at v5.5 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct page; 27struct mm_struct; 28struct kmem_cache; 29 30/* Cgroup-specific page state, on top of universal node page state */ 31enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40}; 41 42enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51}; 52 53enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57}; 58 59struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 unsigned int generation; 62}; 63 64#ifdef CONFIG_MEMCG 65 66#define MEM_CGROUP_ID_SHIFT 16 67#define MEM_CGROUP_ID_MAX USHRT_MAX 68 69struct mem_cgroup_id { 70 int id; 71 refcount_t ref; 72}; 73 74/* 75 * Per memcg event counter is incremented at every pagein/pageout. With THP, 76 * it will be incremated by the number of pages. This counter is used for 77 * for trigger some periodic events. This is straightforward and better 78 * than using jiffies etc. to handle periodic memcg event. 79 */ 80enum mem_cgroup_events_target { 81 MEM_CGROUP_TARGET_THRESH, 82 MEM_CGROUP_TARGET_SOFTLIMIT, 83 MEM_CGROUP_NTARGETS, 84}; 85 86struct memcg_vmstats_percpu { 87 long stat[MEMCG_NR_STAT]; 88 unsigned long events[NR_VM_EVENT_ITEMS]; 89 unsigned long nr_page_events; 90 unsigned long targets[MEM_CGROUP_NTARGETS]; 91}; 92 93struct mem_cgroup_reclaim_iter { 94 struct mem_cgroup *position; 95 /* scan generation, increased every round-trip */ 96 unsigned int generation; 97}; 98 99struct lruvec_stat { 100 long count[NR_VM_NODE_STAT_ITEMS]; 101}; 102 103/* 104 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 105 * which have elements charged to this memcg. 106 */ 107struct memcg_shrinker_map { 108 struct rcu_head rcu; 109 unsigned long map[0]; 110}; 111 112/* 113 * per-node information in memory controller. 114 */ 115struct mem_cgroup_per_node { 116 struct lruvec lruvec; 117 118 /* Legacy local VM stats */ 119 struct lruvec_stat __percpu *lruvec_stat_local; 120 121 /* Subtree VM stats (batched updates) */ 122 struct lruvec_stat __percpu *lruvec_stat_cpu; 123 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 124 125 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 126 127 struct mem_cgroup_reclaim_iter iter; 128 129 struct memcg_shrinker_map __rcu *shrinker_map; 130 131 struct rb_node tree_node; /* RB tree node */ 132 unsigned long usage_in_excess;/* Set to the value by which */ 133 /* the soft limit is exceeded*/ 134 bool on_tree; 135 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 136 /* use container_of */ 137}; 138 139struct mem_cgroup_threshold { 140 struct eventfd_ctx *eventfd; 141 unsigned long threshold; 142}; 143 144/* For threshold */ 145struct mem_cgroup_threshold_ary { 146 /* An array index points to threshold just below or equal to usage. */ 147 int current_threshold; 148 /* Size of entries[] */ 149 unsigned int size; 150 /* Array of thresholds */ 151 struct mem_cgroup_threshold entries[0]; 152}; 153 154struct mem_cgroup_thresholds { 155 /* Primary thresholds array */ 156 struct mem_cgroup_threshold_ary *primary; 157 /* 158 * Spare threshold array. 159 * This is needed to make mem_cgroup_unregister_event() "never fail". 160 * It must be able to store at least primary->size - 1 entries. 161 */ 162 struct mem_cgroup_threshold_ary *spare; 163}; 164 165enum memcg_kmem_state { 166 KMEM_NONE, 167 KMEM_ALLOCATED, 168 KMEM_ONLINE, 169}; 170 171#if defined(CONFIG_SMP) 172struct memcg_padding { 173 char x[0]; 174} ____cacheline_internodealigned_in_smp; 175#define MEMCG_PADDING(name) struct memcg_padding name; 176#else 177#define MEMCG_PADDING(name) 178#endif 179 180/* 181 * Remember four most recent foreign writebacks with dirty pages in this 182 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 183 * one in a given round, we're likely to catch it later if it keeps 184 * foreign-dirtying, so a fairly low count should be enough. 185 * 186 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 187 */ 188#define MEMCG_CGWB_FRN_CNT 4 189 190struct memcg_cgwb_frn { 191 u64 bdi_id; /* bdi->id of the foreign inode */ 192 int memcg_id; /* memcg->css.id of foreign inode */ 193 u64 at; /* jiffies_64 at the time of dirtying */ 194 struct wb_completion done; /* tracks in-flight foreign writebacks */ 195}; 196 197/* 198 * The memory controller data structure. The memory controller controls both 199 * page cache and RSS per cgroup. We would eventually like to provide 200 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 201 * to help the administrator determine what knobs to tune. 202 */ 203struct mem_cgroup { 204 struct cgroup_subsys_state css; 205 206 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 207 struct mem_cgroup_id id; 208 209 /* Accounted resources */ 210 struct page_counter memory; 211 struct page_counter swap; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter memsw; 215 struct page_counter kmem; 216 struct page_counter tcpmem; 217 218 /* Upper bound of normal memory consumption range */ 219 unsigned long high; 220 221 /* Range enforcement for interrupt charges */ 222 struct work_struct high_work; 223 224 unsigned long soft_limit; 225 226 /* vmpressure notifications */ 227 struct vmpressure vmpressure; 228 229 /* 230 * Should the accounting and control be hierarchical, per subtree? 231 */ 232 bool use_hierarchy; 233 234 /* 235 * Should the OOM killer kill all belonging tasks, had it kill one? 236 */ 237 bool oom_group; 238 239 /* protected by memcg_oom_lock */ 240 bool oom_lock; 241 int under_oom; 242 243 int swappiness; 244 /* OOM-Killer disable */ 245 int oom_kill_disable; 246 247 /* memory.events and memory.events.local */ 248 struct cgroup_file events_file; 249 struct cgroup_file events_local_file; 250 251 /* handle for "memory.swap.events" */ 252 struct cgroup_file swap_events_file; 253 254 /* protect arrays of thresholds */ 255 struct mutex thresholds_lock; 256 257 /* thresholds for memory usage. RCU-protected */ 258 struct mem_cgroup_thresholds thresholds; 259 260 /* thresholds for mem+swap usage. RCU-protected */ 261 struct mem_cgroup_thresholds memsw_thresholds; 262 263 /* For oom notifier event fd */ 264 struct list_head oom_notify; 265 266 /* 267 * Should we move charges of a task when a task is moved into this 268 * mem_cgroup ? And what type of charges should we move ? 269 */ 270 unsigned long move_charge_at_immigrate; 271 /* taken only while moving_account > 0 */ 272 spinlock_t move_lock; 273 unsigned long move_lock_flags; 274 275 MEMCG_PADDING(_pad1_); 276 277 /* 278 * set > 0 if pages under this cgroup are moving to other cgroup. 279 */ 280 atomic_t moving_account; 281 struct task_struct *move_lock_task; 282 283 /* Legacy local VM stats and events */ 284 struct memcg_vmstats_percpu __percpu *vmstats_local; 285 286 /* Subtree VM stats and events (batched updates) */ 287 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 288 289 MEMCG_PADDING(_pad2_); 290 291 atomic_long_t vmstats[MEMCG_NR_STAT]; 292 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 293 294 /* memory.events */ 295 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 296 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 297 298 unsigned long socket_pressure; 299 300 /* Legacy tcp memory accounting */ 301 bool tcpmem_active; 302 int tcpmem_pressure; 303 304#ifdef CONFIG_MEMCG_KMEM 305 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 306 int kmemcg_id; 307 enum memcg_kmem_state kmem_state; 308 struct list_head kmem_caches; 309#endif 310 311#ifdef CONFIG_CGROUP_WRITEBACK 312 struct list_head cgwb_list; 313 struct wb_domain cgwb_domain; 314 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 315#endif 316 317 /* List of events which userspace want to receive */ 318 struct list_head event_list; 319 spinlock_t event_list_lock; 320 321#ifdef CONFIG_TRANSPARENT_HUGEPAGE 322 struct deferred_split deferred_split_queue; 323#endif 324 325 struct mem_cgroup_per_node *nodeinfo[0]; 326 /* WARNING: nodeinfo must be the last member here */ 327}; 328 329/* 330 * size of first charge trial. "32" comes from vmscan.c's magic value. 331 * TODO: maybe necessary to use big numbers in big irons. 332 */ 333#define MEMCG_CHARGE_BATCH 32U 334 335extern struct mem_cgroup *root_mem_cgroup; 336 337static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 338{ 339 return (memcg == root_mem_cgroup); 340} 341 342static inline bool mem_cgroup_disabled(void) 343{ 344 return !cgroup_subsys_enabled(memory_cgrp_subsys); 345} 346 347static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 348 bool in_low_reclaim) 349{ 350 if (mem_cgroup_disabled()) 351 return 0; 352 353 if (in_low_reclaim) 354 return READ_ONCE(memcg->memory.emin); 355 356 return max(READ_ONCE(memcg->memory.emin), 357 READ_ONCE(memcg->memory.elow)); 358} 359 360enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 361 struct mem_cgroup *memcg); 362 363int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 364 gfp_t gfp_mask, struct mem_cgroup **memcgp, 365 bool compound); 366int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 367 gfp_t gfp_mask, struct mem_cgroup **memcgp, 368 bool compound); 369void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 370 bool lrucare, bool compound); 371void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 372 bool compound); 373void mem_cgroup_uncharge(struct page *page); 374void mem_cgroup_uncharge_list(struct list_head *page_list); 375 376void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 377 378static struct mem_cgroup_per_node * 379mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 380{ 381 return memcg->nodeinfo[nid]; 382} 383 384/** 385 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 386 * @memcg: memcg of the wanted lruvec 387 * 388 * Returns the lru list vector holding pages for a given @memcg & 389 * @node combination. This can be the node lruvec, if the memory 390 * controller is disabled. 391 */ 392static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 393 struct pglist_data *pgdat) 394{ 395 struct mem_cgroup_per_node *mz; 396 struct lruvec *lruvec; 397 398 if (mem_cgroup_disabled()) { 399 lruvec = &pgdat->__lruvec; 400 goto out; 401 } 402 403 if (!memcg) 404 memcg = root_mem_cgroup; 405 406 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 407 lruvec = &mz->lruvec; 408out: 409 /* 410 * Since a node can be onlined after the mem_cgroup was created, 411 * we have to be prepared to initialize lruvec->pgdat here; 412 * and if offlined then reonlined, we need to reinitialize it. 413 */ 414 if (unlikely(lruvec->pgdat != pgdat)) 415 lruvec->pgdat = pgdat; 416 return lruvec; 417} 418 419struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 420 421struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 422 423struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 424 425struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 426 427static inline 428struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 429 return css ? container_of(css, struct mem_cgroup, css) : NULL; 430} 431 432static inline void mem_cgroup_put(struct mem_cgroup *memcg) 433{ 434 if (memcg) 435 css_put(&memcg->css); 436} 437 438#define mem_cgroup_from_counter(counter, member) \ 439 container_of(counter, struct mem_cgroup, member) 440 441struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 442 struct mem_cgroup *, 443 struct mem_cgroup_reclaim_cookie *); 444void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 445int mem_cgroup_scan_tasks(struct mem_cgroup *, 446 int (*)(struct task_struct *, void *), void *); 447 448static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 449{ 450 if (mem_cgroup_disabled()) 451 return 0; 452 453 return memcg->id.id; 454} 455struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 456 457static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 458{ 459 return mem_cgroup_from_css(seq_css(m)); 460} 461 462static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 463{ 464 struct mem_cgroup_per_node *mz; 465 466 if (mem_cgroup_disabled()) 467 return NULL; 468 469 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 470 return mz->memcg; 471} 472 473/** 474 * parent_mem_cgroup - find the accounting parent of a memcg 475 * @memcg: memcg whose parent to find 476 * 477 * Returns the parent memcg, or NULL if this is the root or the memory 478 * controller is in legacy no-hierarchy mode. 479 */ 480static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 481{ 482 if (!memcg->memory.parent) 483 return NULL; 484 return mem_cgroup_from_counter(memcg->memory.parent, memory); 485} 486 487static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 488 struct mem_cgroup *root) 489{ 490 if (root == memcg) 491 return true; 492 if (!root->use_hierarchy) 493 return false; 494 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 495} 496 497static inline bool mm_match_cgroup(struct mm_struct *mm, 498 struct mem_cgroup *memcg) 499{ 500 struct mem_cgroup *task_memcg; 501 bool match = false; 502 503 rcu_read_lock(); 504 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 505 if (task_memcg) 506 match = mem_cgroup_is_descendant(task_memcg, memcg); 507 rcu_read_unlock(); 508 return match; 509} 510 511struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 512ino_t page_cgroup_ino(struct page *page); 513 514static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 515{ 516 if (mem_cgroup_disabled()) 517 return true; 518 return !!(memcg->css.flags & CSS_ONLINE); 519} 520 521/* 522 * For memory reclaim. 523 */ 524int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 525 526void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 527 int zid, int nr_pages); 528 529static inline 530unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 531 enum lru_list lru, int zone_idx) 532{ 533 struct mem_cgroup_per_node *mz; 534 535 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 536 return mz->lru_zone_size[zone_idx][lru]; 537} 538 539void mem_cgroup_handle_over_high(void); 540 541unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 542 543unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 544 545void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 546 struct task_struct *p); 547 548void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 549 550static inline void mem_cgroup_enter_user_fault(void) 551{ 552 WARN_ON(current->in_user_fault); 553 current->in_user_fault = 1; 554} 555 556static inline void mem_cgroup_exit_user_fault(void) 557{ 558 WARN_ON(!current->in_user_fault); 559 current->in_user_fault = 0; 560} 561 562static inline bool task_in_memcg_oom(struct task_struct *p) 563{ 564 return p->memcg_in_oom; 565} 566 567bool mem_cgroup_oom_synchronize(bool wait); 568struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 569 struct mem_cgroup *oom_domain); 570void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 571 572#ifdef CONFIG_MEMCG_SWAP 573extern int do_swap_account; 574#endif 575 576struct mem_cgroup *lock_page_memcg(struct page *page); 577void __unlock_page_memcg(struct mem_cgroup *memcg); 578void unlock_page_memcg(struct page *page); 579 580/* 581 * idx can be of type enum memcg_stat_item or node_stat_item. 582 * Keep in sync with memcg_exact_page_state(). 583 */ 584static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 585{ 586 long x = atomic_long_read(&memcg->vmstats[idx]); 587#ifdef CONFIG_SMP 588 if (x < 0) 589 x = 0; 590#endif 591 return x; 592} 593 594/* 595 * idx can be of type enum memcg_stat_item or node_stat_item. 596 * Keep in sync with memcg_exact_page_state(). 597 */ 598static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 599 int idx) 600{ 601 long x = 0; 602 int cpu; 603 604 for_each_possible_cpu(cpu) 605 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 606#ifdef CONFIG_SMP 607 if (x < 0) 608 x = 0; 609#endif 610 return x; 611} 612 613void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 614 615/* idx can be of type enum memcg_stat_item or node_stat_item */ 616static inline void mod_memcg_state(struct mem_cgroup *memcg, 617 int idx, int val) 618{ 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __mod_memcg_state(memcg, idx, val); 623 local_irq_restore(flags); 624} 625 626/** 627 * mod_memcg_page_state - update page state statistics 628 * @page: the page 629 * @idx: page state item to account 630 * @val: number of pages (positive or negative) 631 * 632 * The @page must be locked or the caller must use lock_page_memcg() 633 * to prevent double accounting when the page is concurrently being 634 * moved to another memcg: 635 * 636 * lock_page(page) or lock_page_memcg(page) 637 * if (TestClearPageState(page)) 638 * mod_memcg_page_state(page, state, -1); 639 * unlock_page(page) or unlock_page_memcg(page) 640 * 641 * Kernel pages are an exception to this, since they'll never move. 642 */ 643static inline void __mod_memcg_page_state(struct page *page, 644 int idx, int val) 645{ 646 if (page->mem_cgroup) 647 __mod_memcg_state(page->mem_cgroup, idx, val); 648} 649 650static inline void mod_memcg_page_state(struct page *page, 651 int idx, int val) 652{ 653 if (page->mem_cgroup) 654 mod_memcg_state(page->mem_cgroup, idx, val); 655} 656 657static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 658 enum node_stat_item idx) 659{ 660 struct mem_cgroup_per_node *pn; 661 long x; 662 663 if (mem_cgroup_disabled()) 664 return node_page_state(lruvec_pgdat(lruvec), idx); 665 666 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 667 x = atomic_long_read(&pn->lruvec_stat[idx]); 668#ifdef CONFIG_SMP 669 if (x < 0) 670 x = 0; 671#endif 672 return x; 673} 674 675static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 676 enum node_stat_item idx) 677{ 678 struct mem_cgroup_per_node *pn; 679 long x = 0; 680 int cpu; 681 682 if (mem_cgroup_disabled()) 683 return node_page_state(lruvec_pgdat(lruvec), idx); 684 685 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 686 for_each_possible_cpu(cpu) 687 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 688#ifdef CONFIG_SMP 689 if (x < 0) 690 x = 0; 691#endif 692 return x; 693} 694 695void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 696 int val); 697void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 698 699static inline void mod_lruvec_state(struct lruvec *lruvec, 700 enum node_stat_item idx, int val) 701{ 702 unsigned long flags; 703 704 local_irq_save(flags); 705 __mod_lruvec_state(lruvec, idx, val); 706 local_irq_restore(flags); 707} 708 709static inline void __mod_lruvec_page_state(struct page *page, 710 enum node_stat_item idx, int val) 711{ 712 pg_data_t *pgdat = page_pgdat(page); 713 struct lruvec *lruvec; 714 715 /* Untracked pages have no memcg, no lruvec. Update only the node */ 716 if (!page->mem_cgroup) { 717 __mod_node_page_state(pgdat, idx, val); 718 return; 719 } 720 721 lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat); 722 __mod_lruvec_state(lruvec, idx, val); 723} 724 725static inline void mod_lruvec_page_state(struct page *page, 726 enum node_stat_item idx, int val) 727{ 728 unsigned long flags; 729 730 local_irq_save(flags); 731 __mod_lruvec_page_state(page, idx, val); 732 local_irq_restore(flags); 733} 734 735unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 736 gfp_t gfp_mask, 737 unsigned long *total_scanned); 738 739void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 740 unsigned long count); 741 742static inline void count_memcg_events(struct mem_cgroup *memcg, 743 enum vm_event_item idx, 744 unsigned long count) 745{ 746 unsigned long flags; 747 748 local_irq_save(flags); 749 __count_memcg_events(memcg, idx, count); 750 local_irq_restore(flags); 751} 752 753static inline void count_memcg_page_event(struct page *page, 754 enum vm_event_item idx) 755{ 756 if (page->mem_cgroup) 757 count_memcg_events(page->mem_cgroup, idx, 1); 758} 759 760static inline void count_memcg_event_mm(struct mm_struct *mm, 761 enum vm_event_item idx) 762{ 763 struct mem_cgroup *memcg; 764 765 if (mem_cgroup_disabled()) 766 return; 767 768 rcu_read_lock(); 769 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 770 if (likely(memcg)) 771 count_memcg_events(memcg, idx, 1); 772 rcu_read_unlock(); 773} 774 775static inline void memcg_memory_event(struct mem_cgroup *memcg, 776 enum memcg_memory_event event) 777{ 778 atomic_long_inc(&memcg->memory_events_local[event]); 779 cgroup_file_notify(&memcg->events_local_file); 780 781 do { 782 atomic_long_inc(&memcg->memory_events[event]); 783 cgroup_file_notify(&memcg->events_file); 784 785 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 786 break; 787 } while ((memcg = parent_mem_cgroup(memcg)) && 788 !mem_cgroup_is_root(memcg)); 789} 790 791static inline void memcg_memory_event_mm(struct mm_struct *mm, 792 enum memcg_memory_event event) 793{ 794 struct mem_cgroup *memcg; 795 796 if (mem_cgroup_disabled()) 797 return; 798 799 rcu_read_lock(); 800 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 801 if (likely(memcg)) 802 memcg_memory_event(memcg, event); 803 rcu_read_unlock(); 804} 805 806#ifdef CONFIG_TRANSPARENT_HUGEPAGE 807void mem_cgroup_split_huge_fixup(struct page *head); 808#endif 809 810#else /* CONFIG_MEMCG */ 811 812#define MEM_CGROUP_ID_SHIFT 0 813#define MEM_CGROUP_ID_MAX 0 814 815struct mem_cgroup; 816 817static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 818{ 819 return true; 820} 821 822static inline bool mem_cgroup_disabled(void) 823{ 824 return true; 825} 826 827static inline void memcg_memory_event(struct mem_cgroup *memcg, 828 enum memcg_memory_event event) 829{ 830} 831 832static inline void memcg_memory_event_mm(struct mm_struct *mm, 833 enum memcg_memory_event event) 834{ 835} 836 837static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 838 bool in_low_reclaim) 839{ 840 return 0; 841} 842 843static inline enum mem_cgroup_protection mem_cgroup_protected( 844 struct mem_cgroup *root, struct mem_cgroup *memcg) 845{ 846 return MEMCG_PROT_NONE; 847} 848 849static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 850 gfp_t gfp_mask, 851 struct mem_cgroup **memcgp, 852 bool compound) 853{ 854 *memcgp = NULL; 855 return 0; 856} 857 858static inline int mem_cgroup_try_charge_delay(struct page *page, 859 struct mm_struct *mm, 860 gfp_t gfp_mask, 861 struct mem_cgroup **memcgp, 862 bool compound) 863{ 864 *memcgp = NULL; 865 return 0; 866} 867 868static inline void mem_cgroup_commit_charge(struct page *page, 869 struct mem_cgroup *memcg, 870 bool lrucare, bool compound) 871{ 872} 873 874static inline void mem_cgroup_cancel_charge(struct page *page, 875 struct mem_cgroup *memcg, 876 bool compound) 877{ 878} 879 880static inline void mem_cgroup_uncharge(struct page *page) 881{ 882} 883 884static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 885{ 886} 887 888static inline void mem_cgroup_migrate(struct page *old, struct page *new) 889{ 890} 891 892static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 893 struct pglist_data *pgdat) 894{ 895 return &pgdat->__lruvec; 896} 897 898static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 899 struct pglist_data *pgdat) 900{ 901 return &pgdat->__lruvec; 902} 903 904static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 905{ 906 return NULL; 907} 908 909static inline bool mm_match_cgroup(struct mm_struct *mm, 910 struct mem_cgroup *memcg) 911{ 912 return true; 913} 914 915static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 916{ 917 return NULL; 918} 919 920static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 921{ 922 return NULL; 923} 924 925static inline void mem_cgroup_put(struct mem_cgroup *memcg) 926{ 927} 928 929static inline struct mem_cgroup * 930mem_cgroup_iter(struct mem_cgroup *root, 931 struct mem_cgroup *prev, 932 struct mem_cgroup_reclaim_cookie *reclaim) 933{ 934 return NULL; 935} 936 937static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 938 struct mem_cgroup *prev) 939{ 940} 941 942static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 943 int (*fn)(struct task_struct *, void *), void *arg) 944{ 945 return 0; 946} 947 948static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 949{ 950 return 0; 951} 952 953static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 954{ 955 WARN_ON_ONCE(id); 956 /* XXX: This should always return root_mem_cgroup */ 957 return NULL; 958} 959 960static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 961{ 962 return NULL; 963} 964 965static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 966{ 967 return NULL; 968} 969 970static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 971{ 972 return true; 973} 974 975static inline 976unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 977 enum lru_list lru, int zone_idx) 978{ 979 return 0; 980} 981 982static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 983{ 984 return 0; 985} 986 987static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 988{ 989 return 0; 990} 991 992static inline void 993mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 994{ 995} 996 997static inline void 998mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 999{ 1000} 1001 1002static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1003{ 1004 return NULL; 1005} 1006 1007static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1008{ 1009} 1010 1011static inline void unlock_page_memcg(struct page *page) 1012{ 1013} 1014 1015static inline void mem_cgroup_handle_over_high(void) 1016{ 1017} 1018 1019static inline void mem_cgroup_enter_user_fault(void) 1020{ 1021} 1022 1023static inline void mem_cgroup_exit_user_fault(void) 1024{ 1025} 1026 1027static inline bool task_in_memcg_oom(struct task_struct *p) 1028{ 1029 return false; 1030} 1031 1032static inline bool mem_cgroup_oom_synchronize(bool wait) 1033{ 1034 return false; 1035} 1036 1037static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1038 struct task_struct *victim, struct mem_cgroup *oom_domain) 1039{ 1040 return NULL; 1041} 1042 1043static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1044{ 1045} 1046 1047static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1048{ 1049 return 0; 1050} 1051 1052static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1053 int idx) 1054{ 1055 return 0; 1056} 1057 1058static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1059 int idx, 1060 int nr) 1061{ 1062} 1063 1064static inline void mod_memcg_state(struct mem_cgroup *memcg, 1065 int idx, 1066 int nr) 1067{ 1068} 1069 1070static inline void __mod_memcg_page_state(struct page *page, 1071 int idx, 1072 int nr) 1073{ 1074} 1075 1076static inline void mod_memcg_page_state(struct page *page, 1077 int idx, 1078 int nr) 1079{ 1080} 1081 1082static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1083 enum node_stat_item idx) 1084{ 1085 return node_page_state(lruvec_pgdat(lruvec), idx); 1086} 1087 1088static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1089 enum node_stat_item idx) 1090{ 1091 return node_page_state(lruvec_pgdat(lruvec), idx); 1092} 1093 1094static inline void __mod_lruvec_state(struct lruvec *lruvec, 1095 enum node_stat_item idx, int val) 1096{ 1097 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1098} 1099 1100static inline void mod_lruvec_state(struct lruvec *lruvec, 1101 enum node_stat_item idx, int val) 1102{ 1103 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1104} 1105 1106static inline void __mod_lruvec_page_state(struct page *page, 1107 enum node_stat_item idx, int val) 1108{ 1109 __mod_node_page_state(page_pgdat(page), idx, val); 1110} 1111 1112static inline void mod_lruvec_page_state(struct page *page, 1113 enum node_stat_item idx, int val) 1114{ 1115 mod_node_page_state(page_pgdat(page), idx, val); 1116} 1117 1118static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1119 int val) 1120{ 1121 struct page *page = virt_to_head_page(p); 1122 1123 __mod_node_page_state(page_pgdat(page), idx, val); 1124} 1125 1126static inline 1127unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1128 gfp_t gfp_mask, 1129 unsigned long *total_scanned) 1130{ 1131 return 0; 1132} 1133 1134static inline void mem_cgroup_split_huge_fixup(struct page *head) 1135{ 1136} 1137 1138static inline void count_memcg_events(struct mem_cgroup *memcg, 1139 enum vm_event_item idx, 1140 unsigned long count) 1141{ 1142} 1143 1144static inline void __count_memcg_events(struct mem_cgroup *memcg, 1145 enum vm_event_item idx, 1146 unsigned long count) 1147{ 1148} 1149 1150static inline void count_memcg_page_event(struct page *page, 1151 int idx) 1152{ 1153} 1154 1155static inline 1156void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1157{ 1158} 1159#endif /* CONFIG_MEMCG */ 1160 1161/* idx can be of type enum memcg_stat_item or node_stat_item */ 1162static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1163 int idx) 1164{ 1165 __mod_memcg_state(memcg, idx, 1); 1166} 1167 1168/* idx can be of type enum memcg_stat_item or node_stat_item */ 1169static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1170 int idx) 1171{ 1172 __mod_memcg_state(memcg, idx, -1); 1173} 1174 1175/* idx can be of type enum memcg_stat_item or node_stat_item */ 1176static inline void __inc_memcg_page_state(struct page *page, 1177 int idx) 1178{ 1179 __mod_memcg_page_state(page, idx, 1); 1180} 1181 1182/* idx can be of type enum memcg_stat_item or node_stat_item */ 1183static inline void __dec_memcg_page_state(struct page *page, 1184 int idx) 1185{ 1186 __mod_memcg_page_state(page, idx, -1); 1187} 1188 1189static inline void __inc_lruvec_state(struct lruvec *lruvec, 1190 enum node_stat_item idx) 1191{ 1192 __mod_lruvec_state(lruvec, idx, 1); 1193} 1194 1195static inline void __dec_lruvec_state(struct lruvec *lruvec, 1196 enum node_stat_item idx) 1197{ 1198 __mod_lruvec_state(lruvec, idx, -1); 1199} 1200 1201static inline void __inc_lruvec_page_state(struct page *page, 1202 enum node_stat_item idx) 1203{ 1204 __mod_lruvec_page_state(page, idx, 1); 1205} 1206 1207static inline void __dec_lruvec_page_state(struct page *page, 1208 enum node_stat_item idx) 1209{ 1210 __mod_lruvec_page_state(page, idx, -1); 1211} 1212 1213static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1214{ 1215 __mod_lruvec_slab_state(p, idx, 1); 1216} 1217 1218static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1219{ 1220 __mod_lruvec_slab_state(p, idx, -1); 1221} 1222 1223/* idx can be of type enum memcg_stat_item or node_stat_item */ 1224static inline void inc_memcg_state(struct mem_cgroup *memcg, 1225 int idx) 1226{ 1227 mod_memcg_state(memcg, idx, 1); 1228} 1229 1230/* idx can be of type enum memcg_stat_item or node_stat_item */ 1231static inline void dec_memcg_state(struct mem_cgroup *memcg, 1232 int idx) 1233{ 1234 mod_memcg_state(memcg, idx, -1); 1235} 1236 1237/* idx can be of type enum memcg_stat_item or node_stat_item */ 1238static inline void inc_memcg_page_state(struct page *page, 1239 int idx) 1240{ 1241 mod_memcg_page_state(page, idx, 1); 1242} 1243 1244/* idx can be of type enum memcg_stat_item or node_stat_item */ 1245static inline void dec_memcg_page_state(struct page *page, 1246 int idx) 1247{ 1248 mod_memcg_page_state(page, idx, -1); 1249} 1250 1251static inline void inc_lruvec_state(struct lruvec *lruvec, 1252 enum node_stat_item idx) 1253{ 1254 mod_lruvec_state(lruvec, idx, 1); 1255} 1256 1257static inline void dec_lruvec_state(struct lruvec *lruvec, 1258 enum node_stat_item idx) 1259{ 1260 mod_lruvec_state(lruvec, idx, -1); 1261} 1262 1263static inline void inc_lruvec_page_state(struct page *page, 1264 enum node_stat_item idx) 1265{ 1266 mod_lruvec_page_state(page, idx, 1); 1267} 1268 1269static inline void dec_lruvec_page_state(struct page *page, 1270 enum node_stat_item idx) 1271{ 1272 mod_lruvec_page_state(page, idx, -1); 1273} 1274 1275#ifdef CONFIG_CGROUP_WRITEBACK 1276 1277struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1278void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1279 unsigned long *pheadroom, unsigned long *pdirty, 1280 unsigned long *pwriteback); 1281 1282void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1283 struct bdi_writeback *wb); 1284 1285static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1286 struct bdi_writeback *wb) 1287{ 1288 if (mem_cgroup_disabled()) 1289 return; 1290 1291 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1292 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1293} 1294 1295void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1296 1297#else /* CONFIG_CGROUP_WRITEBACK */ 1298 1299static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1300{ 1301 return NULL; 1302} 1303 1304static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1305 unsigned long *pfilepages, 1306 unsigned long *pheadroom, 1307 unsigned long *pdirty, 1308 unsigned long *pwriteback) 1309{ 1310} 1311 1312static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1313 struct bdi_writeback *wb) 1314{ 1315} 1316 1317static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1318{ 1319} 1320 1321#endif /* CONFIG_CGROUP_WRITEBACK */ 1322 1323struct sock; 1324bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1325void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1326#ifdef CONFIG_MEMCG 1327extern struct static_key_false memcg_sockets_enabled_key; 1328#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1329void mem_cgroup_sk_alloc(struct sock *sk); 1330void mem_cgroup_sk_free(struct sock *sk); 1331static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1332{ 1333 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1334 return true; 1335 do { 1336 if (time_before(jiffies, memcg->socket_pressure)) 1337 return true; 1338 } while ((memcg = parent_mem_cgroup(memcg))); 1339 return false; 1340} 1341 1342extern int memcg_expand_shrinker_maps(int new_id); 1343 1344extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1345 int nid, int shrinker_id); 1346#else 1347#define mem_cgroup_sockets_enabled 0 1348static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1349static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1350static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1351{ 1352 return false; 1353} 1354 1355static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1356 int nid, int shrinker_id) 1357{ 1358} 1359#endif 1360 1361struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1362void memcg_kmem_put_cache(struct kmem_cache *cachep); 1363 1364#ifdef CONFIG_MEMCG_KMEM 1365int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1366void __memcg_kmem_uncharge(struct page *page, int order); 1367int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1368 struct mem_cgroup *memcg); 1369void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 1370 unsigned int nr_pages); 1371 1372extern struct static_key_false memcg_kmem_enabled_key; 1373extern struct workqueue_struct *memcg_kmem_cache_wq; 1374 1375extern int memcg_nr_cache_ids; 1376void memcg_get_cache_ids(void); 1377void memcg_put_cache_ids(void); 1378 1379/* 1380 * Helper macro to loop through all memcg-specific caches. Callers must still 1381 * check if the cache is valid (it is either valid or NULL). 1382 * the slab_mutex must be held when looping through those caches 1383 */ 1384#define for_each_memcg_cache_index(_idx) \ 1385 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1386 1387static inline bool memcg_kmem_enabled(void) 1388{ 1389 return static_branch_unlikely(&memcg_kmem_enabled_key); 1390} 1391 1392static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1393{ 1394 if (memcg_kmem_enabled()) 1395 return __memcg_kmem_charge(page, gfp, order); 1396 return 0; 1397} 1398 1399static inline void memcg_kmem_uncharge(struct page *page, int order) 1400{ 1401 if (memcg_kmem_enabled()) 1402 __memcg_kmem_uncharge(page, order); 1403} 1404 1405static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1406 int order, struct mem_cgroup *memcg) 1407{ 1408 if (memcg_kmem_enabled()) 1409 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1410 return 0; 1411} 1412 1413static inline void memcg_kmem_uncharge_memcg(struct page *page, int order, 1414 struct mem_cgroup *memcg) 1415{ 1416 if (memcg_kmem_enabled()) 1417 __memcg_kmem_uncharge_memcg(memcg, 1 << order); 1418} 1419 1420/* 1421 * helper for accessing a memcg's index. It will be used as an index in the 1422 * child cache array in kmem_cache, and also to derive its name. This function 1423 * will return -1 when this is not a kmem-limited memcg. 1424 */ 1425static inline int memcg_cache_id(struct mem_cgroup *memcg) 1426{ 1427 return memcg ? memcg->kmemcg_id : -1; 1428} 1429 1430#else 1431 1432static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1433{ 1434 return 0; 1435} 1436 1437static inline void memcg_kmem_uncharge(struct page *page, int order) 1438{ 1439} 1440 1441static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1442{ 1443 return 0; 1444} 1445 1446static inline void __memcg_kmem_uncharge(struct page *page, int order) 1447{ 1448} 1449 1450#define for_each_memcg_cache_index(_idx) \ 1451 for (; NULL; ) 1452 1453static inline bool memcg_kmem_enabled(void) 1454{ 1455 return false; 1456} 1457 1458static inline int memcg_cache_id(struct mem_cgroup *memcg) 1459{ 1460 return -1; 1461} 1462 1463static inline void memcg_get_cache_ids(void) 1464{ 1465} 1466 1467static inline void memcg_put_cache_ids(void) 1468{ 1469} 1470 1471#endif /* CONFIG_MEMCG_KMEM */ 1472 1473#endif /* _LINUX_MEMCONTROL_H */