Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70extern const char * const migratetype_names[MIGRATE_TYPES];
71
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101};
102
103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
159struct pglist_data;
160
161/*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
170} ____cacheline_internodealigned_in_smp;
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
190enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207#endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
218 NR_SLAB_RECLAIMABLE,
219 NR_SLAB_UNRECLAIMABLE,
220 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
221 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
222 WORKINGSET_NODES,
223 WORKINGSET_REFAULT,
224 WORKINGSET_ACTIVATE,
225 WORKINGSET_RESTORE,
226 WORKINGSET_NODERECLAIM,
227 NR_ANON_MAPPED, /* Mapped anonymous pages */
228 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
229 only modified from process context */
230 NR_FILE_PAGES,
231 NR_FILE_DIRTY,
232 NR_WRITEBACK,
233 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
234 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
235 NR_SHMEM_THPS,
236 NR_SHMEM_PMDMAPPED,
237 NR_FILE_THPS,
238 NR_FILE_PMDMAPPED,
239 NR_ANON_THPS,
240 NR_UNSTABLE_NFS, /* NFS unstable pages */
241 NR_VMSCAN_WRITE,
242 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
243 NR_DIRTIED, /* page dirtyings since bootup */
244 NR_WRITTEN, /* page writings since bootup */
245 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
246 NR_VM_NODE_STAT_ITEMS
247};
248
249/*
250 * We do arithmetic on the LRU lists in various places in the code,
251 * so it is important to keep the active lists LRU_ACTIVE higher in
252 * the array than the corresponding inactive lists, and to keep
253 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
254 *
255 * This has to be kept in sync with the statistics in zone_stat_item
256 * above and the descriptions in vmstat_text in mm/vmstat.c
257 */
258#define LRU_BASE 0
259#define LRU_ACTIVE 1
260#define LRU_FILE 2
261
262enum lru_list {
263 LRU_INACTIVE_ANON = LRU_BASE,
264 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
265 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
266 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
267 LRU_UNEVICTABLE,
268 NR_LRU_LISTS
269};
270
271#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
272
273#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
274
275static inline bool is_file_lru(enum lru_list lru)
276{
277 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
278}
279
280static inline bool is_active_lru(enum lru_list lru)
281{
282 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
283}
284
285struct zone_reclaim_stat {
286 /*
287 * The pageout code in vmscan.c keeps track of how many of the
288 * mem/swap backed and file backed pages are referenced.
289 * The higher the rotated/scanned ratio, the more valuable
290 * that cache is.
291 *
292 * The anon LRU stats live in [0], file LRU stats in [1]
293 */
294 unsigned long recent_rotated[2];
295 unsigned long recent_scanned[2];
296};
297
298enum lruvec_flags {
299 LRUVEC_CONGESTED, /* lruvec has many dirty pages
300 * backed by a congested BDI
301 */
302};
303
304struct lruvec {
305 struct list_head lists[NR_LRU_LISTS];
306 struct zone_reclaim_stat reclaim_stat;
307 /* Evictions & activations on the inactive file list */
308 atomic_long_t inactive_age;
309 /* Refaults at the time of last reclaim cycle */
310 unsigned long refaults;
311 /* Various lruvec state flags (enum lruvec_flags) */
312 unsigned long flags;
313#ifdef CONFIG_MEMCG
314 struct pglist_data *pgdat;
315#endif
316};
317
318/* Isolate unmapped pages */
319#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
320/* Isolate for asynchronous migration */
321#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
322/* Isolate unevictable pages */
323#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
324
325/* LRU Isolation modes. */
326typedef unsigned __bitwise isolate_mode_t;
327
328enum zone_watermarks {
329 WMARK_MIN,
330 WMARK_LOW,
331 WMARK_HIGH,
332 NR_WMARK
333};
334
335#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339
340struct per_cpu_pages {
341 int count; /* number of pages in the list */
342 int high; /* high watermark, emptying needed */
343 int batch; /* chunk size for buddy add/remove */
344
345 /* Lists of pages, one per migrate type stored on the pcp-lists */
346 struct list_head lists[MIGRATE_PCPTYPES];
347};
348
349struct per_cpu_pageset {
350 struct per_cpu_pages pcp;
351#ifdef CONFIG_NUMA
352 s8 expire;
353 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354#endif
355#ifdef CONFIG_SMP
356 s8 stat_threshold;
357 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358#endif
359};
360
361struct per_cpu_nodestat {
362 s8 stat_threshold;
363 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364};
365
366#endif /* !__GENERATING_BOUNDS.H */
367
368enum zone_type {
369 /*
370 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 * On architectures where this area covers the whole 32 bit address
373 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 * DMA addressing constraints. This distinction is important as a 32bit
375 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 * platforms may need both zones as they support peripherals with
377 * different DMA addressing limitations.
378 *
379 * Some examples:
380 *
381 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
382 * rest of the lower 4G.
383 *
384 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
385 * the specific device.
386 *
387 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
388 * lower 4G.
389 *
390 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
391 * depending on the specific device.
392 *
393 * - s390 uses ZONE_DMA fixed to the lower 2G.
394 *
395 * - ia64 and riscv only use ZONE_DMA32.
396 *
397 * - parisc uses neither.
398 */
399#ifdef CONFIG_ZONE_DMA
400 ZONE_DMA,
401#endif
402#ifdef CONFIG_ZONE_DMA32
403 ZONE_DMA32,
404#endif
405 /*
406 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
407 * performed on pages in ZONE_NORMAL if the DMA devices support
408 * transfers to all addressable memory.
409 */
410 ZONE_NORMAL,
411#ifdef CONFIG_HIGHMEM
412 /*
413 * A memory area that is only addressable by the kernel through
414 * mapping portions into its own address space. This is for example
415 * used by i386 to allow the kernel to address the memory beyond
416 * 900MB. The kernel will set up special mappings (page
417 * table entries on i386) for each page that the kernel needs to
418 * access.
419 */
420 ZONE_HIGHMEM,
421#endif
422 ZONE_MOVABLE,
423#ifdef CONFIG_ZONE_DEVICE
424 ZONE_DEVICE,
425#endif
426 __MAX_NR_ZONES
427
428};
429
430#ifndef __GENERATING_BOUNDS_H
431
432struct zone {
433 /* Read-mostly fields */
434
435 /* zone watermarks, access with *_wmark_pages(zone) macros */
436 unsigned long _watermark[NR_WMARK];
437 unsigned long watermark_boost;
438
439 unsigned long nr_reserved_highatomic;
440
441 /*
442 * We don't know if the memory that we're going to allocate will be
443 * freeable or/and it will be released eventually, so to avoid totally
444 * wasting several GB of ram we must reserve some of the lower zone
445 * memory (otherwise we risk to run OOM on the lower zones despite
446 * there being tons of freeable ram on the higher zones). This array is
447 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
448 * changes.
449 */
450 long lowmem_reserve[MAX_NR_ZONES];
451
452#ifdef CONFIG_NUMA
453 int node;
454#endif
455 struct pglist_data *zone_pgdat;
456 struct per_cpu_pageset __percpu *pageset;
457
458#ifndef CONFIG_SPARSEMEM
459 /*
460 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
461 * In SPARSEMEM, this map is stored in struct mem_section
462 */
463 unsigned long *pageblock_flags;
464#endif /* CONFIG_SPARSEMEM */
465
466 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
467 unsigned long zone_start_pfn;
468
469 /*
470 * spanned_pages is the total pages spanned by the zone, including
471 * holes, which is calculated as:
472 * spanned_pages = zone_end_pfn - zone_start_pfn;
473 *
474 * present_pages is physical pages existing within the zone, which
475 * is calculated as:
476 * present_pages = spanned_pages - absent_pages(pages in holes);
477 *
478 * managed_pages is present pages managed by the buddy system, which
479 * is calculated as (reserved_pages includes pages allocated by the
480 * bootmem allocator):
481 * managed_pages = present_pages - reserved_pages;
482 *
483 * So present_pages may be used by memory hotplug or memory power
484 * management logic to figure out unmanaged pages by checking
485 * (present_pages - managed_pages). And managed_pages should be used
486 * by page allocator and vm scanner to calculate all kinds of watermarks
487 * and thresholds.
488 *
489 * Locking rules:
490 *
491 * zone_start_pfn and spanned_pages are protected by span_seqlock.
492 * It is a seqlock because it has to be read outside of zone->lock,
493 * and it is done in the main allocator path. But, it is written
494 * quite infrequently.
495 *
496 * The span_seq lock is declared along with zone->lock because it is
497 * frequently read in proximity to zone->lock. It's good to
498 * give them a chance of being in the same cacheline.
499 *
500 * Write access to present_pages at runtime should be protected by
501 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
502 * present_pages should get_online_mems() to get a stable value.
503 */
504 atomic_long_t managed_pages;
505 unsigned long spanned_pages;
506 unsigned long present_pages;
507
508 const char *name;
509
510#ifdef CONFIG_MEMORY_ISOLATION
511 /*
512 * Number of isolated pageblock. It is used to solve incorrect
513 * freepage counting problem due to racy retrieving migratetype
514 * of pageblock. Protected by zone->lock.
515 */
516 unsigned long nr_isolate_pageblock;
517#endif
518
519#ifdef CONFIG_MEMORY_HOTPLUG
520 /* see spanned/present_pages for more description */
521 seqlock_t span_seqlock;
522#endif
523
524 int initialized;
525
526 /* Write-intensive fields used from the page allocator */
527 ZONE_PADDING(_pad1_)
528
529 /* free areas of different sizes */
530 struct free_area free_area[MAX_ORDER];
531
532 /* zone flags, see below */
533 unsigned long flags;
534
535 /* Primarily protects free_area */
536 spinlock_t lock;
537
538 /* Write-intensive fields used by compaction and vmstats. */
539 ZONE_PADDING(_pad2_)
540
541 /*
542 * When free pages are below this point, additional steps are taken
543 * when reading the number of free pages to avoid per-cpu counter
544 * drift allowing watermarks to be breached
545 */
546 unsigned long percpu_drift_mark;
547
548#if defined CONFIG_COMPACTION || defined CONFIG_CMA
549 /* pfn where compaction free scanner should start */
550 unsigned long compact_cached_free_pfn;
551 /* pfn where async and sync compaction migration scanner should start */
552 unsigned long compact_cached_migrate_pfn[2];
553 unsigned long compact_init_migrate_pfn;
554 unsigned long compact_init_free_pfn;
555#endif
556
557#ifdef CONFIG_COMPACTION
558 /*
559 * On compaction failure, 1<<compact_defer_shift compactions
560 * are skipped before trying again. The number attempted since
561 * last failure is tracked with compact_considered.
562 */
563 unsigned int compact_considered;
564 unsigned int compact_defer_shift;
565 int compact_order_failed;
566#endif
567
568#if defined CONFIG_COMPACTION || defined CONFIG_CMA
569 /* Set to true when the PG_migrate_skip bits should be cleared */
570 bool compact_blockskip_flush;
571#endif
572
573 bool contiguous;
574
575 ZONE_PADDING(_pad3_)
576 /* Zone statistics */
577 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
578 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
579} ____cacheline_internodealigned_in_smp;
580
581enum pgdat_flags {
582 PGDAT_DIRTY, /* reclaim scanning has recently found
583 * many dirty file pages at the tail
584 * of the LRU.
585 */
586 PGDAT_WRITEBACK, /* reclaim scanning has recently found
587 * many pages under writeback
588 */
589 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
590};
591
592enum zone_flags {
593 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
594 * Cleared when kswapd is woken.
595 */
596};
597
598static inline unsigned long zone_managed_pages(struct zone *zone)
599{
600 return (unsigned long)atomic_long_read(&zone->managed_pages);
601}
602
603static inline unsigned long zone_end_pfn(const struct zone *zone)
604{
605 return zone->zone_start_pfn + zone->spanned_pages;
606}
607
608static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
609{
610 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
611}
612
613static inline bool zone_is_initialized(struct zone *zone)
614{
615 return zone->initialized;
616}
617
618static inline bool zone_is_empty(struct zone *zone)
619{
620 return zone->spanned_pages == 0;
621}
622
623/*
624 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
625 * intersection with the given zone
626 */
627static inline bool zone_intersects(struct zone *zone,
628 unsigned long start_pfn, unsigned long nr_pages)
629{
630 if (zone_is_empty(zone))
631 return false;
632 if (start_pfn >= zone_end_pfn(zone) ||
633 start_pfn + nr_pages <= zone->zone_start_pfn)
634 return false;
635
636 return true;
637}
638
639/*
640 * The "priority" of VM scanning is how much of the queues we will scan in one
641 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
642 * queues ("queue_length >> 12") during an aging round.
643 */
644#define DEF_PRIORITY 12
645
646/* Maximum number of zones on a zonelist */
647#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
648
649enum {
650 ZONELIST_FALLBACK, /* zonelist with fallback */
651#ifdef CONFIG_NUMA
652 /*
653 * The NUMA zonelists are doubled because we need zonelists that
654 * restrict the allocations to a single node for __GFP_THISNODE.
655 */
656 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
657#endif
658 MAX_ZONELISTS
659};
660
661/*
662 * This struct contains information about a zone in a zonelist. It is stored
663 * here to avoid dereferences into large structures and lookups of tables
664 */
665struct zoneref {
666 struct zone *zone; /* Pointer to actual zone */
667 int zone_idx; /* zone_idx(zoneref->zone) */
668};
669
670/*
671 * One allocation request operates on a zonelist. A zonelist
672 * is a list of zones, the first one is the 'goal' of the
673 * allocation, the other zones are fallback zones, in decreasing
674 * priority.
675 *
676 * To speed the reading of the zonelist, the zonerefs contain the zone index
677 * of the entry being read. Helper functions to access information given
678 * a struct zoneref are
679 *
680 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
681 * zonelist_zone_idx() - Return the index of the zone for an entry
682 * zonelist_node_idx() - Return the index of the node for an entry
683 */
684struct zonelist {
685 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
686};
687
688#ifndef CONFIG_DISCONTIGMEM
689/* The array of struct pages - for discontigmem use pgdat->lmem_map */
690extern struct page *mem_map;
691#endif
692
693#ifdef CONFIG_TRANSPARENT_HUGEPAGE
694struct deferred_split {
695 spinlock_t split_queue_lock;
696 struct list_head split_queue;
697 unsigned long split_queue_len;
698};
699#endif
700
701/*
702 * On NUMA machines, each NUMA node would have a pg_data_t to describe
703 * it's memory layout. On UMA machines there is a single pglist_data which
704 * describes the whole memory.
705 *
706 * Memory statistics and page replacement data structures are maintained on a
707 * per-zone basis.
708 */
709struct bootmem_data;
710typedef struct pglist_data {
711 struct zone node_zones[MAX_NR_ZONES];
712 struct zonelist node_zonelists[MAX_ZONELISTS];
713 int nr_zones;
714#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
715 struct page *node_mem_map;
716#ifdef CONFIG_PAGE_EXTENSION
717 struct page_ext *node_page_ext;
718#endif
719#endif
720#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
721 /*
722 * Must be held any time you expect node_start_pfn,
723 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
724 *
725 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
726 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
727 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
728 *
729 * Nests above zone->lock and zone->span_seqlock
730 */
731 spinlock_t node_size_lock;
732#endif
733 unsigned long node_start_pfn;
734 unsigned long node_present_pages; /* total number of physical pages */
735 unsigned long node_spanned_pages; /* total size of physical page
736 range, including holes */
737 int node_id;
738 wait_queue_head_t kswapd_wait;
739 wait_queue_head_t pfmemalloc_wait;
740 struct task_struct *kswapd; /* Protected by
741 mem_hotplug_begin/end() */
742 int kswapd_order;
743 enum zone_type kswapd_classzone_idx;
744
745 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
746
747#ifdef CONFIG_COMPACTION
748 int kcompactd_max_order;
749 enum zone_type kcompactd_classzone_idx;
750 wait_queue_head_t kcompactd_wait;
751 struct task_struct *kcompactd;
752#endif
753 /*
754 * This is a per-node reserve of pages that are not available
755 * to userspace allocations.
756 */
757 unsigned long totalreserve_pages;
758
759#ifdef CONFIG_NUMA
760 /*
761 * zone reclaim becomes active if more unmapped pages exist.
762 */
763 unsigned long min_unmapped_pages;
764 unsigned long min_slab_pages;
765#endif /* CONFIG_NUMA */
766
767 /* Write-intensive fields used by page reclaim */
768 ZONE_PADDING(_pad1_)
769 spinlock_t lru_lock;
770
771#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
772 /*
773 * If memory initialisation on large machines is deferred then this
774 * is the first PFN that needs to be initialised.
775 */
776 unsigned long first_deferred_pfn;
777#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
778
779#ifdef CONFIG_TRANSPARENT_HUGEPAGE
780 struct deferred_split deferred_split_queue;
781#endif
782
783 /* Fields commonly accessed by the page reclaim scanner */
784
785 /*
786 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
787 *
788 * Use mem_cgroup_lruvec() to look up lruvecs.
789 */
790 struct lruvec __lruvec;
791
792 unsigned long flags;
793
794 ZONE_PADDING(_pad2_)
795
796 /* Per-node vmstats */
797 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
798 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
799} pg_data_t;
800
801#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
802#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
803#ifdef CONFIG_FLAT_NODE_MEM_MAP
804#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
805#else
806#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
807#endif
808#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
809
810#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
811#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
812
813static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
814{
815 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
816}
817
818static inline bool pgdat_is_empty(pg_data_t *pgdat)
819{
820 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
821}
822
823#include <linux/memory_hotplug.h>
824
825void build_all_zonelists(pg_data_t *pgdat);
826void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
827 enum zone_type classzone_idx);
828bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
829 int classzone_idx, unsigned int alloc_flags,
830 long free_pages);
831bool zone_watermark_ok(struct zone *z, unsigned int order,
832 unsigned long mark, int classzone_idx,
833 unsigned int alloc_flags);
834bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
835 unsigned long mark, int classzone_idx);
836enum memmap_context {
837 MEMMAP_EARLY,
838 MEMMAP_HOTPLUG,
839};
840extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
841 unsigned long size);
842
843extern void lruvec_init(struct lruvec *lruvec);
844
845static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
846{
847#ifdef CONFIG_MEMCG
848 return lruvec->pgdat;
849#else
850 return container_of(lruvec, struct pglist_data, __lruvec);
851#endif
852}
853
854extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
855
856#ifdef CONFIG_HAVE_MEMORY_PRESENT
857void memory_present(int nid, unsigned long start, unsigned long end);
858#else
859static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
860#endif
861
862#if defined(CONFIG_SPARSEMEM)
863void memblocks_present(void);
864#else
865static inline void memblocks_present(void) {}
866#endif
867
868#ifdef CONFIG_HAVE_MEMORYLESS_NODES
869int local_memory_node(int node_id);
870#else
871static inline int local_memory_node(int node_id) { return node_id; };
872#endif
873
874/*
875 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
876 */
877#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
878
879/*
880 * Returns true if a zone has pages managed by the buddy allocator.
881 * All the reclaim decisions have to use this function rather than
882 * populated_zone(). If the whole zone is reserved then we can easily
883 * end up with populated_zone() && !managed_zone().
884 */
885static inline bool managed_zone(struct zone *zone)
886{
887 return zone_managed_pages(zone);
888}
889
890/* Returns true if a zone has memory */
891static inline bool populated_zone(struct zone *zone)
892{
893 return zone->present_pages;
894}
895
896#ifdef CONFIG_NUMA
897static inline int zone_to_nid(struct zone *zone)
898{
899 return zone->node;
900}
901
902static inline void zone_set_nid(struct zone *zone, int nid)
903{
904 zone->node = nid;
905}
906#else
907static inline int zone_to_nid(struct zone *zone)
908{
909 return 0;
910}
911
912static inline void zone_set_nid(struct zone *zone, int nid) {}
913#endif
914
915extern int movable_zone;
916
917#ifdef CONFIG_HIGHMEM
918static inline int zone_movable_is_highmem(void)
919{
920#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
921 return movable_zone == ZONE_HIGHMEM;
922#else
923 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
924#endif
925}
926#endif
927
928static inline int is_highmem_idx(enum zone_type idx)
929{
930#ifdef CONFIG_HIGHMEM
931 return (idx == ZONE_HIGHMEM ||
932 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
933#else
934 return 0;
935#endif
936}
937
938/**
939 * is_highmem - helper function to quickly check if a struct zone is a
940 * highmem zone or not. This is an attempt to keep references
941 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
942 * @zone - pointer to struct zone variable
943 */
944static inline int is_highmem(struct zone *zone)
945{
946#ifdef CONFIG_HIGHMEM
947 return is_highmem_idx(zone_idx(zone));
948#else
949 return 0;
950#endif
951}
952
953/* These two functions are used to setup the per zone pages min values */
954struct ctl_table;
955int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
956 void __user *, size_t *, loff_t *);
957int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
958 void __user *, size_t *, loff_t *);
959int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
960 void __user *, size_t *, loff_t *);
961extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
962int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
963 void __user *, size_t *, loff_t *);
964int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
965 void __user *, size_t *, loff_t *);
966int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
967 void __user *, size_t *, loff_t *);
968int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
969 void __user *, size_t *, loff_t *);
970
971extern int numa_zonelist_order_handler(struct ctl_table *, int,
972 void __user *, size_t *, loff_t *);
973extern char numa_zonelist_order[];
974#define NUMA_ZONELIST_ORDER_LEN 16
975
976#ifndef CONFIG_NEED_MULTIPLE_NODES
977
978extern struct pglist_data contig_page_data;
979#define NODE_DATA(nid) (&contig_page_data)
980#define NODE_MEM_MAP(nid) mem_map
981
982#else /* CONFIG_NEED_MULTIPLE_NODES */
983
984#include <asm/mmzone.h>
985
986#endif /* !CONFIG_NEED_MULTIPLE_NODES */
987
988extern struct pglist_data *first_online_pgdat(void);
989extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
990extern struct zone *next_zone(struct zone *zone);
991
992/**
993 * for_each_online_pgdat - helper macro to iterate over all online nodes
994 * @pgdat - pointer to a pg_data_t variable
995 */
996#define for_each_online_pgdat(pgdat) \
997 for (pgdat = first_online_pgdat(); \
998 pgdat; \
999 pgdat = next_online_pgdat(pgdat))
1000/**
1001 * for_each_zone - helper macro to iterate over all memory zones
1002 * @zone - pointer to struct zone variable
1003 *
1004 * The user only needs to declare the zone variable, for_each_zone
1005 * fills it in.
1006 */
1007#define for_each_zone(zone) \
1008 for (zone = (first_online_pgdat())->node_zones; \
1009 zone; \
1010 zone = next_zone(zone))
1011
1012#define for_each_populated_zone(zone) \
1013 for (zone = (first_online_pgdat())->node_zones; \
1014 zone; \
1015 zone = next_zone(zone)) \
1016 if (!populated_zone(zone)) \
1017 ; /* do nothing */ \
1018 else
1019
1020static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1021{
1022 return zoneref->zone;
1023}
1024
1025static inline int zonelist_zone_idx(struct zoneref *zoneref)
1026{
1027 return zoneref->zone_idx;
1028}
1029
1030static inline int zonelist_node_idx(struct zoneref *zoneref)
1031{
1032 return zone_to_nid(zoneref->zone);
1033}
1034
1035struct zoneref *__next_zones_zonelist(struct zoneref *z,
1036 enum zone_type highest_zoneidx,
1037 nodemask_t *nodes);
1038
1039/**
1040 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1041 * @z - The cursor used as a starting point for the search
1042 * @highest_zoneidx - The zone index of the highest zone to return
1043 * @nodes - An optional nodemask to filter the zonelist with
1044 *
1045 * This function returns the next zone at or below a given zone index that is
1046 * within the allowed nodemask using a cursor as the starting point for the
1047 * search. The zoneref returned is a cursor that represents the current zone
1048 * being examined. It should be advanced by one before calling
1049 * next_zones_zonelist again.
1050 */
1051static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1052 enum zone_type highest_zoneidx,
1053 nodemask_t *nodes)
1054{
1055 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1056 return z;
1057 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1058}
1059
1060/**
1061 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1062 * @zonelist - The zonelist to search for a suitable zone
1063 * @highest_zoneidx - The zone index of the highest zone to return
1064 * @nodes - An optional nodemask to filter the zonelist with
1065 * @return - Zoneref pointer for the first suitable zone found (see below)
1066 *
1067 * This function returns the first zone at or below a given zone index that is
1068 * within the allowed nodemask. The zoneref returned is a cursor that can be
1069 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1070 * one before calling.
1071 *
1072 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1073 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1074 * update due to cpuset modification.
1075 */
1076static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1077 enum zone_type highest_zoneidx,
1078 nodemask_t *nodes)
1079{
1080 return next_zones_zonelist(zonelist->_zonerefs,
1081 highest_zoneidx, nodes);
1082}
1083
1084/**
1085 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1086 * @zone - The current zone in the iterator
1087 * @z - The current pointer within zonelist->_zonerefs being iterated
1088 * @zlist - The zonelist being iterated
1089 * @highidx - The zone index of the highest zone to return
1090 * @nodemask - Nodemask allowed by the allocator
1091 *
1092 * This iterator iterates though all zones at or below a given zone index and
1093 * within a given nodemask
1094 */
1095#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1096 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1097 zone; \
1098 z = next_zones_zonelist(++z, highidx, nodemask), \
1099 zone = zonelist_zone(z))
1100
1101#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1102 for (zone = z->zone; \
1103 zone; \
1104 z = next_zones_zonelist(++z, highidx, nodemask), \
1105 zone = zonelist_zone(z))
1106
1107
1108/**
1109 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1110 * @zone - The current zone in the iterator
1111 * @z - The current pointer within zonelist->zones being iterated
1112 * @zlist - The zonelist being iterated
1113 * @highidx - The zone index of the highest zone to return
1114 *
1115 * This iterator iterates though all zones at or below a given zone index.
1116 */
1117#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1118 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1119
1120#ifdef CONFIG_SPARSEMEM
1121#include <asm/sparsemem.h>
1122#endif
1123
1124#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1125 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1126static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1127{
1128 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1129 return 0;
1130}
1131#endif
1132
1133#ifdef CONFIG_FLATMEM
1134#define pfn_to_nid(pfn) (0)
1135#endif
1136
1137#ifdef CONFIG_SPARSEMEM
1138
1139/*
1140 * SECTION_SHIFT #bits space required to store a section #
1141 *
1142 * PA_SECTION_SHIFT physical address to/from section number
1143 * PFN_SECTION_SHIFT pfn to/from section number
1144 */
1145#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1146#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1147
1148#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1149
1150#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1151#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1152
1153#define SECTION_BLOCKFLAGS_BITS \
1154 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1155
1156#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1157#error Allocator MAX_ORDER exceeds SECTION_SIZE
1158#endif
1159
1160static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1161{
1162 return pfn >> PFN_SECTION_SHIFT;
1163}
1164static inline unsigned long section_nr_to_pfn(unsigned long sec)
1165{
1166 return sec << PFN_SECTION_SHIFT;
1167}
1168
1169#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1170#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1171
1172#define SUBSECTION_SHIFT 21
1173
1174#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1175#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1176#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1177
1178#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1179#error Subsection size exceeds section size
1180#else
1181#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1182#endif
1183
1184#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1185#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1186
1187struct mem_section_usage {
1188 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1189 /* See declaration of similar field in struct zone */
1190 unsigned long pageblock_flags[0];
1191};
1192
1193void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1194
1195struct page;
1196struct page_ext;
1197struct mem_section {
1198 /*
1199 * This is, logically, a pointer to an array of struct
1200 * pages. However, it is stored with some other magic.
1201 * (see sparse.c::sparse_init_one_section())
1202 *
1203 * Additionally during early boot we encode node id of
1204 * the location of the section here to guide allocation.
1205 * (see sparse.c::memory_present())
1206 *
1207 * Making it a UL at least makes someone do a cast
1208 * before using it wrong.
1209 */
1210 unsigned long section_mem_map;
1211
1212 struct mem_section_usage *usage;
1213#ifdef CONFIG_PAGE_EXTENSION
1214 /*
1215 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1216 * section. (see page_ext.h about this.)
1217 */
1218 struct page_ext *page_ext;
1219 unsigned long pad;
1220#endif
1221 /*
1222 * WARNING: mem_section must be a power-of-2 in size for the
1223 * calculation and use of SECTION_ROOT_MASK to make sense.
1224 */
1225};
1226
1227#ifdef CONFIG_SPARSEMEM_EXTREME
1228#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1229#else
1230#define SECTIONS_PER_ROOT 1
1231#endif
1232
1233#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1234#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1235#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1236
1237#ifdef CONFIG_SPARSEMEM_EXTREME
1238extern struct mem_section **mem_section;
1239#else
1240extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1241#endif
1242
1243static inline unsigned long *section_to_usemap(struct mem_section *ms)
1244{
1245 return ms->usage->pageblock_flags;
1246}
1247
1248static inline struct mem_section *__nr_to_section(unsigned long nr)
1249{
1250#ifdef CONFIG_SPARSEMEM_EXTREME
1251 if (!mem_section)
1252 return NULL;
1253#endif
1254 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1255 return NULL;
1256 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1257}
1258extern unsigned long __section_nr(struct mem_section *ms);
1259extern size_t mem_section_usage_size(void);
1260
1261/*
1262 * We use the lower bits of the mem_map pointer to store
1263 * a little bit of information. The pointer is calculated
1264 * as mem_map - section_nr_to_pfn(pnum). The result is
1265 * aligned to the minimum alignment of the two values:
1266 * 1. All mem_map arrays are page-aligned.
1267 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1268 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1269 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1270 * worst combination is powerpc with 256k pages,
1271 * which results in PFN_SECTION_SHIFT equal 6.
1272 * To sum it up, at least 6 bits are available.
1273 */
1274#define SECTION_MARKED_PRESENT (1UL<<0)
1275#define SECTION_HAS_MEM_MAP (1UL<<1)
1276#define SECTION_IS_ONLINE (1UL<<2)
1277#define SECTION_IS_EARLY (1UL<<3)
1278#define SECTION_MAP_LAST_BIT (1UL<<4)
1279#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1280#define SECTION_NID_SHIFT 3
1281
1282static inline struct page *__section_mem_map_addr(struct mem_section *section)
1283{
1284 unsigned long map = section->section_mem_map;
1285 map &= SECTION_MAP_MASK;
1286 return (struct page *)map;
1287}
1288
1289static inline int present_section(struct mem_section *section)
1290{
1291 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1292}
1293
1294static inline int present_section_nr(unsigned long nr)
1295{
1296 return present_section(__nr_to_section(nr));
1297}
1298
1299static inline int valid_section(struct mem_section *section)
1300{
1301 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1302}
1303
1304static inline int early_section(struct mem_section *section)
1305{
1306 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1307}
1308
1309static inline int valid_section_nr(unsigned long nr)
1310{
1311 return valid_section(__nr_to_section(nr));
1312}
1313
1314static inline int online_section(struct mem_section *section)
1315{
1316 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1317}
1318
1319static inline int online_section_nr(unsigned long nr)
1320{
1321 return online_section(__nr_to_section(nr));
1322}
1323
1324#ifdef CONFIG_MEMORY_HOTPLUG
1325void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1326#ifdef CONFIG_MEMORY_HOTREMOVE
1327void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1328#endif
1329#endif
1330
1331static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1332{
1333 return __nr_to_section(pfn_to_section_nr(pfn));
1334}
1335
1336extern unsigned long __highest_present_section_nr;
1337
1338static inline int subsection_map_index(unsigned long pfn)
1339{
1340 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1341}
1342
1343#ifdef CONFIG_SPARSEMEM_VMEMMAP
1344static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1345{
1346 int idx = subsection_map_index(pfn);
1347
1348 return test_bit(idx, ms->usage->subsection_map);
1349}
1350#else
1351static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1352{
1353 return 1;
1354}
1355#endif
1356
1357#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1358static inline int pfn_valid(unsigned long pfn)
1359{
1360 struct mem_section *ms;
1361
1362 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1363 return 0;
1364 ms = __nr_to_section(pfn_to_section_nr(pfn));
1365 if (!valid_section(ms))
1366 return 0;
1367 /*
1368 * Traditionally early sections always returned pfn_valid() for
1369 * the entire section-sized span.
1370 */
1371 return early_section(ms) || pfn_section_valid(ms, pfn);
1372}
1373#endif
1374
1375static inline int pfn_present(unsigned long pfn)
1376{
1377 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1378 return 0;
1379 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1380}
1381
1382/*
1383 * These are _only_ used during initialisation, therefore they
1384 * can use __initdata ... They could have names to indicate
1385 * this restriction.
1386 */
1387#ifdef CONFIG_NUMA
1388#define pfn_to_nid(pfn) \
1389({ \
1390 unsigned long __pfn_to_nid_pfn = (pfn); \
1391 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1392})
1393#else
1394#define pfn_to_nid(pfn) (0)
1395#endif
1396
1397#define early_pfn_valid(pfn) pfn_valid(pfn)
1398void sparse_init(void);
1399#else
1400#define sparse_init() do {} while (0)
1401#define sparse_index_init(_sec, _nid) do {} while (0)
1402#define pfn_present pfn_valid
1403#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1404#endif /* CONFIG_SPARSEMEM */
1405
1406/*
1407 * During memory init memblocks map pfns to nids. The search is expensive and
1408 * this caches recent lookups. The implementation of __early_pfn_to_nid
1409 * may treat start/end as pfns or sections.
1410 */
1411struct mminit_pfnnid_cache {
1412 unsigned long last_start;
1413 unsigned long last_end;
1414 int last_nid;
1415};
1416
1417#ifndef early_pfn_valid
1418#define early_pfn_valid(pfn) (1)
1419#endif
1420
1421void memory_present(int nid, unsigned long start, unsigned long end);
1422
1423/*
1424 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1425 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1426 * pfn_valid_within() should be used in this case; we optimise this away
1427 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1428 */
1429#ifdef CONFIG_HOLES_IN_ZONE
1430#define pfn_valid_within(pfn) pfn_valid(pfn)
1431#else
1432#define pfn_valid_within(pfn) (1)
1433#endif
1434
1435#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1436/*
1437 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1438 * associated with it or not. This means that a struct page exists for this
1439 * pfn. The caller cannot assume the page is fully initialized in general.
1440 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1441 * will ensure the struct page is fully online and initialized. Special pages
1442 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1443 *
1444 * In FLATMEM, it is expected that holes always have valid memmap as long as
1445 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1446 * that a valid section has a memmap for the entire section.
1447 *
1448 * However, an ARM, and maybe other embedded architectures in the future
1449 * free memmap backing holes to save memory on the assumption the memmap is
1450 * never used. The page_zone linkages are then broken even though pfn_valid()
1451 * returns true. A walker of the full memmap must then do this additional
1452 * check to ensure the memmap they are looking at is sane by making sure
1453 * the zone and PFN linkages are still valid. This is expensive, but walkers
1454 * of the full memmap are extremely rare.
1455 */
1456bool memmap_valid_within(unsigned long pfn,
1457 struct page *page, struct zone *zone);
1458#else
1459static inline bool memmap_valid_within(unsigned long pfn,
1460 struct page *page, struct zone *zone)
1461{
1462 return true;
1463}
1464#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1465
1466#endif /* !__GENERATING_BOUNDS.H */
1467#endif /* !__ASSEMBLY__ */
1468#endif /* _LINUX_MMZONE_H */