at v5.5 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <asm/page.h> 24 25/* Free memory management - zoned buddy allocator. */ 26#ifndef CONFIG_FORCE_MAX_ZONEORDER 27#define MAX_ORDER 11 28#else 29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30#endif 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33/* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39#define PAGE_ALLOC_COSTLY_ORDER 3 40 41enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47#ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62#endif 63#ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65#endif 66 MIGRATE_TYPES 67}; 68 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72#ifdef CONFIG_CMA 73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75#else 76# define is_migrate_cma(migratetype) false 77# define is_migrate_cma_page(_page) false 78#endif 79 80static inline bool is_migrate_movable(int mt) 81{ 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83} 84 85#define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89extern int page_group_by_mobility_disabled; 90 91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 93 94#define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 96 PB_migrate_end, MIGRATETYPE_MASK) 97 98struct free_area { 99 struct list_head free_list[MIGRATE_TYPES]; 100 unsigned long nr_free; 101}; 102 103/* Used for pages not on another list */ 104static inline void add_to_free_area(struct page *page, struct free_area *area, 105 int migratetype) 106{ 107 list_add(&page->lru, &area->free_list[migratetype]); 108 area->nr_free++; 109} 110 111/* Used for pages not on another list */ 112static inline void add_to_free_area_tail(struct page *page, struct free_area *area, 113 int migratetype) 114{ 115 list_add_tail(&page->lru, &area->free_list[migratetype]); 116 area->nr_free++; 117} 118 119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR 120/* Used to preserve page allocation order entropy */ 121void add_to_free_area_random(struct page *page, struct free_area *area, 122 int migratetype); 123#else 124static inline void add_to_free_area_random(struct page *page, 125 struct free_area *area, int migratetype) 126{ 127 add_to_free_area(page, area, migratetype); 128} 129#endif 130 131/* Used for pages which are on another list */ 132static inline void move_to_free_area(struct page *page, struct free_area *area, 133 int migratetype) 134{ 135 list_move(&page->lru, &area->free_list[migratetype]); 136} 137 138static inline struct page *get_page_from_free_area(struct free_area *area, 139 int migratetype) 140{ 141 return list_first_entry_or_null(&area->free_list[migratetype], 142 struct page, lru); 143} 144 145static inline void del_page_from_free_area(struct page *page, 146 struct free_area *area) 147{ 148 list_del(&page->lru); 149 __ClearPageBuddy(page); 150 set_page_private(page, 0); 151 area->nr_free--; 152} 153 154static inline bool free_area_empty(struct free_area *area, int migratetype) 155{ 156 return list_empty(&area->free_list[migratetype]); 157} 158 159struct pglist_data; 160 161/* 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 163 * So add a wild amount of padding here to ensure that they fall into separate 164 * cachelines. There are very few zone structures in the machine, so space 165 * consumption is not a concern here. 166 */ 167#if defined(CONFIG_SMP) 168struct zone_padding { 169 char x[0]; 170} ____cacheline_internodealigned_in_smp; 171#define ZONE_PADDING(name) struct zone_padding name; 172#else 173#define ZONE_PADDING(name) 174#endif 175 176#ifdef CONFIG_NUMA 177enum numa_stat_item { 178 NUMA_HIT, /* allocated in intended node */ 179 NUMA_MISS, /* allocated in non intended node */ 180 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 182 NUMA_LOCAL, /* allocation from local node */ 183 NUMA_OTHER, /* allocation from other node */ 184 NR_VM_NUMA_STAT_ITEMS 185}; 186#else 187#define NR_VM_NUMA_STAT_ITEMS 0 188#endif 189 190enum zone_stat_item { 191 /* First 128 byte cacheline (assuming 64 bit words) */ 192 NR_FREE_PAGES, 193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 195 NR_ZONE_ACTIVE_ANON, 196 NR_ZONE_INACTIVE_FILE, 197 NR_ZONE_ACTIVE_FILE, 198 NR_ZONE_UNEVICTABLE, 199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_KERNEL_STACK_KB, /* measured in KiB */ 203 /* Second 128 byte cacheline */ 204 NR_BOUNCE, 205#if IS_ENABLED(CONFIG_ZSMALLOC) 206 NR_ZSPAGES, /* allocated in zsmalloc */ 207#endif 208 NR_FREE_CMA_PAGES, 209 NR_VM_ZONE_STAT_ITEMS }; 210 211enum node_stat_item { 212 NR_LRU_BASE, 213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 214 NR_ACTIVE_ANON, /* " " " " " */ 215 NR_INACTIVE_FILE, /* " " " " " */ 216 NR_ACTIVE_FILE, /* " " " " " */ 217 NR_UNEVICTABLE, /* " " " " " */ 218 NR_SLAB_RECLAIMABLE, 219 NR_SLAB_UNRECLAIMABLE, 220 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 221 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 222 WORKINGSET_NODES, 223 WORKINGSET_REFAULT, 224 WORKINGSET_ACTIVATE, 225 WORKINGSET_RESTORE, 226 WORKINGSET_NODERECLAIM, 227 NR_ANON_MAPPED, /* Mapped anonymous pages */ 228 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 229 only modified from process context */ 230 NR_FILE_PAGES, 231 NR_FILE_DIRTY, 232 NR_WRITEBACK, 233 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 234 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 235 NR_SHMEM_THPS, 236 NR_SHMEM_PMDMAPPED, 237 NR_FILE_THPS, 238 NR_FILE_PMDMAPPED, 239 NR_ANON_THPS, 240 NR_UNSTABLE_NFS, /* NFS unstable pages */ 241 NR_VMSCAN_WRITE, 242 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 243 NR_DIRTIED, /* page dirtyings since bootup */ 244 NR_WRITTEN, /* page writings since bootup */ 245 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 246 NR_VM_NODE_STAT_ITEMS 247}; 248 249/* 250 * We do arithmetic on the LRU lists in various places in the code, 251 * so it is important to keep the active lists LRU_ACTIVE higher in 252 * the array than the corresponding inactive lists, and to keep 253 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 254 * 255 * This has to be kept in sync with the statistics in zone_stat_item 256 * above and the descriptions in vmstat_text in mm/vmstat.c 257 */ 258#define LRU_BASE 0 259#define LRU_ACTIVE 1 260#define LRU_FILE 2 261 262enum lru_list { 263 LRU_INACTIVE_ANON = LRU_BASE, 264 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 265 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 266 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 267 LRU_UNEVICTABLE, 268 NR_LRU_LISTS 269}; 270 271#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 272 273#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 274 275static inline bool is_file_lru(enum lru_list lru) 276{ 277 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 278} 279 280static inline bool is_active_lru(enum lru_list lru) 281{ 282 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 283} 284 285struct zone_reclaim_stat { 286 /* 287 * The pageout code in vmscan.c keeps track of how many of the 288 * mem/swap backed and file backed pages are referenced. 289 * The higher the rotated/scanned ratio, the more valuable 290 * that cache is. 291 * 292 * The anon LRU stats live in [0], file LRU stats in [1] 293 */ 294 unsigned long recent_rotated[2]; 295 unsigned long recent_scanned[2]; 296}; 297 298enum lruvec_flags { 299 LRUVEC_CONGESTED, /* lruvec has many dirty pages 300 * backed by a congested BDI 301 */ 302}; 303 304struct lruvec { 305 struct list_head lists[NR_LRU_LISTS]; 306 struct zone_reclaim_stat reclaim_stat; 307 /* Evictions & activations on the inactive file list */ 308 atomic_long_t inactive_age; 309 /* Refaults at the time of last reclaim cycle */ 310 unsigned long refaults; 311 /* Various lruvec state flags (enum lruvec_flags) */ 312 unsigned long flags; 313#ifdef CONFIG_MEMCG 314 struct pglist_data *pgdat; 315#endif 316}; 317 318/* Isolate unmapped pages */ 319#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 320/* Isolate for asynchronous migration */ 321#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 322/* Isolate unevictable pages */ 323#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 324 325/* LRU Isolation modes. */ 326typedef unsigned __bitwise isolate_mode_t; 327 328enum zone_watermarks { 329 WMARK_MIN, 330 WMARK_LOW, 331 WMARK_HIGH, 332 NR_WMARK 333}; 334 335#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 336#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 337#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 338#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 339 340struct per_cpu_pages { 341 int count; /* number of pages in the list */ 342 int high; /* high watermark, emptying needed */ 343 int batch; /* chunk size for buddy add/remove */ 344 345 /* Lists of pages, one per migrate type stored on the pcp-lists */ 346 struct list_head lists[MIGRATE_PCPTYPES]; 347}; 348 349struct per_cpu_pageset { 350 struct per_cpu_pages pcp; 351#ifdef CONFIG_NUMA 352 s8 expire; 353 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 354#endif 355#ifdef CONFIG_SMP 356 s8 stat_threshold; 357 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 358#endif 359}; 360 361struct per_cpu_nodestat { 362 s8 stat_threshold; 363 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 364}; 365 366#endif /* !__GENERATING_BOUNDS.H */ 367 368enum zone_type { 369 /* 370 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 371 * to DMA to all of the addressable memory (ZONE_NORMAL). 372 * On architectures where this area covers the whole 32 bit address 373 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 374 * DMA addressing constraints. This distinction is important as a 32bit 375 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 376 * platforms may need both zones as they support peripherals with 377 * different DMA addressing limitations. 378 * 379 * Some examples: 380 * 381 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 382 * rest of the lower 4G. 383 * 384 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 385 * the specific device. 386 * 387 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 388 * lower 4G. 389 * 390 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 391 * depending on the specific device. 392 * 393 * - s390 uses ZONE_DMA fixed to the lower 2G. 394 * 395 * - ia64 and riscv only use ZONE_DMA32. 396 * 397 * - parisc uses neither. 398 */ 399#ifdef CONFIG_ZONE_DMA 400 ZONE_DMA, 401#endif 402#ifdef CONFIG_ZONE_DMA32 403 ZONE_DMA32, 404#endif 405 /* 406 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 407 * performed on pages in ZONE_NORMAL if the DMA devices support 408 * transfers to all addressable memory. 409 */ 410 ZONE_NORMAL, 411#ifdef CONFIG_HIGHMEM 412 /* 413 * A memory area that is only addressable by the kernel through 414 * mapping portions into its own address space. This is for example 415 * used by i386 to allow the kernel to address the memory beyond 416 * 900MB. The kernel will set up special mappings (page 417 * table entries on i386) for each page that the kernel needs to 418 * access. 419 */ 420 ZONE_HIGHMEM, 421#endif 422 ZONE_MOVABLE, 423#ifdef CONFIG_ZONE_DEVICE 424 ZONE_DEVICE, 425#endif 426 __MAX_NR_ZONES 427 428}; 429 430#ifndef __GENERATING_BOUNDS_H 431 432struct zone { 433 /* Read-mostly fields */ 434 435 /* zone watermarks, access with *_wmark_pages(zone) macros */ 436 unsigned long _watermark[NR_WMARK]; 437 unsigned long watermark_boost; 438 439 unsigned long nr_reserved_highatomic; 440 441 /* 442 * We don't know if the memory that we're going to allocate will be 443 * freeable or/and it will be released eventually, so to avoid totally 444 * wasting several GB of ram we must reserve some of the lower zone 445 * memory (otherwise we risk to run OOM on the lower zones despite 446 * there being tons of freeable ram on the higher zones). This array is 447 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 448 * changes. 449 */ 450 long lowmem_reserve[MAX_NR_ZONES]; 451 452#ifdef CONFIG_NUMA 453 int node; 454#endif 455 struct pglist_data *zone_pgdat; 456 struct per_cpu_pageset __percpu *pageset; 457 458#ifndef CONFIG_SPARSEMEM 459 /* 460 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 461 * In SPARSEMEM, this map is stored in struct mem_section 462 */ 463 unsigned long *pageblock_flags; 464#endif /* CONFIG_SPARSEMEM */ 465 466 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 467 unsigned long zone_start_pfn; 468 469 /* 470 * spanned_pages is the total pages spanned by the zone, including 471 * holes, which is calculated as: 472 * spanned_pages = zone_end_pfn - zone_start_pfn; 473 * 474 * present_pages is physical pages existing within the zone, which 475 * is calculated as: 476 * present_pages = spanned_pages - absent_pages(pages in holes); 477 * 478 * managed_pages is present pages managed by the buddy system, which 479 * is calculated as (reserved_pages includes pages allocated by the 480 * bootmem allocator): 481 * managed_pages = present_pages - reserved_pages; 482 * 483 * So present_pages may be used by memory hotplug or memory power 484 * management logic to figure out unmanaged pages by checking 485 * (present_pages - managed_pages). And managed_pages should be used 486 * by page allocator and vm scanner to calculate all kinds of watermarks 487 * and thresholds. 488 * 489 * Locking rules: 490 * 491 * zone_start_pfn and spanned_pages are protected by span_seqlock. 492 * It is a seqlock because it has to be read outside of zone->lock, 493 * and it is done in the main allocator path. But, it is written 494 * quite infrequently. 495 * 496 * The span_seq lock is declared along with zone->lock because it is 497 * frequently read in proximity to zone->lock. It's good to 498 * give them a chance of being in the same cacheline. 499 * 500 * Write access to present_pages at runtime should be protected by 501 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 502 * present_pages should get_online_mems() to get a stable value. 503 */ 504 atomic_long_t managed_pages; 505 unsigned long spanned_pages; 506 unsigned long present_pages; 507 508 const char *name; 509 510#ifdef CONFIG_MEMORY_ISOLATION 511 /* 512 * Number of isolated pageblock. It is used to solve incorrect 513 * freepage counting problem due to racy retrieving migratetype 514 * of pageblock. Protected by zone->lock. 515 */ 516 unsigned long nr_isolate_pageblock; 517#endif 518 519#ifdef CONFIG_MEMORY_HOTPLUG 520 /* see spanned/present_pages for more description */ 521 seqlock_t span_seqlock; 522#endif 523 524 int initialized; 525 526 /* Write-intensive fields used from the page allocator */ 527 ZONE_PADDING(_pad1_) 528 529 /* free areas of different sizes */ 530 struct free_area free_area[MAX_ORDER]; 531 532 /* zone flags, see below */ 533 unsigned long flags; 534 535 /* Primarily protects free_area */ 536 spinlock_t lock; 537 538 /* Write-intensive fields used by compaction and vmstats. */ 539 ZONE_PADDING(_pad2_) 540 541 /* 542 * When free pages are below this point, additional steps are taken 543 * when reading the number of free pages to avoid per-cpu counter 544 * drift allowing watermarks to be breached 545 */ 546 unsigned long percpu_drift_mark; 547 548#if defined CONFIG_COMPACTION || defined CONFIG_CMA 549 /* pfn where compaction free scanner should start */ 550 unsigned long compact_cached_free_pfn; 551 /* pfn where async and sync compaction migration scanner should start */ 552 unsigned long compact_cached_migrate_pfn[2]; 553 unsigned long compact_init_migrate_pfn; 554 unsigned long compact_init_free_pfn; 555#endif 556 557#ifdef CONFIG_COMPACTION 558 /* 559 * On compaction failure, 1<<compact_defer_shift compactions 560 * are skipped before trying again. The number attempted since 561 * last failure is tracked with compact_considered. 562 */ 563 unsigned int compact_considered; 564 unsigned int compact_defer_shift; 565 int compact_order_failed; 566#endif 567 568#if defined CONFIG_COMPACTION || defined CONFIG_CMA 569 /* Set to true when the PG_migrate_skip bits should be cleared */ 570 bool compact_blockskip_flush; 571#endif 572 573 bool contiguous; 574 575 ZONE_PADDING(_pad3_) 576 /* Zone statistics */ 577 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 578 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 579} ____cacheline_internodealigned_in_smp; 580 581enum pgdat_flags { 582 PGDAT_DIRTY, /* reclaim scanning has recently found 583 * many dirty file pages at the tail 584 * of the LRU. 585 */ 586 PGDAT_WRITEBACK, /* reclaim scanning has recently found 587 * many pages under writeback 588 */ 589 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 590}; 591 592enum zone_flags { 593 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 594 * Cleared when kswapd is woken. 595 */ 596}; 597 598static inline unsigned long zone_managed_pages(struct zone *zone) 599{ 600 return (unsigned long)atomic_long_read(&zone->managed_pages); 601} 602 603static inline unsigned long zone_end_pfn(const struct zone *zone) 604{ 605 return zone->zone_start_pfn + zone->spanned_pages; 606} 607 608static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 609{ 610 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 611} 612 613static inline bool zone_is_initialized(struct zone *zone) 614{ 615 return zone->initialized; 616} 617 618static inline bool zone_is_empty(struct zone *zone) 619{ 620 return zone->spanned_pages == 0; 621} 622 623/* 624 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 625 * intersection with the given zone 626 */ 627static inline bool zone_intersects(struct zone *zone, 628 unsigned long start_pfn, unsigned long nr_pages) 629{ 630 if (zone_is_empty(zone)) 631 return false; 632 if (start_pfn >= zone_end_pfn(zone) || 633 start_pfn + nr_pages <= zone->zone_start_pfn) 634 return false; 635 636 return true; 637} 638 639/* 640 * The "priority" of VM scanning is how much of the queues we will scan in one 641 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 642 * queues ("queue_length >> 12") during an aging round. 643 */ 644#define DEF_PRIORITY 12 645 646/* Maximum number of zones on a zonelist */ 647#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 648 649enum { 650 ZONELIST_FALLBACK, /* zonelist with fallback */ 651#ifdef CONFIG_NUMA 652 /* 653 * The NUMA zonelists are doubled because we need zonelists that 654 * restrict the allocations to a single node for __GFP_THISNODE. 655 */ 656 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 657#endif 658 MAX_ZONELISTS 659}; 660 661/* 662 * This struct contains information about a zone in a zonelist. It is stored 663 * here to avoid dereferences into large structures and lookups of tables 664 */ 665struct zoneref { 666 struct zone *zone; /* Pointer to actual zone */ 667 int zone_idx; /* zone_idx(zoneref->zone) */ 668}; 669 670/* 671 * One allocation request operates on a zonelist. A zonelist 672 * is a list of zones, the first one is the 'goal' of the 673 * allocation, the other zones are fallback zones, in decreasing 674 * priority. 675 * 676 * To speed the reading of the zonelist, the zonerefs contain the zone index 677 * of the entry being read. Helper functions to access information given 678 * a struct zoneref are 679 * 680 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 681 * zonelist_zone_idx() - Return the index of the zone for an entry 682 * zonelist_node_idx() - Return the index of the node for an entry 683 */ 684struct zonelist { 685 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 686}; 687 688#ifndef CONFIG_DISCONTIGMEM 689/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 690extern struct page *mem_map; 691#endif 692 693#ifdef CONFIG_TRANSPARENT_HUGEPAGE 694struct deferred_split { 695 spinlock_t split_queue_lock; 696 struct list_head split_queue; 697 unsigned long split_queue_len; 698}; 699#endif 700 701/* 702 * On NUMA machines, each NUMA node would have a pg_data_t to describe 703 * it's memory layout. On UMA machines there is a single pglist_data which 704 * describes the whole memory. 705 * 706 * Memory statistics and page replacement data structures are maintained on a 707 * per-zone basis. 708 */ 709struct bootmem_data; 710typedef struct pglist_data { 711 struct zone node_zones[MAX_NR_ZONES]; 712 struct zonelist node_zonelists[MAX_ZONELISTS]; 713 int nr_zones; 714#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 715 struct page *node_mem_map; 716#ifdef CONFIG_PAGE_EXTENSION 717 struct page_ext *node_page_ext; 718#endif 719#endif 720#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 721 /* 722 * Must be held any time you expect node_start_pfn, 723 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 724 * 725 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 726 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 727 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 728 * 729 * Nests above zone->lock and zone->span_seqlock 730 */ 731 spinlock_t node_size_lock; 732#endif 733 unsigned long node_start_pfn; 734 unsigned long node_present_pages; /* total number of physical pages */ 735 unsigned long node_spanned_pages; /* total size of physical page 736 range, including holes */ 737 int node_id; 738 wait_queue_head_t kswapd_wait; 739 wait_queue_head_t pfmemalloc_wait; 740 struct task_struct *kswapd; /* Protected by 741 mem_hotplug_begin/end() */ 742 int kswapd_order; 743 enum zone_type kswapd_classzone_idx; 744 745 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 746 747#ifdef CONFIG_COMPACTION 748 int kcompactd_max_order; 749 enum zone_type kcompactd_classzone_idx; 750 wait_queue_head_t kcompactd_wait; 751 struct task_struct *kcompactd; 752#endif 753 /* 754 * This is a per-node reserve of pages that are not available 755 * to userspace allocations. 756 */ 757 unsigned long totalreserve_pages; 758 759#ifdef CONFIG_NUMA 760 /* 761 * zone reclaim becomes active if more unmapped pages exist. 762 */ 763 unsigned long min_unmapped_pages; 764 unsigned long min_slab_pages; 765#endif /* CONFIG_NUMA */ 766 767 /* Write-intensive fields used by page reclaim */ 768 ZONE_PADDING(_pad1_) 769 spinlock_t lru_lock; 770 771#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 772 /* 773 * If memory initialisation on large machines is deferred then this 774 * is the first PFN that needs to be initialised. 775 */ 776 unsigned long first_deferred_pfn; 777#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 778 779#ifdef CONFIG_TRANSPARENT_HUGEPAGE 780 struct deferred_split deferred_split_queue; 781#endif 782 783 /* Fields commonly accessed by the page reclaim scanner */ 784 785 /* 786 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 787 * 788 * Use mem_cgroup_lruvec() to look up lruvecs. 789 */ 790 struct lruvec __lruvec; 791 792 unsigned long flags; 793 794 ZONE_PADDING(_pad2_) 795 796 /* Per-node vmstats */ 797 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 798 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 799} pg_data_t; 800 801#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 802#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 803#ifdef CONFIG_FLAT_NODE_MEM_MAP 804#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 805#else 806#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 807#endif 808#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 809 810#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 811#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 812 813static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 814{ 815 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 816} 817 818static inline bool pgdat_is_empty(pg_data_t *pgdat) 819{ 820 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 821} 822 823#include <linux/memory_hotplug.h> 824 825void build_all_zonelists(pg_data_t *pgdat); 826void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 827 enum zone_type classzone_idx); 828bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 829 int classzone_idx, unsigned int alloc_flags, 830 long free_pages); 831bool zone_watermark_ok(struct zone *z, unsigned int order, 832 unsigned long mark, int classzone_idx, 833 unsigned int alloc_flags); 834bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 835 unsigned long mark, int classzone_idx); 836enum memmap_context { 837 MEMMAP_EARLY, 838 MEMMAP_HOTPLUG, 839}; 840extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 841 unsigned long size); 842 843extern void lruvec_init(struct lruvec *lruvec); 844 845static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 846{ 847#ifdef CONFIG_MEMCG 848 return lruvec->pgdat; 849#else 850 return container_of(lruvec, struct pglist_data, __lruvec); 851#endif 852} 853 854extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 855 856#ifdef CONFIG_HAVE_MEMORY_PRESENT 857void memory_present(int nid, unsigned long start, unsigned long end); 858#else 859static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 860#endif 861 862#if defined(CONFIG_SPARSEMEM) 863void memblocks_present(void); 864#else 865static inline void memblocks_present(void) {} 866#endif 867 868#ifdef CONFIG_HAVE_MEMORYLESS_NODES 869int local_memory_node(int node_id); 870#else 871static inline int local_memory_node(int node_id) { return node_id; }; 872#endif 873 874/* 875 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 876 */ 877#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 878 879/* 880 * Returns true if a zone has pages managed by the buddy allocator. 881 * All the reclaim decisions have to use this function rather than 882 * populated_zone(). If the whole zone is reserved then we can easily 883 * end up with populated_zone() && !managed_zone(). 884 */ 885static inline bool managed_zone(struct zone *zone) 886{ 887 return zone_managed_pages(zone); 888} 889 890/* Returns true if a zone has memory */ 891static inline bool populated_zone(struct zone *zone) 892{ 893 return zone->present_pages; 894} 895 896#ifdef CONFIG_NUMA 897static inline int zone_to_nid(struct zone *zone) 898{ 899 return zone->node; 900} 901 902static inline void zone_set_nid(struct zone *zone, int nid) 903{ 904 zone->node = nid; 905} 906#else 907static inline int zone_to_nid(struct zone *zone) 908{ 909 return 0; 910} 911 912static inline void zone_set_nid(struct zone *zone, int nid) {} 913#endif 914 915extern int movable_zone; 916 917#ifdef CONFIG_HIGHMEM 918static inline int zone_movable_is_highmem(void) 919{ 920#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 921 return movable_zone == ZONE_HIGHMEM; 922#else 923 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 924#endif 925} 926#endif 927 928static inline int is_highmem_idx(enum zone_type idx) 929{ 930#ifdef CONFIG_HIGHMEM 931 return (idx == ZONE_HIGHMEM || 932 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 933#else 934 return 0; 935#endif 936} 937 938/** 939 * is_highmem - helper function to quickly check if a struct zone is a 940 * highmem zone or not. This is an attempt to keep references 941 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 942 * @zone - pointer to struct zone variable 943 */ 944static inline int is_highmem(struct zone *zone) 945{ 946#ifdef CONFIG_HIGHMEM 947 return is_highmem_idx(zone_idx(zone)); 948#else 949 return 0; 950#endif 951} 952 953/* These two functions are used to setup the per zone pages min values */ 954struct ctl_table; 955int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 956 void __user *, size_t *, loff_t *); 957int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, 958 void __user *, size_t *, loff_t *); 959int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 960 void __user *, size_t *, loff_t *); 961extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 962int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 963 void __user *, size_t *, loff_t *); 964int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 965 void __user *, size_t *, loff_t *); 966int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 967 void __user *, size_t *, loff_t *); 968int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 969 void __user *, size_t *, loff_t *); 970 971extern int numa_zonelist_order_handler(struct ctl_table *, int, 972 void __user *, size_t *, loff_t *); 973extern char numa_zonelist_order[]; 974#define NUMA_ZONELIST_ORDER_LEN 16 975 976#ifndef CONFIG_NEED_MULTIPLE_NODES 977 978extern struct pglist_data contig_page_data; 979#define NODE_DATA(nid) (&contig_page_data) 980#define NODE_MEM_MAP(nid) mem_map 981 982#else /* CONFIG_NEED_MULTIPLE_NODES */ 983 984#include <asm/mmzone.h> 985 986#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 987 988extern struct pglist_data *first_online_pgdat(void); 989extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 990extern struct zone *next_zone(struct zone *zone); 991 992/** 993 * for_each_online_pgdat - helper macro to iterate over all online nodes 994 * @pgdat - pointer to a pg_data_t variable 995 */ 996#define for_each_online_pgdat(pgdat) \ 997 for (pgdat = first_online_pgdat(); \ 998 pgdat; \ 999 pgdat = next_online_pgdat(pgdat)) 1000/** 1001 * for_each_zone - helper macro to iterate over all memory zones 1002 * @zone - pointer to struct zone variable 1003 * 1004 * The user only needs to declare the zone variable, for_each_zone 1005 * fills it in. 1006 */ 1007#define for_each_zone(zone) \ 1008 for (zone = (first_online_pgdat())->node_zones; \ 1009 zone; \ 1010 zone = next_zone(zone)) 1011 1012#define for_each_populated_zone(zone) \ 1013 for (zone = (first_online_pgdat())->node_zones; \ 1014 zone; \ 1015 zone = next_zone(zone)) \ 1016 if (!populated_zone(zone)) \ 1017 ; /* do nothing */ \ 1018 else 1019 1020static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1021{ 1022 return zoneref->zone; 1023} 1024 1025static inline int zonelist_zone_idx(struct zoneref *zoneref) 1026{ 1027 return zoneref->zone_idx; 1028} 1029 1030static inline int zonelist_node_idx(struct zoneref *zoneref) 1031{ 1032 return zone_to_nid(zoneref->zone); 1033} 1034 1035struct zoneref *__next_zones_zonelist(struct zoneref *z, 1036 enum zone_type highest_zoneidx, 1037 nodemask_t *nodes); 1038 1039/** 1040 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1041 * @z - The cursor used as a starting point for the search 1042 * @highest_zoneidx - The zone index of the highest zone to return 1043 * @nodes - An optional nodemask to filter the zonelist with 1044 * 1045 * This function returns the next zone at or below a given zone index that is 1046 * within the allowed nodemask using a cursor as the starting point for the 1047 * search. The zoneref returned is a cursor that represents the current zone 1048 * being examined. It should be advanced by one before calling 1049 * next_zones_zonelist again. 1050 */ 1051static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1052 enum zone_type highest_zoneidx, 1053 nodemask_t *nodes) 1054{ 1055 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1056 return z; 1057 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1058} 1059 1060/** 1061 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1062 * @zonelist - The zonelist to search for a suitable zone 1063 * @highest_zoneidx - The zone index of the highest zone to return 1064 * @nodes - An optional nodemask to filter the zonelist with 1065 * @return - Zoneref pointer for the first suitable zone found (see below) 1066 * 1067 * This function returns the first zone at or below a given zone index that is 1068 * within the allowed nodemask. The zoneref returned is a cursor that can be 1069 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1070 * one before calling. 1071 * 1072 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1073 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1074 * update due to cpuset modification. 1075 */ 1076static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1077 enum zone_type highest_zoneidx, 1078 nodemask_t *nodes) 1079{ 1080 return next_zones_zonelist(zonelist->_zonerefs, 1081 highest_zoneidx, nodes); 1082} 1083 1084/** 1085 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1086 * @zone - The current zone in the iterator 1087 * @z - The current pointer within zonelist->_zonerefs being iterated 1088 * @zlist - The zonelist being iterated 1089 * @highidx - The zone index of the highest zone to return 1090 * @nodemask - Nodemask allowed by the allocator 1091 * 1092 * This iterator iterates though all zones at or below a given zone index and 1093 * within a given nodemask 1094 */ 1095#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1096 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1097 zone; \ 1098 z = next_zones_zonelist(++z, highidx, nodemask), \ 1099 zone = zonelist_zone(z)) 1100 1101#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1102 for (zone = z->zone; \ 1103 zone; \ 1104 z = next_zones_zonelist(++z, highidx, nodemask), \ 1105 zone = zonelist_zone(z)) 1106 1107 1108/** 1109 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1110 * @zone - The current zone in the iterator 1111 * @z - The current pointer within zonelist->zones being iterated 1112 * @zlist - The zonelist being iterated 1113 * @highidx - The zone index of the highest zone to return 1114 * 1115 * This iterator iterates though all zones at or below a given zone index. 1116 */ 1117#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1118 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1119 1120#ifdef CONFIG_SPARSEMEM 1121#include <asm/sparsemem.h> 1122#endif 1123 1124#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1125 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1126static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1127{ 1128 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1129 return 0; 1130} 1131#endif 1132 1133#ifdef CONFIG_FLATMEM 1134#define pfn_to_nid(pfn) (0) 1135#endif 1136 1137#ifdef CONFIG_SPARSEMEM 1138 1139/* 1140 * SECTION_SHIFT #bits space required to store a section # 1141 * 1142 * PA_SECTION_SHIFT physical address to/from section number 1143 * PFN_SECTION_SHIFT pfn to/from section number 1144 */ 1145#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1146#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1147 1148#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1149 1150#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1151#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1152 1153#define SECTION_BLOCKFLAGS_BITS \ 1154 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1155 1156#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1157#error Allocator MAX_ORDER exceeds SECTION_SIZE 1158#endif 1159 1160static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1161{ 1162 return pfn >> PFN_SECTION_SHIFT; 1163} 1164static inline unsigned long section_nr_to_pfn(unsigned long sec) 1165{ 1166 return sec << PFN_SECTION_SHIFT; 1167} 1168 1169#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1170#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1171 1172#define SUBSECTION_SHIFT 21 1173 1174#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1175#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1176#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1177 1178#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1179#error Subsection size exceeds section size 1180#else 1181#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1182#endif 1183 1184#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1185#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1186 1187struct mem_section_usage { 1188 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1189 /* See declaration of similar field in struct zone */ 1190 unsigned long pageblock_flags[0]; 1191}; 1192 1193void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1194 1195struct page; 1196struct page_ext; 1197struct mem_section { 1198 /* 1199 * This is, logically, a pointer to an array of struct 1200 * pages. However, it is stored with some other magic. 1201 * (see sparse.c::sparse_init_one_section()) 1202 * 1203 * Additionally during early boot we encode node id of 1204 * the location of the section here to guide allocation. 1205 * (see sparse.c::memory_present()) 1206 * 1207 * Making it a UL at least makes someone do a cast 1208 * before using it wrong. 1209 */ 1210 unsigned long section_mem_map; 1211 1212 struct mem_section_usage *usage; 1213#ifdef CONFIG_PAGE_EXTENSION 1214 /* 1215 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1216 * section. (see page_ext.h about this.) 1217 */ 1218 struct page_ext *page_ext; 1219 unsigned long pad; 1220#endif 1221 /* 1222 * WARNING: mem_section must be a power-of-2 in size for the 1223 * calculation and use of SECTION_ROOT_MASK to make sense. 1224 */ 1225}; 1226 1227#ifdef CONFIG_SPARSEMEM_EXTREME 1228#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1229#else 1230#define SECTIONS_PER_ROOT 1 1231#endif 1232 1233#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1234#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1235#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1236 1237#ifdef CONFIG_SPARSEMEM_EXTREME 1238extern struct mem_section **mem_section; 1239#else 1240extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1241#endif 1242 1243static inline unsigned long *section_to_usemap(struct mem_section *ms) 1244{ 1245 return ms->usage->pageblock_flags; 1246} 1247 1248static inline struct mem_section *__nr_to_section(unsigned long nr) 1249{ 1250#ifdef CONFIG_SPARSEMEM_EXTREME 1251 if (!mem_section) 1252 return NULL; 1253#endif 1254 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1255 return NULL; 1256 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1257} 1258extern unsigned long __section_nr(struct mem_section *ms); 1259extern size_t mem_section_usage_size(void); 1260 1261/* 1262 * We use the lower bits of the mem_map pointer to store 1263 * a little bit of information. The pointer is calculated 1264 * as mem_map - section_nr_to_pfn(pnum). The result is 1265 * aligned to the minimum alignment of the two values: 1266 * 1. All mem_map arrays are page-aligned. 1267 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1268 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1269 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1270 * worst combination is powerpc with 256k pages, 1271 * which results in PFN_SECTION_SHIFT equal 6. 1272 * To sum it up, at least 6 bits are available. 1273 */ 1274#define SECTION_MARKED_PRESENT (1UL<<0) 1275#define SECTION_HAS_MEM_MAP (1UL<<1) 1276#define SECTION_IS_ONLINE (1UL<<2) 1277#define SECTION_IS_EARLY (1UL<<3) 1278#define SECTION_MAP_LAST_BIT (1UL<<4) 1279#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1280#define SECTION_NID_SHIFT 3 1281 1282static inline struct page *__section_mem_map_addr(struct mem_section *section) 1283{ 1284 unsigned long map = section->section_mem_map; 1285 map &= SECTION_MAP_MASK; 1286 return (struct page *)map; 1287} 1288 1289static inline int present_section(struct mem_section *section) 1290{ 1291 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1292} 1293 1294static inline int present_section_nr(unsigned long nr) 1295{ 1296 return present_section(__nr_to_section(nr)); 1297} 1298 1299static inline int valid_section(struct mem_section *section) 1300{ 1301 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1302} 1303 1304static inline int early_section(struct mem_section *section) 1305{ 1306 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1307} 1308 1309static inline int valid_section_nr(unsigned long nr) 1310{ 1311 return valid_section(__nr_to_section(nr)); 1312} 1313 1314static inline int online_section(struct mem_section *section) 1315{ 1316 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1317} 1318 1319static inline int online_section_nr(unsigned long nr) 1320{ 1321 return online_section(__nr_to_section(nr)); 1322} 1323 1324#ifdef CONFIG_MEMORY_HOTPLUG 1325void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1326#ifdef CONFIG_MEMORY_HOTREMOVE 1327void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1328#endif 1329#endif 1330 1331static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1332{ 1333 return __nr_to_section(pfn_to_section_nr(pfn)); 1334} 1335 1336extern unsigned long __highest_present_section_nr; 1337 1338static inline int subsection_map_index(unsigned long pfn) 1339{ 1340 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1341} 1342 1343#ifdef CONFIG_SPARSEMEM_VMEMMAP 1344static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1345{ 1346 int idx = subsection_map_index(pfn); 1347 1348 return test_bit(idx, ms->usage->subsection_map); 1349} 1350#else 1351static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1352{ 1353 return 1; 1354} 1355#endif 1356 1357#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1358static inline int pfn_valid(unsigned long pfn) 1359{ 1360 struct mem_section *ms; 1361 1362 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1363 return 0; 1364 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1365 if (!valid_section(ms)) 1366 return 0; 1367 /* 1368 * Traditionally early sections always returned pfn_valid() for 1369 * the entire section-sized span. 1370 */ 1371 return early_section(ms) || pfn_section_valid(ms, pfn); 1372} 1373#endif 1374 1375static inline int pfn_present(unsigned long pfn) 1376{ 1377 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1378 return 0; 1379 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1380} 1381 1382/* 1383 * These are _only_ used during initialisation, therefore they 1384 * can use __initdata ... They could have names to indicate 1385 * this restriction. 1386 */ 1387#ifdef CONFIG_NUMA 1388#define pfn_to_nid(pfn) \ 1389({ \ 1390 unsigned long __pfn_to_nid_pfn = (pfn); \ 1391 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1392}) 1393#else 1394#define pfn_to_nid(pfn) (0) 1395#endif 1396 1397#define early_pfn_valid(pfn) pfn_valid(pfn) 1398void sparse_init(void); 1399#else 1400#define sparse_init() do {} while (0) 1401#define sparse_index_init(_sec, _nid) do {} while (0) 1402#define pfn_present pfn_valid 1403#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1404#endif /* CONFIG_SPARSEMEM */ 1405 1406/* 1407 * During memory init memblocks map pfns to nids. The search is expensive and 1408 * this caches recent lookups. The implementation of __early_pfn_to_nid 1409 * may treat start/end as pfns or sections. 1410 */ 1411struct mminit_pfnnid_cache { 1412 unsigned long last_start; 1413 unsigned long last_end; 1414 int last_nid; 1415}; 1416 1417#ifndef early_pfn_valid 1418#define early_pfn_valid(pfn) (1) 1419#endif 1420 1421void memory_present(int nid, unsigned long start, unsigned long end); 1422 1423/* 1424 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1425 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1426 * pfn_valid_within() should be used in this case; we optimise this away 1427 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1428 */ 1429#ifdef CONFIG_HOLES_IN_ZONE 1430#define pfn_valid_within(pfn) pfn_valid(pfn) 1431#else 1432#define pfn_valid_within(pfn) (1) 1433#endif 1434 1435#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1436/* 1437 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1438 * associated with it or not. This means that a struct page exists for this 1439 * pfn. The caller cannot assume the page is fully initialized in general. 1440 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1441 * will ensure the struct page is fully online and initialized. Special pages 1442 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1443 * 1444 * In FLATMEM, it is expected that holes always have valid memmap as long as 1445 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1446 * that a valid section has a memmap for the entire section. 1447 * 1448 * However, an ARM, and maybe other embedded architectures in the future 1449 * free memmap backing holes to save memory on the assumption the memmap is 1450 * never used. The page_zone linkages are then broken even though pfn_valid() 1451 * returns true. A walker of the full memmap must then do this additional 1452 * check to ensure the memmap they are looking at is sane by making sure 1453 * the zone and PFN linkages are still valid. This is expensive, but walkers 1454 * of the full memmap are extremely rare. 1455 */ 1456bool memmap_valid_within(unsigned long pfn, 1457 struct page *page, struct zone *zone); 1458#else 1459static inline bool memmap_valid_within(unsigned long pfn, 1460 struct page *page, struct zone *zone) 1461{ 1462 return true; 1463} 1464#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1465 1466#endif /* !__GENERATING_BOUNDS.H */ 1467#endif /* !__ASSEMBLY__ */ 1468#endif /* _LINUX_MMZONE_H */