @rx_dropped: Dropped packets by core network,
1618 * do not use this in drivers
1619 * @tx_dropped: Dropped packets by core network,
1620 * do not use this in drivers
1621 * @rx_nohandler: nohandler dropped packets by core network on
1622 * inactive devices, do not use this in drivers
1623 * @carrier_up_count: Number of times the carrier has been up
1624 * @carrier_down_count: Number of times the carrier has been down
1625 *
1626 * @wireless_handlers: List of functions to handle Wireless Extensions,
1627 * instead of ioctl,
1628 * see <net/iw_handler.h> for details.
1629 * @wireless_data: Instance data managed by the core of wireless extensions
1630 *
1631 * @netdev_ops: Includes several pointers to callbacks,
1632 * if one wants to override the ndo_*() functions
1633 * @ethtool_ops: Management operations
1634 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1635 * discovery handling. Necessary for e.g. 6LoWPAN.
1636 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1637 * of Layer 2 headers.
1638 *
1639 * @flags: Interface flags (a la BSD)
1640 * @priv_flags: Like 'flags' but invisible to userspace,
1641 * see if.h for the definitions
1642 * @gflags: Global flags ( kept as legacy )
1643 * @padded: How much padding added by alloc_netdev()
1644 * @operstate: RFC2863 operstate
1645 * @link_mode: Mapping policy to operstate
1646 * @if_port: Selectable AUI, TP, ...
1647 * @dma: DMA channel
1648 * @mtu: Interface MTU value
1649 * @min_mtu: Interface Minimum MTU value
1650 * @max_mtu: Interface Maximum MTU value
1651 * @type: Interface hardware type
1652 * @hard_header_len: Maximum hardware header length.
1653 * @min_header_len: Minimum hardware header length
1654 *
1655 * @needed_headroom: Extra headroom the hardware may need, but not in all
1656 * cases can this be guaranteed
1657 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1658 * cases can this be guaranteed. Some cases also use
1659 * LL_MAX_HEADER instead to allocate the skb
1660 *
1661 * interface address info:
1662 *
1663 * @perm_addr: Permanent hw address
1664 * @addr_assign_type: Hw address assignment type
1665 * @addr_len: Hardware address length
1666 * @upper_level: Maximum depth level of upper devices.
1667 * @lower_level: Maximum depth level of lower devices.
1668 * @neigh_priv_len: Used in neigh_alloc()
1669 * @dev_id: Used to differentiate devices that share
1670 * the same link layer address
1671 * @dev_port: Used to differentiate devices that share
1672 * the same function
1673 * @addr_list_lock: XXX: need comments on this one
1674 * @uc_promisc: Counter that indicates promiscuous mode
1675 * has been enabled due to the need to listen to
1676 * additional unicast addresses in a device that
1677 * does not implement ndo_set_rx_mode()
1678 * @uc: unicast mac addresses
1679 * @mc: multicast mac addresses
1680 * @dev_addrs: list of device hw addresses
1681 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1682 * @promiscuity: Number of times the NIC is told to work in
1683 * promiscuous mode; if it becomes 0 the NIC will
1684 * exit promiscuous mode
1685 * @allmulti: Counter, enables or disables allmulticast mode
1686 *
1687 * @vlan_info: VLAN info
1688 * @dsa_ptr: dsa specific data
1689 * @tipc_ptr: TIPC specific data
1690 * @atalk_ptr: AppleTalk link
1691 * @ip_ptr: IPv4 specific data
1692 * @dn_ptr: DECnet specific data
1693 * @ip6_ptr: IPv6 specific data
1694 * @ax25_ptr: AX.25 specific data
1695 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1696 *
1697 * @dev_addr: Hw address (before bcast,
1698 * because most packets are unicast)
1699 *
1700 * @_rx: Array of RX queues
1701 * @num_rx_queues: Number of RX queues
1702 * allocated at register_netdev() time
1703 * @real_num_rx_queues: Number of RX queues currently active in device
1704 *
1705 * @rx_handler: handler for received packets
1706 * @rx_handler_data: XXX: need comments on this one
1707 * @miniq_ingress: ingress/clsact qdisc specific data for
1708 * ingress processing
1709 * @ingress_queue: XXX: need comments on this one
1710 * @broadcast: hw bcast address
1711 *
1712 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1713 * indexed by RX queue number. Assigned by driver.
1714 * This must only be set if the ndo_rx_flow_steer
1715 * operation is defined
1716 * @index_hlist: Device index hash chain
1717 *
1718 * @_tx: Array of TX queues
1719 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1720 * @real_num_tx_queues: Number of TX queues currently active in device
1721 * @qdisc: Root qdisc from userspace point of view
1722 * @tx_queue_len: Max frames per queue allowed
1723 * @tx_global_lock: XXX: need comments on this one
1724 *
1725 * @xps_maps: XXX: need comments on this one
1726 * @miniq_egress: clsact qdisc specific data for
1727 * egress processing
1728 * @watchdog_timeo: Represents the timeout that is used by
1729 * the watchdog (see dev_watchdog())
1730 * @watchdog_timer: List of timers
1731 *
1732 * @pcpu_refcnt: Number of references to this device
1733 * @todo_list: Delayed register/unregister
1734 * @link_watch_list: XXX: need comments on this one
1735 *
1736 * @reg_state: Register/unregister state machine
1737 * @dismantle: Device is going to be freed
1738 * @rtnl_link_state: This enum represents the phases of creating
1739 * a new link
1740 *
1741 * @needs_free_netdev: Should unregister perform free_netdev?
1742 * @priv_destructor: Called from unregister
1743 * @npinfo: XXX: need comments on this one
1744 * @nd_net: Network namespace this network device is inside
1745 *
1746 * @ml_priv: Mid-layer private
1747 * @lstats: Loopback statistics
1748 * @tstats: Tunnel statistics
1749 * @dstats: Dummy statistics
1750 * @vstats: Virtual ethernet statistics
1751 *
1752 * @garp_port: GARP
1753 * @mrp_port: MRP
1754 *
1755 * @dev: Class/net/name entry
1756 * @sysfs_groups: Space for optional device, statistics and wireless
1757 * sysfs groups
1758 *
1759 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1760 * @rtnl_link_ops: Rtnl_link_ops
1761 *
1762 * @gso_max_size: Maximum size of generic segmentation offload
1763 * @gso_max_segs: Maximum number of segments that can be passed to the
1764 * NIC for GSO
1765 *
1766 * @dcbnl_ops: Data Center Bridging netlink ops
1767 * @num_tc: Number of traffic classes in the net device
1768 * @tc_to_txq: XXX: need comments on this one
1769 * @prio_tc_map: XXX: need comments on this one
1770 *
1771 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1772 *
1773 * @priomap: XXX: need comments on this one
1774 * @phydev: Physical device may attach itself
1775 * for hardware timestamping
1776 * @sfp_bus: attached &struct sfp_bus structure.
1777 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1778 * spinlock
1779 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1780 * @qdisc_xmit_lock_key: lockdep class annotating
1781 * netdev_queue->_xmit_lock spinlock
1782 * @addr_list_lock_key: lockdep class annotating
1783 * net_device->addr_list_lock spinlock
1784 *
1785 * @proto_down: protocol port state information can be sent to the
1786 * switch driver and used to set the phys state of the
1787 * switch port.
1788 *
1789 * @wol_enabled: Wake-on-LAN is enabled
1790 *
1791 * FIXME: cleanup struct net_device such that network protocol info
1792 * moves out.
1793 */
1794
1795struct net_device {
1796 char name[IFNAMSIZ];
1797 struct netdev_name_node *name_node;
1798 struct dev_ifalias __rcu *ifalias;
1799 /*
1800 * I/O specific fields
1801 * FIXME: Merge these and struct ifmap into one
1802 */
1803 unsigned long mem_end;
1804 unsigned long mem_start;
1805 unsigned long base_addr;
1806 int irq;
1807
1808 /*
1809 * Some hardware also needs these fields (state,dev_list,
1810 * napi_list,unreg_list,close_list) but they are not
1811 * part of the usual set specified in Space.c.
1812 */
1813
1814 unsigned long state;
1815
1816 struct list_head dev_list;
1817 struct list_head napi_list;
1818 struct list_head unreg_list;
1819 struct list_head close_list;
1820 struct list_head ptype_all;
1821 struct list_head ptype_specific;
1822
1823 struct {
1824 struct list_head upper;
1825 struct list_head lower;
1826 } adj_list;
1827
1828 netdev_features_t features;
1829 netdev_features_t hw_features;
1830 netdev_features_t wanted_features;
1831 netdev_features_t vlan_features;
1832 netdev_features_t hw_enc_features;
1833 netdev_features_t mpls_features;
1834 netdev_features_t gso_partial_features;
1835
1836 int ifindex;
1837 int group;
1838
1839 struct net_device_stats stats;
1840
1841 atomic_long_t rx_dropped;
1842 atomic_long_t tx_dropped;
1843 atomic_long_t rx_nohandler;
1844
1845 /* Stats to monitor link on/off, flapping */
1846 atomic_t carrier_up_count;
1847 atomic_t carrier_down_count;
1848
1849#ifdef CONFIG_WIRELESS_EXT
1850 const struct iw_handler_def *wireless_handlers;
1851 struct iw_public_data *wireless_data;
1852#endif
1853 const struct net_device_ops *netdev_ops;
1854 const struct ethtool_ops *ethtool_ops;
1855#ifdef CONFIG_NET_L3_MASTER_DEV
1856 const struct l3mdev_ops *l3mdev_ops;
1857#endif
1858#if IS_ENABLED(CONFIG_IPV6)
1859 const struct ndisc_ops *ndisc_ops;
1860#endif
1861
1862#ifdef CONFIG_XFRM_OFFLOAD
1863 const struct xfrmdev_ops *xfrmdev_ops;
1864#endif
1865
1866#if IS_ENABLED(CONFIG_TLS_DEVICE)
1867 const struct tlsdev_ops *tlsdev_ops;
1868#endif
1869
1870 const struct header_ops *header_ops;
1871
1872 unsigned int flags;
1873 unsigned int priv_flags;
1874
1875 unsigned short gflags;
1876 unsigned short padded;
1877
1878 unsigned char operstate;
1879 unsigned char link_mode;
1880
1881 unsigned char if_port;
1882 unsigned char dma;
1883
1884 /* Note : dev->mtu is often read without holding a lock.
1885 * Writers usually hold RTNL.
1886 * It is recommended to use READ_ONCE() to annotate the reads,
1887 * and to use WRITE_ONCE() to annotate the writes.
1888 */
1889 unsigned int mtu;
1890 unsigned int min_mtu;
1891 unsigned int max_mtu;
1892 unsigned short type;
1893 unsigned short hard_header_len;
1894 unsigned char min_header_len;
1895
1896 unsigned short needed_headroom;
1897 unsigned short needed_tailroom;
1898
1899 /* Interface address info. */
1900 unsigned char perm_addr[MAX_ADDR_LEN];
1901 unsigned char addr_assign_type;
1902 unsigned char addr_len;
1903 unsigned char upper_level;
1904 unsigned char lower_level;
1905 unsigned short neigh_priv_len;
1906 unsigned short dev_id;
1907 unsigned short dev_port;
1908 spinlock_t addr_list_lock;
1909 unsigned char name_assign_type;
1910 bool uc_promisc;
1911 struct netdev_hw_addr_list uc;
1912 struct netdev_hw_addr_list mc;
1913 struct netdev_hw_addr_list dev_addrs;
1914
1915#ifdef CONFIG_SYSFS
1916 struct kset *queues_kset;
1917#endif
1918 unsigned int promiscuity;
1919 unsigned int allmulti;
1920
1921
1922 /* Protocol-specific pointers */
1923
1924#if IS_ENABLED(CONFIG_VLAN_8021Q)
1925 struct vlan_info __rcu *vlan_info;
1926#endif
1927#if IS_ENABLED(CONFIG_NET_DSA)
1928 struct dsa_port *dsa_ptr;
1929#endif
1930#if IS_ENABLED(CONFIG_TIPC)
1931 struct tipc_bearer __rcu *tipc_ptr;
1932#endif
1933#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1934 void *atalk_ptr;
1935#endif
1936 struct in_device __rcu *ip_ptr;
1937#if IS_ENABLED(CONFIG_DECNET)
1938 struct dn_dev __rcu *dn_ptr;
1939#endif
1940 struct inet6_dev __rcu *ip6_ptr;
1941#if IS_ENABLED(CONFIG_AX25)
1942 void *ax25_ptr;
1943#endif
1944 struct wireless_dev *ieee80211_ptr;
1945 struct wpan_dev *ieee802154_ptr;
1946#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1947 struct mpls_dev __rcu *mpls_ptr;
1948#endif
1949
1950/*
1951 * Cache lines mostly used on receive path (including eth_type_trans())
1952 */
1953 /* Interface address info used in eth_type_trans() */
1954 unsigned char *dev_addr;
1955
1956 struct netdev_rx_queue *_rx;
1957 unsigned int num_rx_queues;
1958 unsigned int real_num_rx_queues;
1959
1960 struct bpf_prog __rcu *xdp_prog;
1961 unsigned long gro_flush_timeout;
1962 rx_handler_func_t __rcu *rx_handler;
1963 void __rcu *rx_handler_data;
1964
1965#ifdef CONFIG_NET_CLS_ACT
1966 struct mini_Qdisc __rcu *miniq_ingress;
1967#endif
1968 struct netdev_queue __rcu *ingress_queue;
1969#ifdef CONFIG_NETFILTER_INGRESS
1970 struct nf_hook_entries __rcu *nf_hooks_ingress;
1971#endif
1972
1973 unsigned char broadcast[MAX_ADDR_LEN];
1974#ifdef CONFIG_RFS_ACCEL
1975 struct cpu_rmap *rx_cpu_rmap;
1976#endif
1977 struct hlist_node index_hlist;
1978
1979/*
1980 * Cache lines mostly used on transmit path
1981 */
1982 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1983 unsigned int num_tx_queues;
1984 unsigned int real_num_tx_queues;
1985 struct Qdisc *qdisc;
1986#ifdef CONFIG_NET_SCHED
1987 DECLARE_HASHTABLE (qdisc_hash, 4);
1988#endif
1989 unsigned int tx_queue_len;
1990 spinlock_t tx_global_lock;
1991 int watchdog_timeo;
1992
1993#ifdef CONFIG_XPS
1994 struct xps_dev_maps __rcu *xps_cpus_map;
1995 struct xps_dev_maps __rcu *xps_rxqs_map;
1996#endif
1997#ifdef CONFIG_NET_CLS_ACT
1998 struct mini_Qdisc __rcu *miniq_egress;
1999#endif
2000
2001 /* These may be needed for future network-power-down code. */
2002 struct timer_list watchdog_timer;
2003
2004 int __percpu *pcpu_refcnt;
2005 struct list_head todo_list;
2006
2007 struct list_head link_watch_list;
2008
2009 enum { NETREG_UNINITIALIZED=0,
2010 NETREG_REGISTERED, /* completed register_netdevice */
2011 NETREG_UNREGISTERING, /* called unregister_netdevice */
2012 NETREG_UNREGISTERED, /* completed unregister todo */
2013 NETREG_RELEASED, /* called free_netdev */
2014 NETREG_DUMMY, /* dummy device for NAPI poll */
2015 } reg_state:8;
2016
2017 bool dismantle;
2018
2019 enum {
2020 RTNL_LINK_INITIALIZED,
2021 RTNL_LINK_INITIALIZING,
2022 } rtnl_link_state:16;
2023
2024 bool needs_free_netdev;
2025 void (*priv_destructor)(struct net_device *dev);
2026
2027#ifdef CONFIG_NETPOLL
2028 struct netpoll_info __rcu *npinfo;
2029#endif
2030
2031 possible_net_t nd_net;
2032
2033 /* mid-layer private */
2034 union {
2035 void *ml_priv;
2036 struct pcpu_lstats __percpu *lstats;
2037 struct pcpu_sw_netstats __percpu *tstats;
2038 struct pcpu_dstats __percpu *dstats;
2039 };
2040
2041#if IS_ENABLED(CONFIG_GARP)
2042 struct garp_port __rcu *garp_port;
2043#endif
2044#if IS_ENABLED(CONFIG_MRP)
2045 struct mrp_port __rcu *mrp_port;
2046#endif
2047
2048 struct device dev;
2049 const struct attribute_group *sysfs_groups[4];
2050 const struct attribute_group *sysfs_rx_queue_group;
2051
2052 const struct rtnl_link_ops *rtnl_link_ops;
2053
2054 /* for setting kernel sock attribute on TCP connection setup */
2055#define GSO_MAX_SIZE 65536
2056 unsigned int gso_max_size;
2057#define GSO_MAX_SEGS 65535
2058 u16 gso_max_segs;
2059
2060#ifdef CONFIG_DCB
2061 const struct dcbnl_rtnl_ops *dcbnl_ops;
2062#endif
2063 s16 num_tc;
2064 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2065 u8 prio_tc_map[TC_BITMASK + 1];
2066
2067#if IS_ENABLED(CONFIG_FCOE)
2068 unsigned int fcoe_ddp_xid;
2069#endif
2070#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2071 struct netprio_map __rcu *priomap;
2072#endif
2073 struct phy_device *phydev;
2074 struct sfp_bus *sfp_bus;
2075 struct lock_class_key qdisc_tx_busylock_key;
2076 struct lock_class_key qdisc_running_key;
2077 struct lock_class_key qdisc_xmit_lock_key;
2078 struct lock_class_key addr_list_lock_key;
2079 bool proto_down;
2080 unsigned wol_enabled:1;
2081};
2082#define to_net_dev(d) container_of(d, struct net_device, dev)
2083
2084static inline bool netif_elide_gro(const struct net_device *dev)
2085{
2086 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2087 return true;
2088 return false;
2089}
2090
2091#define NETDEV_ALIGN 32
2092
2093static inline
2094int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2095{
2096 return dev->prio_tc_map[prio & TC_BITMASK];
2097}
2098
2099static inline
2100int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2101{
2102 if (tc >= dev->num_tc)
2103 return -EINVAL;
2104
2105 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2106 return 0;
2107}
2108
2109int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2110void netdev_reset_tc(struct net_device *dev);
2111int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2112int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2113
2114static inline
2115int netdev_get_num_tc(struct net_device *dev)
2116{
2117 return dev->num_tc;
2118}
2119
2120void netdev_unbind_sb_channel(struct net_device *dev,
2121 struct net_device *sb_dev);
2122int netdev_bind_sb_channel_queue(struct net_device *dev,
2123 struct net_device *sb_dev,
2124 u8 tc, u16 count, u16 offset);
2125int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2126static inline int netdev_get_sb_channel(struct net_device *dev)
2127{
2128 return max_t(int, -dev->num_tc, 0);
2129}
2130
2131static inline
2132struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2133 unsigned int index)
2134{
2135 return &dev->_tx[index];
2136}
2137
2138static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2139 const struct sk_buff *skb)
2140{
2141 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2142}
2143
2144static inline void netdev_for_each_tx_queue(struct net_device *dev,
2145 void (*f)(struct net_device *,
2146 struct netdev_queue *,
2147 void *),
2148 void *arg)
2149{
2150 unsigned int i;
2151
2152 for (i = 0; i < dev->num_tx_queues; i++)
2153 f(dev, &dev->_tx[i], arg);
2154}
2155
2156u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2157 struct net_device *sb_dev);
2158struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2159 struct sk_buff *skb,
2160 struct net_device *sb_dev);
2161
2162/* returns the headroom that the master device needs to take in account
2163 * when forwarding to this dev
2164 */
2165static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2166{
2167 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2168}
2169
2170static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2171{
2172 if (dev->netdev_ops->ndo_set_rx_headroom)
2173 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2174}
2175
2176/* set the device rx headroom to the dev's default */
2177static inline void netdev_reset_rx_headroom(struct net_device *dev)
2178{
2179 netdev_set_rx_headroom(dev, -1);
2180}
2181
2182/*
2183 * Net namespace inlines
2184 */
2185static inline
2186struct net *dev_net(const struct net_device *dev)
2187{
2188 return read_pnet(&dev->nd_net);
2189}
2190
2191static inline
2192void dev_net_set(struct net_device *dev, struct net *net)
2193{
2194 write_pnet(&dev->nd_net, net);
2195}
2196
2197/**
2198 * netdev_priv - access network device private data
2199 * @dev: network device
2200 *
2201 * Get network device private data
2202 */
2203static inline void *netdev_priv(const struct net_device *dev)
2204{
2205 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2206}
2207
2208/* Set the sysfs physical device reference for the network logical device
2209 * if set prior to registration will cause a symlink during initialization.
2210 */
2211#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2212
2213/* Set the sysfs device type for the network logical device to allow
2214 * fine-grained identification of different network device types. For
2215 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2216 */
2217#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2218
2219/* Default NAPI poll() weight
2220 * Device drivers are strongly advised to not use bigger value
2221 */
2222#define NAPI_POLL_WEIGHT 64
2223
2224/**
2225 * netif_napi_add - initialize a NAPI context
2226 * @dev: network device
2227 * @napi: NAPI context
2228 * @poll: polling function
2229 * @weight: default weight
2230 *
2231 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2232 * *any* of the other NAPI-related functions.
2233 */
2234void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2235 int (*poll)(struct napi_struct *, int), int weight);
2236
2237/**
2238 * netif_tx_napi_add - initialize a NAPI context
2239 * @dev: network device
2240 * @napi: NAPI context
2241 * @poll: polling function
2242 * @weight: default weight
2243 *
2244 * This variant of netif_napi_add() should be used from drivers using NAPI
2245 * to exclusively poll a TX queue.
2246 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2247 */
2248static inline void netif_tx_napi_add(struct net_device *dev,
2249 struct napi_struct *napi,
2250 int (*poll)(struct napi_struct *, int),
2251 int weight)
2252{
2253 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2254 netif_napi_add(dev, napi, poll, weight);
2255}
2256
2257/**
2258 * netif_napi_del - remove a NAPI context
2259 * @napi: NAPI context
2260 *
2261 * netif_napi_del() removes a NAPI context from the network device NAPI list
2262 */
2263void netif_napi_del(struct napi_struct *napi);
2264
2265struct napi_gro_cb {
2266 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2267 void *frag0;
2268
2269 /* Length of frag0. */
2270 unsigned int frag0_len;
2271
2272 /* This indicates where we are processing relative to skb->data. */
2273 int data_offset;
2274
2275 /* This is non-zero if the packet cannot be merged with the new skb. */
2276 u16 flush;
2277
2278 /* Save the IP ID here and check when we get to the transport layer */
2279 u16 flush_id;
2280
2281 /* Number of segments aggregated. */
2282 u16 count;
2283
2284 /* Start offset for remote checksum offload */
2285 u16 gro_remcsum_start;
2286
2287 /* jiffies when first packet was created/queued */
2288 unsigned long age;
2289
2290 /* Used in ipv6_gro_receive() and foo-over-udp */
2291 u16 proto;
2292
2293 /* This is non-zero if the packet may be of the same flow. */
2294 u8 same_flow:1;
2295
2296 /* Used in tunnel GRO receive */
2297 u8 encap_mark:1;
2298
2299 /* GRO checksum is valid */
2300 u8 csum_valid:1;
2301
2302 /* Number of checksums via CHECKSUM_UNNECESSARY */
2303 u8 csum_cnt:3;
2304
2305 /* Free the skb? */
2306 u8 free:2;
2307#define NAPI_GRO_FREE 1
2308#define NAPI_GRO_FREE_STOLEN_HEAD 2
2309
2310 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2311 u8 is_ipv6:1;
2312
2313 /* Used in GRE, set in fou/gue_gro_receive */
2314 u8 is_fou:1;
2315
2316 /* Used to determine if flush_id can be ignored */
2317 u8 is_atomic:1;
2318
2319 /* Number of gro_receive callbacks this packet already went through */
2320 u8 recursion_counter:4;
2321
2322 /* 1 bit hole */
2323
2324 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2325 __wsum csum;
2326
2327 /* used in skb_gro_receive() slow path */
2328 struct sk_buff *last;
2329};
2330
2331#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2332
2333#define GRO_RECURSION_LIMIT 15
2334static inline int gro_recursion_inc_test(struct sk_buff *skb)
2335{
2336 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2337}
2338
2339typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2340static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2341 struct list_head *head,
2342 struct sk_buff *skb)
2343{
2344 if (unlikely(gro_recursion_inc_test(skb))) {
2345 NAPI_GRO_CB(skb)->flush |= 1;
2346 return NULL;
2347 }
2348
2349 return cb(head, skb);
2350}
2351
2352typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2353 struct sk_buff *);
2354static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2355 struct sock *sk,
2356 struct list_head *head,
2357 struct sk_buff *skb)
2358{
2359 if (unlikely(gro_recursion_inc_test(skb))) {
2360 NAPI_GRO_CB(skb)->flush |= 1;
2361 return NULL;
2362 }
2363
2364 return cb(sk, head, skb);
2365}
2366
2367struct packet_type {
2368 __be16 type; /* This is really htons(ether_type). */
2369 bool ignore_outgoing;
2370 struct net_device *dev; /* NULL is wildcarded here */
2371 int (*func) (struct sk_buff *,
2372 struct net_device *,
2373 struct packet_type *,
2374 struct net_device *);
2375 void (*list_func) (struct list_head *,
2376 struct packet_type *,
2377 struct net_device *);
2378 bool (*id_match)(struct packet_type *ptype,
2379 struct sock *sk);
2380 void *af_packet_priv;
2381 struct list_head list;
2382};
2383
2384struct offload_callbacks {
2385 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2386 netdev_features_t features);
2387 struct sk_buff *(*gro_receive)(struct list_head *head,
2388 struct sk_buff *skb);
2389 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2390};
2391
2392struct packet_offload {
2393 __be16 type; /* This is really htons(ether_type). */
2394 u16 priority;
2395 struct offload_callbacks callbacks;
2396 struct list_head list;
2397};
2398
2399/* often modified stats are per-CPU, other are shared (netdev->stats) */
2400struct pcpu_sw_netstats {
2401 u64 rx_packets;
2402 u64 rx_bytes;
2403 u64 tx_packets;
2404 u64 tx_bytes;
2405 struct u64_stats_sync syncp;
2406} __aligned(4 * sizeof(u64));
2407
2408struct pcpu_lstats {
2409 u64_stats_t packets;
2410 u64_stats_t bytes;
2411 struct u64_stats_sync syncp;
2412} __aligned(2 * sizeof(u64));
2413
2414void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2415
2416static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2417{
2418 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2419
2420 u64_stats_update_begin(&lstats->syncp);
2421 u64_stats_add(&lstats->bytes, len);
2422 u64_stats_inc(&lstats->packets);
2423 u64_stats_update_end(&lstats->syncp);
2424}
2425
2426#define __netdev_alloc_pcpu_stats(type, gfp) \
2427({ \
2428 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2429 if (pcpu_stats) { \
2430 int __cpu; \
2431 for_each_possible_cpu(__cpu) { \
2432 typeof(type) *stat; \
2433 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2434 u64_stats_init(&stat->syncp); \
2435 } \
2436 } \
2437 pcpu_stats; \
2438})
2439
2440#define netdev_alloc_pcpu_stats(type) \
2441 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2442
2443enum netdev_lag_tx_type {
2444 NETDEV_LAG_TX_TYPE_UNKNOWN,
2445 NETDEV_LAG_TX_TYPE_RANDOM,
2446 NETDEV_LAG_TX_TYPE_BROADCAST,
2447 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2448 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2449 NETDEV_LAG_TX_TYPE_HASH,
2450};
2451
2452enum netdev_lag_hash {
2453 NETDEV_LAG_HASH_NONE,
2454 NETDEV_LAG_HASH_L2,
2455 NETDEV_LAG_HASH_L34,
2456 NETDEV_LAG_HASH_L23,
2457 NETDEV_LAG_HASH_E23,
2458 NETDEV_LAG_HASH_E34,
2459 NETDEV_LAG_HASH_UNKNOWN,
2460};
2461
2462struct netdev_lag_upper_info {
2463 enum netdev_lag_tx_type tx_type;
2464 enum netdev_lag_hash hash_type;
2465};
2466
2467struct netdev_lag_lower_state_info {
2468 u8 link_up : 1,
2469 tx_enabled : 1;
2470};
2471
2472#include <linux/notifier.h>
2473
2474/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2475 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2476 * adding new types.
2477 */
2478enum netdev_cmd {
2479 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2480 NETDEV_DOWN,
2481 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2482 detected a hardware crash and restarted
2483 - we can use this eg to kick tcp sessions
2484 once done */
2485 NETDEV_CHANGE, /* Notify device state change */
2486 NETDEV_REGISTER,
2487 NETDEV_UNREGISTER,
2488 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2489 NETDEV_CHANGEADDR, /* notify after the address change */
2490 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2491 NETDEV_GOING_DOWN,
2492 NETDEV_CHANGENAME,
2493 NETDEV_FEAT_CHANGE,
2494 NETDEV_BONDING_FAILOVER,
2495 NETDEV_PRE_UP,
2496 NETDEV_PRE_TYPE_CHANGE,
2497 NETDEV_POST_TYPE_CHANGE,
2498 NETDEV_POST_INIT,
2499 NETDEV_RELEASE,
2500 NETDEV_NOTIFY_PEERS,
2501 NETDEV_JOIN,
2502 NETDEV_CHANGEUPPER,
2503 NETDEV_RESEND_IGMP,
2504 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2505 NETDEV_CHANGEINFODATA,
2506 NETDEV_BONDING_INFO,
2507 NETDEV_PRECHANGEUPPER,
2508 NETDEV_CHANGELOWERSTATE,
2509 NETDEV_UDP_TUNNEL_PUSH_INFO,
2510 NETDEV_UDP_TUNNEL_DROP_INFO,
2511 NETDEV_CHANGE_TX_QUEUE_LEN,
2512 NETDEV_CVLAN_FILTER_PUSH_INFO,
2513 NETDEV_CVLAN_FILTER_DROP_INFO,
2514 NETDEV_SVLAN_FILTER_PUSH_INFO,
2515 NETDEV_SVLAN_FILTER_DROP_INFO,
2516};
2517const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2518
2519int register_netdevice_notifier(struct notifier_block *nb);
2520int unregister_netdevice_notifier(struct notifier_block *nb);
2521int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2522int unregister_netdevice_notifier_net(struct net *net,
2523 struct notifier_block *nb);
2524
2525struct netdev_notifier_info {
2526 struct net_device *dev;
2527 struct netlink_ext_ack *extack;
2528};
2529
2530struct netdev_notifier_info_ext {
2531 struct netdev_notifier_info info; /* must be first */
2532 union {
2533 u32 mtu;
2534 } ext;
2535};
2536
2537struct netdev_notifier_change_info {
2538 struct netdev_notifier_info info; /* must be first */
2539 unsigned int flags_changed;
2540};
2541
2542struct netdev_notifier_changeupper_info {
2543 struct netdev_notifier_info info; /* must be first */
2544 struct net_device *upper_dev; /* new upper dev */
2545 bool master; /* is upper dev master */
2546 bool linking; /* is the notification for link or unlink */
2547 void *upper_info; /* upper dev info */
2548};
2549
2550struct netdev_notifier_changelowerstate_info {
2551 struct netdev_notifier_info info; /* must be first */
2552 void *lower_state_info; /* is lower dev state */
2553};
2554
2555struct netdev_notifier_pre_changeaddr_info {
2556 struct netdev_notifier_info info; /* must be first */
2557 const unsigned char *dev_addr;
2558};
2559
2560static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2561 struct net_device *dev)
2562{
2563 info->dev = dev;
2564 info->extack = NULL;
2565}
2566
2567static inline struct net_device *
2568netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2569{
2570 return info->dev;
2571}
2572
2573static inline struct netlink_ext_ack *
2574netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2575{
2576 return info->extack;
2577}
2578
2579int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2580
2581
2582extern rwlock_t dev_base_lock; /* Device list lock */
2583
2584#define for_each_netdev(net, d) \
2585 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2586#define for_each_netdev_reverse(net, d) \
2587 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2588#define for_each_netdev_rcu(net, d) \
2589 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2590#define for_each_netdev_safe(net, d, n) \
2591 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2592#define for_each_netdev_continue(net, d) \
2593 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2594#define for_each_netdev_continue_reverse(net, d) \
2595 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2596 dev_list)
2597#define for_each_netdev_continue_rcu(net, d) \
2598 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2599#define for_each_netdev_in_bond_rcu(bond, slave) \
2600 for_each_netdev_rcu(&init_net, slave) \
2601 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2602#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2603
2604static inline struct net_device *next_net_device(struct net_device *dev)
2605{
2606 struct list_head *lh;
2607 struct net *net;
2608
2609 net = dev_net(dev);
2610 lh = dev->dev_list.next;
2611 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2612}
2613
2614static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2615{
2616 struct list_head *lh;
2617 struct net *net;
2618
2619 net = dev_net(dev);
2620 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2621 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2622}
2623
2624static inline struct net_device *first_net_device(struct net *net)
2625{
2626 return list_empty(&net->dev_base_head) ? NULL :
2627 net_device_entry(net->dev_base_head.next);
2628}
2629
2630static inline struct net_device *first_net_device_rcu(struct net *net)
2631{
2632 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2633
2634 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2635}
2636
2637int netdev_boot_setup_check(struct net_device *dev);
2638unsigned long netdev_boot_base(const char *prefix, int unit);
2639struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2640 const char *hwaddr);
2641struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2642struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2643void dev_add_pack(struct packet_type *pt);
2644void dev_remove_pack(struct packet_type *pt);
2645void __dev_remove_pack(struct packet_type *pt);
2646void dev_add_offload(struct packet_offload *po);
2647void dev_remove_offload(struct packet_offload *po);
2648
2649int dev_get_iflink(const struct net_device *dev);
2650int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2651struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2652 unsigned short mask);
2653struct net_device *dev_get_by_name(struct net *net, const char *name);
2654struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2655struct net_device *__dev_get_by_name(struct net *net, const char *name);
2656int dev_alloc_name(struct net_device *dev, const char *name);
2657int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2658void dev_close(struct net_device *dev);
2659void dev_close_many(struct list_head *head, bool unlink);
2660void dev_disable_lro(struct net_device *dev);
2661int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2662u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2663 struct net_device *sb_dev);
2664u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2665 struct net_device *sb_dev);
2666int dev_queue_xmit(struct sk_buff *skb);
2667int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2668int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2669int register_netdevice(struct net_device *dev);
2670void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2671void unregister_netdevice_many(struct list_head *head);
2672static inline void unregister_netdevice(struct net_device *dev)
2673{
2674 unregister_netdevice_queue(dev, NULL);
2675}
2676
2677int netdev_refcnt_read(const struct net_device *dev);
2678void free_netdev(struct net_device *dev);
2679void netdev_freemem(struct net_device *dev);
2680void synchronize_net(void);
2681int init_dummy_netdev(struct net_device *dev);
2682
2683struct net_device *dev_get_by_index(struct net *net, int ifindex);
2684struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2685struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2686struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2687int netdev_get_name(struct net *net, char *name, int ifindex);
2688int dev_restart(struct net_device *dev);
2689int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2690
2691static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2692{
2693 return NAPI_GRO_CB(skb)->data_offset;
2694}
2695
2696static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2697{
2698 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2699}
2700
2701static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2702{
2703 NAPI_GRO_CB(skb)->data_offset += len;
2704}
2705
2706static inline void *skb_gro_header_fast(struct sk_buff *skb,
2707 unsigned int offset)
2708{
2709 return NAPI_GRO_CB(skb)->frag0 + offset;
2710}
2711
2712static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2713{
2714 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2715}
2716
2717static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2718{
2719 NAPI_GRO_CB(skb)->frag0 = NULL;
2720 NAPI_GRO_CB(skb)->frag0_len = 0;
2721}
2722
2723static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2724 unsigned int offset)
2725{
2726 if (!pskb_may_pull(skb, hlen))
2727 return NULL;
2728
2729 skb_gro_frag0_invalidate(skb);
2730 return skb->data + offset;
2731}
2732
2733static inline void *skb_gro_network_header(struct sk_buff *skb)
2734{
2735 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2736 skb_network_offset(skb);
2737}
2738
2739static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2740 const void *start, unsigned int len)
2741{
2742 if (NAPI_GRO_CB(skb)->csum_valid)
2743 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2744 csum_partial(start, len, 0));
2745}
2746
2747/* GRO checksum functions. These are logical equivalents of the normal
2748 * checksum functions (in skbuff.h) except that they operate on the GRO
2749 * offsets and fields in sk_buff.
2750 */
2751
2752__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2753
2754static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2755{
2756 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2757}
2758
2759static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2760 bool zero_okay,
2761 __sum16 check)
2762{
2763 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2764 skb_checksum_start_offset(skb) <
2765 skb_gro_offset(skb)) &&
2766 !skb_at_gro_remcsum_start(skb) &&
2767 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2768 (!zero_okay || check));
2769}
2770
2771static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2772 __wsum psum)
2773{
2774 if (NAPI_GRO_CB(skb)->csum_valid &&
2775 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2776 return 0;
2777
2778 NAPI_GRO_CB(skb)->csum = psum;
2779
2780 return __skb_gro_checksum_complete(skb);
2781}
2782
2783static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2784{
2785 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2786 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2787 NAPI_GRO_CB(skb)->csum_cnt--;
2788 } else {
2789 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2790 * verified a new top level checksum or an encapsulated one
2791 * during GRO. This saves work if we fallback to normal path.
2792 */
2793 __skb_incr_checksum_unnecessary(skb);
2794 }
2795}
2796
2797#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2798 compute_pseudo) \
2799({ \
2800 __sum16 __ret = 0; \
2801 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2802 __ret = __skb_gro_checksum_validate_complete(skb, \
2803 compute_pseudo(skb, proto)); \
2804 if (!__ret) \
2805 skb_gro_incr_csum_unnecessary(skb); \
2806 __ret; \
2807})
2808
2809#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2810 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2811
2812#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2813 compute_pseudo) \
2814 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2815
2816#define skb_gro_checksum_simple_validate(skb) \
2817 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2818
2819static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2820{
2821 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2822 !NAPI_GRO_CB(skb)->csum_valid);
2823}
2824
2825static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2826 __sum16 check, __wsum pseudo)
2827{
2828 NAPI_GRO_CB(skb)->csum = ~pseudo;
2829 NAPI_GRO_CB(skb)->csum_valid = 1;
2830}
2831
2832#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2833do { \
2834 if (__skb_gro_checksum_convert_check(skb)) \
2835 __skb_gro_checksum_convert(skb, check, \
2836 compute_pseudo(skb, proto)); \
2837} while (0)
2838
2839struct gro_remcsum {
2840 int offset;
2841 __wsum delta;
2842};
2843
2844static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2845{
2846 grc->offset = 0;
2847 grc->delta = 0;
2848}
2849
2850static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2851 unsigned int off, size_t hdrlen,
2852 int start, int offset,
2853 struct gro_remcsum *grc,
2854 bool nopartial)
2855{
2856 __wsum delta;
2857 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2858
2859 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2860
2861 if (!nopartial) {
2862 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2863 return ptr;
2864 }
2865
2866 ptr = skb_gro_header_fast(skb, off);
2867 if (skb_gro_header_hard(skb, off + plen)) {
2868 ptr = skb_gro_header_slow(skb, off + plen, off);
2869 if (!ptr)
2870 return NULL;
2871 }
2872
2873 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2874 start, offset);
2875
2876 /* Adjust skb->csum since we changed the packet */
2877 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2878
2879 grc->offset = off + hdrlen + offset;
2880 grc->delta = delta;
2881
2882 return ptr;
2883}
2884
2885static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2886 struct gro_remcsum *grc)
2887{
2888 void *ptr;
2889 size_t plen = grc->offset + sizeof(u16);
2890
2891 if (!grc->delta)
2892 return;
2893
2894 ptr = skb_gro_header_fast(skb, grc->offset);
2895 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2896 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2897 if (!ptr)
2898 return;
2899 }
2900
2901 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2902}
2903
2904#ifdef CONFIG_XFRM_OFFLOAD
2905static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2906{
2907 if (PTR_ERR(pp) != -EINPROGRESS)
2908 NAPI_GRO_CB(skb)->flush |= flush;
2909}
2910static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2911 struct sk_buff *pp,
2912 int flush,
2913 struct gro_remcsum *grc)
2914{
2915 if (PTR_ERR(pp) != -EINPROGRESS) {
2916 NAPI_GRO_CB(skb)->flush |= flush;
2917 skb_gro_remcsum_cleanup(skb, grc);
2918 skb->remcsum_offload = 0;
2919 }
2920}
2921#else
2922static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2923{
2924 NAPI_GRO_CB(skb)->flush |= flush;
2925}
2926static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2927 struct sk_buff *pp,
2928 int flush,
2929 struct gro_remcsum *grc)
2930{
2931 NAPI_GRO_CB(skb)->flush |= flush;
2932 skb_gro_remcsum_cleanup(skb, grc);
2933 skb->remcsum_offload = 0;
2934}
2935#endif
2936
2937static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2938 unsigned short type,
2939 const void *daddr, const void *saddr,
2940 unsigned int len)
2941{
2942 if (!dev->header_ops || !dev->header_ops->create)
2943 return 0;
2944
2945 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2946}
2947
2948static inline int dev_parse_header(const struct sk_buff *skb,
2949 unsigned char *haddr)
2950{
2951 const struct net_device *dev = skb->dev;
2952
2953 if (!dev->header_ops || !dev->header_ops->parse)
2954 return 0;
2955 return dev->header_ops->parse(skb, haddr);
2956}
2957
2958static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2959{
2960 const struct net_device *dev = skb->dev;
2961
2962 if (!dev->header_ops || !dev->header_ops->parse_protocol)
2963 return 0;
2964 return dev->header_ops->parse_protocol(skb);
2965}
2966
2967/* ll_header must have at least hard_header_len allocated */
2968static inline bool dev_validate_header(const struct net_device *dev,
2969 char *ll_header, int len)
2970{
2971 if (likely(len >= dev->hard_header_len))
2972 return true;
2973 if (len < dev->min_header_len)
2974 return false;
2975
2976 if (capable(CAP_SYS_RAWIO)) {
2977 memset(ll_header + len, 0, dev->hard_header_len - len);
2978 return true;
2979 }
2980
2981 if (dev->header_ops && dev->header_ops->validate)
2982 return dev->header_ops->validate(ll_header, len);
2983
2984 return false;
2985}
2986
2987typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2988 int len, int size);
2989int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2990static inline int unregister_gifconf(unsigned int family)
2991{
2992 return register_gifconf(family, NULL);
2993}
2994
2995#ifdef CONFIG_NET_FLOW_LIMIT
2996#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2997struct sd_flow_limit {
2998 u64 count;
2999 unsigned int num_buckets;
3000 unsigned int history_head;
3001 u16 history[FLOW_LIMIT_HISTORY];
3002 u8 buckets[];
3003};
3004
3005extern int netdev_flow_limit_table_len;
3006#endif /* CONFIG_NET_FLOW_LIMIT */
3007
3008/*
3009 * Incoming packets are placed on per-CPU queues
3010 */
3011struct softnet_data {
3012 struct list_head poll_list;
3013 struct sk_buff_head process_queue;
3014
3015 /* stats */
3016 unsigned int processed;
3017 unsigned int time_squeeze;
3018 unsigned int received_rps;
3019#ifdef CONFIG_RPS
3020 struct softnet_data *rps_ipi_list;
3021#endif
3022#ifdef CONFIG_NET_FLOW_LIMIT
3023 struct sd_flow_limit __rcu *flow_limit;
3024#endif
3025 struct Qdisc *output_queue;
3026 struct Qdisc **output_queue_tailp;
3027 struct sk_buff *completion_queue;
3028#ifdef CONFIG_XFRM_OFFLOAD
3029 struct sk_buff_head xfrm_backlog;
3030#endif
3031 /* written and read only by owning cpu: */
3032 struct {
3033 u16 recursion;
3034 u8 more;
3035 } xmit;
3036#ifdef CONFIG_RPS
3037 /* input_queue_head should be written by cpu owning this struct,
3038 * and only read by other cpus. Worth using a cache line.
3039 */
3040 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3041
3042 /* Elements below can be accessed between CPUs for RPS/RFS */
3043 call_single_data_t csd ____cacheline_aligned_in_smp;
3044 struct softnet_data *rps_ipi_next;
3045 unsigned int cpu;
3046 unsigned int input_queue_tail;
3047#endif
3048 unsigned int dropped;
3049 struct sk_buff_head input_pkt_queue;
3050 struct napi_struct backlog;
3051
3052};
3053
3054static inline void input_queue_head_incr(struct softnet_data *sd)
3055{
3056#ifdef CONFIG_RPS
3057 sd->input_queue_head++;
3058#endif
3059}
3060
3061static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3062 unsigned int *qtail)
3063{
3064#ifdef CONFIG_RPS
3065 *qtail = ++sd->input_queue_tail;
3066#endif
3067}
3068
3069DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3070
3071static inline int dev_recursion_level(void)
3072{
3073 return this_cpu_read(softnet_data.xmit.recursion);
3074}
3075
3076#define XMIT_RECURSION_LIMIT 10
3077static inline bool dev_xmit_recursion(void)
3078{
3079 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3080 XMIT_RECURSION_LIMIT);
3081}
3082
3083static inline void dev_xmit_recursion_inc(void)
3084{
3085 __this_cpu_inc(softnet_data.xmit.recursion);
3086}
3087
3088static inline void dev_xmit_recursion_dec(void)
3089{
3090 __this_cpu_dec(softnet_data.xmit.recursion);
3091}
3092
3093void __netif_schedule(struct Qdisc *q);
3094void netif_schedule_queue(struct netdev_queue *txq);
3095
3096static inline void netif_tx_schedule_all(struct net_device *dev)
3097{
3098 unsigned int i;
3099
3100 for (i = 0; i < dev->num_tx_queues; i++)
3101 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3102}
3103
3104static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3105{
3106 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3107}
3108
3109/**
3110 * netif_start_queue - allow transmit
3111 * @dev: network device
3112 *
3113 * Allow upper layers to call the device hard_start_xmit routine.
3114 */
3115static inline void netif_start_queue(struct net_device *dev)
3116{
3117 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3118}
3119
3120static inline void netif_tx_start_all_queues(struct net_device *dev)
3121{
3122 unsigned int i;
3123
3124 for (i = 0; i < dev->num_tx_queues; i++) {
3125 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3126 netif_tx_start_queue(txq);
3127 }
3128}
3129
3130void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3131
3132/**
3133 * netif_wake_queue - restart transmit
3134 * @dev: network device
3135 *
3136 * Allow upper layers to call the device hard_start_xmit routine.
3137 * Used for flow control when transmit resources are available.
3138 */
3139static inline void netif_wake_queue(struct net_device *dev)
3140{
3141 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3142}
3143
3144static inline void netif_tx_wake_all_queues(struct net_device *dev)
3145{
3146 unsigned int i;
3147
3148 for (i = 0; i < dev->num_tx_queues; i++) {
3149 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3150 netif_tx_wake_queue(txq);
3151 }
3152}
3153
3154static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3155{
3156 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3157}
3158
3159/**
3160 * netif_stop_queue - stop transmitted packets
3161 * @dev: network device
3162 *
3163 * Stop upper layers calling the device hard_start_xmit routine.
3164 * Used for flow control when transmit resources are unavailable.
3165 */
3166static inline void netif_stop_queue(struct net_device *dev)
3167{
3168 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3169}
3170
3171void netif_tx_stop_all_queues(struct net_device *dev);
3172void netdev_update_lockdep_key(struct net_device *dev);
3173
3174static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3175{
3176 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3177}
3178
3179/**
3180 * netif_queue_stopped - test if transmit queue is flowblocked
3181 * @dev: network device
3182 *
3183 * Test if transmit queue on device is currently unable to send.
3184 */
3185static inline bool netif_queue_stopped(const struct net_device *dev)
3186{
3187 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3188}
3189
3190static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3191{
3192 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3193}
3194
3195static inline bool
3196netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3197{
3198 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3199}
3200
3201static inline bool
3202netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3203{
3204 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3205}
3206
3207/**
3208 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3209 * @dev_queue: pointer to transmit queue
3210 *
3211 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3212 * to give appropriate hint to the CPU.
3213 */
3214static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3215{
3216#ifdef CONFIG_BQL
3217 prefetchw(&dev_queue->dql.num_queued);
3218#endif
3219}
3220
3221/**
3222 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3223 * @dev_queue: pointer to transmit queue
3224 *
3225 * BQL enabled drivers might use this helper in their TX completion path,
3226 * to give appropriate hint to the CPU.
3227 */
3228static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3229{
3230#ifdef CONFIG_BQL
3231 prefetchw(&dev_queue->dql.limit);
3232#endif
3233}
3234
3235static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3236 unsigned int bytes)
3237{
3238#ifdef CONFIG_BQL
3239 dql_queued(&dev_queue->dql, bytes);
3240
3241 if (likely(dql_avail(&dev_queue->dql) >= 0))
3242 return;
3243
3244 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3245
3246 /*
3247 * The XOFF flag must be set before checking the dql_avail below,
3248 * because in netdev_tx_completed_queue we update the dql_completed
3249 * before checking the XOFF flag.
3250 */
3251 smp_mb();
3252
3253 /* check again in case another CPU has just made room avail */
3254 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3255 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3256#endif
3257}
3258
3259/* Variant of netdev_tx_sent_queue() for drivers that are aware
3260 * that they should not test BQL status themselves.
3261 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3262 * skb of a batch.
3263 * Returns true if the doorbell must be used to kick the NIC.
3264 */
3265static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3266 unsigned int bytes,
3267 bool xmit_more)
3268{
3269 if (xmit_more) {
3270#ifdef CONFIG_BQL
3271 dql_queued(&dev_queue->dql, bytes);
3272#endif
3273 return netif_tx_queue_stopped(dev_queue);
3274 }
3275 netdev_tx_sent_queue(dev_queue, bytes);
3276 return true;
3277}
3278
3279/**
3280 * netdev_sent_queue - report the number of bytes queued to hardware
3281 * @dev: network device
3282 * @bytes: number of bytes queued to the hardware device queue
3283 *
3284 * Report the number of bytes queued for sending/completion to the network
3285 * device hardware queue. @bytes should be a good approximation and should
3286 * exactly match netdev_completed_queue() @bytes
3287 */
3288static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3289{
3290 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3291}
3292
3293static inline bool __netdev_sent_queue(struct net_device *dev,
3294 unsigned int bytes,
3295 bool xmit_more)
3296{
3297 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3298 xmit_more);
3299}
3300
3301static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3302 unsigned int pkts, unsigned int bytes)
3303{
3304#ifdef CONFIG_BQL
3305 if (unlikely(!bytes))
3306 return;
3307
3308 dql_completed(&dev_queue->dql, bytes);
3309
3310 /*
3311 * Without the memory barrier there is a small possiblity that
3312 * netdev_tx_sent_queue will miss the update and cause the queue to
3313 * be stopped forever
3314 */
3315 smp_mb();
3316
3317 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3318 return;
3319
3320 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3321 netif_schedule_queue(dev_queue);
3322#endif
3323}
3324
3325/**
3326 * netdev_completed_queue - report bytes and packets completed by device
3327 * @dev: network device
3328 * @pkts: actual number of packets sent over the medium
3329 * @bytes: actual number of bytes sent over the medium
3330 *
3331 * Report the number of bytes and packets transmitted by the network device
3332 * hardware queue over the physical medium, @bytes must exactly match the
3333 * @bytes amount passed to netdev_sent_queue()
3334 */
3335static inline void netdev_completed_queue(struct net_device *dev,
3336 unsigned int pkts, unsigned int bytes)
3337{
3338 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3339}
3340
3341static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3342{
3343#ifdef CONFIG_BQL
3344 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3345 dql_reset(&q->dql);
3346#endif
3347}
3348
3349/**
3350 * netdev_reset_queue - reset the packets and bytes count of a network device
3351 * @dev_queue: network device
3352 *
3353 * Reset the bytes and packet count of a network device and clear the
3354 * software flow control OFF bit for this network device
3355 */
3356static inline void netdev_reset_queue(struct net_device *dev_queue)
3357{
3358 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3359}
3360
3361/**
3362 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3363 * @dev: network device
3364 * @queue_index: given tx queue index
3365 *
3366 * Returns 0 if given tx queue index >= number of device tx queues,
3367 * otherwise returns the originally passed tx queue index.
3368 */
3369static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3370{
3371 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3372 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3373 dev->name, queue_index,
3374 dev->real_num_tx_queues);
3375 return 0;
3376 }
3377
3378 return queue_index;
3379}
3380
3381/**
3382 * netif_running - test if up
3383 * @dev: network device
3384 *
3385 * Test if the device has been brought up.
3386 */
3387static inline bool netif_running(const struct net_device *dev)
3388{
3389 return test_bit(__LINK_STATE_START, &dev->state);
3390}
3391
3392/*
3393 * Routines to manage the subqueues on a device. We only need start,
3394 * stop, and a check if it's stopped. All other device management is
3395 * done at the overall netdevice level.
3396 * Also test the device if we're multiqueue.
3397 */
3398
3399/**
3400 * netif_start_subqueue - allow sending packets on subqueue
3401 * @dev: network device
3402 * @queue_index: sub queue index
3403 *
3404 * Start individual transmit queue of a device with multiple transmit queues.
3405 */
3406static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3407{
3408 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3409
3410 netif_tx_start_queue(txq);
3411}
3412
3413/**
3414 * netif_stop_subqueue - stop sending packets on subqueue
3415 * @dev: network device
3416 * @queue_index: sub queue index
3417 *
3418 * Stop individual transmit queue of a device with multiple transmit queues.
3419 */
3420static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3421{
3422 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3423 netif_tx_stop_queue(txq);
3424}
3425
3426/**
3427 * netif_subqueue_stopped - test status of subqueue
3428 * @dev: network device
3429 * @queue_index: sub queue index
3430 *
3431 * Check individual transmit queue of a device with multiple transmit queues.
3432 */
3433static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3434 u16 queue_index)
3435{
3436 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3437
3438 return netif_tx_queue_stopped(txq);
3439}
3440
3441static inline bool netif_subqueue_stopped(const struct net_device *dev,
3442 struct sk_buff *skb)
3443{
3444 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3445}
3446
3447/**
3448 * netif_wake_subqueue - allow sending packets on subqueue
3449 * @dev: network device
3450 * @queue_index: sub queue index
3451 *
3452 * Resume individual transmit queue of a device with multiple transmit queues.
3453 */
3454static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3455{
3456 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3457
3458 netif_tx_wake_queue(txq);
3459}
3460
3461#ifdef CONFIG_XPS
3462int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3463 u16 index);
3464int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3465 u16 index, bool is_rxqs_map);
3466
3467/**
3468 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3469 * @j: CPU/Rx queue index
3470 * @mask: bitmask of all cpus/rx queues
3471 * @nr_bits: number of bits in the bitmask
3472 *
3473 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3474 */
3475static inline bool netif_attr_test_mask(unsigned long j,
3476 const unsigned long *mask,
3477 unsigned int nr_bits)
3478{
3479 cpu_max_bits_warn(j, nr_bits);
3480 return test_bit(j, mask);
3481}
3482
3483/**
3484 * netif_attr_test_online - Test for online CPU/Rx queue
3485 * @j: CPU/Rx queue index
3486 * @online_mask: bitmask for CPUs/Rx queues that are online
3487 * @nr_bits: number of bits in the bitmask
3488 *
3489 * Returns true if a CPU/Rx queue is online.
3490 */
3491static inline bool netif_attr_test_online(unsigned long j,
3492 const unsigned long *online_mask,
3493 unsigned int nr_bits)
3494{
3495 cpu_max_bits_warn(j, nr_bits);
3496
3497 if (online_mask)
3498 return test_bit(j, online_mask);
3499
3500 return (j < nr_bits);
3501}
3502
3503/**
3504 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3505 * @n: CPU/Rx queue index
3506 * @srcp: the cpumask/Rx queue mask pointer
3507 * @nr_bits: number of bits in the bitmask
3508 *
3509 * Returns >= nr_bits if no further CPUs/Rx queues set.
3510 */
3511static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3512 unsigned int nr_bits)
3513{
3514 /* -1 is a legal arg here. */
3515 if (n != -1)
3516 cpu_max_bits_warn(n, nr_bits);
3517
3518 if (srcp)
3519 return find_next_bit(srcp, nr_bits, n + 1);
3520
3521 return n + 1;
3522}
3523
3524/**
3525 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3526 * @n: CPU/Rx queue index
3527 * @src1p: the first CPUs/Rx queues mask pointer
3528 * @src2p: the second CPUs/Rx queues mask pointer
3529 * @nr_bits: number of bits in the bitmask
3530 *
3531 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3532 */
3533static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3534 const unsigned long *src2p,
3535 unsigned int nr_bits)
3536{
3537 /* -1 is a legal arg here. */
3538 if (n != -1)
3539 cpu_max_bits_warn(n, nr_bits);
3540
3541 if (src1p && src2p)
3542 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3543 else if (src1p)
3544 return find_next_bit(src1p, nr_bits, n + 1);
3545 else if (src2p)
3546 return find_next_bit(src2p, nr_bits, n + 1);
3547
3548 return n + 1;
3549}
3550#else
3551static inline int netif_set_xps_queue(struct net_device *dev,
3552 const struct cpumask *mask,
3553 u16 index)
3554{
3555 return 0;
3556}
3557
3558static inline int __netif_set_xps_queue(struct net_device *dev,
3559 const unsigned long *mask,
3560 u16 index, bool is_rxqs_map)
3561{
3562 return 0;
3563}
3564#endif
3565
3566/**
3567 * netif_is_multiqueue - test if device has multiple transmit queues
3568 * @dev: network device
3569 *
3570 * Check if device has multiple transmit queues
3571 */
3572static inline bool netif_is_multiqueue(const struct net_device *dev)
3573{
3574 return dev->num_tx_queues > 1;
3575}
3576
3577int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3578
3579#ifdef CONFIG_SYSFS
3580int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3581#else
3582static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3583 unsigned int rxqs)
3584{
3585 dev->real_num_rx_queues = rxqs;
3586 return 0;
3587}
3588#endif
3589
3590static inline struct netdev_rx_queue *
3591__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3592{
3593 return dev->_rx + rxq;
3594}
3595
3596#ifdef CONFIG_SYSFS
3597static inline unsigned int get_netdev_rx_queue_index(
3598 struct netdev_rx_queue *queue)
3599{
3600 struct net_device *dev = queue->dev;
3601 int index = queue - dev->_rx;
3602
3603 BUG_ON(index >= dev->num_rx_queues);
3604 return index;
3605}
3606#endif
3607
3608#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3609int netif_get_num_default_rss_queues(void);
3610
3611enum skb_free_reason {
3612 SKB_REASON_CONSUMED,
3613 SKB_REASON_DROPPED,
3614};
3615
3616void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3617void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3618
3619/*
3620 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3621 * interrupt context or with hardware interrupts being disabled.
3622 * (in_irq() || irqs_disabled())
3623 *
3624 * We provide four helpers that can be used in following contexts :
3625 *
3626 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3627 * replacing kfree_skb(skb)
3628 *
3629 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3630 * Typically used in place of consume_skb(skb) in TX completion path
3631 *
3632 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3633 * replacing kfree_skb(skb)
3634 *
3635 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3636 * and consumed a packet. Used in place of consume_skb(skb)
3637 */
3638static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3639{
3640 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3641}
3642
3643static inline void dev_consume_skb_irq(struct sk_buff *skb)
3644{
3645 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3646}
3647
3648static inline void dev_kfree_skb_any(struct sk_buff *skb)
3649{
3650 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3651}
3652
3653static inline void dev_consume_skb_any(struct sk_buff *skb)
3654{
3655 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3656}
3657
3658void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3659int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3660int netif_rx(struct sk_buff *skb);
3661int netif_rx_ni(struct sk_buff *skb);
3662int netif_receive_skb(struct sk_buff *skb);
3663int netif_receive_skb_core(struct sk_buff *skb);
3664void netif_receive_skb_list(struct list_head *head);
3665gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3666void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3667struct sk_buff *napi_get_frags(struct napi_struct *napi);
3668gro_result_t napi_gro_frags(struct napi_struct *napi);
3669struct packet_offload *gro_find_receive_by_type(__be16 type);
3670struct packet_offload *gro_find_complete_by_type(__be16 type);
3671
3672static inline void napi_free_frags(struct napi_struct *napi)
3673{
3674 kfree_skb(napi->skb);
3675 napi->skb = NULL;
3676}
3677
3678bool netdev_is_rx_handler_busy(struct net_device *dev);
3679int netdev_rx_handler_register(struct net_device *dev,
3680 rx_handler_func_t *rx_handler,
3681 void *rx_handler_data);
3682void netdev_rx_handler_unregister(struct net_device *dev);
3683
3684bool dev_valid_name(const char *name);
3685int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3686 bool *need_copyout);
3687int dev_ifconf(struct net *net, struct ifconf *, int);
3688int dev_ethtool(struct net *net, struct ifreq *);
3689unsigned int dev_get_flags(const struct net_device *);
3690int __dev_change_flags(struct net_device *dev, unsigned int flags,
3691 struct netlink_ext_ack *extack);
3692int dev_change_flags(struct net_device *dev, unsigned int flags,
3693 struct netlink_ext_ack *extack);
3694void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3695 unsigned int gchanges);
3696int dev_change_name(struct net_device *, const char *);
3697int dev_set_alias(struct net_device *, const char *, size_t);
3698int dev_get_alias(const struct net_device *, char *, size_t);
3699int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3700int __dev_set_mtu(struct net_device *, int);
3701int dev_validate_mtu(struct net_device *dev, int mtu,
3702 struct netlink_ext_ack *extack);
3703int dev_set_mtu_ext(struct net_device *dev, int mtu,
3704 struct netlink_ext_ack *extack);
3705int dev_set_mtu(struct net_device *, int);
3706int dev_change_tx_queue_len(struct net_device *, unsigned long);
3707void dev_set_group(struct net_device *, int);
3708int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3709 struct netlink_ext_ack *extack);
3710int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3711 struct netlink_ext_ack *extack);
3712int dev_change_carrier(struct net_device *, bool new_carrier);
3713int dev_get_phys_port_id(struct net_device *dev,
3714 struct netdev_phys_item_id *ppid);
3715int dev_get_phys_port_name(struct net_device *dev,
3716 char *name, size_t len);
3717int dev_get_port_parent_id(struct net_device *dev,
3718 struct netdev_phys_item_id *ppid, bool recurse);
3719bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3720int dev_change_proto_down(struct net_device *dev, bool proto_down);
3721int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3722struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3723struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3724 struct netdev_queue *txq, int *ret);
3725
3726typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3727int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3728 int fd, u32 flags);
3729u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3730 enum bpf_netdev_command cmd);
3731int xdp_umem_query(struct net_device *dev, u16 queue_id);
3732
3733int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3734int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3735bool is_skb_forwardable(const struct net_device *dev,
3736 const struct sk_buff *skb);
3737
3738static __always_inline int ____dev_forward_skb(struct net_device *dev,
3739 struct sk_buff *skb)
3740{
3741 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3742 unlikely(!is_skb_forwardable(dev, skb))) {
3743 atomic_long_inc(&dev->rx_dropped);
3744 kfree_skb(skb);
3745 return NET_RX_DROP;
3746 }
3747
3748 skb_scrub_packet(skb, true);
3749 skb->priority = 0;
3750 return 0;
3751}
3752
3753bool dev_nit_active(struct net_device *dev);
3754void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3755
3756extern int netdev_budget;
3757extern unsigned int netdev_budget_usecs;
3758
3759/* Called by rtnetlink.c:rtnl_unlock() */
3760void netdev_run_todo(void);
3761
3762/**
3763 * dev_put - release reference to device
3764 * @dev: network device
3765 *
3766 * Release reference to device to allow it to be freed.
3767 */
3768static inline void dev_put(struct net_device *dev)
3769{
3770 this_cpu_dec(*dev->pcpu_refcnt);
3771}
3772
3773/**
3774 * dev_hold - get reference to device
3775 * @dev: network device
3776 *
3777 * Hold reference to device to keep it from being freed.
3778 */
3779static inline void dev_hold(struct net_device *dev)
3780{
3781 this_cpu_inc(*dev->pcpu_refcnt);
3782}
3783
3784/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3785 * and _off may be called from IRQ context, but it is caller
3786 * who is responsible for serialization of these calls.
3787 *
3788 * The name carrier is inappropriate, these functions should really be
3789 * called netif_lowerlayer_*() because they represent the state of any
3790 * kind of lower layer not just hardware media.
3791 */
3792
3793void linkwatch_init_dev(struct net_device *dev);
3794void linkwatch_fire_event(struct net_device *dev);
3795void linkwatch_forget_dev(struct net_device *dev);
3796
3797/**
3798 * netif_carrier_ok - test if carrier present
3799 * @dev: network device
3800 *
3801 * Check if carrier is present on device
3802 */
3803static inline bool netif_carrier_ok(const struct net_device *dev)
3804{
3805 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3806}
3807
3808unsigned long dev_trans_start(struct net_device *dev);
3809
3810void __netdev_watchdog_up(struct net_device *dev);
3811
3812void netif_carrier_on(struct net_device *dev);
3813
3814void netif_carrier_off(struct net_device *dev);
3815
3816/**
3817 * netif_dormant_on - mark device as dormant.
3818 * @dev: network device
3819 *
3820 * Mark device as dormant (as per RFC2863).
3821 *
3822 * The dormant state indicates that the relevant interface is not
3823 * actually in a condition to pass packets (i.e., it is not 'up') but is
3824 * in a "pending" state, waiting for some external event. For "on-
3825 * demand" interfaces, this new state identifies the situation where the
3826 * interface is waiting for events to place it in the up state.
3827 */
3828static inline void netif_dormant_on(struct net_device *dev)
3829{
3830 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3831 linkwatch_fire_event(dev);
3832}
3833
3834/**
3835 * netif_dormant_off - set device as not dormant.
3836 * @dev: network device
3837 *
3838 * Device is not in dormant state.
3839 */
3840static inline void netif_dormant_off(struct net_device *dev)
3841{
3842 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3843 linkwatch_fire_event(dev);
3844}
3845
3846/**
3847 * netif_dormant - test if device is dormant
3848 * @dev: network device
3849 *
3850 * Check if device is dormant.
3851 */
3852static inline bool netif_dormant(const struct net_device *dev)
3853{
3854 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3855}
3856
3857
3858/**
3859 * netif_oper_up - test if device is operational
3860 * @dev: network device
3861 *
3862 * Check if carrier is operational
3863 */
3864static inline bool netif_oper_up(const struct net_device *dev)
3865{
3866 return (dev->operstate == IF_OPER_UP ||
3867 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3868}
3869
3870/**
3871 * netif_device_present - is device available or removed
3872 * @dev: network device
3873 *
3874 * Check if device has not been removed from system.
3875 */
3876static inline bool netif_device_present(struct net_device *dev)
3877{
3878 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3879}
3880
3881void netif_device_detach(struct net_device *dev);
3882
3883void netif_device_attach(struct net_device *dev);
3884
3885/*
3886 * Network interface message level settings
3887 */
3888
3889enum {
3890 NETIF_MSG_DRV = 0x0001,
3891 NETIF_MSG_PROBE = 0x0002,
3892 NETIF_MSG_LINK = 0x0004,
3893 NETIF_MSG_TIMER = 0x0008,
3894 NETIF_MSG_IFDOWN = 0x0010,
3895 NETIF_MSG_IFUP = 0x0020,
3896 NETIF_MSG_RX_ERR = 0x0040,
3897 NETIF_MSG_TX_ERR = 0x0080,
3898 NETIF_MSG_TX_QUEUED = 0x0100,
3899 NETIF_MSG_INTR = 0x0200,
3900 NETIF_MSG_TX_DONE = 0x0400,
3901 NETIF_MSG_RX_STATUS = 0x0800,
3902 NETIF_MSG_PKTDATA = 0x1000,
3903 NETIF_MSG_HW = 0x2000,
3904 NETIF_MSG_WOL = 0x4000,
3905};
3906
3907#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3908#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3909#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3910#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3911#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3912#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3913#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3914#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3915#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3916#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3917#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3918#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3919#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3920#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3921#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3922
3923static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3924{
3925 /* use default */
3926 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3927 return default_msg_enable_bits;
3928 if (debug_value == 0) /* no output */
3929 return 0;
3930 /* set low N bits */
3931 return (1U << debug_value) - 1;
3932}
3933
3934static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3935{
3936 spin_lock(&txq->_xmit_lock);
3937 txq->xmit_lock_owner = cpu;
3938}
3939
3940static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3941{
3942 __acquire(&txq->_xmit_lock);
3943 return true;
3944}
3945
3946static inline void __netif_tx_release(struct netdev_queue *txq)
3947{
3948 __release(&txq->_xmit_lock);
3949}
3950
3951static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3952{
3953 spin_lock_bh(&txq->_xmit_lock);
3954 txq->xmit_lock_owner = smp_processor_id();
3955}
3956
3957static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3958{
3959 bool ok = spin_trylock(&txq->_xmit_lock);
3960 if (likely(ok))
3961 txq->xmit_lock_owner = smp_processor_id();
3962 return ok;
3963}
3964
3965static inline void __netif_tx_unlock(struct netdev_queue *txq)
3966{
3967 txq->xmit_lock_owner = -1;
3968 spin_unlock(&txq->_xmit_lock);
3969}
3970
3971static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3972{
3973 txq->xmit_lock_owner = -1;
3974 spin_unlock_bh(&txq->_xmit_lock);
3975}
3976
3977static inline void txq_trans_update(struct netdev_queue *txq)
3978{
3979 if (txq->xmit_lock_owner != -1)
3980 txq->trans_start = jiffies;
3981}
3982
3983/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3984static inline void netif_trans_update(struct net_device *dev)
3985{
3986 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3987
3988 if (txq->trans_start != jiffies)
3989 txq->trans_start = jiffies;
3990}
3991
3992/**
3993 * netif_tx_lock - grab network device transmit lock
3994 * @dev: network device
3995 *
3996 * Get network device transmit lock
3997 */
3998static inline void netif_tx_lock(struct net_device *dev)
3999{
4000 unsigned int i;
4001 int cpu;
4002
4003 spin_lock(&dev->tx_global_lock);
4004 cpu = smp_processor_id();
4005 for (i = 0; i < dev->num_tx_queues; i++) {
4006 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4007
4008 /* We are the only thread of execution doing a
4009 * freeze, but we have to grab the _xmit_lock in
4010 * order to synchronize with threads which are in
4011 * the ->hard_start_xmit() handler and already
4012 * checked the frozen bit.
4013 */
4014 __netif_tx_lock(txq, cpu);
4015 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4016 __netif_tx_unlock(txq);
4017 }
4018}
4019
4020static inline void netif_tx_lock_bh(struct net_device *dev)
4021{
4022 local_bh_disable();
4023 netif_tx_lock(dev);
4024}
4025
4026static inline void netif_tx_unlock(struct net_device *dev)
4027{
4028 unsigned int i;
4029
4030 for (i = 0; i < dev->num_tx_queues; i++) {
4031 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4032
4033 /* No need to grab the _xmit_lock here. If the
4034 * queue is not stopped for another reason, we
4035 * force a schedule.
4036 */
4037 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4038 netif_schedule_queue(txq);
4039 }
4040 spin_unlock(&dev->tx_global_lock);
4041}
4042
4043static inline void netif_tx_unlock_bh(struct net_device *dev)
4044{
4045 netif_tx_unlock(dev);
4046 local_bh_enable();
4047}
4048
4049#define HARD_TX_LOCK(dev, txq, cpu) { \
4050 if ((dev->features & NETIF_F_LLTX) == 0) { \
4051 __netif_tx_lock(txq, cpu); \
4052 } else { \
4053 __netif_tx_acquire(txq); \
4054 } \
4055}
4056
4057#define HARD_TX_TRYLOCK(dev, txq) \
4058 (((dev->features & NETIF_F_LLTX) == 0) ? \
4059 __netif_tx_trylock(txq) : \
4060 __netif_tx_acquire(txq))
4061
4062#define HARD_TX_UNLOCK(dev, txq) { \
4063 if ((dev->features & NETIF_F_LLTX) == 0) { \
4064 __netif_tx_unlock(txq); \
4065 } else { \
4066 __netif_tx_release(txq); \
4067 } \
4068}
4069
4070static inline void netif_tx_disable(struct net_device *dev)
4071{
4072 unsigned int i;
4073 int cpu;
4074
4075 local_bh_disable();
4076 cpu = smp_processor_id();
4077 for (i = 0; i < dev->num_tx_queues; i++) {
4078 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4079
4080 __netif_tx_lock(txq, cpu);
4081 netif_tx_stop_queue(txq);
4082 __netif_tx_unlock(txq);
4083 }
4084 local_bh_enable();
4085}
4086
4087static inline void netif_addr_lock(struct net_device *dev)
4088{
4089 spin_lock(&dev->addr_list_lock);
4090}
4091
4092static inline void netif_addr_lock_bh(struct net_device *dev)
4093{
4094 spin_lock_bh(&dev->addr_list_lock);
4095}
4096
4097static inline void netif_addr_unlock(struct net_device *dev)
4098{
4099 spin_unlock(&dev->addr_list_lock);
4100}
4101
4102static inline void netif_addr_unlock_bh(struct net_device *dev)
4103{
4104 spin_unlock_bh(&dev->addr_list_lock);
4105}
4106
4107/*
4108 * dev_addrs walker. Should be used only for read access. Call with
4109 * rcu_read_lock held.
4110 */
4111#define for_each_dev_addr(dev, ha) \
4112 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4113
4114/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4115
4116void ether_setup(struct net_device *dev);
4117
4118/* Support for loadable net-drivers */
4119struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4120 unsigned char name_assign_type,
4121 void (*setup)(struct net_device *),
4122 unsigned int txqs, unsigned int rxqs);
4123#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4124 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4125
4126#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4127 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4128 count)
4129
4130int register_netdev(struct net_device *dev);
4131void unregister_netdev(struct net_device *dev);
4132
4133/* General hardware address lists handling functions */
4134int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4135 struct netdev_hw_addr_list *from_list, int addr_len);
4136void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4137 struct netdev_hw_addr_list *from_list, int addr_len);
4138int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4139 struct net_device *dev,
4140 int (*sync)(struct net_device *, const unsigned char *),
4141 int (*unsync)(struct net_device *,
4142 const unsigned char *));
4143int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4144 struct net_device *dev,
4145 int (*sync)(struct net_device *,
4146 const unsigned char *, int),
4147 int (*unsync)(struct net_device *,
4148 const unsigned char *, int));
4149void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4150 struct net_device *dev,
4151 int (*unsync)(struct net_device *,
4152 const unsigned char *, int));
4153void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4154 struct net_device *dev,
4155 int (*unsync)(struct net_device *,
4156 const unsigned char *));
4157void __hw_addr_init(struct netdev_hw_addr_list *list);
4158
4159/* Functions used for device addresses handling */
4160int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4161 unsigned char addr_type);
4162int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4163 unsigned char addr_type);
4164void dev_addr_flush(struct net_device *dev);
4165int dev_addr_init(struct net_device *dev);
4166
4167/* Functions used for unicast addresses handling */
4168int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4169int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4170int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4171int dev_uc_sync(struct net_device *to, struct net_device *from);
4172int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4173void dev_uc_unsync(struct net_device *to, struct net_device *from);
4174void dev_uc_flush(struct net_device *dev);
4175void dev_uc_init(struct net_device *dev);
4176
4177/**
4178 * __dev_uc_sync - Synchonize device's unicast list
4179 * @dev: device to sync
4180 * @sync: function to call if address should be added
4181 * @unsync: function to call if address should be removed
4182 *
4183 * Add newly added addresses to the interface, and release
4184 * addresses that have been deleted.
4185 */
4186static inline int __dev_uc_sync(struct net_device *dev,
4187 int (*sync)(struct net_device *,
4188 const unsigned char *),
4189 int (*unsync)(struct net_device *,
4190 const unsigned char *))
4191{
4192 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4193}
4194
4195/**
4196 * __dev_uc_unsync - Remove synchronized addresses from device
4197 * @dev: device to sync
4198 * @unsync: function to call if address should be removed
4199 *
4200 * Remove all addresses that were added to the device by dev_uc_sync().
4201 */
4202static inline void __dev_uc_unsync(struct net_device *dev,
4203 int (*unsync)(struct net_device *,
4204 const unsigned char *))
4205{
4206 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4207}
4208
4209/* Functions used for multicast addresses handling */
4210int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4211int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4212int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4213int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4214int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4215int dev_mc_sync(struct net_device *to, struct net_device *from);
4216int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4217void dev_mc_unsync(struct net_device *to, struct net_device *from);
4218void dev_mc_flush(struct net_device *dev);
4219void dev_mc_init(struct net_device *dev);
4220
4221/**
4222 * __dev_mc_sync - Synchonize device's multicast list
4223 * @dev: device to sync
4224 * @sync: function to call if address should be added
4225 * @unsync: function to call if address should be removed
4226 *
4227 * Add newly added addresses to the interface, and release
4228 * addresses that have been deleted.
4229 */
4230static inline int __dev_mc_sync(struct net_device *dev,
4231 int (*sync)(struct net_device *,
4232 const unsigned char *),
4233 int (*unsync)(struct net_device *,
4234 const unsigned char *))
4235{
4236 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4237}
4238
4239/**
4240 * __dev_mc_unsync - Remove synchronized addresses from device
4241 * @dev: device to sync
4242 * @unsync: function to call if address should be removed
4243 *
4244 * Remove all addresses that were added to the device by dev_mc_sync().
4245 */
4246static inline void __dev_mc_unsync(struct net_device *dev,
4247 int (*unsync)(struct net_device *,
4248 const unsigned char *))
4249{
4250 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4251}
4252
4253/* Functions used for secondary unicast and multicast support */
4254void dev_set_rx_mode(struct net_device *dev);
4255void __dev_set_rx_mode(struct net_device *dev);
4256int dev_set_promiscuity(struct net_device *dev, int inc);
4257int dev_set_allmulti(struct net_device *dev, int inc);
4258void netdev_state_change(struct net_device *dev);
4259void netdev_notify_peers(struct net_device *dev);
4260void netdev_features_change(struct net_device *dev);
4261/* Load a device via the kmod */
4262void dev_load(struct net *net, const char *name);
4263struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4264 struct rtnl_link_stats64 *storage);
4265void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4266 const struct net_device_stats *netdev_stats);
4267
4268extern int netdev_max_backlog;
4269extern int netdev_tstamp_prequeue;
4270extern int weight_p;
4271extern int dev_weight_rx_bias;
4272extern int dev_weight_tx_bias;
4273extern int dev_rx_weight;
4274extern int dev_tx_weight;
4275extern int gro_normal_batch;
4276
4277bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4278struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4279 struct list_head **iter);
4280struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4281 struct list_head **iter);
4282
4283/* iterate through upper list, must be called under RCU read lock */
4284#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4285 for (iter = &(dev)->adj_list.upper, \
4286 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4287 updev; \
4288 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4289
4290int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4291 int (*fn)(struct net_device *upper_dev,
4292 void *data),
4293 void *data);
4294
4295bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4296 struct net_device *upper_dev);
4297
4298bool netdev_has_any_upper_dev(struct net_device *dev);
4299
4300void *netdev_lower_get_next_private(struct net_device *dev,
4301 struct list_head **iter);
4302void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4303 struct list_head **iter);
4304
4305#define netdev_for_each_lower_private(dev, priv, iter) \
4306 for (iter = (dev)->adj_list.lower.next, \
4307 priv = netdev_lower_get_next_private(dev, &(iter)); \
4308 priv; \
4309 priv = netdev_lower_get_next_private(dev, &(iter)))
4310
4311#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4312 for (iter = &(dev)->adj_list.lower, \
4313 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4314 priv; \
4315 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4316
4317void *netdev_lower_get_next(struct net_device *dev,
4318 struct list_head **iter);
4319
4320#define netdev_for_each_lower_dev(dev, ldev, iter) \
4321 for (iter = (dev)->adj_list.lower.next, \
4322 ldev = netdev_lower_get_next(dev, &(iter)); \
4323 ldev; \
4324 ldev = netdev_lower_get_next(dev, &(iter)))
4325
4326struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4327 struct list_head **iter);
4328struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4329 struct list_head **iter);
4330
4331int netdev_walk_all_lower_dev(struct net_device *dev,
4332 int (*fn)(struct net_device *lower_dev,
4333 void *data),
4334 void *data);
4335int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4336 int (*fn)(struct net_device *lower_dev,
4337 void *data),
4338 void *data);
4339
4340void *netdev_adjacent_get_private(struct list_head *adj_list);
4341void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4342struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4343struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4344int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4345 struct netlink_ext_ack *extack);
4346int netdev_master_upper_dev_link(struct net_device *dev,
4347 struct net_device *upper_dev,
4348 void *upper_priv, void *upper_info,
4349 struct netlink_ext_ack *extack);
4350void netdev_upper_dev_unlink(struct net_device *dev,
4351 struct net_device *upper_dev);
4352int netdev_adjacent_change_prepare(struct net_device *old_dev,
4353 struct net_device *new_dev,
4354 struct net_device *dev,
4355 struct netlink_ext_ack *extack);
4356void netdev_adjacent_change_commit(struct net_device *old_dev,
4357 struct net_device *new_dev,
4358 struct net_device *dev);
4359void netdev_adjacent_change_abort(struct net_device *old_dev,
4360 struct net_device *new_dev,
4361 struct net_device *dev);
4362void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4363void *netdev_lower_dev_get_private(struct net_device *dev,
4364 struct net_device *lower_dev);
4365void netdev_lower_state_changed(struct net_device *lower_dev,
4366 void *lower_state_info);
4367
4368/* RSS keys are 40 or 52 bytes long */
4369#define NETDEV_RSS_KEY_LEN 52
4370extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4371void netdev_rss_key_fill(void *buffer, size_t len);
4372
4373int skb_checksum_help(struct sk_buff *skb);
4374int skb_crc32c_csum_help(struct sk_buff *skb);
4375int skb_csum_hwoffload_help(struct sk_buff *skb,
4376 const netdev_features_t features);
4377
4378struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4379 netdev_features_t features, bool tx_path);
4380struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4381 netdev_features_t features);
4382
4383struct netdev_bonding_info {
4384 ifslave slave;
4385 ifbond master;
4386};
4387
4388struct netdev_notifier_bonding_info {
4389 struct netdev_notifier_info info; /* must be first */
4390 struct netdev_bonding_info bonding_info;
4391};
4392
4393void netdev_bonding_info_change(struct net_device *dev,
4394 struct netdev_bonding_info *bonding_info);
4395
4396static inline
4397struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4398{
4399 return __skb_gso_segment(skb, features, true);
4400}
4401__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4402
4403static inline bool can_checksum_protocol(netdev_features_t features,
4404 __be16 protocol)
4405{
4406 if (protocol == htons(ETH_P_FCOE))
4407 return !!(features & NETIF_F_FCOE_CRC);
4408
4409 /* Assume this is an IP checksum (not SCTP CRC) */
4410
4411 if (features & NETIF_F_HW_CSUM) {
4412 /* Can checksum everything */
4413 return true;
4414 }
4415
4416 switch (protocol) {
4417 case htons(ETH_P_IP):
4418 return !!(features & NETIF_F_IP_CSUM);
4419 case htons(ETH_P_IPV6):
4420 return !!(features & NETIF_F_IPV6_CSUM);
4421 default:
4422 return false;
4423 }
4424}
4425
4426#ifdef CONFIG_BUG
4427void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4428#else
4429static inline void netdev_rx_csum_fault(struct net_device *dev,
4430 struct sk_buff *skb)
4431{
4432}
4433#endif
4434/* rx skb timestamps */
4435void net_enable_timestamp(void);
4436void net_disable_timestamp(void);
4437
4438#ifdef CONFIG_PROC_FS
4439int __init dev_proc_init(void);
4440#else
4441#define dev_proc_init() 0
4442#endif
4443
4444static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4445 struct sk_buff *skb, struct net_device *dev,
4446 bool more)
4447{
4448 __this_cpu_write(softnet_data.xmit.more, more);
4449 return ops->ndo_start_xmit(skb, dev);
4450}
4451
4452static inline bool netdev_xmit_more(void)
4453{
4454 return __this_cpu_read(softnet_data.xmit.more);
4455}
4456
4457static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4458 struct netdev_queue *txq, bool more)
4459{
4460 const struct net_device_ops *ops = dev->netdev_ops;
4461 netdev_tx_t rc;
4462
4463 rc = __netdev_start_xmit(ops, skb, dev, more);
4464 if (rc == NETDEV_TX_OK)
4465 txq_trans_update(txq);
4466
4467 return rc;
4468}
4469
4470int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4471 const void *ns);
4472void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4473 const void *ns);
4474
4475static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4476{
4477 return netdev_class_create_file_ns(class_attr, NULL);
4478}
4479
4480static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4481{
4482 netdev_class_remove_file_ns(class_attr, NULL);
4483}
4484
4485extern const struct kobj_ns_type_operations net_ns_type_operations;
4486
4487const char *netdev_drivername(const struct net_device *dev);
4488
4489void linkwatch_run_queue(void);
4490
4491static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4492 netdev_features_t f2)
4493{
4494 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4495 if (f1 & NETIF_F_HW_CSUM)
4496 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4497 else
4498 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4499 }
4500
4501 return f1 & f2;
4502}
4503
4504static inline netdev_features_t netdev_get_wanted_features(
4505 struct net_device *dev)
4506{
4507 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4508}
4509netdev_features_t netdev_increment_features(netdev_features_t all,
4510 netdev_features_t one, netdev_features_t mask);
4511
4512/* Allow TSO being used on stacked device :
4513 * Performing the GSO segmentation before last device
4514 * is a performance improvement.
4515 */
4516static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4517 netdev_features_t mask)
4518{
4519 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4520}
4521
4522int __netdev_update_features(struct net_device *dev);
4523void netdev_update_features(struct net_device *dev);
4524void netdev_change_features(struct net_device *dev);
4525
4526void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4527 struct net_device *dev);
4528
4529netdev_features_t passthru_features_check(struct sk_buff *skb,
4530 struct net_device *dev,
4531 netdev_features_t features);
4532netdev_features_t netif_skb_features(struct sk_buff *skb);
4533
4534static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4535{
4536 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4537
4538 /* check flags correspondence */
4539 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4540 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4541 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4542 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4543 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4544 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4545 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4546 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4547 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4548 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4549 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4550 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4551 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4552 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4553 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4554 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4555 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4556 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4557
4558 return (features & feature) == feature;
4559}
4560
4561static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4562{
4563 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4564 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4565}
4566
4567static inline bool netif_needs_gso(struct sk_buff *skb,
4568 netdev_features_t features)
4569{
4570 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4571 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4572 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4573}
4574
4575static inline void netif_set_gso_max_size(struct net_device *dev,
4576 unsigned int size)
4577{
4578 dev->gso_max_size = size;
4579}
4580
4581static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4582 int pulled_hlen, u16 mac_offset,
4583 int mac_len)
4584{
4585 skb->protocol = protocol;
4586 skb->encapsulation = 1;
4587 skb_push(skb, pulled_hlen);
4588 skb_reset_transport_header(skb);
4589 skb->mac_header = mac_offset;
4590 skb->network_header = skb->mac_header + mac_len;
4591 skb->mac_len = mac_len;
4592}
4593
4594static inline bool netif_is_macsec(const struct net_device *dev)
4595{
4596 return dev->priv_flags & IFF_MACSEC;
4597}
4598
4599static inline bool netif_is_macvlan(const struct net_device *dev)
4600{
4601 return dev->priv_flags & IFF_MACVLAN;
4602}
4603
4604static inline bool netif_is_macvlan_port(const struct net_device *dev)
4605{
4606 return dev->priv_flags & IFF_MACVLAN_PORT;
4607}
4608
4609static inline bool netif_is_bond_master(const struct net_device *dev)
4610{
4611 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4612}
4613
4614static inline bool netif_is_bond_slave(const struct net_device *dev)
4615{
4616 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4617}
4618
4619static inline bool netif_supports_nofcs(struct net_device *dev)
4620{
4621 return dev->priv_flags & IFF_SUPP_NOFCS;
4622}
4623
4624static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4625{
4626 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4627}
4628
4629static inline bool netif_is_l3_master(const struct net_device *dev)
4630{
4631 return dev->priv_flags & IFF_L3MDEV_MASTER;
4632}
4633
4634static inline bool netif_is_l3_slave(const struct net_device *dev)
4635{
4636 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4637}
4638
4639static inline bool netif_is_bridge_master(const struct net_device *dev)
4640{
4641 return dev->priv_flags & IFF_EBRIDGE;
4642}
4643
4644static inline bool netif_is_bridge_port(const struct net_device *dev)
4645{
4646 return dev->priv_flags & IFF_BRIDGE_PORT;
4647}
4648
4649static inline bool netif_is_ovs_master(const struct net_device *dev)
4650{
4651 return dev->priv_flags & IFF_OPENVSWITCH;
4652}
4653
4654static inline bool netif_is_ovs_port(const struct net_device *dev)
4655{
4656 return dev->priv_flags & IFF_OVS_DATAPATH;
4657}
4658
4659static inline bool netif_is_team_master(const struct net_device *dev)
4660{
4661 return dev->priv_flags & IFF_TEAM;
4662}
4663
4664static inline bool netif_is_team_port(const struct net_device *dev)
4665{
4666 return dev->priv_flags & IFF_TEAM_PORT;
4667}
4668
4669static inline bool netif_is_lag_master(const struct net_device *dev)
4670{
4671 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4672}
4673
4674static inline bool netif_is_lag_port(const struct net_device *dev)
4675{
4676 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4677}
4678
4679static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4680{
4681 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4682}
4683
4684static inline bool netif_is_failover(const struct net_device *dev)
4685{
4686 return dev->priv_flags & IFF_FAILOVER;
4687}
4688
4689static inline bool netif_is_failover_slave(const struct net_device *dev)
4690{
4691 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4692}
4693
4694/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4695static inline void netif_keep_dst(struct net_device *dev)
4696{
4697 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4698}
4699
4700/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4701static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4702{
4703 /* TODO: reserve and use an additional IFF bit, if we get more users */
4704 return dev->priv_flags & IFF_MACSEC;
4705}
4706
4707extern struct pernet_operations __net_initdata loopback_net_ops;
4708
4709/* Logging, debugging and troubleshooting/diagnostic helpers. */
4710
4711/* netdev_printk helpers, similar to dev_printk */
4712
4713static inline const char *netdev_name(const struct net_device *dev)
4714{
4715 if (!dev->name[0] || strchr(dev->name, '%'))
4716 return "(unnamed net_device)";
4717 return dev->name;
4718}
4719
4720static inline bool netdev_unregistering(const struct net_device *dev)
4721{
4722 return dev->reg_state == NETREG_UNREGISTERING;
4723}
4724
4725static inline const char *netdev_reg_state(const struct net_device *dev)
4726{
4727 switch (dev->reg_state) {
4728 case NETREG_UNINITIALIZED: return " (uninitialized)";
4729 case NETREG_REGISTERED: return "";
4730 case NETREG_UNREGISTERING: return " (unregistering)";
4731 case NETREG_UNREGISTERED: return " (unregistered)";
4732 case NETREG_RELEASED: return " (released)";
4733 case NETREG_DUMMY: return " (dummy)";
4734 }
4735
4736 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4737 return " (unknown)";
4738}
4739
4740__printf(3, 4) __cold
4741void netdev_printk(const char *level, const struct net_device *dev,
4742 const char *format, ...);
4743__printf(2, 3) __cold
4744void netdev_emerg(const struct net_device *dev, const char *format, ...);
4745__printf(2, 3) __cold
4746void netdev_alert(const struct net_device *dev, const char *format, ...);
4747__printf(2, 3) __cold
4748void netdev_crit(const struct net_device *dev, const char *format, ...);
4749__printf(2, 3) __cold
4750void netdev_err(const struct net_device *dev, const char *format, ...);
4751__printf(2, 3) __cold
4752void netdev_warn(const struct net_device *dev, const char *format, ...);
4753__printf(2, 3) __cold
4754void netdev_notice(const struct net_device *dev, const char *format, ...);
4755__printf(2, 3) __cold
4756void netdev_info(const struct net_device *dev, const char *format, ...);
4757
4758#define netdev_level_once(level, dev, fmt, ...) \
4759do { \
4760 static bool __print_once __read_mostly; \
4761 \
4762 if (!__print_once) { \
4763 __print_once = true; \
4764 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4765 } \
4766} while (0)
4767
4768#define netdev_emerg_once(dev, fmt, ...) \
4769 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4770#define netdev_alert_once(dev, fmt, ...) \
4771 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4772#define netdev_crit_once(dev, fmt, ...) \
4773 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4774#define netdev_err_once(dev, fmt, ...) \
4775 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4776#define netdev_warn_once(dev, fmt, ...) \
4777 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4778#define netdev_notice_once(dev, fmt, ...) \
4779 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4780#define netdev_info_once(dev, fmt, ...) \
4781 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4782
4783#define MODULE_ALIAS_NETDEV(device) \
4784 MODULE_ALIAS("netdev-" device)
4785
4786#if defined(CONFIG_DYNAMIC_DEBUG)
4787#define netdev_dbg(__dev, format, args...) \
4788do { \
4789 dynamic_netdev_dbg(__dev, format, ##args); \
4790} while (0)
4791#elif defined(DEBUG)
4792#define netdev_dbg(__dev, format, args...) \
4793 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4794#else
4795#define netdev_dbg(__dev, format, args...) \
4796({ \
4797 if (0) \
4798 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4799})
4800#endif
4801
4802#if defined(VERBOSE_DEBUG)
4803#define netdev_vdbg netdev_dbg
4804#else
4805
4806#define netdev_vdbg(dev, format, args...) \
4807({ \
4808 if (0) \
4809 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4810 0; \
4811})
4812#endif
4813
4814/*
4815 * netdev_WARN() acts like dev_printk(), but with the key difference
4816 * of using a WARN/WARN_ON to get the message out, including the
4817 * file/line information and a backtrace.
4818 */
4819#define netdev_WARN(dev, format, args...) \
4820 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4821 netdev_reg_state(dev), ##args)
4822
4823#define netdev_WARN_ONCE(dev, format, args...) \
4824 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4825 netdev_reg_state(dev), ##args)
4826
4827/* netif printk helpers, similar to netdev_printk */
4828
4829#define netif_printk(priv, type, level, dev, fmt, args...) \
4830do { \
4831 if (netif_msg_##type(priv)) \
4832 netdev_printk(level, (dev), fmt, ##args); \
4833} while (0)
4834
4835#define netif_level(level, priv, type, dev, fmt, args...) \
4836do { \
4837 if (netif_msg_##type(priv)) \
4838 netdev_##level(dev, fmt, ##args); \
4839} while (0)
4840
4841#define netif_emerg(priv, type, dev, fmt, args...) \
4842 netif_level(emerg, priv, type, dev, fmt, ##args)
4843#define netif_alert(priv, type, dev, fmt, args...) \
4844 netif_level(alert, priv, type, dev, fmt, ##args)
4845#define netif_crit(priv, type, dev, fmt, args...) \
4846 netif_level(crit, priv, type, dev, fmt, ##args)
4847#define netif_err(priv, type, dev, fmt, args...) \
4848 netif_level(err, priv, type, dev, fmt, ##args)
4849#define netif_warn(priv, type, dev, fmt, args...) \
4850 netif_level(warn, priv, type, dev, fmt, ##args)
4851#define netif_notice(priv, type, dev, fmt, args...) \
4852 netif_level(notice, priv, type, dev, fmt, ##args)
4853#define netif_info(priv, type, dev, fmt, args...) \
4854 netif_level(info, priv, type, dev, fmt, ##args)
4855
4856#if defined(CONFIG_DYNAMIC_DEBUG)
4857#define netif_dbg(priv, type, netdev, format, args...) \
4858do { \
4859 if (netif_msg_##type(priv)) \
4860 dynamic_netdev_dbg(netdev, format, ##args); \
4861} while (0)
4862#elif defined(DEBUG)
4863#define netif_dbg(priv, type, dev, format, args...) \
4864 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4865#else
4866#define netif_dbg(priv, type, dev, format, args...) \
4867({ \
4868 if (0) \
4869 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4870 0; \
4871})
4872#endif
4873
4874/* if @cond then downgrade to debug, else print at @level */
4875#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4876 do { \
4877 if (cond) \
4878 netif_dbg(priv, type, netdev, fmt, ##args); \
4879 else \
4880 netif_ ## level(priv, type, netdev, fmt, ##args); \
4881 } while (0)
4882
4883#if defined(VERBOSE_DEBUG)
4884#define netif_vdbg netif_dbg
4885#else
4886#define netif_vdbg(priv, type, dev, format, args...) \
4887({ \
4888 if (0) \
4889 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4890 0; \
4891})
4892#endif
4893
4894/*
4895 * The list of packet types we will receive (as opposed to discard)
4896 * and the routines to invoke.
4897 *
4898 * Why 16. Because with 16 the only overlap we get on a hash of the
4899 * low nibble of the protocol value is RARP/SNAP/X.25.
4900 *
4901 * 0800 IP
4902 * 0001 802.3
4903 * 0002 AX.25
4904 * 0004 802.2
4905 * 8035 RARP
4906 * 0005 SNAP
4907 * 0805 X.25
4908 * 0806 ARP
4909 * 8137 IPX
4910 * 0009 Localtalk
4911 * 86DD IPv6
4912 */
4913#define PTYPE_HASH_SIZE (16)
4914#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4915
4916extern struct net_device *blackhole_netdev;
4917
4918#endif /* _LINUX_NETDEVICE_H */