Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#if defined(CONFIG_X86_INTEL_MPX)
337/* MPX specific bounds table or bounds directory */
338# define VM_MPX VM_HIGH_ARCH_4
339#else
340# define VM_MPX VM_NONE
341#endif
342
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
355#define VM_STACK VM_GROWSUP
356#else
357#define VM_STACK VM_GROWSDOWN
358#endif
359
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362/*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407/*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453};
454
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497#ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527};
528
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
544static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545{
546 return !vma->vm_ops;
547}
548
549#ifdef CONFIG_SHMEM
550/*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554bool vma_is_shmem(struct vm_area_struct *vma);
555#else
556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557#endif
558
559int vma_is_stack_for_current(struct vm_area_struct *vma);
560
561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564struct mmu_gather;
565struct inode;
566
567/*
568 * FIXME: take this include out, include page-flags.h in
569 * files which need it (119 of them)
570 */
571#include <linux/page-flags.h>
572#include <linux/huge_mm.h>
573
574/*
575 * Methods to modify the page usage count.
576 *
577 * What counts for a page usage:
578 * - cache mapping (page->mapping)
579 * - private data (page->private)
580 * - page mapped in a task's page tables, each mapping
581 * is counted separately
582 *
583 * Also, many kernel routines increase the page count before a critical
584 * routine so they can be sure the page doesn't go away from under them.
585 */
586
587/*
588 * Drop a ref, return true if the refcount fell to zero (the page has no users)
589 */
590static inline int put_page_testzero(struct page *page)
591{
592 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
593 return page_ref_dec_and_test(page);
594}
595
596/*
597 * Try to grab a ref unless the page has a refcount of zero, return false if
598 * that is the case.
599 * This can be called when MMU is off so it must not access
600 * any of the virtual mappings.
601 */
602static inline int get_page_unless_zero(struct page *page)
603{
604 return page_ref_add_unless(page, 1, 0);
605}
606
607extern int page_is_ram(unsigned long pfn);
608
609enum {
610 REGION_INTERSECTS,
611 REGION_DISJOINT,
612 REGION_MIXED,
613};
614
615int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
616 unsigned long desc);
617
618/* Support for virtually mapped pages */
619struct page *vmalloc_to_page(const void *addr);
620unsigned long vmalloc_to_pfn(const void *addr);
621
622/*
623 * Determine if an address is within the vmalloc range
624 *
625 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
626 * is no special casing required.
627 */
628static inline bool is_vmalloc_addr(const void *x)
629{
630#ifdef CONFIG_MMU
631 unsigned long addr = (unsigned long)x;
632
633 return addr >= VMALLOC_START && addr < VMALLOC_END;
634#else
635 return false;
636#endif
637}
638
639#ifndef is_ioremap_addr
640#define is_ioremap_addr(x) is_vmalloc_addr(x)
641#endif
642
643#ifdef CONFIG_MMU
644extern int is_vmalloc_or_module_addr(const void *x);
645#else
646static inline int is_vmalloc_or_module_addr(const void *x)
647{
648 return 0;
649}
650#endif
651
652extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
653static inline void *kvmalloc(size_t size, gfp_t flags)
654{
655 return kvmalloc_node(size, flags, NUMA_NO_NODE);
656}
657static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
658{
659 return kvmalloc_node(size, flags | __GFP_ZERO, node);
660}
661static inline void *kvzalloc(size_t size, gfp_t flags)
662{
663 return kvmalloc(size, flags | __GFP_ZERO);
664}
665
666static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
667{
668 size_t bytes;
669
670 if (unlikely(check_mul_overflow(n, size, &bytes)))
671 return NULL;
672
673 return kvmalloc(bytes, flags);
674}
675
676static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
677{
678 return kvmalloc_array(n, size, flags | __GFP_ZERO);
679}
680
681extern void kvfree(const void *addr);
682
683static inline int compound_mapcount(struct page *page)
684{
685 VM_BUG_ON_PAGE(!PageCompound(page), page);
686 page = compound_head(page);
687 return atomic_read(compound_mapcount_ptr(page)) + 1;
688}
689
690/*
691 * The atomic page->_mapcount, starts from -1: so that transitions
692 * both from it and to it can be tracked, using atomic_inc_and_test
693 * and atomic_add_negative(-1).
694 */
695static inline void page_mapcount_reset(struct page *page)
696{
697 atomic_set(&(page)->_mapcount, -1);
698}
699
700int __page_mapcount(struct page *page);
701
702static inline int page_mapcount(struct page *page)
703{
704 VM_BUG_ON_PAGE(PageSlab(page), page);
705
706 if (unlikely(PageCompound(page)))
707 return __page_mapcount(page);
708 return atomic_read(&page->_mapcount) + 1;
709}
710
711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
712int total_mapcount(struct page *page);
713int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
714#else
715static inline int total_mapcount(struct page *page)
716{
717 return page_mapcount(page);
718}
719static inline int page_trans_huge_mapcount(struct page *page,
720 int *total_mapcount)
721{
722 int mapcount = page_mapcount(page);
723 if (total_mapcount)
724 *total_mapcount = mapcount;
725 return mapcount;
726}
727#endif
728
729static inline struct page *virt_to_head_page(const void *x)
730{
731 struct page *page = virt_to_page(x);
732
733 return compound_head(page);
734}
735
736void __put_page(struct page *page);
737
738void put_pages_list(struct list_head *pages);
739
740void split_page(struct page *page, unsigned int order);
741
742/*
743 * Compound pages have a destructor function. Provide a
744 * prototype for that function and accessor functions.
745 * These are _only_ valid on the head of a compound page.
746 */
747typedef void compound_page_dtor(struct page *);
748
749/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
750enum compound_dtor_id {
751 NULL_COMPOUND_DTOR,
752 COMPOUND_PAGE_DTOR,
753#ifdef CONFIG_HUGETLB_PAGE
754 HUGETLB_PAGE_DTOR,
755#endif
756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
757 TRANSHUGE_PAGE_DTOR,
758#endif
759 NR_COMPOUND_DTORS,
760};
761extern compound_page_dtor * const compound_page_dtors[];
762
763static inline void set_compound_page_dtor(struct page *page,
764 enum compound_dtor_id compound_dtor)
765{
766 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
767 page[1].compound_dtor = compound_dtor;
768}
769
770static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
771{
772 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
773 return compound_page_dtors[page[1].compound_dtor];
774}
775
776static inline unsigned int compound_order(struct page *page)
777{
778 if (!PageHead(page))
779 return 0;
780 return page[1].compound_order;
781}
782
783static inline void set_compound_order(struct page *page, unsigned int order)
784{
785 page[1].compound_order = order;
786}
787
788/* Returns the number of pages in this potentially compound page. */
789static inline unsigned long compound_nr(struct page *page)
790{
791 return 1UL << compound_order(page);
792}
793
794/* Returns the number of bytes in this potentially compound page. */
795static inline unsigned long page_size(struct page *page)
796{
797 return PAGE_SIZE << compound_order(page);
798}
799
800/* Returns the number of bits needed for the number of bytes in a page */
801static inline unsigned int page_shift(struct page *page)
802{
803 return PAGE_SHIFT + compound_order(page);
804}
805
806void free_compound_page(struct page *page);
807
808#ifdef CONFIG_MMU
809/*
810 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
811 * servicing faults for write access. In the normal case, do always want
812 * pte_mkwrite. But get_user_pages can cause write faults for mappings
813 * that do not have writing enabled, when used by access_process_vm.
814 */
815static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
816{
817 if (likely(vma->vm_flags & VM_WRITE))
818 pte = pte_mkwrite(pte);
819 return pte;
820}
821
822vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
823 struct page *page);
824vm_fault_t finish_fault(struct vm_fault *vmf);
825vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
826#endif
827
828/*
829 * Multiple processes may "see" the same page. E.g. for untouched
830 * mappings of /dev/null, all processes see the same page full of
831 * zeroes, and text pages of executables and shared libraries have
832 * only one copy in memory, at most, normally.
833 *
834 * For the non-reserved pages, page_count(page) denotes a reference count.
835 * page_count() == 0 means the page is free. page->lru is then used for
836 * freelist management in the buddy allocator.
837 * page_count() > 0 means the page has been allocated.
838 *
839 * Pages are allocated by the slab allocator in order to provide memory
840 * to kmalloc and kmem_cache_alloc. In this case, the management of the
841 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
842 * unless a particular usage is carefully commented. (the responsibility of
843 * freeing the kmalloc memory is the caller's, of course).
844 *
845 * A page may be used by anyone else who does a __get_free_page().
846 * In this case, page_count still tracks the references, and should only
847 * be used through the normal accessor functions. The top bits of page->flags
848 * and page->virtual store page management information, but all other fields
849 * are unused and could be used privately, carefully. The management of this
850 * page is the responsibility of the one who allocated it, and those who have
851 * subsequently been given references to it.
852 *
853 * The other pages (we may call them "pagecache pages") are completely
854 * managed by the Linux memory manager: I/O, buffers, swapping etc.
855 * The following discussion applies only to them.
856 *
857 * A pagecache page contains an opaque `private' member, which belongs to the
858 * page's address_space. Usually, this is the address of a circular list of
859 * the page's disk buffers. PG_private must be set to tell the VM to call
860 * into the filesystem to release these pages.
861 *
862 * A page may belong to an inode's memory mapping. In this case, page->mapping
863 * is the pointer to the inode, and page->index is the file offset of the page,
864 * in units of PAGE_SIZE.
865 *
866 * If pagecache pages are not associated with an inode, they are said to be
867 * anonymous pages. These may become associated with the swapcache, and in that
868 * case PG_swapcache is set, and page->private is an offset into the swapcache.
869 *
870 * In either case (swapcache or inode backed), the pagecache itself holds one
871 * reference to the page. Setting PG_private should also increment the
872 * refcount. The each user mapping also has a reference to the page.
873 *
874 * The pagecache pages are stored in a per-mapping radix tree, which is
875 * rooted at mapping->i_pages, and indexed by offset.
876 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
877 * lists, we instead now tag pages as dirty/writeback in the radix tree.
878 *
879 * All pagecache pages may be subject to I/O:
880 * - inode pages may need to be read from disk,
881 * - inode pages which have been modified and are MAP_SHARED may need
882 * to be written back to the inode on disk,
883 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
884 * modified may need to be swapped out to swap space and (later) to be read
885 * back into memory.
886 */
887
888/*
889 * The zone field is never updated after free_area_init_core()
890 * sets it, so none of the operations on it need to be atomic.
891 */
892
893/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
894#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
895#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
896#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
897#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
898#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
899
900/*
901 * Define the bit shifts to access each section. For non-existent
902 * sections we define the shift as 0; that plus a 0 mask ensures
903 * the compiler will optimise away reference to them.
904 */
905#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
906#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
907#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
908#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
909#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
910
911/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
912#ifdef NODE_NOT_IN_PAGE_FLAGS
913#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
914#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
915 SECTIONS_PGOFF : ZONES_PGOFF)
916#else
917#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
918#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
919 NODES_PGOFF : ZONES_PGOFF)
920#endif
921
922#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
923
924#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
925#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
926#endif
927
928#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
929#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
930#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
931#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
932#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
933#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
934
935static inline enum zone_type page_zonenum(const struct page *page)
936{
937 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
938}
939
940#ifdef CONFIG_ZONE_DEVICE
941static inline bool is_zone_device_page(const struct page *page)
942{
943 return page_zonenum(page) == ZONE_DEVICE;
944}
945extern void memmap_init_zone_device(struct zone *, unsigned long,
946 unsigned long, struct dev_pagemap *);
947#else
948static inline bool is_zone_device_page(const struct page *page)
949{
950 return false;
951}
952#endif
953
954#ifdef CONFIG_DEV_PAGEMAP_OPS
955void __put_devmap_managed_page(struct page *page);
956DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
957static inline bool put_devmap_managed_page(struct page *page)
958{
959 if (!static_branch_unlikely(&devmap_managed_key))
960 return false;
961 if (!is_zone_device_page(page))
962 return false;
963 switch (page->pgmap->type) {
964 case MEMORY_DEVICE_PRIVATE:
965 case MEMORY_DEVICE_FS_DAX:
966 __put_devmap_managed_page(page);
967 return true;
968 default:
969 break;
970 }
971 return false;
972}
973
974#else /* CONFIG_DEV_PAGEMAP_OPS */
975static inline bool put_devmap_managed_page(struct page *page)
976{
977 return false;
978}
979#endif /* CONFIG_DEV_PAGEMAP_OPS */
980
981static inline bool is_device_private_page(const struct page *page)
982{
983 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
984 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
985 is_zone_device_page(page) &&
986 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
987}
988
989static inline bool is_pci_p2pdma_page(const struct page *page)
990{
991 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
992 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
993 is_zone_device_page(page) &&
994 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
995}
996
997/* 127: arbitrary random number, small enough to assemble well */
998#define page_ref_zero_or_close_to_overflow(page) \
999 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1000
1001static inline void get_page(struct page *page)
1002{
1003 page = compound_head(page);
1004 /*
1005 * Getting a normal page or the head of a compound page
1006 * requires to already have an elevated page->_refcount.
1007 */
1008 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1009 page_ref_inc(page);
1010}
1011
1012static inline __must_check bool try_get_page(struct page *page)
1013{
1014 page = compound_head(page);
1015 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1016 return false;
1017 page_ref_inc(page);
1018 return true;
1019}
1020
1021static inline void put_page(struct page *page)
1022{
1023 page = compound_head(page);
1024
1025 /*
1026 * For devmap managed pages we need to catch refcount transition from
1027 * 2 to 1, when refcount reach one it means the page is free and we
1028 * need to inform the device driver through callback. See
1029 * include/linux/memremap.h and HMM for details.
1030 */
1031 if (put_devmap_managed_page(page))
1032 return;
1033
1034 if (put_page_testzero(page))
1035 __put_page(page);
1036}
1037
1038/**
1039 * put_user_page() - release a gup-pinned page
1040 * @page: pointer to page to be released
1041 *
1042 * Pages that were pinned via get_user_pages*() must be released via
1043 * either put_user_page(), or one of the put_user_pages*() routines
1044 * below. This is so that eventually, pages that are pinned via
1045 * get_user_pages*() can be separately tracked and uniquely handled. In
1046 * particular, interactions with RDMA and filesystems need special
1047 * handling.
1048 *
1049 * put_user_page() and put_page() are not interchangeable, despite this early
1050 * implementation that makes them look the same. put_user_page() calls must
1051 * be perfectly matched up with get_user_page() calls.
1052 */
1053static inline void put_user_page(struct page *page)
1054{
1055 put_page(page);
1056}
1057
1058void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1059 bool make_dirty);
1060
1061void put_user_pages(struct page **pages, unsigned long npages);
1062
1063#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1064#define SECTION_IN_PAGE_FLAGS
1065#endif
1066
1067/*
1068 * The identification function is mainly used by the buddy allocator for
1069 * determining if two pages could be buddies. We are not really identifying
1070 * the zone since we could be using the section number id if we do not have
1071 * node id available in page flags.
1072 * We only guarantee that it will return the same value for two combinable
1073 * pages in a zone.
1074 */
1075static inline int page_zone_id(struct page *page)
1076{
1077 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1078}
1079
1080#ifdef NODE_NOT_IN_PAGE_FLAGS
1081extern int page_to_nid(const struct page *page);
1082#else
1083static inline int page_to_nid(const struct page *page)
1084{
1085 struct page *p = (struct page *)page;
1086
1087 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1088}
1089#endif
1090
1091#ifdef CONFIG_NUMA_BALANCING
1092static inline int cpu_pid_to_cpupid(int cpu, int pid)
1093{
1094 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1095}
1096
1097static inline int cpupid_to_pid(int cpupid)
1098{
1099 return cpupid & LAST__PID_MASK;
1100}
1101
1102static inline int cpupid_to_cpu(int cpupid)
1103{
1104 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1105}
1106
1107static inline int cpupid_to_nid(int cpupid)
1108{
1109 return cpu_to_node(cpupid_to_cpu(cpupid));
1110}
1111
1112static inline bool cpupid_pid_unset(int cpupid)
1113{
1114 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1115}
1116
1117static inline bool cpupid_cpu_unset(int cpupid)
1118{
1119 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1120}
1121
1122static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1123{
1124 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1125}
1126
1127#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1128#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1129static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1130{
1131 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1132}
1133
1134static inline int page_cpupid_last(struct page *page)
1135{
1136 return page->_last_cpupid;
1137}
1138static inline void page_cpupid_reset_last(struct page *page)
1139{
1140 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1141}
1142#else
1143static inline int page_cpupid_last(struct page *page)
1144{
1145 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1146}
1147
1148extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1149
1150static inline void page_cpupid_reset_last(struct page *page)
1151{
1152 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1153}
1154#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1155#else /* !CONFIG_NUMA_BALANCING */
1156static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1157{
1158 return page_to_nid(page); /* XXX */
1159}
1160
1161static inline int page_cpupid_last(struct page *page)
1162{
1163 return page_to_nid(page); /* XXX */
1164}
1165
1166static inline int cpupid_to_nid(int cpupid)
1167{
1168 return -1;
1169}
1170
1171static inline int cpupid_to_pid(int cpupid)
1172{
1173 return -1;
1174}
1175
1176static inline int cpupid_to_cpu(int cpupid)
1177{
1178 return -1;
1179}
1180
1181static inline int cpu_pid_to_cpupid(int nid, int pid)
1182{
1183 return -1;
1184}
1185
1186static inline bool cpupid_pid_unset(int cpupid)
1187{
1188 return 1;
1189}
1190
1191static inline void page_cpupid_reset_last(struct page *page)
1192{
1193}
1194
1195static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1196{
1197 return false;
1198}
1199#endif /* CONFIG_NUMA_BALANCING */
1200
1201#ifdef CONFIG_KASAN_SW_TAGS
1202static inline u8 page_kasan_tag(const struct page *page)
1203{
1204 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1205}
1206
1207static inline void page_kasan_tag_set(struct page *page, u8 tag)
1208{
1209 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1210 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1211}
1212
1213static inline void page_kasan_tag_reset(struct page *page)
1214{
1215 page_kasan_tag_set(page, 0xff);
1216}
1217#else
1218static inline u8 page_kasan_tag(const struct page *page)
1219{
1220 return 0xff;
1221}
1222
1223static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1224static inline void page_kasan_tag_reset(struct page *page) { }
1225#endif
1226
1227static inline struct zone *page_zone(const struct page *page)
1228{
1229 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1230}
1231
1232static inline pg_data_t *page_pgdat(const struct page *page)
1233{
1234 return NODE_DATA(page_to_nid(page));
1235}
1236
1237#ifdef SECTION_IN_PAGE_FLAGS
1238static inline void set_page_section(struct page *page, unsigned long section)
1239{
1240 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1241 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1242}
1243
1244static inline unsigned long page_to_section(const struct page *page)
1245{
1246 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1247}
1248#endif
1249
1250static inline void set_page_zone(struct page *page, enum zone_type zone)
1251{
1252 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1253 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1254}
1255
1256static inline void set_page_node(struct page *page, unsigned long node)
1257{
1258 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1259 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1260}
1261
1262static inline void set_page_links(struct page *page, enum zone_type zone,
1263 unsigned long node, unsigned long pfn)
1264{
1265 set_page_zone(page, zone);
1266 set_page_node(page, node);
1267#ifdef SECTION_IN_PAGE_FLAGS
1268 set_page_section(page, pfn_to_section_nr(pfn));
1269#endif
1270}
1271
1272#ifdef CONFIG_MEMCG
1273static inline struct mem_cgroup *page_memcg(struct page *page)
1274{
1275 return page->mem_cgroup;
1276}
1277static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1278{
1279 WARN_ON_ONCE(!rcu_read_lock_held());
1280 return READ_ONCE(page->mem_cgroup);
1281}
1282#else
1283static inline struct mem_cgroup *page_memcg(struct page *page)
1284{
1285 return NULL;
1286}
1287static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1288{
1289 WARN_ON_ONCE(!rcu_read_lock_held());
1290 return NULL;
1291}
1292#endif
1293
1294/*
1295 * Some inline functions in vmstat.h depend on page_zone()
1296 */
1297#include <linux/vmstat.h>
1298
1299static __always_inline void *lowmem_page_address(const struct page *page)
1300{
1301 return page_to_virt(page);
1302}
1303
1304#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1305#define HASHED_PAGE_VIRTUAL
1306#endif
1307
1308#if defined(WANT_PAGE_VIRTUAL)
1309static inline void *page_address(const struct page *page)
1310{
1311 return page->virtual;
1312}
1313static inline void set_page_address(struct page *page, void *address)
1314{
1315 page->virtual = address;
1316}
1317#define page_address_init() do { } while(0)
1318#endif
1319
1320#if defined(HASHED_PAGE_VIRTUAL)
1321void *page_address(const struct page *page);
1322void set_page_address(struct page *page, void *virtual);
1323void page_address_init(void);
1324#endif
1325
1326#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1327#define page_address(page) lowmem_page_address(page)
1328#define set_page_address(page, address) do { } while(0)
1329#define page_address_init() do { } while(0)
1330#endif
1331
1332extern void *page_rmapping(struct page *page);
1333extern struct anon_vma *page_anon_vma(struct page *page);
1334extern struct address_space *page_mapping(struct page *page);
1335
1336extern struct address_space *__page_file_mapping(struct page *);
1337
1338static inline
1339struct address_space *page_file_mapping(struct page *page)
1340{
1341 if (unlikely(PageSwapCache(page)))
1342 return __page_file_mapping(page);
1343
1344 return page->mapping;
1345}
1346
1347extern pgoff_t __page_file_index(struct page *page);
1348
1349/*
1350 * Return the pagecache index of the passed page. Regular pagecache pages
1351 * use ->index whereas swapcache pages use swp_offset(->private)
1352 */
1353static inline pgoff_t page_index(struct page *page)
1354{
1355 if (unlikely(PageSwapCache(page)))
1356 return __page_file_index(page);
1357 return page->index;
1358}
1359
1360bool page_mapped(struct page *page);
1361struct address_space *page_mapping(struct page *page);
1362struct address_space *page_mapping_file(struct page *page);
1363
1364/*
1365 * Return true only if the page has been allocated with
1366 * ALLOC_NO_WATERMARKS and the low watermark was not
1367 * met implying that the system is under some pressure.
1368 */
1369static inline bool page_is_pfmemalloc(struct page *page)
1370{
1371 /*
1372 * Page index cannot be this large so this must be
1373 * a pfmemalloc page.
1374 */
1375 return page->index == -1UL;
1376}
1377
1378/*
1379 * Only to be called by the page allocator on a freshly allocated
1380 * page.
1381 */
1382static inline void set_page_pfmemalloc(struct page *page)
1383{
1384 page->index = -1UL;
1385}
1386
1387static inline void clear_page_pfmemalloc(struct page *page)
1388{
1389 page->index = 0;
1390}
1391
1392/*
1393 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1394 */
1395extern void pagefault_out_of_memory(void);
1396
1397#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1398
1399/*
1400 * Flags passed to show_mem() and show_free_areas() to suppress output in
1401 * various contexts.
1402 */
1403#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1404
1405extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1406
1407#ifdef CONFIG_MMU
1408extern bool can_do_mlock(void);
1409#else
1410static inline bool can_do_mlock(void) { return false; }
1411#endif
1412extern int user_shm_lock(size_t, struct user_struct *);
1413extern void user_shm_unlock(size_t, struct user_struct *);
1414
1415/*
1416 * Parameter block passed down to zap_pte_range in exceptional cases.
1417 */
1418struct zap_details {
1419 struct address_space *check_mapping; /* Check page->mapping if set */
1420 pgoff_t first_index; /* Lowest page->index to unmap */
1421 pgoff_t last_index; /* Highest page->index to unmap */
1422};
1423
1424struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1425 pte_t pte);
1426struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1427 pmd_t pmd);
1428
1429void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1430 unsigned long size);
1431void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size);
1433void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1434 unsigned long start, unsigned long end);
1435
1436struct mmu_notifier_range;
1437
1438void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1439 unsigned long end, unsigned long floor, unsigned long ceiling);
1440int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1441 struct vm_area_struct *vma);
1442int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1443 struct mmu_notifier_range *range,
1444 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1445int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1446 unsigned long *pfn);
1447int follow_phys(struct vm_area_struct *vma, unsigned long address,
1448 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1449int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1450 void *buf, int len, int write);
1451
1452extern void truncate_pagecache(struct inode *inode, loff_t new);
1453extern void truncate_setsize(struct inode *inode, loff_t newsize);
1454void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1455void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1456int truncate_inode_page(struct address_space *mapping, struct page *page);
1457int generic_error_remove_page(struct address_space *mapping, struct page *page);
1458int invalidate_inode_page(struct page *page);
1459
1460#ifdef CONFIG_MMU
1461extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1462 unsigned long address, unsigned int flags);
1463extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1464 unsigned long address, unsigned int fault_flags,
1465 bool *unlocked);
1466void unmap_mapping_pages(struct address_space *mapping,
1467 pgoff_t start, pgoff_t nr, bool even_cows);
1468void unmap_mapping_range(struct address_space *mapping,
1469 loff_t const holebegin, loff_t const holelen, int even_cows);
1470#else
1471static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1472 unsigned long address, unsigned int flags)
1473{
1474 /* should never happen if there's no MMU */
1475 BUG();
1476 return VM_FAULT_SIGBUS;
1477}
1478static inline int fixup_user_fault(struct task_struct *tsk,
1479 struct mm_struct *mm, unsigned long address,
1480 unsigned int fault_flags, bool *unlocked)
1481{
1482 /* should never happen if there's no MMU */
1483 BUG();
1484 return -EFAULT;
1485}
1486static inline void unmap_mapping_pages(struct address_space *mapping,
1487 pgoff_t start, pgoff_t nr, bool even_cows) { }
1488static inline void unmap_mapping_range(struct address_space *mapping,
1489 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1490#endif
1491
1492static inline void unmap_shared_mapping_range(struct address_space *mapping,
1493 loff_t const holebegin, loff_t const holelen)
1494{
1495 unmap_mapping_range(mapping, holebegin, holelen, 0);
1496}
1497
1498extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1499 void *buf, int len, unsigned int gup_flags);
1500extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1501 void *buf, int len, unsigned int gup_flags);
1502extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1503 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1504
1505long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1506 unsigned long start, unsigned long nr_pages,
1507 unsigned int gup_flags, struct page **pages,
1508 struct vm_area_struct **vmas, int *locked);
1509long get_user_pages(unsigned long start, unsigned long nr_pages,
1510 unsigned int gup_flags, struct page **pages,
1511 struct vm_area_struct **vmas);
1512long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1513 unsigned int gup_flags, struct page **pages, int *locked);
1514long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1515 struct page **pages, unsigned int gup_flags);
1516
1517int get_user_pages_fast(unsigned long start, int nr_pages,
1518 unsigned int gup_flags, struct page **pages);
1519
1520int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1521int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1522 struct task_struct *task, bool bypass_rlim);
1523
1524/* Container for pinned pfns / pages */
1525struct frame_vector {
1526 unsigned int nr_allocated; /* Number of frames we have space for */
1527 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1528 bool got_ref; /* Did we pin pages by getting page ref? */
1529 bool is_pfns; /* Does array contain pages or pfns? */
1530 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1531 * pfns_vector_pages() or pfns_vector_pfns()
1532 * for access */
1533};
1534
1535struct frame_vector *frame_vector_create(unsigned int nr_frames);
1536void frame_vector_destroy(struct frame_vector *vec);
1537int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1538 unsigned int gup_flags, struct frame_vector *vec);
1539void put_vaddr_frames(struct frame_vector *vec);
1540int frame_vector_to_pages(struct frame_vector *vec);
1541void frame_vector_to_pfns(struct frame_vector *vec);
1542
1543static inline unsigned int frame_vector_count(struct frame_vector *vec)
1544{
1545 return vec->nr_frames;
1546}
1547
1548static inline struct page **frame_vector_pages(struct frame_vector *vec)
1549{
1550 if (vec->is_pfns) {
1551 int err = frame_vector_to_pages(vec);
1552
1553 if (err)
1554 return ERR_PTR(err);
1555 }
1556 return (struct page **)(vec->ptrs);
1557}
1558
1559static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1560{
1561 if (!vec->is_pfns)
1562 frame_vector_to_pfns(vec);
1563 return (unsigned long *)(vec->ptrs);
1564}
1565
1566struct kvec;
1567int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1568 struct page **pages);
1569int get_kernel_page(unsigned long start, int write, struct page **pages);
1570struct page *get_dump_page(unsigned long addr);
1571
1572extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1573extern void do_invalidatepage(struct page *page, unsigned int offset,
1574 unsigned int length);
1575
1576void __set_page_dirty(struct page *, struct address_space *, int warn);
1577int __set_page_dirty_nobuffers(struct page *page);
1578int __set_page_dirty_no_writeback(struct page *page);
1579int redirty_page_for_writepage(struct writeback_control *wbc,
1580 struct page *page);
1581void account_page_dirtied(struct page *page, struct address_space *mapping);
1582void account_page_cleaned(struct page *page, struct address_space *mapping,
1583 struct bdi_writeback *wb);
1584int set_page_dirty(struct page *page);
1585int set_page_dirty_lock(struct page *page);
1586void __cancel_dirty_page(struct page *page);
1587static inline void cancel_dirty_page(struct page *page)
1588{
1589 /* Avoid atomic ops, locking, etc. when not actually needed. */
1590 if (PageDirty(page))
1591 __cancel_dirty_page(page);
1592}
1593int clear_page_dirty_for_io(struct page *page);
1594
1595int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1596
1597extern unsigned long move_page_tables(struct vm_area_struct *vma,
1598 unsigned long old_addr, struct vm_area_struct *new_vma,
1599 unsigned long new_addr, unsigned long len,
1600 bool need_rmap_locks);
1601extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1602 unsigned long end, pgprot_t newprot,
1603 int dirty_accountable, int prot_numa);
1604extern int mprotect_fixup(struct vm_area_struct *vma,
1605 struct vm_area_struct **pprev, unsigned long start,
1606 unsigned long end, unsigned long newflags);
1607
1608/*
1609 * doesn't attempt to fault and will return short.
1610 */
1611int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1612 struct page **pages);
1613/*
1614 * per-process(per-mm_struct) statistics.
1615 */
1616static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1617{
1618 long val = atomic_long_read(&mm->rss_stat.count[member]);
1619
1620#ifdef SPLIT_RSS_COUNTING
1621 /*
1622 * counter is updated in asynchronous manner and may go to minus.
1623 * But it's never be expected number for users.
1624 */
1625 if (val < 0)
1626 val = 0;
1627#endif
1628 return (unsigned long)val;
1629}
1630
1631void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1632
1633static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1634{
1635 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1636
1637 mm_trace_rss_stat(mm, member, count);
1638}
1639
1640static inline void inc_mm_counter(struct mm_struct *mm, int member)
1641{
1642 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1643
1644 mm_trace_rss_stat(mm, member, count);
1645}
1646
1647static inline void dec_mm_counter(struct mm_struct *mm, int member)
1648{
1649 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1650
1651 mm_trace_rss_stat(mm, member, count);
1652}
1653
1654/* Optimized variant when page is already known not to be PageAnon */
1655static inline int mm_counter_file(struct page *page)
1656{
1657 if (PageSwapBacked(page))
1658 return MM_SHMEMPAGES;
1659 return MM_FILEPAGES;
1660}
1661
1662static inline int mm_counter(struct page *page)
1663{
1664 if (PageAnon(page))
1665 return MM_ANONPAGES;
1666 return mm_counter_file(page);
1667}
1668
1669static inline unsigned long get_mm_rss(struct mm_struct *mm)
1670{
1671 return get_mm_counter(mm, MM_FILEPAGES) +
1672 get_mm_counter(mm, MM_ANONPAGES) +
1673 get_mm_counter(mm, MM_SHMEMPAGES);
1674}
1675
1676static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1677{
1678 return max(mm->hiwater_rss, get_mm_rss(mm));
1679}
1680
1681static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1682{
1683 return max(mm->hiwater_vm, mm->total_vm);
1684}
1685
1686static inline void update_hiwater_rss(struct mm_struct *mm)
1687{
1688 unsigned long _rss = get_mm_rss(mm);
1689
1690 if ((mm)->hiwater_rss < _rss)
1691 (mm)->hiwater_rss = _rss;
1692}
1693
1694static inline void update_hiwater_vm(struct mm_struct *mm)
1695{
1696 if (mm->hiwater_vm < mm->total_vm)
1697 mm->hiwater_vm = mm->total_vm;
1698}
1699
1700static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1701{
1702 mm->hiwater_rss = get_mm_rss(mm);
1703}
1704
1705static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1706 struct mm_struct *mm)
1707{
1708 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1709
1710 if (*maxrss < hiwater_rss)
1711 *maxrss = hiwater_rss;
1712}
1713
1714#if defined(SPLIT_RSS_COUNTING)
1715void sync_mm_rss(struct mm_struct *mm);
1716#else
1717static inline void sync_mm_rss(struct mm_struct *mm)
1718{
1719}
1720#endif
1721
1722#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1723static inline int pte_devmap(pte_t pte)
1724{
1725 return 0;
1726}
1727#endif
1728
1729int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1730
1731extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1732 spinlock_t **ptl);
1733static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1734 spinlock_t **ptl)
1735{
1736 pte_t *ptep;
1737 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1738 return ptep;
1739}
1740
1741#ifdef __PAGETABLE_P4D_FOLDED
1742static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1743 unsigned long address)
1744{
1745 return 0;
1746}
1747#else
1748int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1749#endif
1750
1751#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1752static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1753 unsigned long address)
1754{
1755 return 0;
1756}
1757static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1758static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1759
1760#else
1761int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1762
1763static inline void mm_inc_nr_puds(struct mm_struct *mm)
1764{
1765 if (mm_pud_folded(mm))
1766 return;
1767 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1768}
1769
1770static inline void mm_dec_nr_puds(struct mm_struct *mm)
1771{
1772 if (mm_pud_folded(mm))
1773 return;
1774 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1775}
1776#endif
1777
1778#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1779static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1780 unsigned long address)
1781{
1782 return 0;
1783}
1784
1785static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1786static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1787
1788#else
1789int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1790
1791static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1792{
1793 if (mm_pmd_folded(mm))
1794 return;
1795 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1796}
1797
1798static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1799{
1800 if (mm_pmd_folded(mm))
1801 return;
1802 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1803}
1804#endif
1805
1806#ifdef CONFIG_MMU
1807static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1808{
1809 atomic_long_set(&mm->pgtables_bytes, 0);
1810}
1811
1812static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1813{
1814 return atomic_long_read(&mm->pgtables_bytes);
1815}
1816
1817static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1818{
1819 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1820}
1821
1822static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1823{
1824 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1825}
1826#else
1827
1828static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1829static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1830{
1831 return 0;
1832}
1833
1834static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1835static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1836#endif
1837
1838int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1839int __pte_alloc_kernel(pmd_t *pmd);
1840
1841#if defined(CONFIG_MMU)
1842
1843/*
1844 * The following ifdef needed to get the 5level-fixup.h header to work.
1845 * Remove it when 5level-fixup.h has been removed.
1846 */
1847#ifndef __ARCH_HAS_5LEVEL_HACK
1848static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1849 unsigned long address)
1850{
1851 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1852 NULL : p4d_offset(pgd, address);
1853}
1854
1855static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1856 unsigned long address)
1857{
1858 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1859 NULL : pud_offset(p4d, address);
1860}
1861#endif /* !__ARCH_HAS_5LEVEL_HACK */
1862
1863static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1864{
1865 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1866 NULL: pmd_offset(pud, address);
1867}
1868#endif /* CONFIG_MMU */
1869
1870#if USE_SPLIT_PTE_PTLOCKS
1871#if ALLOC_SPLIT_PTLOCKS
1872void __init ptlock_cache_init(void);
1873extern bool ptlock_alloc(struct page *page);
1874extern void ptlock_free(struct page *page);
1875
1876static inline spinlock_t *ptlock_ptr(struct page *page)
1877{
1878 return page->ptl;
1879}
1880#else /* ALLOC_SPLIT_PTLOCKS */
1881static inline void ptlock_cache_init(void)
1882{
1883}
1884
1885static inline bool ptlock_alloc(struct page *page)
1886{
1887 return true;
1888}
1889
1890static inline void ptlock_free(struct page *page)
1891{
1892}
1893
1894static inline spinlock_t *ptlock_ptr(struct page *page)
1895{
1896 return &page->ptl;
1897}
1898#endif /* ALLOC_SPLIT_PTLOCKS */
1899
1900static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1901{
1902 return ptlock_ptr(pmd_page(*pmd));
1903}
1904
1905static inline bool ptlock_init(struct page *page)
1906{
1907 /*
1908 * prep_new_page() initialize page->private (and therefore page->ptl)
1909 * with 0. Make sure nobody took it in use in between.
1910 *
1911 * It can happen if arch try to use slab for page table allocation:
1912 * slab code uses page->slab_cache, which share storage with page->ptl.
1913 */
1914 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1915 if (!ptlock_alloc(page))
1916 return false;
1917 spin_lock_init(ptlock_ptr(page));
1918 return true;
1919}
1920
1921#else /* !USE_SPLIT_PTE_PTLOCKS */
1922/*
1923 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1924 */
1925static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1926{
1927 return &mm->page_table_lock;
1928}
1929static inline void ptlock_cache_init(void) {}
1930static inline bool ptlock_init(struct page *page) { return true; }
1931static inline void ptlock_free(struct page *page) {}
1932#endif /* USE_SPLIT_PTE_PTLOCKS */
1933
1934static inline void pgtable_init(void)
1935{
1936 ptlock_cache_init();
1937 pgtable_cache_init();
1938}
1939
1940static inline bool pgtable_pte_page_ctor(struct page *page)
1941{
1942 if (!ptlock_init(page))
1943 return false;
1944 __SetPageTable(page);
1945 inc_zone_page_state(page, NR_PAGETABLE);
1946 return true;
1947}
1948
1949static inline void pgtable_pte_page_dtor(struct page *page)
1950{
1951 ptlock_free(page);
1952 __ClearPageTable(page);
1953 dec_zone_page_state(page, NR_PAGETABLE);
1954}
1955
1956#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1957({ \
1958 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1959 pte_t *__pte = pte_offset_map(pmd, address); \
1960 *(ptlp) = __ptl; \
1961 spin_lock(__ptl); \
1962 __pte; \
1963})
1964
1965#define pte_unmap_unlock(pte, ptl) do { \
1966 spin_unlock(ptl); \
1967 pte_unmap(pte); \
1968} while (0)
1969
1970#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1971
1972#define pte_alloc_map(mm, pmd, address) \
1973 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1974
1975#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1976 (pte_alloc(mm, pmd) ? \
1977 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1978
1979#define pte_alloc_kernel(pmd, address) \
1980 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1981 NULL: pte_offset_kernel(pmd, address))
1982
1983#if USE_SPLIT_PMD_PTLOCKS
1984
1985static struct page *pmd_to_page(pmd_t *pmd)
1986{
1987 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1988 return virt_to_page((void *)((unsigned long) pmd & mask));
1989}
1990
1991static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1992{
1993 return ptlock_ptr(pmd_to_page(pmd));
1994}
1995
1996static inline bool pgtable_pmd_page_ctor(struct page *page)
1997{
1998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1999 page->pmd_huge_pte = NULL;
2000#endif
2001 return ptlock_init(page);
2002}
2003
2004static inline void pgtable_pmd_page_dtor(struct page *page)
2005{
2006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2007 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2008#endif
2009 ptlock_free(page);
2010}
2011
2012#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2013
2014#else
2015
2016static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2017{
2018 return &mm->page_table_lock;
2019}
2020
2021static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2022static inline void pgtable_pmd_page_dtor(struct page *page) {}
2023
2024#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2025
2026#endif
2027
2028static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2029{
2030 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2031 spin_lock(ptl);
2032 return ptl;
2033}
2034
2035/*
2036 * No scalability reason to split PUD locks yet, but follow the same pattern
2037 * as the PMD locks to make it easier if we decide to. The VM should not be
2038 * considered ready to switch to split PUD locks yet; there may be places
2039 * which need to be converted from page_table_lock.
2040 */
2041static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2042{
2043 return &mm->page_table_lock;
2044}
2045
2046static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2047{
2048 spinlock_t *ptl = pud_lockptr(mm, pud);
2049
2050 spin_lock(ptl);
2051 return ptl;
2052}
2053
2054extern void __init pagecache_init(void);
2055extern void free_area_init(unsigned long * zones_size);
2056extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2057 unsigned long zone_start_pfn, unsigned long *zholes_size);
2058extern void free_initmem(void);
2059
2060/*
2061 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2062 * into the buddy system. The freed pages will be poisoned with pattern
2063 * "poison" if it's within range [0, UCHAR_MAX].
2064 * Return pages freed into the buddy system.
2065 */
2066extern unsigned long free_reserved_area(void *start, void *end,
2067 int poison, const char *s);
2068
2069#ifdef CONFIG_HIGHMEM
2070/*
2071 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2072 * and totalram_pages.
2073 */
2074extern void free_highmem_page(struct page *page);
2075#endif
2076
2077extern void adjust_managed_page_count(struct page *page, long count);
2078extern void mem_init_print_info(const char *str);
2079
2080extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2081
2082/* Free the reserved page into the buddy system, so it gets managed. */
2083static inline void __free_reserved_page(struct page *page)
2084{
2085 ClearPageReserved(page);
2086 init_page_count(page);
2087 __free_page(page);
2088}
2089
2090static inline void free_reserved_page(struct page *page)
2091{
2092 __free_reserved_page(page);
2093 adjust_managed_page_count(page, 1);
2094}
2095
2096static inline void mark_page_reserved(struct page *page)
2097{
2098 SetPageReserved(page);
2099 adjust_managed_page_count(page, -1);
2100}
2101
2102/*
2103 * Default method to free all the __init memory into the buddy system.
2104 * The freed pages will be poisoned with pattern "poison" if it's within
2105 * range [0, UCHAR_MAX].
2106 * Return pages freed into the buddy system.
2107 */
2108static inline unsigned long free_initmem_default(int poison)
2109{
2110 extern char __init_begin[], __init_end[];
2111
2112 return free_reserved_area(&__init_begin, &__init_end,
2113 poison, "unused kernel");
2114}
2115
2116static inline unsigned long get_num_physpages(void)
2117{
2118 int nid;
2119 unsigned long phys_pages = 0;
2120
2121 for_each_online_node(nid)
2122 phys_pages += node_present_pages(nid);
2123
2124 return phys_pages;
2125}
2126
2127#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2128/*
2129 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2130 * zones, allocate the backing mem_map and account for memory holes in a more
2131 * architecture independent manner. This is a substitute for creating the
2132 * zone_sizes[] and zholes_size[] arrays and passing them to
2133 * free_area_init_node()
2134 *
2135 * An architecture is expected to register range of page frames backed by
2136 * physical memory with memblock_add[_node]() before calling
2137 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2138 * usage, an architecture is expected to do something like
2139 *
2140 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2141 * max_highmem_pfn};
2142 * for_each_valid_physical_page_range()
2143 * memblock_add_node(base, size, nid)
2144 * free_area_init_nodes(max_zone_pfns);
2145 *
2146 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2147 * registered physical page range. Similarly
2148 * sparse_memory_present_with_active_regions() calls memory_present() for
2149 * each range when SPARSEMEM is enabled.
2150 *
2151 * See mm/page_alloc.c for more information on each function exposed by
2152 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2153 */
2154extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2155unsigned long node_map_pfn_alignment(void);
2156unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2157 unsigned long end_pfn);
2158extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2159 unsigned long end_pfn);
2160extern void get_pfn_range_for_nid(unsigned int nid,
2161 unsigned long *start_pfn, unsigned long *end_pfn);
2162extern unsigned long find_min_pfn_with_active_regions(void);
2163extern void free_bootmem_with_active_regions(int nid,
2164 unsigned long max_low_pfn);
2165extern void sparse_memory_present_with_active_regions(int nid);
2166
2167#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2168
2169#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2170 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2171static inline int __early_pfn_to_nid(unsigned long pfn,
2172 struct mminit_pfnnid_cache *state)
2173{
2174 return 0;
2175}
2176#else
2177/* please see mm/page_alloc.c */
2178extern int __meminit early_pfn_to_nid(unsigned long pfn);
2179/* there is a per-arch backend function. */
2180extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2181 struct mminit_pfnnid_cache *state);
2182#endif
2183
2184#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2185void zero_resv_unavail(void);
2186#else
2187static inline void zero_resv_unavail(void) {}
2188#endif
2189
2190extern void set_dma_reserve(unsigned long new_dma_reserve);
2191extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2192 enum memmap_context, struct vmem_altmap *);
2193extern void setup_per_zone_wmarks(void);
2194extern int __meminit init_per_zone_wmark_min(void);
2195extern void mem_init(void);
2196extern void __init mmap_init(void);
2197extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2198extern long si_mem_available(void);
2199extern void si_meminfo(struct sysinfo * val);
2200extern void si_meminfo_node(struct sysinfo *val, int nid);
2201#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2202extern unsigned long arch_reserved_kernel_pages(void);
2203#endif
2204
2205extern __printf(3, 4)
2206void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2207
2208extern void setup_per_cpu_pageset(void);
2209
2210/* page_alloc.c */
2211extern int min_free_kbytes;
2212extern int watermark_boost_factor;
2213extern int watermark_scale_factor;
2214
2215/* nommu.c */
2216extern atomic_long_t mmap_pages_allocated;
2217extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2218
2219/* interval_tree.c */
2220void vma_interval_tree_insert(struct vm_area_struct *node,
2221 struct rb_root_cached *root);
2222void vma_interval_tree_insert_after(struct vm_area_struct *node,
2223 struct vm_area_struct *prev,
2224 struct rb_root_cached *root);
2225void vma_interval_tree_remove(struct vm_area_struct *node,
2226 struct rb_root_cached *root);
2227struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2228 unsigned long start, unsigned long last);
2229struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2230 unsigned long start, unsigned long last);
2231
2232#define vma_interval_tree_foreach(vma, root, start, last) \
2233 for (vma = vma_interval_tree_iter_first(root, start, last); \
2234 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2235
2236void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2237 struct rb_root_cached *root);
2238void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2239 struct rb_root_cached *root);
2240struct anon_vma_chain *
2241anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2242 unsigned long start, unsigned long last);
2243struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2244 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2245#ifdef CONFIG_DEBUG_VM_RB
2246void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2247#endif
2248
2249#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2250 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2251 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2252
2253/* mmap.c */
2254extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2255extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2256 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2257 struct vm_area_struct *expand);
2258static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2259 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2260{
2261 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2262}
2263extern struct vm_area_struct *vma_merge(struct mm_struct *,
2264 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2265 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2266 struct mempolicy *, struct vm_userfaultfd_ctx);
2267extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2268extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2269 unsigned long addr, int new_below);
2270extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2271 unsigned long addr, int new_below);
2272extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2273extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2274 struct rb_node **, struct rb_node *);
2275extern void unlink_file_vma(struct vm_area_struct *);
2276extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2277 unsigned long addr, unsigned long len, pgoff_t pgoff,
2278 bool *need_rmap_locks);
2279extern void exit_mmap(struct mm_struct *);
2280
2281static inline int check_data_rlimit(unsigned long rlim,
2282 unsigned long new,
2283 unsigned long start,
2284 unsigned long end_data,
2285 unsigned long start_data)
2286{
2287 if (rlim < RLIM_INFINITY) {
2288 if (((new - start) + (end_data - start_data)) > rlim)
2289 return -ENOSPC;
2290 }
2291
2292 return 0;
2293}
2294
2295extern int mm_take_all_locks(struct mm_struct *mm);
2296extern void mm_drop_all_locks(struct mm_struct *mm);
2297
2298extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2299extern struct file *get_mm_exe_file(struct mm_struct *mm);
2300extern struct file *get_task_exe_file(struct task_struct *task);
2301
2302extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2303extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2304
2305extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2306 const struct vm_special_mapping *sm);
2307extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2308 unsigned long addr, unsigned long len,
2309 unsigned long flags,
2310 const struct vm_special_mapping *spec);
2311/* This is an obsolete alternative to _install_special_mapping. */
2312extern int install_special_mapping(struct mm_struct *mm,
2313 unsigned long addr, unsigned long len,
2314 unsigned long flags, struct page **pages);
2315
2316unsigned long randomize_stack_top(unsigned long stack_top);
2317
2318extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2319
2320extern unsigned long mmap_region(struct file *file, unsigned long addr,
2321 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2322 struct list_head *uf);
2323extern unsigned long do_mmap(struct file *file, unsigned long addr,
2324 unsigned long len, unsigned long prot, unsigned long flags,
2325 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2326 struct list_head *uf);
2327extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2328 struct list_head *uf, bool downgrade);
2329extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2330 struct list_head *uf);
2331
2332static inline unsigned long
2333do_mmap_pgoff(struct file *file, unsigned long addr,
2334 unsigned long len, unsigned long prot, unsigned long flags,
2335 unsigned long pgoff, unsigned long *populate,
2336 struct list_head *uf)
2337{
2338 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2339}
2340
2341#ifdef CONFIG_MMU
2342extern int __mm_populate(unsigned long addr, unsigned long len,
2343 int ignore_errors);
2344static inline void mm_populate(unsigned long addr, unsigned long len)
2345{
2346 /* Ignore errors */
2347 (void) __mm_populate(addr, len, 1);
2348}
2349#else
2350static inline void mm_populate(unsigned long addr, unsigned long len) {}
2351#endif
2352
2353/* These take the mm semaphore themselves */
2354extern int __must_check vm_brk(unsigned long, unsigned long);
2355extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2356extern int vm_munmap(unsigned long, size_t);
2357extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2358 unsigned long, unsigned long,
2359 unsigned long, unsigned long);
2360
2361struct vm_unmapped_area_info {
2362#define VM_UNMAPPED_AREA_TOPDOWN 1
2363 unsigned long flags;
2364 unsigned long length;
2365 unsigned long low_limit;
2366 unsigned long high_limit;
2367 unsigned long align_mask;
2368 unsigned long align_offset;
2369};
2370
2371extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2372extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2373
2374/*
2375 * Search for an unmapped address range.
2376 *
2377 * We are looking for a range that:
2378 * - does not intersect with any VMA;
2379 * - is contained within the [low_limit, high_limit) interval;
2380 * - is at least the desired size.
2381 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2382 */
2383static inline unsigned long
2384vm_unmapped_area(struct vm_unmapped_area_info *info)
2385{
2386 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2387 return unmapped_area_topdown(info);
2388 else
2389 return unmapped_area(info);
2390}
2391
2392/* truncate.c */
2393extern void truncate_inode_pages(struct address_space *, loff_t);
2394extern void truncate_inode_pages_range(struct address_space *,
2395 loff_t lstart, loff_t lend);
2396extern void truncate_inode_pages_final(struct address_space *);
2397
2398/* generic vm_area_ops exported for stackable file systems */
2399extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2400extern void filemap_map_pages(struct vm_fault *vmf,
2401 pgoff_t start_pgoff, pgoff_t end_pgoff);
2402extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2403
2404/* mm/page-writeback.c */
2405int __must_check write_one_page(struct page *page);
2406void task_dirty_inc(struct task_struct *tsk);
2407
2408/* readahead.c */
2409#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2410
2411int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2412 pgoff_t offset, unsigned long nr_to_read);
2413
2414void page_cache_sync_readahead(struct address_space *mapping,
2415 struct file_ra_state *ra,
2416 struct file *filp,
2417 pgoff_t offset,
2418 unsigned long size);
2419
2420void page_cache_async_readahead(struct address_space *mapping,
2421 struct file_ra_state *ra,
2422 struct file *filp,
2423 struct page *pg,
2424 pgoff_t offset,
2425 unsigned long size);
2426
2427extern unsigned long stack_guard_gap;
2428/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2429extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2430
2431/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2432extern int expand_downwards(struct vm_area_struct *vma,
2433 unsigned long address);
2434#if VM_GROWSUP
2435extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2436#else
2437 #define expand_upwards(vma, address) (0)
2438#endif
2439
2440/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2441extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2442extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2443 struct vm_area_struct **pprev);
2444
2445/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2446 NULL if none. Assume start_addr < end_addr. */
2447static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2448{
2449 struct vm_area_struct * vma = find_vma(mm,start_addr);
2450
2451 if (vma && end_addr <= vma->vm_start)
2452 vma = NULL;
2453 return vma;
2454}
2455
2456static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2457{
2458 unsigned long vm_start = vma->vm_start;
2459
2460 if (vma->vm_flags & VM_GROWSDOWN) {
2461 vm_start -= stack_guard_gap;
2462 if (vm_start > vma->vm_start)
2463 vm_start = 0;
2464 }
2465 return vm_start;
2466}
2467
2468static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2469{
2470 unsigned long vm_end = vma->vm_end;
2471
2472 if (vma->vm_flags & VM_GROWSUP) {
2473 vm_end += stack_guard_gap;
2474 if (vm_end < vma->vm_end)
2475 vm_end = -PAGE_SIZE;
2476 }
2477 return vm_end;
2478}
2479
2480static inline unsigned long vma_pages(struct vm_area_struct *vma)
2481{
2482 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2483}
2484
2485/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2486static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2487 unsigned long vm_start, unsigned long vm_end)
2488{
2489 struct vm_area_struct *vma = find_vma(mm, vm_start);
2490
2491 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2492 vma = NULL;
2493
2494 return vma;
2495}
2496
2497static inline bool range_in_vma(struct vm_area_struct *vma,
2498 unsigned long start, unsigned long end)
2499{
2500 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2501}
2502
2503#ifdef CONFIG_MMU
2504pgprot_t vm_get_page_prot(unsigned long vm_flags);
2505void vma_set_page_prot(struct vm_area_struct *vma);
2506#else
2507static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2508{
2509 return __pgprot(0);
2510}
2511static inline void vma_set_page_prot(struct vm_area_struct *vma)
2512{
2513 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2514}
2515#endif
2516
2517#ifdef CONFIG_NUMA_BALANCING
2518unsigned long change_prot_numa(struct vm_area_struct *vma,
2519 unsigned long start, unsigned long end);
2520#endif
2521
2522struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2523int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2524 unsigned long pfn, unsigned long size, pgprot_t);
2525int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2526int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2527 unsigned long num);
2528int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2529 unsigned long num);
2530vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2531 unsigned long pfn);
2532vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2533 unsigned long pfn, pgprot_t pgprot);
2534vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2535 pfn_t pfn);
2536vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2537 unsigned long addr, pfn_t pfn);
2538int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2539
2540static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2541 unsigned long addr, struct page *page)
2542{
2543 int err = vm_insert_page(vma, addr, page);
2544
2545 if (err == -ENOMEM)
2546 return VM_FAULT_OOM;
2547 if (err < 0 && err != -EBUSY)
2548 return VM_FAULT_SIGBUS;
2549
2550 return VM_FAULT_NOPAGE;
2551}
2552
2553static inline vm_fault_t vmf_error(int err)
2554{
2555 if (err == -ENOMEM)
2556 return VM_FAULT_OOM;
2557 return VM_FAULT_SIGBUS;
2558}
2559
2560struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2561 unsigned int foll_flags);
2562
2563#define FOLL_WRITE 0x01 /* check pte is writable */
2564#define FOLL_TOUCH 0x02 /* mark page accessed */
2565#define FOLL_GET 0x04 /* do get_page on page */
2566#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2567#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2568#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2569 * and return without waiting upon it */
2570#define FOLL_POPULATE 0x40 /* fault in page */
2571#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2572#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2573#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2574#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2575#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2576#define FOLL_MLOCK 0x1000 /* lock present pages */
2577#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2578#define FOLL_COW 0x4000 /* internal GUP flag */
2579#define FOLL_ANON 0x8000 /* don't do file mappings */
2580#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2581#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2582
2583/*
2584 * NOTE on FOLL_LONGTERM:
2585 *
2586 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2587 * period _often_ under userspace control. This is contrasted with
2588 * iov_iter_get_pages() where usages which are transient.
2589 *
2590 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2591 * lifetime enforced by the filesystem and we need guarantees that longterm
2592 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2593 * the filesystem. Ideas for this coordination include revoking the longterm
2594 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2595 * added after the problem with filesystems was found FS DAX VMAs are
2596 * specifically failed. Filesystem pages are still subject to bugs and use of
2597 * FOLL_LONGTERM should be avoided on those pages.
2598 *
2599 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2600 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2601 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2602 * is due to an incompatibility with the FS DAX check and
2603 * FAULT_FLAG_ALLOW_RETRY
2604 *
2605 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2606 * that region. And so CMA attempts to migrate the page before pinning when
2607 * FOLL_LONGTERM is specified.
2608 */
2609
2610static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2611{
2612 if (vm_fault & VM_FAULT_OOM)
2613 return -ENOMEM;
2614 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2615 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2616 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2617 return -EFAULT;
2618 return 0;
2619}
2620
2621typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2622extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2623 unsigned long size, pte_fn_t fn, void *data);
2624extern int apply_to_existing_page_range(struct mm_struct *mm,
2625 unsigned long address, unsigned long size,
2626 pte_fn_t fn, void *data);
2627
2628#ifdef CONFIG_PAGE_POISONING
2629extern bool page_poisoning_enabled(void);
2630extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2631#else
2632static inline bool page_poisoning_enabled(void) { return false; }
2633static inline void kernel_poison_pages(struct page *page, int numpages,
2634 int enable) { }
2635#endif
2636
2637#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2638DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2639#else
2640DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2641#endif
2642static inline bool want_init_on_alloc(gfp_t flags)
2643{
2644 if (static_branch_unlikely(&init_on_alloc) &&
2645 !page_poisoning_enabled())
2646 return true;
2647 return flags & __GFP_ZERO;
2648}
2649
2650#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2651DECLARE_STATIC_KEY_TRUE(init_on_free);
2652#else
2653DECLARE_STATIC_KEY_FALSE(init_on_free);
2654#endif
2655static inline bool want_init_on_free(void)
2656{
2657 return static_branch_unlikely(&init_on_free) &&
2658 !page_poisoning_enabled();
2659}
2660
2661#ifdef CONFIG_DEBUG_PAGEALLOC
2662extern void init_debug_pagealloc(void);
2663#else
2664static inline void init_debug_pagealloc(void) {}
2665#endif
2666extern bool _debug_pagealloc_enabled_early;
2667DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2668
2669static inline bool debug_pagealloc_enabled(void)
2670{
2671 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2672 _debug_pagealloc_enabled_early;
2673}
2674
2675/*
2676 * For use in fast paths after init_debug_pagealloc() has run, or when a
2677 * false negative result is not harmful when called too early.
2678 */
2679static inline bool debug_pagealloc_enabled_static(void)
2680{
2681 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2682 return false;
2683
2684 return static_branch_unlikely(&_debug_pagealloc_enabled);
2685}
2686
2687#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2688extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2689
2690static inline void
2691kernel_map_pages(struct page *page, int numpages, int enable)
2692{
2693 __kernel_map_pages(page, numpages, enable);
2694}
2695#ifdef CONFIG_HIBERNATION
2696extern bool kernel_page_present(struct page *page);
2697#endif /* CONFIG_HIBERNATION */
2698#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2699static inline void
2700kernel_map_pages(struct page *page, int numpages, int enable) {}
2701#ifdef CONFIG_HIBERNATION
2702static inline bool kernel_page_present(struct page *page) { return true; }
2703#endif /* CONFIG_HIBERNATION */
2704#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2705
2706#ifdef __HAVE_ARCH_GATE_AREA
2707extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2708extern int in_gate_area_no_mm(unsigned long addr);
2709extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2710#else
2711static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2712{
2713 return NULL;
2714}
2715static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2716static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2717{
2718 return 0;
2719}
2720#endif /* __HAVE_ARCH_GATE_AREA */
2721
2722extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2723
2724#ifdef CONFIG_SYSCTL
2725extern int sysctl_drop_caches;
2726int drop_caches_sysctl_handler(struct ctl_table *, int,
2727 void __user *, size_t *, loff_t *);
2728#endif
2729
2730void drop_slab(void);
2731void drop_slab_node(int nid);
2732
2733#ifndef CONFIG_MMU
2734#define randomize_va_space 0
2735#else
2736extern int randomize_va_space;
2737#endif
2738
2739const char * arch_vma_name(struct vm_area_struct *vma);
2740#ifdef CONFIG_MMU
2741void print_vma_addr(char *prefix, unsigned long rip);
2742#else
2743static inline void print_vma_addr(char *prefix, unsigned long rip)
2744{
2745}
2746#endif
2747
2748void *sparse_buffer_alloc(unsigned long size);
2749struct page * __populate_section_memmap(unsigned long pfn,
2750 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2751pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2752p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2753pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2754pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2755pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2756void *vmemmap_alloc_block(unsigned long size, int node);
2757struct vmem_altmap;
2758void *vmemmap_alloc_block_buf(unsigned long size, int node);
2759void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2760void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2761int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2762 int node);
2763int vmemmap_populate(unsigned long start, unsigned long end, int node,
2764 struct vmem_altmap *altmap);
2765void vmemmap_populate_print_last(void);
2766#ifdef CONFIG_MEMORY_HOTPLUG
2767void vmemmap_free(unsigned long start, unsigned long end,
2768 struct vmem_altmap *altmap);
2769#endif
2770void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2771 unsigned long nr_pages);
2772
2773enum mf_flags {
2774 MF_COUNT_INCREASED = 1 << 0,
2775 MF_ACTION_REQUIRED = 1 << 1,
2776 MF_MUST_KILL = 1 << 2,
2777 MF_SOFT_OFFLINE = 1 << 3,
2778};
2779extern int memory_failure(unsigned long pfn, int flags);
2780extern void memory_failure_queue(unsigned long pfn, int flags);
2781extern int unpoison_memory(unsigned long pfn);
2782extern int get_hwpoison_page(struct page *page);
2783#define put_hwpoison_page(page) put_page(page)
2784extern int sysctl_memory_failure_early_kill;
2785extern int sysctl_memory_failure_recovery;
2786extern void shake_page(struct page *p, int access);
2787extern atomic_long_t num_poisoned_pages __read_mostly;
2788extern int soft_offline_page(unsigned long pfn, int flags);
2789
2790
2791/*
2792 * Error handlers for various types of pages.
2793 */
2794enum mf_result {
2795 MF_IGNORED, /* Error: cannot be handled */
2796 MF_FAILED, /* Error: handling failed */
2797 MF_DELAYED, /* Will be handled later */
2798 MF_RECOVERED, /* Successfully recovered */
2799};
2800
2801enum mf_action_page_type {
2802 MF_MSG_KERNEL,
2803 MF_MSG_KERNEL_HIGH_ORDER,
2804 MF_MSG_SLAB,
2805 MF_MSG_DIFFERENT_COMPOUND,
2806 MF_MSG_POISONED_HUGE,
2807 MF_MSG_HUGE,
2808 MF_MSG_FREE_HUGE,
2809 MF_MSG_NON_PMD_HUGE,
2810 MF_MSG_UNMAP_FAILED,
2811 MF_MSG_DIRTY_SWAPCACHE,
2812 MF_MSG_CLEAN_SWAPCACHE,
2813 MF_MSG_DIRTY_MLOCKED_LRU,
2814 MF_MSG_CLEAN_MLOCKED_LRU,
2815 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2816 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2817 MF_MSG_DIRTY_LRU,
2818 MF_MSG_CLEAN_LRU,
2819 MF_MSG_TRUNCATED_LRU,
2820 MF_MSG_BUDDY,
2821 MF_MSG_BUDDY_2ND,
2822 MF_MSG_DAX,
2823 MF_MSG_UNKNOWN,
2824};
2825
2826#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2827extern void clear_huge_page(struct page *page,
2828 unsigned long addr_hint,
2829 unsigned int pages_per_huge_page);
2830extern void copy_user_huge_page(struct page *dst, struct page *src,
2831 unsigned long addr_hint,
2832 struct vm_area_struct *vma,
2833 unsigned int pages_per_huge_page);
2834extern long copy_huge_page_from_user(struct page *dst_page,
2835 const void __user *usr_src,
2836 unsigned int pages_per_huge_page,
2837 bool allow_pagefault);
2838#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2839
2840#ifdef CONFIG_DEBUG_PAGEALLOC
2841extern unsigned int _debug_guardpage_minorder;
2842DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2843
2844static inline unsigned int debug_guardpage_minorder(void)
2845{
2846 return _debug_guardpage_minorder;
2847}
2848
2849static inline bool debug_guardpage_enabled(void)
2850{
2851 return static_branch_unlikely(&_debug_guardpage_enabled);
2852}
2853
2854static inline bool page_is_guard(struct page *page)
2855{
2856 if (!debug_guardpage_enabled())
2857 return false;
2858
2859 return PageGuard(page);
2860}
2861#else
2862static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2863static inline bool debug_guardpage_enabled(void) { return false; }
2864static inline bool page_is_guard(struct page *page) { return false; }
2865#endif /* CONFIG_DEBUG_PAGEALLOC */
2866
2867#if MAX_NUMNODES > 1
2868void __init setup_nr_node_ids(void);
2869#else
2870static inline void setup_nr_node_ids(void) {}
2871#endif
2872
2873extern int memcmp_pages(struct page *page1, struct page *page2);
2874
2875static inline int pages_identical(struct page *page1, struct page *page2)
2876{
2877 return !memcmp_pages(page1, page2);
2878}
2879
2880#ifdef CONFIG_MAPPING_DIRTY_HELPERS
2881unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
2882 pgoff_t first_index, pgoff_t nr,
2883 pgoff_t bitmap_pgoff,
2884 unsigned long *bitmap,
2885 pgoff_t *start,
2886 pgoff_t *end);
2887
2888unsigned long wp_shared_mapping_range(struct address_space *mapping,
2889 pgoff_t first_index, pgoff_t nr);
2890#endif
2891
2892#endif /* __KERNEL__ */
2893#endif /* _LINUX_MM_H */